
Davies-Meyer Merkle-Damg̊ard Revisited:
Variants of Indifferentiability and Random Oracles

Yusuke Naito1, Kazuki Yoneyama2, Lei Wang2, and Kazuo Ohta2

1 Mitsubishi Electoric Corporation
2 The University of Electro-Communications

Abstract. In this paper, we succeed in analyzing practical cryptosystems that employ the Davies-
Meyer Merkle-Damg̊ard hash function DM-MDE with ideal cipher E by using two approaches: indif-
ferentiability from variants of random oracles and indifferentiability from a random oracle RO with
conditions. We show that RSA-KEM with DM-MDE is secure by using the former approach and that
OAEP with DM-MDE is secure by using the latter approach. The public-use random oracle (pub-RO)
model is a variant of random oracle (proposed by Dodis et al. and Yoneyama et al.). We also show
that cryptosystems secure under pub-RO model, such as FDH, Fiat-Shamir, PSS and so on, are also
secure under DM-MDE by using the former approach. Note that Dodis et al. failed in the paper of
EUROCRYPT 2009 in analyzing the security of cryptosystems with DM-MDE , because they started by
analyzing the underlying compression function, while our first approach starts by analyzing the hash
function.
Keywords: Merkle-Damg̊ard construction, Davies-Meyer mode, indifferentiability, random oracles,
secure cryptosystems in the random oracle model.

1 Introduction

1.1 Background

Well-known cryptosystems such as RSA-KEM [15], OAEP [2], PSS [3] and so on have been proven secure
in the random oracle RO model. When these cryptosystems are implemented in a real environment, RO is
replaced by a hash function such as SHA-1, SHA-256 and so on, so their security is unknown.

The Merkle-Damg̊ard (MD) construction is a widely used hash construction [8, 12]. The MD construction
is adopted by many famous hash functions such as SHA-1, SHA-256 and so on. The MD construction digests
input message M by a cascade construction that uses an underlying fixed-input-length (FIL) compression
function f . We denote a hash function with MD construction with compression function f by MDf

At Crypto 2005, Coron et al. [7] showed that hash functions with the MD construction did not satisfy
the security notion of indifferentiability from random oracle RO using the extension property, even if it
employs an ideal primitive (e.g. FIL-RO or ideal block cipher) as an underlying primitive. For example,
the output of hash function MDf can be calculated from some output z = MDf (M) of input M . Namely
f(m, z) = MDf (M ||m) holds due to the cascade construction. On the other hand, RO does not have this
property since it is monolithic. The indifferentiability from RO implies that if hash function H satisfies this
notion, H behaves like RO. This implies that any cryptosystem secure in the RO model is also secure under
hash function H. However, if hash function H does not satisfy this notion, some cryptosystem is secure
in the RO model but insecure under H. Namely, there exists some cryptosystem secure in the RO model
but insecure under hash functions with the MD construction. This is a serious problem, because standard
cryptosystems (e.g. OAEP, RSA-KEM and so on), which are secure in the RO model, might be insecure
under the hash functions. We intend to prove that several important cryptosystems secure in the RO model
are also secure under hash functions with the MD construction.

There are several studies on this target. Dodis et al. [9] salvaged the MD construction by finding a natural
property such that the security of cryptosystems can be easily analyzed; they found two properties that the
strengthened MD construction preserves the property when f satisfies the property. These properties are the



preimage awareness (PrA) and the public-use random oracle (pub-RO). The latter is the same as Leakey
Random Oracle (LRO) proposed by Yoneyama et al [16].

PrA is the security notion of hash functions and lies between collision resistance and RO. PrA means
that if an attacker is able to find a later useful output y of the PrA function, then it must already know
a corresponding preimage. Dodis et al. proved two facts: if f is a FIL-PrA function, then MDf is a PrA
function and if H is a PrA function and g is FIL-RO, then g(H) satisfies indifferentiability from RO. As a
result, g(MDf ) satisfies indifferentiability from RO. Therefore, any cryptosystem secure in the RO model
is secure under g(MDf ). The important point of this approach is, by adding just FIL-RO g, the variant
function of MDf satisfies indifferentiability from RO. Moreover, f is a weaker primitive than FIL-RO.

The second property is pub-RO. pub-RO is a variant of RO. pub-RO has the function of leaking all
prior queries known to RO. Dodis et al. analyzed cryptosystems with hash functions with MD construction
by using pub-RO and found as follows: (i) if compression function f is FIL-pub-RO, then MDf satisfies
indifferentiability from variable input length (VIL) pub-RO, and (ii) several cryptosystems are secure in the
pub-RO model. Dodis et al. claimed that FDH [1], PSS [3], PFDH [6], BLS[4], a variant of Boneh-Franklin
IBE [14] and Boneh-Boyen IBE [5] are secure in the pub-RO model. Note these cryptosystems are secure
under MDf under the condition that f is FIL pub-RO.

1.2 Davies-Meyer Merkle-Damg̊ard

Davies-Meyer Merkle-Damg̊ard, hereafter denoted by DM-MD construction, is the MD construction based
on Davies-Meyer (DM) mode [8, 12, 13] where underlying compression function f(m,x) is implemented by
Em(x) ⊕ x where E is a block cipher (where m is a key element). Hereafter we denote Em(x) by E(m,x).
Standard hash function such as SHA-1, SHA-256 and so on employ the MD construction, and the underlying
compression functions of SHA-1, SHA-256 and so on employ DM mode. Therefore, it is important to analyze
the security of practical cryptosystems that employ DM-MD hash functions. Hereafter we deal with E as an
ideal block cipher and denote the DM-MD hash function implemented by E by DM-MDE . However, the PrA
approach and the pub-RO approach cannot be used to analyze cryptosystems based on DM-MDE . This is
because, for the PrA approach, if DM satisfies FIL-PrA, modified DM-MDE (g(DM-MDE) where g is FIL
RO) satisfies indifferentiability from RO. However, g(DM-MDE) is not the original Davies-Meyer Merkle-
Damg̊ard. For the pub-RO approach, since DM does not satisfy indifferentiability from FIL pub-RO, the
approach that uses the property where MDf preserves pub-RO does not work, because f is not pub-RO3.
More detail is given in appendix A. Namely the approach of Dodis et al. does not work in the case of DM
mode for analyzing cryptosystems that are secure in the pub-RO model.

1.3 Our Contribution

In this paper we succeed in analyzing the security of practical cryptosystems with DM-MDE by using two
approaches: indifferentiability from variants of random oracles R̃O and indifferentiability from RO with
conditions; it represents the first succesful rescue of DM-MDE in the indifferentiability framework.

indifferentiability from R̃O. For the first approach, we analyze cryptosystems with DM-MDE by using
indifferentiability from R̃O. Our approach is as follows:

1. Find a variant of random oracle R̃O such that target hash function (DM-MDE) satisfies the indifferen-
tiability from R̃O (this hash function behaves like R̃O).

2. Prove that cryptosystem C is secure in the R̃O model.
3 Dodis et al. made a mistake in the previous version of their draft of EUROCRYPT 2009 wherein they claimed that

DM satisfies the indifferentiability from FIL pub-RO. In the latest version of their draft [9], it is described that
we conjecture that although DM is not itself pub-PRO, applying MD to it results in a VIL pub-PRO (in the ideal
cipher model).

2



If we can prove the above approach for cryptosystem C, C under DM-MDE is secure due to the indifferentia-
bility framework. For this approach we show the following:

– For the first claim, we propose a new oracle called extension property and inverse property simulatable
random oracle (EIRO).

– For the second claim, we prove that RSA-KEM is secure under DM-MDE .

Since block ciphers have invertibility (we can calculate the inverse of E), there is a property derived, called
the inverse property, from invertibility in DM-MDE . We call the property the inverse property. The inverse
property is if we can get values z = DM-MDE(M) and z′ = DM-MDE(M ||m), then E−1

m (z⊕z′) = z holds due
to invertibility of block ciphers and the cascade construction of DM-MDE . However, since RO is a monolithic
random function, it inherently does not have the inverse property. We define EIRO so as to capture both
the inverse property and the extension property.

We will prove that

– DM-MDE is indifferentiable from EIRO.

We will also prove the following:

– EIRO satisfies indifferentiability from pub-RO.

This implies that any cryptosystem secure in the pub-RO model is also secure in the EIRO model. Namely,
any cryptosystem secure including FDH, PSS, PFDH, BLS and so on in the pub-RO model is also secure
under DM-MDE . Note that the aproach of Dodis et al. failed in proving that any cryptosystem secure in the
pub-RO model is also secure under DM-MDE (see Appendix A).

We, moreover, prove the following:

– pub-RO does not satisfy indifferentiability from EIRO.

This implies that there is some cryptosystem secure in the EIRO model but insecure in the pub-RO model.
We show that RSA-KEM is insecure in the pub-RO model (does not satisfy OW-CPA security) as an
explicit example. This is evidence of the separation between pub-RO and EIRO. Therefore, EIRO is the
more powerful tool than pub-RO for anlyzing cryptosystems that employ DM-MDE .

Note that PrA and EIRO seems to be unrelated (since there is a relation between EIRO and pub-RO
but pub-RO and PrA are independent). However, no cryptosystem has been shown to be secure in the RO
model and under a PrA function.

We can conclude that RSA-KEM, FDH, PSS, Fiat-Shamir and so on are secure under DM-MDE , because
DM-MDE satisfies indifferentiability from EIRO and pub-RO.

Indifferentiability from RO with Conditions. We propose another new approach: indifferentiability
from RO with conditions. By using this approach, we can easily prove the security of cryptosystems that use
hash functions. Condition refers not to properties of the hash functions (PrA, pub-RO and so on) but to the
condition of the hash function input.

For example, we consider OAEP encryption with DM-MDE . We adopt the following procedure for OAEP.

1. Identify condition α that is satisfied by OAEP: α is the fixed input length of the hash function.
2. Identify the characteristic of condition α: For any different but same length messages M and M ′, M is

not prefix of M ′. Therefore, any input of DM-MDE that satisfies condition α is prefix-free.
3. Identify the hash function that has the characteristic of step 2 and is indifferentiable from RO. The hash

function yielded step 2 whose input is prefix-free is prefix-free DM-MDE which is indifferentiable from
RO.

4. If DM-MDE with condition α implies the hash function identified in step 3, it implies prefix-free DM-MDE .
5. OAEP is secure in the RO model.
6. This proposed approach of indifferentiability from RO with conditions allows us to conclude that OAEP

using DM-MDE is secure.

3



We can easily analyze the security of OAEP by this approach, because we only identify the condition α and
the hash function of step 3.

Adopting two approaches, we can conclude that OAEP (given indifferentiability from RO with condition),
RSA-KEM [15], FDH [1], PSS [3], PFDH [6], BLS[4], a variant of Boneh-Franklin IBE [14] and Boneh-Boyen
IBE [5] (given indifferentiability from R̃O) are secure under DM-MDE .

1.4 Related Works

As described in Section 1.1, Dodis et al. salvaged the MD construction by either deriving the property of
MD, namely PrA, or arguing the indifferentiability from weakened primitive, namely pub-RO.

Unfortunately they failed to prove that the security will be preserved basing MD construction on DM
mode, even though they implicitly show it might be feasible, but without any proof.

We will rescue their second approach, furthermore introduce a new primitive stronger than pub-RO but
weak enough for MD, and propose a new approach denoted as condition α which is derived from the property
of the protocols.

2 Preliminaries

2.1 Davies-Meyer Merkle-Damg̊ard Construction [8, 12, 13]

We first give a short description of the Merkle-Damg̊ard (MD) construction. Function MDf : {0, 1}∗ →
{0, 1}n is built by iterating compression function f : {0, 1}t × {0, 1}n → {0, 1}n as follows.

– MDf (M):
1. calculate M ′ = pad(M) where pad is a padding function such that pad : {0, 1}∗ → ({0, 1}t)∗.
2. calculate ci = f(mi, ci−1) for i = 1, ..., l where for i = 1, ..., l, |mi| = t, M ′ = m1||...||ml and c0 is an

initial value (s.t. |c0| = n).
3. return cl

The Davies-Meyer Merkle-Damg̊ard (DM-MD) construction is the MD construction with the underlying
compression function instantiated by Davies-Meyer mode (DM). The Davies-Meyer model is DM(m,x) =
x⊕E(m, x) where m is a key element of the block cipher. Hereafter E is an ideal block cipher and we denote
the hash function MDDM by DM-MDE . In this paper we ignore the above padding function but this implies
no loss of generality, so hereafter we discuss only DM-MDE : ({0, 1}t)∗ → {0, 1}n.

We denote a forward query (m,x) to E by (+, m, x) and an inverse query (m, y) to E by (−,m, y). We
call a query to hash functions “hash query”.

2.2 Indifferentiability Framework for Hash Functions [11]

The indifferentiability framework generalizes the fundamental concept of the indistinguishability of two
crypto systems C(U) and C(V) where C(U) is the cryptosystem C that invokes the underlying primitive
U and C(V) is the cryptosystem C that invokes the underlying primitive V. U and V have two interfaces:
public and private interfaces. Adversaries can only access the public interfaces and honest parties (e.g. the
cryptosystem C) can access only the private interface.

We denote the private interface of the system W by W1 and the public interface of the system W by W2.
The channel between honest party and V1/U1 is called private channel and the channel between adversary
and V2/U2 is called public channel. The definition of indifferentiability is as follows.

Definition 1. V is indifferentiable from U , denote V @ U , if for any distinguisher D with binary output (0
or 1) there is a simulator S such that the advantage |Pr[DV1,V2 ⇒ 1] − Pr[DU1,S(U2) ⇒ 1]| is negligible in
the security parameter k.

4



This definition will allow us to use construction V instead of U in any cryptosystem and retains the same
level of provable security due to the indifferentiability theory of Maurer et al. [11]. We denote the same level
of probable security by C(V) Â C(U). Namely we denote C(V) Â C(U) in the case that if C(U) is secure, then
C(U) is secure. More strictly, V @ U ⇔ C(V) Â C(U) holds. In the proof of V @ U ⇔ C(V) Â C(U) [11], all
queries of D to V1/U1 are through the private channel.

In this paper, since we deal with cryptosystems which access hash functions, DM-MDE has a private
interface. Since DM-MDE invokes E and E is a public oracle, E has both private and public interfaces.

2.3 Distinguishing Attack using the Extension Property [7]

Coron et al. showed that DM-MDE 6@ RO (random oracle) using the extension property. The extension
property is the property of the cascade construction where we can calculate a new hash value from some
hash value. z′ = DM-MDE(M ||m) can be calculated from only z and m by z′ = E(m, z) ⊕ z where z =
DM-MDE(M). Namely z′ can be calculated without using M . The distinguishing attack using the extension
property is as follows. Let O1 be DM-MDE or RO and let O2 be E or S. First, a distinguisher poses M to
O1 and gets z from O1. Second, he poses a forward query (+,m, z) to O2 and gets c from O2. Finally, he
poses M ||m to O1 and gets z′ from O1.

If O1 = DM-MDE and O2 = E, then z ⊕ z′ = c, however, if O1 = RO and O2 = S, then z ⊕ z′ 6= c. This
is because no simulator can obtain the output value of RO(M ||m) from just (m, z) and the output value of
RO(M ||m) is independently and randomly defined from c. Therefore, DM-MDE 6@ RO holds.

2.4 Distinguishing Attack using the Inverse Property

There is another distinguishing attack since block ciphers are invertible. There is a property called inverse
property that is one of properties of DM-MDE that uses invertibility of block ciphers. Therefore DM-MDE 6@
RO also holds due to the inverse property. We show the distinguishing attack that uses this property as
follows.

In the ideal cipher scenario, on an inverse query (−,m, y) where y = z⊕z′ such that z = DM-MDE(M), z′ =
DM-MDE(M ||m), E returns z = DM-MDE(M). However, in the RO scenario, no simulator S can simulate
the inverse attack. On an inverse query (−, m, y) where y = z ⊕ z′ where z = RO(M) and z′ = RO(M ||m),
no S can return z. since no S can know z or z′ from (m, y) by using just RO.

2.5 Public-use Random Oracle [9, 16]

Dodis et al. proposed public-use random oracle (pub-RO) to analyze cryptosystems that use hash functions
with the MD construction. We model pub-RO by consisting of random oracle RO and leak oracle LO. These
definition is as follows: RO has initially empty list LRO. For a query M , if (M, z) /∈ LRO, it chooses a n-bit
random value z, LRO ← (M, z), and returns z. Otherwise ((M, z) ∈ LRO) it returns z. On a query to LO,
LO returns LRO.

pub-RO has interesting properties as following points: (1) We can easily argue security of several cryp-
tosystems. (2) If f is FIL pub-RO then MDf is the pub-RO function. In the first point, for any scheme
and security experiment for which all messages queried to RO can be inferred from an adversary’s queries
during the experiment, one can prove straightforwardly the scheme’s security in the pub-RO model using an
existing proof in the full RO model as a black box. For example, these conditions are met for unforgeability
under chosen-message attacks of signature schemes that use the RO on messages. So we can easily verity that
FDH, Fiat-Shamir, PSS and some encryption schemes are secure in the pub-RO model. In the second point,
if we can get the FIL pub-RO function f , then we can get the hash function MDf that is indifferentiable
from pub-RO. FIL RO is crealy indifferentiable from pub-RO. Therefore, MDFIL−RO is indifferentiable
from pub-RO.

5



2.6 DM 6@ pub-RO

DM 6@ pub-RO holds due to invertibility of block ciphers. Therefore, the approach of Dodis et al, where MD
construction is preserving the pub-RO property, fails in applying to DM-MDE . Please see Appendix A for
more detail.

3 Indifferentiability from R̃O Approach

In this section, we will introduce a new primitive called extension property and inverse property simulatable
random oracle EIRO and show DM-MDE @ EIRO. We will also show the relation among EIRO and
pub-RO.

3.1 Extension Property and Inverse Property Simulatable Random Oracle (EIRO)

Motibation of EIRO. Since no S can simulate the extension property and the inverse property, DM-MD 6@
RO holds. We consider variants of RO in order for S to be able to simulate the extension property and the
inverse property. We propose new primitive EIRO which consists of RO, extension property simulatable
oracle EO, and inverse property simulatable oracle IO such that it captures the extension property and the
inverse property. The motivation of new primitives is as follows:

– EO: Since, for a forward query (+,m, z), no S can know x⊕z′ in the RO scenario such that z = RO(M)
and z′ = RO(M ||m), it is convenient for S to know the valid return value z ⊕ z′. So we define EO that
returns z ⊕ z′ for a query (m, x).

– IO: Since, for a inverse query (−,m, z ⊕ z′) where z = RO(M) and z′ = RO(M ||m), no S can know z
in the RO scenario, it is convenient for S to know the the valid return value z. we define IO such that
it returns z for a query (m, y).

These oracles help S to simulate the extension property and the inverse property. We give the concrete
definitions of these oracles as follows.

Definition of EIRO. EIRO is constructed from RO, EO and IO.
EO has initially the empty list LEO. It can look into LRO. On a query (m, z) to EO,

1. If (m, z, z′) ∈ LEO, it returns z′.
2. Else if there exists only one pair (M, z) ∈ LRO, it makes the query M ||m to RO, receives z′ from RO,

LEO ← (m, z, z′) and it returns z′.
3. Else it chooses z′ ∈ {0, 1}n at random, LEO ← (m, z, z′) and it returns z′.

IO has initially the list LIO = {(φ,⊥, 0)} and can look into LRO. On a query (m, y),

1. If ∃(m,x, y) ∈ LIO, it returns x.
2. If ∃(M,x), (M ′, x′) ∈ LRO such that M ||m = M ′ and y = x ⊕ x′, LIO ← (m,x, y) and it returns x.
3. Otherwise it chooses x ∈ {0, 1}n at random, LIO ← (m, x, y) and it returns x.

In Theorem 2, we prove that DM-MDE @ EIRO. Before showing Theorem 2, we show the relation among
pub-RO and EIRO.

3.2 Relation among pub-RO and EIRO

pub-RO leaks more information of LRO than EIRO. Therefore it seems reasonable to suppose that any
cryptosystem secure in the pub-RO model is also secure in the EIRO model. We prove the validity of these
supposition by using the indifferentiability framework.

We will clarify the relationship between pub-RO and EIRO.

6



Theorem 1. EIRO @ pub-RO and pub-RO 6@ EIRO.

Proof. We construct simulator S which simulates EO and IO by using pub-RO as follows. S has initially
lists LS1 = φ and LS2 = {(φ,⊥, 0)}. On query EO (m, z), if there is (m, z, z′) ∈ LS1 , it returns z′. It makes
a query to LO and receives LRO. If there is only one pair (M, z) ∈ LRO, it makes the query M ||m to RO,
receives the response z′ from RO, LEO ← (m, z, z′) and returns z′. Otherwise it chooses x ∈ {0, 1}n at
random, LEO ← (m, z, x) and returns x. On a IO query (m, y), if (m,x, y) ∈ LS2 , it returns x. It makes LO
query, receives LRO. If ∃(M,x), (M ′, x′) ∈ LRO such that M ||m = M ′ and x ⊕ x′ = y, LS2 ← (m,x, y) and
it returns x. Otherwise it chooses x ∈ {0, 1}n at random, LEO ← (m,x, y) and returns x.

It is easy to see that |Pr[DRO,EO,IO]−Pr[DRO,S(LO)]| is negligible, since it is clearly that S is equal to
EO and IO.

pub-RO 6@ EIRO is trivial, since EIRO does not explicitly leak more information in LRO than pub-RO,
so no S can know all values in LRO by using just EIRO. ut

Since EIRO @ pub-RO holds, any cryptosystem secure in the pub-RO model is also secure in the EIRO
model by the indifferentiability framework. Therefore FDH, PSS, Fiat-Shamir and so on (secure in the
pub-RO model) are secure in the EIRO model. Since pub-RO 6@ EIRO, there is some cryptosystem which
is secure in the EIRO model but insecure in the pub-RO model. We will prove that RSA-KEM is insecure
in the pub-RO model but secure in the EIRO model. Therefore RSA-KEM is evidence of the separation
between LRO and EIRO.

3.3 Proof of indifferentiability from EIRO for DM-MDE

In this subsection, we prove DM-MDE @ EIRO.

Theorem 2. DM-MDE is (tD, tS , q, ε)-indifferentiable from EIRO for any tD, with tS = O(lq) and ε =
O(q2l2)/2n, where l is maximum message block length queried by D and q is maximum number of query of
D.

We demonstrate an intuition of this proof by using the previous result (the proof of the indifferentiability
from RO for pre-fix free MD construction). The complete proof from scratch will be described in Appendix
B.

Proof of indifferentiability from RO for Prefix-Free MD. Coron et al. and Chang et al. proved
that prefix-free DM-MDE is indifferentiable from RO. Hash function prefix-free DM-MDE is DM-MDE with
the prefix-free padding function PF . The definition of PF is that for any two different two message M
and M ′, PF (M) is not prefix of PF (M ′). They consider trivial queries that might be helpful for D to
distinguish a hash function and RO. Let DTQ be any distinguisher based on trivial queries and D¬TQ be any
distinguisher based on non-trivial query. Non-trivial queries means queries excluding trivial queries. Strategy
of this proof is:

1. Consider trivial queries (TQ) which might help D to distinguish RO and the hash function.
2. Prove that the advantage probability of distinguisher DTQ is negligible.
3. Prove that the advantage probability of distinguisher D¬TQ is negligible.

In prefix-free DM-MDE case, there are two types trivial queries: type 1 and type 2 that use the extension
property. Let Dtype1 be any distinguisher based on trivial query type 1 and Dtype2 be any distinguisher
based on trivial query type 2. Therefore, in prefix-free DM-MDE case, DTQ is combined with Dtype1 and
Dtype2 (denote DTQ = Dtype1 + Dtype2) and any distinguisher D is combined with Dtype1, Dtype2 and D¬TQ

(D = D¬TQ +Dtype1 +Dtype2). They showed that prefix-free DM-MDE @ RO holds by using above strategy.

7



The proof of the indifferentiability from EIRO based on the previous result. We give the
intuition of our proof based on the previous proof of prefix-free DM-MDE . Full proof is given in Appendix
B. The difference between plain DM-MDE and prefix-free DM-MDE is that plain DM-MDE does not have a
prefix-free padding function PF . Therefore we need to consider trivial queries type 3-6 in addition to type
1,2. In prefix-free DM-MDE case, type 3-6 need not to be considered due to prefix-free padding. Type 3, 4
are based on the extension property, and type 5, 6 are based on the inverse property. Let Dtype3, Dtype4,
Dtype5, and Dtype6 be distinguishers based on trivial query type 3, type 4, type 5 and type 6 respectively.
We prove Theorem 2 by basing on the previous result.

– The advantage of D¬TQ: We consider the advantage probability of D¬TQ = D−Dtype1−Dtype2−Dtype3−
Dtype4 − Dtype5 − Dtype6. Previous work showed that the advantage of D¬TQ = D − Dtype1 − Dtype2 is
negligible. From the previous result, we can automatically get that the advantage probability of D¬TQ =
D−Dtype1 −Dtype2 −Dtype3 −Dtype4 −Dtype5 −Dtype6 is negligible, since strategy of D¬TQ in our case
is more strict restriction than previous case.

– The advantage of DTQ: In previous case, there is prefix-free padding. In our case, prefix-free padding is
removed but RO is replaced by EIRO. Thanks to EIRO, the advantage probability of DTQ is negligible.
We discuss more detail as follows.

The advantage of DTQ: DTQ is any distinguisher that uses trivial queries of type 1-6. Details of trivial
queries type 1-6 are as follows:

– Type 1: D makes the ordered sequences of forward queries (+,m1, x1), ..., (+,mi, xi) such that (for
j = 1, ...i− 1) xj+1 is equal to yj ⊕xj (yj is the response of the forward query (+,mj , xj)) and x1 = IV .
Then we say that the fresh hash query m1||...||mi is a trivial query if the trivial query is made when
above queries were already made.

– Type 2: D makes the hash query m1||...||mi and the ordered sequences of fresh forward queries
(+,m1, x1), ..., (+,mi−1, xi−1) such that (for j = 1, ..., i − 2) xj+1 is equal to yj ⊕ xj (yj is the response
of the forward query (+,mj , xj)) and x1 = IV . Then we say that the fresh forward query (+,mi, xi)
such that xi = xi−1 ⊕ yi−1 is a trivial query if the trivial query is made when above queries were already
made.

– Type 3: D makes the ordered sequences of a fresh hash query M and fresh forward queries (+,m1, x1),
..., (+,mi, xi) such that z = x1 (z is the response of M) and (for j = 1, ..., i− 1) xj+1 is equal to xj ⊕ yj

(yj is the response of the query (xj ,mj)). Then we say that the fresh hash query M ||m1||...||mi is a
trivial query if the trivial query is made when above queries were already made.

– Type 4: D makes the fresh query M ||m1||...||mi and the ordered sequences of the fresh hash query M
and fresh queries (+,m1, x1), ..., (+,mi−1, xi−1) such that z = x1 (z is the response of M) and (for
j = 1, ..., i − 2) xj+1 is equal to yj ⊕ xj (yj is the response of the forward query (+, mj , xj)). Then we
say that the forward query (+,mi, xi) such that xi = xi−1 ⊕ yi−1 is a trivial query if the trivial query is
made when above queries were already made.

– Type 5: D makes the hash queries M and M ||m where the response of M is z and one of M ||m is z′.
Then we say that the inverse query (−,m, z ⊕ z′) is a trivial query if the trivial query is made when
above queries were already made.

– Type 6: D makes the ordered sequences of the fresh hash queries M and the fresh forward queries
(+,m1, x1), ..., (+,mi, xi) and M ||m1||...||mi||m. We denote the response of M by z and the response of
M ||m1||...||mi||m by z′. Then we say that the inverse query (−,m, z ⊕ z′) is a trivial query if the trivial
query is made when above queries were already made.

In this case, since S can use EIRO, S can simulate the extension property by using EO and the inverse
property by using IO. Therefore, we can prove that the advantage probability of DTQ is negligible. Pick
type 3 and 5, as an example.

– Type 3: In EIRO scenario, on the first query (+,m1, x1) to S, S send (m1, x1) to EO when a hash
query M was already made where z = x1. Since (M, z) ∈ LRO, EO returns z1 = RO(M ||m1). S returns

8



y1 = x1⊕z1. After this procedure, there is (M ||m1, z1) in LRO. Then on second query (+,m2, x2) where
x2 = z1, S send (m2, x2) to EO. Since (M ||m1, z1) ∈ LRO, EO returns z2 = RO(M ||m1||m2). S returns
y2 = x2⊕z2. After this procedure, there is (M ||m1||m2, z2) in LRO. Repeating this procedure, we can get
the result where the response yi of the query (+,mi, xi) is equal to xi⊕zi where zi = RO(M ||m1||...||mi).
Therefore xi ⊕ yi = RO(M ||m1||...||mi) explicitly holds.
In DM-MDE scenario, xi ⊕E(mi, xi) = DM-MDE(M ||m1||...||mi) holds due to the cascade construction
of DM-MDE .

– Type 5: In EIRO scenario, on query (−,m, z ⊕ z′) to S where z = RO(M) and z′ = RO(M ||m), S
makes a query (m, z ⊕ z′) to IO. Since there are pairs (M, z) and (M ||m, z′) in LRO, IO returns z.
Then S returns z.
In DM-MDE scenario, E(mi, yi)−1 = DM-MDE(M) explicitly holds.

Therefore queries of type 3 and type 5 are not helpful for D. Similarly, queries type 1, type 2, type 4 and
type 6 are not helpful for D. Therefore the advantage probability of DTQ is negligible.

From Theorem 1 and Theorem 2, the following corollary is obtained.

Corollary 1. DM-MDE @ EIRO @ pub-RO

3.4 Security Analysis of RSA-KEM in EIRO Model

RSA-based key encapsulation mechanism (RSA-KEM) scheme [15] is secure KEM scheme in the RO model.
In this subsection, we consider the security of RSA-KEM in the T RO and ERO models. The security notion
of KEM schemes and the description of RSA-KEM will be described in Appendix C.

In [15], security of RSA-KEM in the RO model is proved as follows;

Lemma 1 (Security of RSA-KEM in the RO model [15]). If RSA problem is hard, then RSA-KEM
satisfies IND-CCA for KEM where H is modeled as the RO.

Insecurity of RSA-KEM in pub-RO Model Though RSA-KEM is secure in the RO model, it is
insecure in the pub-RO model. More specifically, we can show RSA-KEM does not even satisfy OW-CPA
for KEM in the pub-RO model.

Theorem 3 (Insecurity of RSA-KEM in the pub-RO model). Even if RSA problem is hard, RSA-
KEM does not satisfy OW-CPA for KEM where H is modeled as the pub-RO.

Proof. We construct an adversary A which successfully plays OW-CPA game by using the pub-RO H. The
construction of A is as follows;

Input : (n, e) as the public key

Output : K ′

Step 1 : Return state and receive c∗ as the challenge cipertext. Pose the leak query to LO of H, and
obtain the hash list {(r,K)}.

Step 2 : For all r in {(r,K)}, check whether re ?≡ c∗ (mod n). If there is r∗ satisfying the relation, output
K ′ which is the tally of (r∗,K ′).

We estimate the success probability of A. When the challenge ciphertext c∗ is generated, r∗ such that
K∗ = H(r∗) is certainly posed to H because c∗ is generated obeying the protocol description. Thus, LH

contains (r∗,K∗). Therefore, A can successfully plays the OW-CPA game.
ut

9



Security of RSA-KEM in EIRO Model We can also prove the security of RSA-KEM in the EIRO
model as well as in the RO model.

Theorem 4 (Security of RSA-KEM in the EIRO model). If RSA problem is (t′, ε′)-hard, then RSA-
KEM satisfies (t, ε)-IND-CCA for KEM as follows:

t′ = t + (qRH + qEH) · expo,

ε′ ≥ ε − qD

n
− qIH

|Zn|
,

where H is modeled as the EIRO, qRH is the number of hash query to the RO of H, qEH is the number of
extension attack queries to the EO of H, qIH is the number of inverse attack queries to the IO of H, qD

is the number of queries to the decryption oracle DO, |Zn| is the number of elements of Zn and expo is the
computational cost of exponentiation modulo n.

Proof (Sketch).
Firstly, we show that the transformation of the experiment of IND-CCA for RSA-KEM from Exp0 to

Exp5 in the full proof. By the step of the transformation from Exp2 to Exp3, we can show that the extension
attack query (x, y) of the hash value of the randomness r∗ or r∗||x corresponding to the challenge ciphertext
to EO of H only gives no advantage to the adversary as Lemma 4 in the full proof. Information the adversary
can obtain by the query is not useful without information of r∗ itself and the adversary can succeeds if the
randomness is leaked. Also, by the step of the transformation from Exp3 to Exp4, we can show that the
inverse attack query (x, a) related to the hash value of the randomness r∗ or r∗||x corresponding to the
challenge ciphertext to IO of H only gives negligible advantage to the adversary.

Next, we construct a reduction from RSA assumption to the transformed experiment Exp5 of IND-CCA
for RSA-KEM. For the reduction part, we need to describe simulations of EO and IO. However, we construct
the perfect simulation of EO and IO. Thus, we can show that RSA-KEM is secure by the similar proof as
that in [15]. ut

4 Indifferentiability from RO with Conditions

In this section, we propose another new approach, indifferentiability from RO with conditions, to analyze
cryptosystems that use DM-MDE . As an example, we demonstrate that OAEP encryption can be easily
proven to be secure under DM-MDE by adopting this approach.

4.1 Security of OAEP Encryption in RO model

The Optimal Asymmetric Encryption Padding (OAEP) encryption scheme [2] is a secure padding scheme
for asymmetric encryption in the RO model. The security notion of OAEP schemes and the description of
OAEP will be described in appendix D.

In [10], the security of OAEP encryption scheme in the RO model is proved as follows;

Lemma 2 (Security of OAEP encryption scheme in the RO model [10]). If the trapdoor permutation
f is partial-domain one-way, then the OAEP encryption scheme satisfies IND-CCA where H and G are
modeled as RO.

4.2 Security of OAEP Encryption under DM-MDE

This subsection details the new approach wherein OAEP that uses DM-MDE is easily proven. We note
conditions in the private channel between OAEP and underlying hash functions. We prove the security of
OAEP encryption that uses DM-MDE by the folllowing approach.

10



1. Identify condition α that is satisfied by OAEP: α is the fixed input length of the hash function.
2. Identify the characteristic of condition α: For any different but same length messages M and M ′, M is

not prefix of M ′. Therefore, any input of DM-MDE that satisfies condition α is prefix-free.
3. Identify the hash function that has the characteristic of step 2 and is indifferentiable from RO. The mod-

ified DM-MDE yielded step 2 whose input is prefix-free is prefix-free DM-MDE which is indifferentiable
from RO.

4. If DM-MDE with condition α implies the hash function identified in step 3, it is prefix-free DM-MDE .
Since prefix-free DM-MDE is indifferentiable from RO, DM-MDE with condition α is indifferentiable
from RO.

5. OAEP is secure in the RO model (see Lemma 2).
6. Since OAEP has condition α and DM-MDE with condition α is indifferentiable from RO, this proposed

approach of indifferentiability from RO with conditions allows us to conclude that OAEP using DM-MDE

is secure (we will prove Theorem 5 in Subsection 4.3).

We can easily analyze the security of OAEP by this approach, because we only need to identify condition α
and the hash function of step 3.

The above procedure neither prove the consistency of prefix-free DM-MDE in identified step 3 and
DM-MDE with α, nor the consistency of DM-MDE with α and OAEP. Accordingly we prove these con-
sistencies bellow.

For the first consistency, we show that the indifferentiability proof of prefix-free DM-MDE can be used
as a black box in the indifferentiability proof of DM-MDE with the condition. Since DM-MDE with the
condition is prefix-free DM-MDE , information from DM-MDE with the condition to D represents information
from prefix-free DM-MDE to D. In the prefix-free DM-MDE case, D can make any query to E. In the
DM-MDE with condition α case, D can make any query to E. From this discussion, we can conclude that
the indifferentiability proof of prefix-free DM-MDE can be used as a black box in the indifferentiability proof
of DM-MDE with the condition, that is DM-MDE with condition α @ RO.

For the second consistency, DM-MDE and OAEP are connected by the private channel. D and DM-MDE

are connected by the same private channel from the proof of the indifferentiability framework [11]. Since any
value from OAEP to DM-MDE is a fixed length value, we can restrict D such that it has to make a query
under this condition. Since DM-MDE with condition α implies prefix-free DM-MDE and OAEP has condition
α, OAEP (prefix-free DM-MDE) = OAEP (DM-MDE) holds. Therefore, since prefix-free DM-MDE @ RO,
we can apply the result of DM-MDE with condition α @ RO to OAEP. Since prefix-free DM-MDE @ RO
implies that OAEP (prefix-free DM-MDE) Â OAEP (RO) holds due to [11], we can get the result that since
DM-MDE with α @ RO and OAEP has condition α, then OAEP (DM-MDE) Â OAEP (RO) holds.

Considering the above discussion, we will introduce a new concept indifferentiability from RO with
conditions, on the format of the channel between D and hash function H P with underlying primitive P .

Definition 2. Hash function HP is indifferentiable from RO with condition α, denote V @α U , if, for any
distinguisher D with binary output (0 or 1) such that the channel between D and HP /RO has condition α,
there is a simulator S such that the advantage |Pr[DHP ,P ⇒ 1] − Pr[DRO,S(RO) ⇒ 1]| is negligible in the
security parameter k.

4.3 Generalization of New Approach

In this subsection, we generalize our approach. The procedure of the generalized approach for cryptosystem
C using hash function HP with underlying primitive P is as follows.

1. Identify condition α, that C satisfies. “C satisfies α” means that there is condition α in the private
channel between cryptosystem C and hash function HP (for OAEP the condition is the fixed length of
hash function input).

2. Identify the characteristic of condition α.
3. Identify the hash function that has the characteristic identified in step 2 and is indifferentiable from RO.

11



4. Confirm that HP with α implies the hash function identified in step 3.
5. Prove C is secure in the RO model.
6. This proposed approach of indifferentiability from RO with conditions allows us to conclude that C(HP )

is secure.

In step 4, we confirm that the indifferentiability proof of the hash function identified in step 3 from RO can
be used as a black box in the indifferentiability proof of HP with condition α from RO.

In step 6, we use the following Theorem. The statement of “the C satisfies condition α” means that the
private channel between HP and C satisfies condition α.

Theorem 5. For any C satisfying condition α, HP @α RO ⇔ C(HP ) Â C(RO).

Proof. In indifferentiability proof of [11], the channel between D and HP /RO is the same channel as the
private channel between C and HP /RO. Therefore, we can use condition α to the proof of [11]. Please see
the original proof of indifferentiability of RO in [11]. ut

While our example of OAEP found only “input length of hash functions is fixed” as condition α, we
believe that there are other conditions α that will make the above procedure workable.

5 Conclusion

In this paper we analyze cryptosystems using DM-MDE by two approaches. Our results represent the first
succesful rescue of DM-MDE in the indifferentiability framework. The first approach is the indifferentiability
from R̃O, and the second is the indifferentiability of RO with conditions.

The former approach is as follows:

1. Find a valiant of random oracle R̃O such that the target hash function (DM-MDE) satisfies the indiffer-
entiability from R̃O (this hash function behaves like R̃O)

2. Prove that a cryptosystem C is secure in the R̃O model.

For this approach, we introduced the following procedure.

1. Define the extension property and inverse property simulatable random oracle EIRO that captures the
extension property and the inverse property of DM-MDE .

2. Prove DM-MDE @ EIRO and EIRO @ pub-RO.
3. Prove that RSA-KEM is secure in the EIRO model.

For the result DM-MDE @ EIRO and EIRO @ pub-RO, we can obtain the result DM-MDE @ pub-RO.
Since FDH, PSS, Fiat-Shamir and so on are secure in the pub-RO model, these cryptosystems are secure
under DM-MDE . Since RSA-KEM is secure in the EIRO model, RSA-KEM is secure under DM-MDE due
to DM-MDE @ EIRO. We also showed the following.

1. Prove pub-RO 6@ EIRO.
2. RSA-KEM is insecure in the pub-RO model.

The result pub-RO 6@ EIRO implies that there is some cryptosystem that is secure in the EIRO model
but insecure in the pub-RO model. RSA-KEM is evidence of the separation between EIRO and pub-RO.
Therefore EIRO is more useful tool than pub-RO.

For the second approach, we showed that OAEP is secure under DM-MDE by indifferentiability from RO
with conditions agument. Therefore, we can conclude that OAEP is secure under DM-MDE .

Therefore OAEP, RSA-KEM, FDH, PSS, Fiat-Shamir and so on are secure under DM-MDE .

12



References

1. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

2. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In EUROCRYPT, volume 950 of Lecture
Notes in Computer Science, pages 92–111. Springer, 1994.

3. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how to sign with rsa and rabin. In
EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 399–416. Springer, 1996.

4. Dan Boneh and Xavier Boyen. Short signatures from the weil pairing. In ASIACRYPT, pages 514–532, 2001.

5. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random oracles. In
EUROCRYPT, pages 223–238, 2004.

6. Jean-Sébastien Coron. Optimal security proofs for pss and other signature schemes. In EUROCRYPT, pages
272–287, 2002.

7. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-damg̊ard revisited: How
to construct a hash function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

8. Ivan Damg̊ard. A design principle for hash functions. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989.

9. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging merkle-damg̊ard for practical applica-
tions. In EUROCRYPT, volume ???? of Lecture Notes in Computer Science, pages ???–??? Springer, 2009.

10. Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. Rsa-oaep is secure under the rsa
assumption. In CRYPTO, Lecture Notes in Computer Science, pages 260–274. Springer, 2001.

11. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In TCC, volume 2951 of Lecture Notes in Computer Science,
pages 21–39. Springer, 2004.

12. Ralph C. Merkle. One way hash functions and des. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer, 1989.

13. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers: A synthetic approach.
In CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer, 1993.

14. Shai Halevi Ran Canetti and Jonathan Katz. A forward-secure public-key encryption scheme. In J. Cryptology,
pages 265–294, 2007.

15. Victor Shoup. A proposal for an iso standard for public key encryption (version 2.1). 2001.

16. Kazuki Yoneyama, Satoshi Miyagawa, and Kazuo Ohta. Leaky random oracle (extended abstract). In ProvSec,
volume 5324 of Lecture Notes in Computer Science, pages 226–240. Springer, 2008.

A DM is not indifferentiable from FIL pub-RO

It has been proven that DM is not indifferentiable from FIL pub-RO by the following distinguisher using
only two queries. DM is defined by h′ = Em(h) ⊕ h, where y = h ⊕ h′ = Em(h).

The hash list of FIL pub-RO is initialized as empty. Given a oracle pair (O1,O1) from either (DM, E)
or (FIL pub-RO, S), the procedure of the distinguisher is as follows.

1. D sends random inverse query (−,m, y) to O2 to obtain a response h.
2. D sends (h, m) to O1 to obtain a response h′.
3. if h′ = h ⊕ y, D determines (O1,O1) as (DM, E). Otherwise D determines (O1,O1) as (FIL pub-RO,

S).

As the hash list of FIL pub-RO is empty, S has to find a suitable h, where FIL pub-RO takes (h,m) as
input and outputs y ⊕ h. No S can find the suitable h in polynomial time, so D can succeed with a great
advantage.

13



B Proof of Theorem 2

Proof. First we define simulator S as follows. S has a list T which is initially an empty list.

Simulator S.

– On a forward query (+,m, x),
1. If ∃(m, x, y) ∈ T , it outputs y.
2. If x = IV , it queries m to RO, receives the output z = RO(m), T ← (m, x, y) and responds with

y = x ⊕ z.
3. If ∃(m1, x1, y1), ..., (mi, xi, yi) ∈ T such that xj = xj−1⊕yj−1 (j = 1, ..., i), x1 = IV and x = xi⊕yi,

it queries m1||...||mj ||m to RO, receives the output z = RO(m1||...||mi||m), T ← (m,x, y) and
responds with y = x ⊕ z.

4. It queries (m,x) to EO, it receives the output z, T ← (m, x, y) such that y = x ⊕ z, and responds
with y.

– On an inverse query (−,m, y),
1. If ∃(m, x, y) ∈ T , it outputs x.
2. it queries (m, y) to IO, receives the output x, T ← (m,x, y), and responds with x.

In the worst case of the simulator’s running time, the simulator executes step 4 for every query and this
requires at most O(ql) time.

We need to prove that S cannot tell apart the two scenario, one where it has oracle access to RO and
S and the other where it has access to DM-MDE and E. The proof involves a hybrid argument starting in
the RO scenario, and ending in the ideal cipher scenario through a sequence of mutually indistinguishable
hybrid games.

Game 1: This is the random oracle model, where D has oracle access to RO and S. Let G1 denote the
event that D output 1 after interacting with RO and S. Thus Pr[G1] = Pr[DRO,S(EIRO) = 1].

Game 2: In this game, we give the distinguisher oracle access to a dummy relay algorithm R0 instead
of direct oracle access to RO. R0 is given oracle access to RO. On query M to R0, it queries M to RO
and returns RO(M). Let G2 denote the event that D outputs 1 in the game 2. Since the view of D remains
unchanged in this game, so Pr[G2] = Pr[G1].

Game 3: In this game, we modify the simulator S and the relay algorithm. In particular, we restrict the
responses of the simulator such that they never satisfy certain specific failure conditions. If the simulator
comes up with a response that results in its responses satisfying one of these conditions, then it fails explicitly
instead of sending this response.

The failure conditions (that the new simulator S0 avoids) essentially describe certain dependencies that
could arise among its responses that could be exploited by the distinguisher. In response to a forward query
(+,m, x), the new simulator chooses a response y ∈ {0, 1}n simular to S and it checks for the following
conditions:

– FC1: It is the case that y ⊕ x = IV .
– FC2: There is a triple (m′, x′, y′) ∈ T , with (m′, x′) 6= (m,x), such that x′ ⊕ y′ = x ⊕ y.
– FC3: There is a triple (m′, x′, y′) ∈ T , with (m′, x′) 6= (m,x), such that x′ = x ⊕ y.

If the response y is chosen by S0 then S0 checks for these conditions and explicitly fails if any of them holds.
If an inverse query (−,m, y) is made to the simulator S0, then it chooses a response x ∈ {0, 1}n to this

query similar to the original simulator S and checks for the following failure conditions:

– IC1: It is the case that x = IV or y ⊕ x = IV .

14



– IC2: There is a triple (m′, x′, y′) ∈ T , with (m′, y′) 6= (m, y), such that x′ ⊕ y′ = x ⊕ y.
– IC3: There is a triple (m′, x′, y′) ∈ T , with (m′, y′) 6= (m, y), such that x′ ⊕ y′ = x or x ⊕ y = x′.

In the case of inverse queries, if the response x is chosen by the simulator S0 then S0 checks for these
conditions and explicitly fails if any of them holds.

We modify the relay algorithm as follows. The underlying idea is to make the responses of the relay
algorithm directly dependent on the simulator. Thus, for a hash oracle query M , R1 applies the Davies-
Meyer Merkle-Damg̊ard construction to M by querying S0. R1 is essentially the same as DM-MDE except
that it is based on S0 instead of the ideal cipher E.

Bad event of game 3: In game 3, we consider the bad event of game 3. Let (m, x, y) be the input-output
pair of S0 due to a (forward or inverse) query D. The bad event B occurs if D makes a hash query M such
that the last block pair of R1(M) is (m,x, y) (namely x⊕ y = R1(M)) and a corresponding query to S with
(m, x, y) (that is a forward query (+,m, x) or an inverse query (−,m, y).).

Bad event of game 2: As the preliminary, we consider the bad event of game 2. The bad event occurs if
a response of S to a query (x,m) satisfies some condition in FC1, FC2, FC3, IC1, IC2 and IC3, outputs of R0

collide (B1), some output of R0 is equal to IV (B2), or some output of RO is equal to x ⊕ y or x where
(m, x, y) ∈ T (B3).

Now we will show that the view of D remains unchange up to a negligible additive factor in the trans-
formation from game 2 to game 3. We will assume that maximum block length of a hash input queried upon
by D is l. Let the number of hash queries made by the distinguisher be qH , and the number of queries to the
simulator be qE . Namely q = qH + qE . Let G3 denote the event that D outputs 1 in game 3. We will show
that |Pr[G3] − Pr[G2]| = O( l2q2

2n ) as follows.
From the view of D, the game 2 and game 3 differ only if D detects any difference in the responses of

the relay algorithm or the simulator in these two games. We will prove that the view of D in game 3 unless
S0 fails and the bad event of game 3 occurs is equal to the view of D in game 2 unless bad event of game 2
occurs. And we will show that the probability that S0 fails is negligible and the probability that bad events
occur is negligible.

We give queries of D which don’t help to distinguish G2 and G3. We consider following trivial queries.
– Type 1: D makes the ordered sequences of forward queries (+,m1, x1), ..., (+,mi, xi) such that (for

j = 1, ...i− 1) xj+1 is equal to yj ⊕xj (yj is the response of the forward query (+,mj , xj)) and x1 = IV .
Then we say that the fresh hash query m1||...||mi is a trivial query if the trivial query is made when
above queries were already made.

– Type 2: D makes the hash query m1||...||mi and the ordered sequences of fresh forward queries
(+,m1, x1), ..., (+,mi−1, xi−1) such that (for j = 1, ..., i − 2) xj+1 is equal to yj ⊕ xj (yj is the response
of the forward query (+,mj , xj)) and x1 = IV . Then we say that the fresh forward query (+,mi, xi)
such that xi = xi−1 ⊕ yi−1 is a trivial query if the trivial query is made when above queries were already
made.

– Type 3: D makes the ordered sequences of a fresh hash query M and fresh forward queries (+,m1, x1),
..., (+,mi, xi) such that z = x1 (z is the response of M) and (for j = 1, ..., i− 1) xj+1 is equal to xj ⊕ yj

(yj is the response of the query (xj ,mj)). Then we say that the fresh hash query M ||m1||...||mi is a
trivial query if the trivial query is made when above queries were already made.

– Type 4: D makes the fresh query M ||m1||...||mi and the ordered sequences of the fresh hash query M
and fresh queries (+,m1, x1), ..., (+,mi−1, xi−1) such that z = x1 (z is the response of M) and (for
j = 1, ..., i − 2) xj+1 is equal to yj ⊕ xj (yj is the response of the forward query (+, mj , xj)). Then we
say that the forward query (+,mi, xi) such that xi = xi−1 ⊕ yi−1 is a trivial query if the trivial query is
made when above queries were already made.

– Type 5: D makes the hash queries M and M ||m where the response of M is z and one of M ||m is z′.
Then we say that the inverse query (−,m, z ⊕ z′) is a trivial query if the trivial query is made when
above queries were already made.

15



– Type 6: D makes the ordered sequences of the fresh hash queries M and the fresh forward queries
(+,m1, x1), ..., (+,mi, xi) and M ||m1||...||mi||m. We denote the response of M by z and the response of
M ||m1||...||mi||m by z′. Then we say that the inverse query (−,m, z ⊕ z′) is a trivial query if the trivial
query is made when above queries were already made.

Above queries do not help D to distinguish game 2 and game 3, since the following claim is true both game
2 and game 3 due to Davies-Meyer Merkle-Damg̊ard construction and constructions of S and S0.

– For type 1, the response of the hash query m1||...||mi is equal to xi ⊕ yi due to step 2 or step 3 of the
simulator.

– For type 2, xi ⊕ yi (yi is the response of the forward query (+,mi, xi) ) is equal to the response of the
hash query m1||...||mi due to step 2 or step 3 of the simulator.

– For type 3, the response of the hash query M ||m1||...||mi is equal to xi ⊕ yi due to step 2 of EO.
– For type 4, the response of the query (+,mi, xi) is equal to the response of the hash query M ||m1||...||mi

due to step 2 of EO.
– For type 5 and 6, the response of the inverse query (+,m, z ⊕ z′) is equal to z due to step 2 of IO.

Therefore we hereafter for simplicity

– D does not make a trivial query and a repeated query.

Note that we suppose that following queries is also repeated query: D makes an inverse query (−,m, y) when
D already made a forward query (+,m, x) where x is the response of the forward query, and D makes a
forward query (+,m, x) when D already made an inverse query (−,m, y) where x is the response of the
inverse query. Since the simulator uses the same table T both a forward query and an inverse query, these
queries are not helpful for D. In the following discussion, we prove |Pr[G3] − Pr[G2]| = O(q2l2/2n) by the
following approach.

– First stage: The view of D in game 3 unless S0 fails is equal to the view of D in game 2 unless bad
event occurs.

– Second stage: We estimate the probabilities that the bad event occurs or S0 fails.

From the first stage, the case that D can distinguish game 2 and game 3 is that the bad event occurs and S0

fails. In the second stage, we show that the probability that the bad event occurs or S0 fails is O(l2q2/2n).

First Stage: We show that for any query the output are randomly chosen in game 2 and game 3 unless
the bad event occurs and S0 fails. If we can show it then the view of D in game 3 unless S0 fails and the bad
event occurs is equal to the view of D in game 2 unless bad event occurs.

First we show that all responses are chosen at random unless the bad event occurs in game 2. We start
by demonstrating an useful properties (claim 1 and claim 2). After showing claim 1 and claim 2, we prove
the claim 3 by using claim 1 and claim 2 where all responses to D is randomly chosen in game 2 unless the
bad event occurs.

Claim 1 In game 2, if there is (m1||...||mi, z) in LRO and the bad event does not occur, there is k ∈ {1, ..., i}
such that the ordered sequences of query m1||...||mk−1 to R0 and queries (+, mk, xk), ..., (+,mi, xi) were made
such that

– xk = z′ (z′ = RO(m1||...||mk−1)),
– (for j = k + 1, ..., i) xj = xj−1 ⊕ yj−1, and
– xi ⊕ yi = z

where yj is a response of a forwar query (+, mi, xi) to S. Note that if k = 0, then a query to R0 is ignored,
if k = i + 1, then queries to S are ignored.

16



Proof. The pair (m1||...||mi, z) is stored in LRO by making a query to R0 or S. By considering the definition of
S, the way to store (m1||...||mi, z) in LRO is explicitly to make the ordered sequences of a query m1||...||mk−1

to R0 and forward queries (+,mk, xk), ..., (+,mi, xi) such that xk = RO(m1||...||mk−1), (for j = k + 1, ..., i)
xj = xj−1 ⊕ yj−1, and xi ⊕ yi = z where yj is a response of a query (xj , mj) unless the bad event of game 2
occurs. If there is no k ∈ {1, ..., i} such that the ordered sequences of a query m1||...||mk−1 to R0 and queries
(+,mk, xk), ..., (+,mk, xi) were made such that

– xk = z′ (z′ = RO(m1||...||mk−1)),
– for j = k + 1, ..., i) xj = xj−1 ⊕ yj−1, and
– xi ⊕ yi = z

where yj is a response of a query (+,mj , xj) to S, by considering the condition invoking each step of S, we
can deduce that the bad event occurs, there is no pair (m1||...||mi, z) in LRO or the bad event occurs. ut

Claim 2 In game 2, step 2 of IO are not invoked.

Proof. On an inverse query (−,m, y) to IO, the condition that invokes step 2 of IO is that there are
pairs (M,x) and (M ′, x′) in LRO such that M ||m = M ′ and y = x ⊕ x′. Let M be m1||...||mi and M ′ be
m1||...||mi||m. Since the pair (M,x) is in LRO, D makes a query m1||...||mk−1 to R0 and forward queries
(+,mk, xk), ..., (+,mi, xi) that satisfy conditions of claim 1. Since the pair (M ′, x′) is stored in LRO, D makes
a query m1||...||ms−1 to R0 and forward queries (+, ms, xs), ..., (+,mi, xi), (+,m, x) that satisfy conditions
of claim 1. This implies that

1. (m,x, y) is already stored in T when the inverse query (−,m, y) is made or
2. (m,x, y) is stored in T when the hash queries M and M ||m were already made.

Therefore, for the first case, step 2 of IO is not invoked but step 1 of an inverse query of S is invoked. For
the second case, D makes a trivial query, so this contradicts assumptions of D. ut

We show that all responses of S and R0 are randomly chosen unless bad event occurs by using claim 1
and claim 2.

Claim 3 In game 2, all responses of S and R0 are randomly chosen unless the bad event occurs.

Proof. We prove the following claims.

– For any two different query-response pairs (m,x, y), (m′, x′, y′) from D to S, x⊕ y 6= x′⊕ y′ holds. If this
is true, all responses from S to D are independently chosen.

– All responses of R0 are different unless the bad event occurs. If this is true, outputs of R0 (RO) are
independently chosen.

– For any forward query (+,m, x) and the response y, x ⊕ y is different from any response of R0 unless
the bad event occurs. If this is true, any output of R0 (RO) is independently chosen from any response
of a forward query.

Since D does not make repeated queries, step 1 of IO are not invoked. Step 2 of IO is not invoked from
claim 2. Therefore any response of an inverse query is chosen at random independently from any response of
a hash query and a forward query due to the definition of step 3 of IO. Therefore, IO does not invoke RO.
Namely for any inverse query the response is independently chosen from RO. Consecuently, if we show the
above claims, all responses are randomly chosen, since any fresh output is randomly chosen due to definitions
of RO, EO and IO.

If the bad event (of FC2 and IO2) does not occur, the first claim is explicitly valid. For the second claim,
all responses of R0 (RO) are different since the bad event (of B1) does not occur. For the third claim, we
prove this as follows.

To the contrary, assume that, for some forward query (+,m, x) and the response y, x ⊕ y is equal to
some response z of R1. Let m1||...||mi be the query of the response z. From the claim 1, D makes a query
m1||...||mk−1 to R0 and forward queries (+,mk, xk), ..., (+,mi, xi) by this order Then we can deduce that
one of the following two cases occurs for choosing y and z

17



1. y and z are independently chosen at random but x ⊕ y = z.
2. y and z are dependently chosen and x ⊕ y = z.

In the first case, since y and z are independently chosen at random, the bad event B3 explicitly occurs in
the first case.

In the second case, by considering the method of choosing y, (m1||...||mi−1, x), (m1||...||mi, z) is stored in
LRO when the query (+,m, x) is made. From claim 1, we can deduce that the hash query m1||...||mk−1 and
forward queries (+, xk,mk), ..., (+, xi−1,mi−1) are made by this order and the hash query m1||...||ms−1 and
forward queries (+, xs,ms), ..., (+, xi,mi) are made by this order such that these queries satisfy the condition
of claim 1. Therefore the forward query (+,m, x) is a trivial query or a repeated query. This contradicts
assumptions of D.

From above discussions, we can conclude that all responses are randomly chosen unless the bad event
occurs. ut

Next we discuss the case of game 3. We start by demonstrating an useful properties (claim 4, claim 5 and
claim 6). We show that all responses to D are randomly chosen unless S0 fails by the following approach.

Claim 7 We prove that a response for any fresh query to S0 is chosen at random.
Claim 8 We prove that all responses of R1 are different unless S0 fails.
Claim 9 We prove that for any different query and response pairs (m,x, y) and (m′, x′, y′) to S0 made by

D, x ⊕ y 6= x′ ⊕ y′ holds unless S0 fails.
Claim 10 We prove that for any forward query (+,m, x) and the response y of S0 to D x ⊕ y is different

from any response of R1 to D unless S0 fails and the bad event B occurs, and that for any inverse query
(−,m, y) and the response x of S0 to D x ⊕ y is different from any response of R1 to D unless S0 fails
and the bad event B occurs.

Claim 8-10 imply that all responses to D are independently chosen. By combining claim 7-10, all responses
to D are randomly chosen.

Claim 4 In game 3, if there is (m1||...||mi, z) in LRO and S0 does not fail, there is the pairs (m1, x1, y1), ...,
(mi, xi, yi) in T such that

– x1 = IV ,
– (for j = 2, ..., i) xj = xi−1 ⊕ yj−1,
– xi ⊕ yi = z and
– these pairs were stored as a result of the ordered sequence of forward queries (m1, x1), ..., (mi, xi).

And (m1||...||mi, z) is stored in LRO due to the ordered sequences of hash query m1||...||mk−1 to R1 and
forward queries from D to S (+,mk, xk), ..., (+, mi, xi). Note that if k = 0, then a query to R1 is ignored, if
k = i + 1, then queries from D to S0 are ignored.

Proof. Since R1 is the Davies-Meyer Merkle-Damg̊ard construction by making forward queries to S0, RO is
only invoked by S0. Therefore, for any (m1||...||mi, z) in LRO, there are pairs (m1, x1, y1), ..., (mi, x1, yi) in
T such that x1 = IV , (for j = 2, ..., i) xj = xi−1 ⊕ yj−1, and xi ⊕ yi = z due to the definition of S0. If these
pairs were not stored as a result of the ordered sequence of forward queries (+, m1, x1), ..., (+,mi, xi) to S0,
we can deduce that the following must be true regarding the sequence of queries:

– for some s ∈ {1, ..., i − 1}, the pair (ms, xs, ys) is stored when the pair (xs+1,ms+1, ys+1) was already
stored in T , or

– there is no pair (m1||...||mi, z) in LRO due to the definition of S0:

In the first case, S0 explicitly fails due to FC3 or IC3. If these pairs were not stored as a result of the
ordered sequence of queries (+,m1, x1), ..., (+,mi, xi) to S0, S0 explicitly fails due to FC3 or IC3. Therefore,
(m1||...||mi, z) was explicitly stored as a result of the ordered sequence of forward queries (m1, x1), ..., (mi, xi)
to S0.

The pair (m1||...||mi, z) is stored in LRO by making a query to R1 or S0. By considering the definition
of S0, the way to store (m1||...||mi, z) in LRO is explicitly to make the ordered sequences of a hash query
m1||...||mk−1 to R1 and forward queries (+,mk, xk), ..., (+,mi, xi). ut

18



Claim 5 In game 3, step 2 of EO is not invoked unless S0.

Proof. Recall the condition invoking step 2 of EO: for query (m, z) to EO, there is a pair (M, z) in LRO.
From the definition of S0, step 2 of EO is invoked due to the forward query (+,m, z) to S0. However, if there
is a pair (M, z) in LRO, it must be the case that there are (m1, x1, y1), ..., (mi, xi, yi) in T such that these
pairs satisfy conditions of claim 4. Therefore, since there are pair (m1, x1, y1), ..., (mi, xi, yi) in T , step 2 of
EO is not invoked but step 3 of S0 is invoked. ut

Claim 6 In game 3, step 2 of IO is not invoked.

Proof. On an inverse query (−,m, y) to IO, the condition invoking step 2 of IO is that there are pairs
(M,x), (M ′, x′) in LRO such that M ||m = M ′ and y = x ⊕ x′. The pair (M,x) is stored in LRO by a
hash query m1||...||mk−1 and forward queries (+,mk, xk), ..., (+,mi, xi) by this order from claim 1. The pair
(M ′, x′) is stored in LRO by a hash query m1||...||mk−1 and forward queries (+,mk, xk), ..., (+,mi, xi), (+,m, x)
by this order from claim 1. Therefore the inverse query (−,m, y) is explicitly trivial query type 5 or type 6.
This contradicts assumptions of D. ut

Claim 7 In game 3, on a fresh forward query (+, m, x) to S0, if there is no pair (m,x, y) in T (namely
(+,m, x) is a fresh query), its response y is chosen at random. And on a fresh inverse query (−,m′, y′) to
S0, if there is no pair (m′, x′, y′) in T (namely (−,m′, y′) is a fresh query), its response x′ is chosen at
random.

Proof. First we consider a forward query. We consider the cases that y is defined during step 2-3 of S0 and
show that y is chosen at random for all cases. The reason why we only consider step 2-3 is as follows. For step
4 of S0, step 1 and step 2 of EO are not invoked by the following reasons. Step 2 of EO is not invoked from
claim 5. Step 1 of EO is not invoked since if (m,x, y) ∈ LEO then it should be the case that (m,x, y) ∈ T .
In step 3 of EO any response is explicitly chosen at random. Therefore all responses chosen in step 4 are
chosen at random. So we consider during step 2-3 of S0 is that RO is only invoked in step 2-3.

– The case that y is chosen in step 2 (namely x = IV ):
• The case that (m, y) ∈ LRO: This case does not occur, since (m,x, y) is already in table T due to

claim 4, namely step 2 is not invoked but step 1 is invoked.
• The case that (m, y) /∈ LRO: In this case, y is chosen at random by RO.

– The case that y is chosen in step 3:
• The case that (m1||...||mk||m, z) ∈ LRO: From claim 3, there are inner pairs (m1, x1, y1), ..., (mk, xk, yk),

(m,x, y) of R1(m1||...||mk||m) in T . Therefore step 3 is not invoked but step 1 is invoked.
• The case that (m1||...||mk||m, z) /∈ LRO: y is chosen at random by RO.

Therefore, for any forward query, if there is no pair (m,x, y) in T , its response y is chosen at random.
Second we consider an inverse query. From claim 6, step 2 of IO is not invoked. When the corresponding

query with the repeated query to IO is made to S0, it is explicitly the repeated inverse query to S0. Step 1
of IO is not invoked since if (m,x, y) ∈ LIO then it should be the case that (m,x, y) ∈ T . Responses chosen
step 3 of IO are chosen at random due to the definition of IO. Since we assume that D does not a repeated
query, step 1 of S0 is not invoked. Therefore, for any inverse query, if there is no pair (m′, x′, y′) in T , its
response x′ is chosen at random. ut

Claim 8 In game 3 if S0 does not explicitly fail, then there are no two different sequences of t-bit blocks
m1, ...,mi and m′

1, ...,m
′
j with corresponding triples (m1, x1, y1), ..., (mi, xi, yi) and (m′

1, x
′
1, y

′
1), ..., (m

′
j , x

′
j , y

′
j)

in table T such that:

– It is the case that x1 = x′
1 = IV , and for each s = 1, ..., i and s′ = 1, ..., j, xs = xs−1 ⊕ ys−1 and

xs′ = xs′−1 ⊕ ys′−1.
– xi ⊕ yi = x′

j ⊕ y′
j holds

19



Proof. We will prove this claim by performing an induction on the number of queries made to S0, and show
that unless S0 explicitly fails, such sequence of triples cannot exists in the table T maintained by it.

Say there are two sequences of t-bit blocks m1, ...,mi and m′
1, ...,m

′
j that satisfy the properties mentioned

in the statement of the claim. Without loss of generality, assume that i ≤ j.
Since m1, ...,mi and m′

1, ...,m
′
j are different sequences of t-bit blocks, there exists r such that xj−r = IV

or xi−r ⊕ yi−r = xj−r ⊕ y′
j−r such that (mi−r, xi−r) 6= (m′

j−r, x
′
j−r) (consider the output of each iteration

of the scheme going backward). If such r does not exists, (m1, ...,mi) = (m′
1, ...,m

′
j) explicitly holds. If

xj−r = IV , then we can deduce that xj−r−1⊕yj−r−1 = IV . Therefore, in this case, S0 would have explicitly
failed because of failure condition FC1 or IC1. If xi−r⊕yi−r = xj−r⊕y′

j−r where m′
i−r, (x

′
i−r) 6= (m′

j−r, x
′
j−r),

then S0 would have explicitly failed because of failure condition FC2 or IC2. ut

Claim 9 Let In game 3, if S0 does not fail, for any different query-response pairs (m,x, y), (m′, x′, y′) from
D to S0, x ⊕ y 6= x′ ⊕ y′ holds.

Claim 9 explicitly implies that responses for all non repeated queries are independently chosen.

Proof. This proof is trivial due to FC2 and IC2. ut

Claim 10 In game 3, if S0 does not fail and the bad event B does not occur, for any (forward or inverse)
query-response pair (m,x, y) from D to S0 x ⊕ y is different from any response of R1 to D.

Proof. To the contrary, assume that x⊕ y is equal to some response z of R1 where the pair (m,x, y) is some
query-response pair from D to S0. Then we can deduce that one of the following cases occurs. Let m1||...||mi

be the hash query of the response z, (m1, x1, y1), ..., (mi, xi, yi) be the inner pair of R1(m1||...||mi) such that
x1 = IV , xj = xj−1 ⊕ yj−1 (j = 2, ..., i) and xi ⊕ yi = z. Then we can deduce that one of the following two
cases occur for choosing z and y.

1. x ⊕ y and z are independently chosen but x ⊕ y = z.
2. x ⊕ y and z are dependently chosen and x ⊕ y = z. This means that x ⊕ y and z are chosen from the

same pair of LRO. Namely (m,x, y) = (mi, xi, yi) holds.

In the first case, since x ⊕ y and z are chosen at random, (m,x, y) 6= (mi, xi, yi) explicitly holds. Therefore
FC2 or IC2 explicitly occurs in the first case. Namely S0 fails.

From claim 4, ordered sequences of the hash query m1||...||mk−1 and forward queries (+, mk, xk), ..., (+,mi, xi)
are made. If these pairs were not stored these orderd sequences, S0 explicitly fails. Note that if k = i + 1,
forward queries are ignored, if k = 1, the hash query is ignored. If k = i + 1, the bad event B explicitly
occurs. If k 6= i + 1, D explicitly makes a trivial query.

Therefore, if x ⊕ y is equal to some response z of R1, then S0 fails, D makes a trivial query, or the bad
event B occurs. ut

Claim 11 All responses of S0 and R1 are randomly chosen unless S0 fails.

Proof. From claim 8, 9, and 10, all responses of S0 and R1 are independently chosen. From claim 7, the output
of S0 is randomly chosen. By combining these claims, we can conclude that all responses are randomly chosen.

ut

Since all responses in game 2 and game 3 are chosen at random from claim 3 and claim 11 unless S0 fails
and the bad event occurs, the view of D in game 3 is equal to the view of D in game 2.

Second Stage: Finally we estimate the probability that the bad event occurs and S0 fails.
We estimate the probability that the bad event occurs in game 2. From the claim 3, all responses are

chosen at random until the bad event occurs. Therefore the probability that the bad event of FC1 occurs is
O(q/2n), the probability that the bad event of FC2 occurs is O(q2/2n), the probability that the bad event

20



of FC3 occurs is O(q2/2n), the probability that the bad event of B1 occurs is O(q2/2n), the probability that
the bad event of B2 occurs is O(q2/2n), and the probability that the bad event of B3 occurs is O(q2/2n).

Next we estimate the probability that S0 fails and the bad event occurs in game 3. From the claim 5, all
fresh responses of S0 are chosen at random until S0 fails. The maximum number of invoking S0 is lqH + qh.
Therefore the probability that S0 fails by FC1 is O((lqH +qh)/2n), the probability that S0 fails by FC2 occurs
is O((lqH + qh)2/2n), the probability that S0 fails by FC3 occurs is O((lqH + qh)2/2n), the probability that
the bad event B occurs is O((lqH + qh)2/2n).

Therefore |Pr[G3] − Pr[G2]| = O((lqH + qh)2/2n) = O(l2q2/2n).

Game 4. In this game, we modify the simulator S0 so as to make its responses independent of RO. For
this purpose, we remove RO from this game entirely and the new simulator S1 always chosen a uniformly
random n-bit string. Thus on a forward query (+, m, x), S1 check if there is a triple (m, x, y) in table T .
If it finds such a triple then it responds with the n-bit string y. Otherwise it chooses a uniformly random
n-bit string and send this as the response, while string the triple (m,x, y) in table T . Thus on an inverse
query (−, m, y), S1 check if there is a triple (m,x, y) in table T . If it finds such a triple then it responds
with the n-bit string x. Otherwise it chooses a uniformly random n-bit string and send this as the response,
while string the triple (m,x, y) in table T . Note that we remove conditions FC1, FC2, FC3, IC1, IC2 and IC3
and bad event B.

From claim 7, all responses of S1 that are not chosen from table T are chosen at random. But the
responses of S0 and S1 are identical apart from the failure conditions which are used by S0 but not by S1.
Thus the distinguisher does not notice a difference between these games if:

– In game 3, S0 does not fail and B does not occur.
– In game 4, S1 does not respond to its queries in such a manner that its satisfy one of the failure conditions

specified in the definition of S0 and B does not occur.

In fact, these two events are identical in terms of their probability of occurrence since the distribution of the
responses of the two simulators is identical. Let G4 denote the event that the distinguisher D outputs 1 in
game 4. Then we can deduce that, |Pr[G4] − Pr[G3]| = O(l2q2/2n)

Game 5. This is the final game of our argument. Here we finally replace S1 with the ideal cipher E. The
outputs of the ideal cipher E are not distributed uniformly like the responses of S1. Hence D may be able
to differentiate between game 4 and game 5 if it can detect this. However, this happens only if S1 outputs
an input/output collision for the same ideal cipher key. The probability of this event is easily seen to be at
most the birthday bound. Let G5 denote the event that the distinguisher D outputs 1 in game 5. Then we
can deduce that |Pr[G5] − Pr[G4]| = (O(q2l2/2n))

Now we can complete the proof of theorem by combining game 1 to 5, and observing that game 1 is same
as ERO model while game 5 is same as the ideal cipher model. Hence we can deduce that ε = O(q2l2/2n). ut

C Proof of Theorem 4 [15]

C.1 Security Notion of KEM

First, we briefly review the model and the security notion of KEM schemes.

Definition 3 (Model for KEM Schemes).
A KEM scheme consists of the following 3-tuple (KEM.Gen,KEM.Enc,KEM.Dec):

KEM.Gen : a key generation algorithm which on input 1k, where k is the security parameter, outputs a
pair of keys (ek, dk). ek and dk are called encryption key and decryption key respectively.

KEM.Enc : an encryption algorithm which takes as input encryption key ek, outputs key K and ciphertext
c.

21



KEM.Dec : a decryption algorithm which takes as input decryption key dk and ciphertext c, output key
K.

In particular, a scheme which cannot even satisfy one-wayness under chosen plaintext attacks (OW-CPA)
cannot be called as a KEM scheme. Generally, indistinguishability under chosen ciphertext attacks (IND-
CCA) is recognized as the strongest security notion. Here, we recall definitions of OW-CPA and IND-CCA
for KEM as follows.

Definition 4 (OW-CPA).
A KEM scheme is (t, ε)-OW-CPA for KEM if the following property holds for a security parameter k;
For any adversary A = (A1,A2), Pr[ (ek, dk) ← KEM.Gen(1k); (state) ← A1(ek); (K∗, c∗) ←

KEM.Enc(ek); K ′ ← A2(c∗, state); K ′ = K∗] ≤ ε, where state is state information which A wants to
preserve from A1 to A2 and A runs in at most t steps.

Definition 5 (IND-CCA for KEM). A KEM scheme is (t, ε)-IND-CCA for KEM if the following property
holds for security parameter k; For any adversary A = (A1,A2), |Pr[ (ek, dk) ← KEM.Gen(1k); (state) ←
ADO(dk,·)

1 (ek); b
R← {0, 1}; (K∗

0 , c∗0) ← KEM.Enc(ek); K∗
1

R← K; b′ ← ADO(dk,·)
2 (ek, (K∗

b , c∗0), state); b′ =
b] − 1/2| ≤ ε, where DO is the decryption oracle, K is the space of key, state is state information which A
wants to preserve from A1 to A2 and A runs in at most t steps. A cannot submit the ciphertext c = c∗0 to
DO.

C.2 RSA-KEM

The security of RSA-KEM is based on the RSA assumption.

Definition 6 (RSA assumption). Let n be an RSA modulus that is the product of two large primes (p, q)
for security parameter k and e be an exponent such that gcd(e, φ(n)) = 1. We say that RSA problem is
(t, ε)-hard if for any adversary Alg, Pr[y ← Zn; Alg(n, e, y) = x; y ≡ xe (mod n)] ≤ ε, where Alg runs in
at most t steps.

The description of RSA-KEM is as follows:

Key generation : For input k, outputs encryption key (ek = (n, e)) and decryption key (dk = d) such
that n is an RSA modulus that is the product of two large primes (p, q) for security parameter k, gcd(e,
φ(n)) = 1 and ed ≡ 1 (mod φ(n)).

Encryption : Generates randomness r
R← Zn, computes c = re mod n and K = H(r), and outputs

ciphertext c and key K where H : Zn → {0, 1}k is a hash function.

Decryption : Upon inputs of ciphertext c, computes r = cd mod n and outputs K = H(r).

In [15], security of RSA-KEM in the RO model is proved as follows;

Lemma 3 (Security of RSA-KEM in the RO model [15]). If RSA problem is hard, then RSA-KEM
satisfies IND-CCA for KEM where H is modeled as the RO.

C.3 Proof of Theorem 4

Proof. Firstly, we transform the experiment of IND-CCA for RSA-KEM to the experiment where queries to
DO and EO does not give any advantage to the adversary.

Let Exp0 be the initial experiment and Succ0 be the probability that an adversary A succeeds to guess
the bit b in Exp0. A receives (K∗

b , c∗0) as the challenge such that c∗0 = r∗e for r∗.

22



Let Exp1 be the same experiment as Exp0 except when A queried c∗0 to DO before receiving c∗0 as the
challenge ciphertext. Exp1 aborts in the above case. Let Succ1 be the probability that A succeeds to guess
the bit b in Exp1 and E1 be the event that the experiment aborts. Then, the probability that the event E1

occurs is equal or lower than qD/n because A has no information about the challenge. Thus, we obtain that
|Succ1 − Succ0| ≤ qD/n.

Let Exp2 be the same experiment as Exp1 except that the challenge (K∗
b , c∗0) is generated in the beginning

of the experiment. Let Succ2 be the probability that A succeeds to guess the bit b in Exp2. Then, we trivially
obtain that |Succ2 − Succ1| = 0 because the challenge is determined independently from the behavior of A.

Let Exp3 be the same experiment as Exp2 except that EO returns randomly chosen value z ∈ {0, 1}k

and adds (x,K∗
b , z) to the EO list LEO when A poses query (x,K∗

b ) for some x to EO. Then, we consider a
distinguisher D which tries to distinguish Exp2 from Exp3.

Lemma 4. If the output of RO H is independently chosen from the input, D cannot distinguish Exp2 from
Exp3.

Proof. We show that we can construct an algorithm ALG which can distinguish an output of RO H from a
random value if there exists D which can distinguish Exp2 from Exp3. The concrete construction of ALG is
as follows.

Step 1 : Simulate Exp3 for D, as the adversary, except when D poses query (x, K∗
b ) for some x to EO.

Step 2 : On receiving query (x,K∗
b ) for some x to EO, forward r∗||x to RO H, receive z as the output

where z is H(r∗||x) or a random value rand, and return z to D.

Step 3 : If D decides that he interacts with Exp2, decide that z is H(r∗||x). Otherwise, decide that z is
rand.

The interface of D is identical with Exp2 when z is H(r∗||x). Also, the interface of D is identical with Exp3
when z is rand. Therefore, if D succeeds, then ALG also succeeds.

ut

Thus, Exp2 and Exp3 is indistinguishable for the adversary A. Then, we obtain that |Succ3 − Succ2| = 0.
Let Exp4 be the same experiment as Exp3 except that A does not pose both the hash query r∗||m to

RO and the inverse attack query (m,H(r∗||m)⊕K∗
b ) to IO for some m before posing the hash query r∗ to

RO. Let Succ4 be the probability that A succeeds to guess the bit b in Exp4 and E4 be the event that A
poses both the hash query r∗||m to RO and the inverse attack query (m,H(r∗||m) ⊕ K∗

b ) to IO for some
m before posing the hash query r∗ to RO. Also, let AskH be the event that A poses the hash query r∗||m
to RO before posing the hash query r∗ to RO. Then, the probability that the event E4 occurs is equal or
lower than the probability that the event AskH occurs. And, the probability that the event AskH occurs is
equal or lower than qIH/|Zn| because A does not pose r∗ to RO yet and so r∗ is unknown for A owing to
that H is RO. Thus, we obtain that |Succ4 − Succ3| ≤ qIH/|Zn|.

Let Exp5 be the same experiment as Exp4 except when A queried r∗ to RO. Exp5 aborts in the above
case. Let Succ5 be the probability that A succeeds to guess the bit b in Exp5 and E5 be the event that the
experiment aborts by this case. Then, to evaluate the probability that the event E5 occurs, Pr[E5], we show
that Pr[E5] is equal or lower than the probability that RSA problem is broken as follows.

Lemma 5. If the event E5 occurs with the probability ε′′ in time t′′, we can construct an inverter I that
breaks RSA problem with the probability ε′ in time t′ as follows:

t′ = t′′ + (qRH + qEH) · expo,

ε′ = ε′′.

23



Proof. We assume that A does not repeat previous hash queries to the ERO H or previous decryption queries
to the DO. Let LH be the local hash list of H. LH consists of tuples (δi, yi, hi) (0 ≤ i ≤ qRH + qD + qEH).
Let LEO be the local EO list of H. LEO consists of tuples (θi, hi, zi) (0 ≤ i ≤ qEH). Let LIO be the local
IO list of H. LIO consists of tuples (γi, hi, ai) (0 ≤ i ≤ qIH). The concrete construction of I is as follows.

Input : (n, e, y∗) s.t. n is RSA modulus, e is the exponent where gcd(e, φ(n)) = 1 and y∗ R← Zn

Output : x∗ s.t. x∗ ≡ y∗d (mod n)

Input public key : Send (n, e) to A in Exp5 as the input public key.

DO simulation : When A poses a decryption query yi to DO, then behave as follows:
Find (δi, yi, hi) from LH such that yi = δe

i . If there is a tuple (δi, yi, hi) satisfying the condition, then
return hi as the answer. Otherwise, generate hi ∈ {0, 1}k, add (∅, yi, hi) to LH and return hi as the
answer.

RO simulation : When A poses a query δi to RO, then behave as follows:
<If yi = y∗ s.t. yi = δe

i mod n >
Output δi as x∗ and halt.

<If (δi, ∗, hi) ∈ LH >
Return hi to A as the answer.

<If (δi, ∗, ∗) /∈ LH and (∅, yi, hi) ∈ LH s.t. yi = δe
i mod n >

Replace (∅, yi, hi) to (δi, yi, hi) in LH and return hi to A as the answer.
<If (δi, ∗, ∗) /∈ LH and (∅, y, h) /∈ LH s.t. y = δe

i mod n >
Compute yi = δe

i mod n, generate hi ∈ {0, 1}k, add (δi, yi, hi) and return hi to A as the answer.

EO simulation : When A poses an extension attack query (θi, hi) to EO, then behave as follows:
Find (θi, hi, ∗) from LEO. If there is a tuple (θi, hi, zi) satisfying the condition, then return zi. Else if
there is only one tuple (δ′, ∗, hi) in LH , then generate zi ∈ {0, 1}k, compute yi = (δ′||θi)e mod n, add
(δ′||θi, yi, zi) to LH and (θi, hi, zi) to LEO, and return zi. Otherwise, generate zi ∈ {0, 1}k add (θi, hi, zi)
to LEO, and return zi.

IO simulation : When A poses an inverse attack query (γi, ai) to IO, then behave as follows:
Find (γi, ∗, ai) from LIO. If there is a tuple (γi, hi, ai) satisfying the condition, then return hi. Else
if there are tuples (δ′, ∗, hi) and (δ′||γi, ∗, hi ⊕ ai) in LH , then add (γi, hi, ai) to LIO, and return hi.
Otherwise, generate hi ∈ {0, 1}k add (γi, hi, ai) to LIO, and return hi.

Challenge ciphertext : When A outputs (state), then compute (K∗, y′) by the encryption procedure
and return (K∗, y∗) as the challenge.

We determine the success probability of I. In RO simulation, if yi = y∗ such that yi = δe
i mod n holds,

I successfully breaks RSA problem. This event is same as E5 in Exp5. Also, it is clear that I perfectly
simulates Exp5 for A. Therefore, we obtain

ε′ = ε′′.

I computes at most qRH + qEH exponentiations modulo n. Thus, we obtain

t′ = t′′ + (qRH + qEH) · expo.
ut

Exp4 and Exp5 are identical until E5 occurs. Thus, |Succ5 − Succ4| = ε′.
A can obtain no information about the random bit b because the key K∗

b is independent from information
which A can obtain in Exp5. Therefore, Succ5 = 1/2. Since Succ0 ≤ |Succ1 − Succ0| +|Succ2 − Succ1|

24



+|Succ3 − Succ2| +|Succ4 − Succ3| +|Succ5 − Succ4| +Succ5, Succ0 ≤ ε′ + qD

n + qIH

|Zn| + 1/2. Hence, ε′ ≥
ε − qD

n − qIH

|Zn| .
ut

D OAEP encryption [3]

OAEP encryption scheme is based on trapdoor partial-domain one-way permutations.

Definition 7 (Trapdoor partial-domain one-way permutation). Let G be a trapdoor permutation
generator. We say that a trapdoor permutation f is (t, ε)-partial-domain one-way if

– for input 1k, G outputs (f, f−1, Dom) where Dom is a subset of {0, 1}k0 × {0, 1}k1 (k0 + k1 < k) and
f, f−1 are permutations on Dom which are inverses of each other,

– there exist a polynomial p such that f, f−1 and Dom are computable in time p(k), and
– for any adversary Alg, Pr[(f, f−1, Dom) ← G(1k); (x0, x1)

R← Dom; Alg(f, Dom, f(x0, x1)) = x0] ≤ ε,
where Alg runs in at most t steps.

The description of OAEP encryption scheme is as follows:

Key generation : For input k, outputs encryption key (ek = f) and decryption key (dk = f−1) such
that (f, f−1, Dom = {0, 1}n+k1 × {0, 1}k0) ← G(1k) where G is a trapdoor permutation generator and
n = k − k0 − k1.

Encryption : Upon input of message m ∈ {0, 1}n, generates randomness r
R← {0, 1}k0 , computes x =

(m||0k1)⊕G(r) and y = r⊕H(x), and outputs ciphertext c = f(x, y) where “ || ” means concatenation,
H : {0, 1}n+k1 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}n+k1 are hash functions.

Decryption : Upon inputs of ciphertext c, computes z = f−1(c), parses z as (x, y) and reconstructs
r = y ⊕ H(x) where |x| = n + k1 and |y| = k0. If [x ⊕ G(r)]k1

?= 0k1 holds, outputs m = [x ⊕ G(r)]n as
the plaintext corresponding to c where [a]b denotes the b least significant bits of a and [a]b denotes the
b most significant bits of a. Otherwise, rejects the input as an invalid ciphertext.

25


