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Abstract. In this paper, we discuss the security of cryptosystems that use hash function DM-MDE that
is Davies-Meyer Merkle-Damg̊ard with ideal cipher E. DM-MDE is not indifferentiable from random
oracle (RO) due to the extension attack and the inverse attack. From the indifferentiability theory, there
is some cryptosystem that is secure in the RO model but insecure when RO is replaced with DM-MDE .
However, this does not imply that any cryptosystem secure in the RO model is insecure when RO is
replaced with DM-MDE . Therefore, we analyze the security of cryptosystems with DM-MDE by using
two approaches.
The first approach uses weakened random oracle (WRO). Since the extension attack and the inverse
attack can be applied to DM-MDE but not to RO, we define WRO such that these attacks can be
applied, and analyze the security of cryptosystems with DM-MDE by using WRO.
We propose the extension attack and inverse attack simulatable random oracle (EIRO) to which these
attacks can be applied. We prove that DM-MDE is indifferentiable from EIRO. This implies that any
cryptosystem secure in the EIRO model is secure when EIRO is replaced with DM-MDE . We prove that
RSA-KEM, FDH, PSS, Fiat-Shamir and so on are secure in the EIRO model. Therefore these cryp-
tosystems are secure when using DM-MDE . Moreover, we prove that EIRO is equivalent to DM-MDE .
Therefore, the only differences between RO and DM-MDE lie in the extension attack and the inverse
attack. We also prove that FDH, PSS, Fiat-Shamir and so on are secure when using an output length
extension (OLE) algorithm (KDF1 (MGF1), KDF2 and KDF3) with DM-MDE .
The second approach uses a variant of the theory, denoted indifferentiability with condition, which is
proposed in this paper. While the original indifferentiability theory deals with any cryptosystem, the
indifferentiability with condition deals with cryptosystems that satisfy some condition. As an example,
we consider cryptosystems that satisfy the condition “prefix-free” (PF cryptosystems) (e.g. OAEP,
OAEP+, SAEP, SAEP+ and so on). We show that if DM-MDE is indifferentiable from RO with the
condition “prefix-free”, PF cryptosystems are secure when using DM-MDE . By using the previous
result: “the hash function (DM-MDE with prefix-free padding) is indifferentiable from RO”, we can
prove that DM-MDE is indifferentiable from RO with the condition “prefix-free” by a simple and clear
proof. Therefore, PF cryptosystems are secure when using DM-MDE . Similarly, PF cryptosystems are
secure when using an OLE algorithm (KDF1, KDF2 and KDF3) with DM-MDE .

Keywords: Variants of random oracle, variant of indifferentiability, Davies-Meyer Merkle-Damg̊ard,
cryptosystems with Davies-Meyer Merkle-Damg̊ard, key-derivation functions.

1 Introduction

1.1 Background

A foundational design methodology of cryptosystems is the random oracle (RO) [1]. RO is an
ideal hash function and this methodology provides full security to cryptosystems in the RO model.
Many practical cryptosystems have been designed on the RO methodology such as ISO standard
cryptosystems: OAEP [2], RSA-KEM [21], PSS [3] and so on. However, when instantiating these
cryptosystems, RO must be replaced with practical hash functions such as SHA-256 [19]. Therefore,
we must confirm the security of cryptosystems when RO is replaced with practical hash functions.

Most hash functions are constructed by iterating a compression function. For example, the
famous family of hash functions that includes SHA-1 and SHA-2 uses the Merkle-Damg̊ard (MD)



construction [9, 17]. Let f : {0, 1}k × {0, 1}n → {0, 1}n be a compression function. For input M ,
hash function MDf , which uses the MD construction and f , calculates the output as follows: (1)
calculate ci = f(mi, ci−1) for i = 1, . . . , s where M = m1|| · · · ||ms, |mj | = k (j = 1, . . . , s), and c0

is n bit initial value IV . (2) output cs.
There is a significant gap between RO and practical hash functions due to the impossible

result of RO and hash functions [6]. Standard definitions of hash functions are collision resistance,
preimage resistance, and second preimage resistance. At CRYPTO 2005, Coron et al. [8] introduced
a new definition of hash functions called indifferentiability from RO that uses the indifferentiability
theory [16]. This definition models the ideal situation wherein a hash function behaves like RO. In
this definition, a compression function is modeled by fixed input length random oracle FILRO or
ideal cipher E. Let I be an ideal function such as FILRO and E and HI be a hash function that
uses I as an underlying primitive. More strictly, hash function HI is indifferentiable from RO if
there exists simulator S such that no distinguisher D can distinguish (HI , I) from (RO, S). S can
access RO and simulate I. From the indifferentiability theory, if HI is indifferentiable from RO, any
cryptosystem secure in the RO model is secure when RO is replaced by HI . On the other hand,
from the indifferentiability theory, if HI is not indifferentiable from RO, there is some cryptosystem
that is secure in the RO model but insecure when RO is replaced with HI .

Coron et al. [8] showed that MDf is not indifferentiable from RO even when f is FILRO. This
result is obtained by the fact that the extension attack can be applied to MDf but not to RO. In
the attack, MDf (M ||m) is calculated by using z and m without M where z = MDf (M). Namely
MDf (M ||m) = f(m, z). On the other hand, RO(M ||m) = S(m,w) does not hold where w = RO(M),
since no S can know M from (m, w). They proposed new constructions such as prefix-free MD and
chop MD.

1.2 Rescue Original Merkle-Damg̊ard

Let h be FILRO. Since MDh is not indifferentiable from RO, there is some cryptosystem that is
secure in the RO model but insecure when RO is replaced with MDh. However, this result does not
imply that any cryptosystem secure in the RO model is insecure when RO is replaced with MDh.
Dodis et al. proved that PSS, FDH, Fiat-Shamir and so on are secure when using MDh[10]. Naito
et al. proved that OAEP, OAEP+, RSA-KEM are secure when using MDh[18]. The security of
those cryptosystems was proven by using the weakened random oracle (WRO) approach. Since no
simulator S can simulate the extension attack by using only RO, RO must be weakened in order for
S to simulate the extension attack. More strictly, (1) define weakened random oracle WRO such that
MDh is indifferentiable, and (2) prove the security of cryptosystems in the WRO model. From the
indifferentiability theory, any cryptosystem secure in the WRO model is secure when using MDh.

Dodis et al. proposed public-use random oracle (pub-RO) as WRO and proved that MDh is
indifferentiable from pub-RO. They proved that FDH, PSS, Fiat-Shamir and so on are secure in the
pub-RO model. pub-RO consists of RO and oracle LO that leaks the hash list of RO. Since S can know
M from w by using pub-RO where w = RO(M), for query (m,w), S can return w′ = RO(M ||m).

Since OAEP, OAEP+, RSA-KEM and so on are insecure in the pub-RO model, these cryp-
tosystems with MDh have not been proven by using pub-RO. Naito et al. proposed extension attack
simulatable random oracle (ERO) which does not leak information of the hash list of RO that is
unnecessary to simulate the extension attack. They proved that MDh is indifferentiable from ERO
and OAEP, OAEP+, RSA-KEM are secure in the ERO model. ERO consists of RO and oracle EO
that returns w′ = RO(M ||m) for query (m, w) where w = RO(M). S can simulate the extension
attack by using ERO. They also proved that ERO is equivalent to MDh. Since ERO is RO with the
extension attack, the difference between RO and MDh is just the extension attack.
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1.3 Davies-Meyer Merkle-Damg̊ard

The standard hash function SHA-2 family, SHA-1 and so on, have the MD construction and the
underlying compression function uses Davies-Meyer (DM) mode which uses a block cipher. These
hash functions are provably secure collision resistant hash functions when the underlying block
cipher is ideal cipher E [4]. Let E : {0, 1}k × {0, 1}n → {0, 1}n (the first element is the key
element and the second element is the plaintext element) be an ideal cipher. The compression
function DME with DM using E is DME(m,x) = E(m,x) ⊕ x. Previous examinations of the MD
construction don’t analyze the Davies-Meyer Merkle-Damg̊ard (DM-MD) construction. Since DME

is not indifferentiable from FILRO [8], we cannot apply the previous results [10, 18] 4 to analyses
of cryptosystems with hash function MDDME

, denoted hereafter as DM-MDE . Therefore, analyzing
the security of cryptosystems with DM-MDE is an open problem. Since the SHA-2 family has been
used in many cryptosystems, analyzing the security of cryptosystems with DM-MDE is important
in practical situations.

1.4 Our Contribution

We will prove various cryptosystems are secure when using DM-MDE . We will also prove other
cryptosystems are secure when using an output length extension (OLE) algorithm (key derivation
functions: KDF1 (MGF1), KDF2 and KDF3 [21]) with DM-MDE .

We adopt two approaches: the WRO approach and the indifferentiability with condition ap-
proach. By using the first approach, we will prove the following.

– RSA-KEM [21] and pub-RO cryptosystems (FDH [1], PSS [3], Fiat-Shamir [12] and so on) are
secure when using DM-MDE . pub-RO cryptosystems are cryptosystems secure in the pub-RO
model.

– pub-RO cryptosystems are secure when using an OLE algorithm (KDF1, KDF2 and KDF3)
with DM-MDE .

By using the second approach, we will prove the following.

– FIL cryptosystems (e.g. OAEP [2], OAEP+ [22], SAEP [5], SAEP+ [5] and so on) are secure
when using DM-MDE or an OLE algorithm (KDF1, KDF2 and KDF3) with DM-MDE . FIL
cryptosystems are secure cryptosystems in the RO model wherein the input length of the hash
function is fixed.

WRO Approach for DM-MDE. We show that DM-MDE is not indifferentiable from RO by using
the inverse attack. This attack uses the property where E is invertible. More strictly, in this attack,
z1 = E−1(m, z2⊕z1) holds where z1 = DM-MDE(M) and z2 = DM-MDE(M ||m). Let w1 = RO(M)
and w2 = RO(M ||m). Since for inverse query (m,w1 ⊕ w2) no S can know w1, no S can simulate
the inverse attack. Therefore, DM-MDE is not indifferentiable from RO due to the inverse attack
in addition to the extension attack. We propose a new oracle extension attack and inverse attack
simulatable random oracle EIRO; it represents ERO with new oracle IO that returns w1 for query
(m,w1 ⊕ w2). We prove that DM-MDE is indifferentiable from EIRO.

We prove that RSA-KEM and pub-RO cryptosystems are secure in the EIRO model. Since
pub-RO leaks information of the hash list of RO, which is unnecessary to simulate the extension
4 Dodis et al. [10] proved that MDFILpub-RO is indifferentiable from pub-RO where FILpub-RO is the fixed input

length pub-RO. However, since DME is not indifferentiable from FILpub-RO, this analysis cannot be applied to

DM-MDE (= MDDME

).
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attack and the inverse attack, but EIRO does not (pub-RO is weaker than EIRO), attack scenarios
in the EIRO are more restricted than those in the pub-RO model. Therefore, pub-RO cryptosystems
are also secure in the EIRO model. On the other hand, since EIRO is weaker than ERO (EIRO is
ERO with IO), the security of RSA-KEM in the EIRO model cannot be automatically proven by
using the proof in the ERO model. We have to prove that RSA-KEM is secure in the EIRO model.
Therefore, RSA-KEM and pub-RO cryptosystems are secure when using DM-MDE .

Moreover, we prove that EIRO is equivalent to DM-MDE . Since EIRO is RO with the extension
attack and the inverse attack, the only differences between RO and DM-MDE are these attacks.

In practical situations, since the desired output length of hash functions in cryptosystems is
usually different from that of existing hash functions, cryptosystems are instantiated by using
an OLE algorithm such as KDF1, KDF2 and KDF3 that expand the output length of a hash
function [14]. In this paper, we prove that pub-RO cryptosystems are secure when using an OLE
algorithm (KDF1, KDF2, and KDF3) with DM-MDE . For example, the KDF1 case is as follows.
Let H be the hash function where the output length is n bit. KDF1 with H where the output
length is jn bits is KDF1-H(M) = H(M ||〈0〉)||H(M ||〈1〉)|| · · · ||H(M ||〈j − 1〉) where 〈i〉 is the
32 bit binary representation value of i. Let pub-RO1 be pub-RO where the output length of RO
is n bits and pub-RO2 be pub-RO where the output length of RO is jn bits. For the security of
cryptosystems with KDF1-DM-MDE , we prove that KDF1-pub-RO1 is indifferentiable from pub-RO2.
Namely, secure cryptosystems with pub-RO2 are secure when pub-RO2 is replaced by KDF1-pub-RO1.
Since pub-RO is weaker than EIRO, secure cryptosystems using KDF1-pub-RO are secure when using
KDF1-EIRO. Therefore, pub-RO cryptosystems are secure when using KDF1-EIRO. Since DM-MDE

is indifferentiable from EIRO, pub-RO cryptosystems are secure when pub-RO is replaced with
KDF1-DM-MDE . Similarly, pub-RO cryptosystems are also secure when pub-RO is replaced with
KDF2-DM-MDE or KDF3-DM-MDE .

Indifferentiability with Condition Approach. We propose a new framework called the indif-
ferentiability with condition, a variant of the indifferentiability theory, and propose a new approach
to analyzing the security of cryptosystems with DM-MDE by using the theory.

Let H be a hash function that is indifferentiable from RO. In the indifferentiability from RO,
since D is any distinguisher, any cryptosystem secure in the RO model is secure when RO is replaced
with H. In the WRO approach, since DM-MDE is not indifferentiable from RO, we can recognize
the cryptosystems with DM-MDE secure by choosing secure cryptosystems in the EIRO model from
secure cryptosystems in the RO model. In the indifferentiability with condition approach, we can
recognize the cryptosystems with DM-MDE secure by choosing cryptosystems wherein inputs of
their hash functions satisfy some condition from the secure cryptosystems in the RO model.

In the indifferentiability from RO, D interacts with (RO, S) and (DM-MDE , E) and D can make
any query. In the indifferentiability with condition, queries from D to RO and DM-MDE are re-
stricted by some condition. We prove that if DM-MDE is indifferentiable from RO wherein D is
restricted by condition α, cryptosystem C is secure when RO is replaced with DM-MDE where C is
secure in the RO model and inputs to hash functions in C are restricted by condition α.

For example, we consider cryptosystems that satisfy condition “prefix-free”. This condition is
that for any input values M and M ′ to a hash function such that M 6= M ′, M is not the prefix of
M ′. The previous result [8] proved that DM-MDE with prefix-free padding PF is indifferentiable
from RO where for input M the hash function calculates DM-MDE(PF (M)). By using this result,
we prove that no D that is restricted by the condition “prefix-free” can distinguish (DM-MDE , E)
from (RO,S). Therefore DM-MDE is indifferentiable from RO with the condition “prefix-free”.
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Next we find cryptosystems that satisfy condition “prefix-free”. For example, we consider FIL
cryptosystems. For any two values M and M ′ such that M 6= M ′ and |M | = |M ′|, M is not prefix of
M ′. Therefore, FIL cryptosystems satisfy condition “prefix-free”. From the indifferentiability with
condition, FIL cryptosystems are secure when using DM-MDE . The similar discussion holds for FIL
cryptosystems with an OLE algorithm (KDF1, KDF2 and KDF3).

The indifferentiability with condition approach can be applied to other MD type hash functions
such that the hash functions with prefix-free padding are indifferentiable from RO. For example,
hash functions using the MD construction with several PGV schemes [7]. FIL cryptosystems and
FIL cryptosystems with an OLE algorithm (KDF1, KDF2 and KDF3) are secure when using the
hash functions.

1.5 Related Works

In the paper of EUROCRYPT 2009 [10], Dodis et al. did not analyze the security of cryptosystems
with DM-MDE . Later, independently to our work, they analyzed the security of cryptosystems
(FDH, PSS, Fiat-Shamir and so on) with DM-MDE by using the WRO approach [11]. They use
only pub-RO as WRO and prove that DM-MDE is indifferentiable from pub-RO.

While their result is the same as a part of our results, WRO in our paper (EIRO) is different
from pub-RO. Since pub-RO leaks information of the hash list of RO which EIRO does not, attack
scenarios in the EIRO model are restricted more than those in the pub-RO model. Therefore, analyses
of cryptosystems in the pub-RO model are more complicated than those in the EIRO model. Since
EIRO is equivalent to DM-MDE but pub-RO is not equivalent to DM-MDE , there are cryptosystems
secure in the EIRO model but insecure in the pub-RO model. For example, RSA-KEM is secure in the
EIRO model (proven in this paper) but insecure in the pub-RO model [18]. Therefore, our approach
of using EIRO is better than the approach of [11] that uses pub-RO from both theoretical and
practical points. Since Dodis et al. [11] did not analyze them, our analyses rescure more practical
cryptosystems, e.g., cryptosystems with an OLE algorithm, RSA-KEM and FIL cryptosystems,
than their analyses.

Leurent and Nguyen [15] discussed the security of cryptosystems with an OLE algorithm (such
as the schemes proposed in [1, 3]). While their interest is for the situation where the underlying
compression function is insecure (not collision resistant), our interest is for the situation where the
underlying compression function is secure (idea cipher). Our concern is different from theirs, the
former is a designer’s side and the latter is an attacker’s side.

2 Preliminaries

2.1 Notation

For two values x, y, x||y is the concatenated value of x and y. x ← y means assigning y to x. ⊕ is
bitwise exclusive or. |x| is the bit length of value x. For set (list) T and element W , T ← W means
to insert W into T (if W is already inserted in T , W is not inserted.). For some jn bit value x, let
x[1], . . . , x[j] be n bit values of each block of x (namely x = x[1]|| · · · ||x[j]). For some value x, x[w]

is the last w bit value of x and x(w) is the value excluding last w bits of x (namely x = x(w)||x[w]).

2.2 Davies-Meyer Merkle-Damg̊ard Construction [9, 17, 20]

We first give a short description of the Merkle-Damg̊ard (MD) construction. Hash function MDf :
{0, 1}∗ → {0, 1}n is built by iterating compression function f : {0, 1}k×{0, 1}n → {0, 1}n as follows.
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– MDf (M):
1. calculate M ′ = pad(M) where pad is a padding function such that pad : {0, 1}∗ → ({0, 1}k)∗.
2. calculate ci = f(mi, ci−1) for i = 1, . . . , l where for i = 1, . . . , l, |mi| = k, M ′ = m1|| · · · ||ml

and c0 is an initial value (s.t. |c0| = n).
3. return cl

The Davies-Meyer Merkle-Damg̊ard (DM-MD) construction is the MD construction with the un-
derlying compression function instantiated by Davies-Meyer mode (DM). The Davies-Meyer model
is DME(m,x) = x⊕E(m,x) where E is a block cipher and m is a key element of the block cipher.
Hereafter E is an ideal cipher and we denote the hash function MDDME

by DM-MDE . In this
paper we ignore the above padding function with no loss of generality, so hereafter we discuss only
DM-MDE : ({0, 1}t)∗ → {0, 1}n.

We denote forward query (m,x) to E by (+,m, x) and inverse query (m, y) to E by (−,m, y).

2.3 Indifferentiability Framework for Hash Functions [16]

The indifferentiability framework generalizes the fundamental concept of the indistinguishability
of two cryptosystems C(U) and C(V) where C(U) is the cryptosystem C that invokes underlying
primitive U and C(V) is the cryptosystem C that invokes underlying primitive V. U and V have two
interfaces: public and private. Adversaries can only access the public interface and honest parties
(e.g. the cryptosystem C) can access only the private interface.

We denote the private interface of the system W by Wpriv and the public interface of the system
W by Wpub. The definition of indifferentiability is as follows.

Definition 1. V is indifferentiable from U , denote V @ U , if for any distinguisher D with bi-
nary output (0 or 1) there is a simulator S such that the advantage |Pr[DVpriv ,Vpub ⇒ 1] −
Pr[DUpriv ,S(Upub) ⇒ 1]| is negligible in the security parameter k.

This definition will allow us to use construction V instead of U in any cryptosystem and retain the
same level of provable security due to the indifferentiability theory of Maurer et al. [16]. We denote
the same level of provable security by C(V) Â C(U). Namely, we denote C(V) Â C(U) in the case
that if C(U) is secure, then C(U) is secure. More strictly, V @ U ⇔ C(V) Â C(U) holds.

For the indifferentiability of DM-MDE from RO, D interacts with (RO,S(RO)) and (DM-MDE , E)
where S simulates E [8]. In Appendix E, the figure of the indifferentiability of DM-MDE from RO
is Fig.1.

2.4 Extension Attack [8]

Coron et al. showed that DM-MDE 6@ RO using the extension attack. The extension attack is
directed toward the MD construction where we can calculate a new hash value from some hash
value. z′ = DM-MDE(M ||m) can be calculated from just z and m by z′ = E(m, z) ⊕ z where
z = DM-MDE(M). Namely, z′ can be calculated without knowing M . The distinguishing attack
using the extension attack is as follows. Let O1 be DM-MDE or RO and let O2 be E or S. First, a
distinguisher poses M to O1 and gets z from O1. Second, he poses forward query (+,m, z) to O2

and gets c from O2. Finally, he poses M ||m to O1 and gets z′ from O1.
If O1 = DM-MDE and O2 = E, then z ⊕ z′ = c, however, if O1 = RO and O2 = S, then

z ⊕ z′ 6= c. This is because no simulator can obtain the output value of RO(M ||m) from just (m, z)
and the output value of RO(M ||m) is independently and randomly defined from c. Therefore,
DM-MDE 6@ RO holds.
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2.5 Weakened Random Oracle Approach [10, 18]

The weakened random oracle (WRO) approach was proposed to analyze the security of cryptosys-
tems that use MDh where h is the FILRO. This approach is as follows:

1. Find WRO from which MDh is indifferentiable.
2. Prove the security of cryptosystems in the WRO model.

If WRO is found, secure cryptosystems in the WRO model are, from the indifferentiable theory,
secure when using MDh.

Dodis et al. [10] proposed public-use random oracle (pub-RO) as WRO. pub-RO consists of
random oracle RO and leak oracle LO. This definition proceeds as follows: RO has initially empty
list LRO. For query M to RO, if ∃(M, z) ∈ LRO, it returns z. Otherwise, it chooses an n-bit random
value, z (assume that the output length of RO is n bit), LRO ← (M, z), and returns z. For a query
to LO, it returns LRO. They showed that FDH, PSS, Fiat-Shamir and so on are secure in the
pub-RO model and that MDh is indifferentiable from pub-RO. Therefore, cryptosystems secure in
the pub-RO model are secure when using MDh [10]. We denote cryptosystems secure in the pub-RO
model by pub-RO cryptosystems.

Naito et al. [18] proposed extension attack simulatable random oracle ERO as WRO. ERO
consists of RO and extension oracle EO. EO has initially empty list L. For query (m,x) to EO: If
(m, z, z′) ∈ L, it returns z′. Else if z = IV , EO poses query m to RO, receives z′, LEO ← (m, z, z′),
and returns z′. Else if there exists only one pair (M, z) ∈ LRO, EO poses query M ||m to RO, receives
z′, LEO ← (m, z, z′), and returns z′. Else it chooses z′ ∈ {0, 1}n at random, LEO ← (m, z, z′) and
returns z′. They showed that OAEP, OAEP+, RSA-KEM and so on are secure in the ERO model
and that ERO is indifferentiable from MDh. Therefore, cryptosystems secure in the ERO model are
secure when using MDh [18].

2.6 KDF1, KDF2 and KDF3 [21]

The desired output length of hash functions in cryptosystems is usually different from that of
existing hash functions. Therefore, the output length of hash functions is expanded by an output
length extension (OLE) algorithm such as KDF1 (MGF1), KDF2 and KDF3. These algorithms
are as follows. Let H be the hash function whose output length is n bits and 〈i〉 be w bit binary
representation of i (usually w = 32). When extending from n bits to jn bits by KDF1, KDF1-H(M)
is defined by H(M ||〈0〉)||H(M ||〈1〉)|| · · · ||H(M ||〈j−1〉). When extending from n bits to jn bits by
KDF2, KDF2-H(M) is defined by H(M ||〈1〉)||H(M ||〈2〉)|| · · · ||H(M ||〈j〉). When extending from n
bits to jn bits by KDF3, KDF3-H(M) is defined by H(〈0〉||M)||H(〈1〉||M)|| · · · ||H(〈j − 1〉||M).

We denote the cryptosystem C with KDF1 by C-KDF1, the cryptosystem C with KDF2 by
C-KDF2 and the cryptosystem C with KDF3 by C-KDF3.

Let RO1, . . . ROj be independent random oracles. Since the output of RO1(M)||RO2(M)|| · · · ||ROj(M)
is chosen at random, we can see that RO1||RO2|| · · · ||ROj is a random oracle whose output length
is jn bits. In the case of KDF1, since we can see that RO1(∗||〈0〉), RO1(∗||〈1〉), . . . , RO1(∗||〈j − 1〉)
are independent random oracles, we can see that KDF1-RO1 is a random oracle. The same is true
for the cases of KDF2 and KDF3. Therefore, the following holds.

Lemma 1. For any cryptosystem C secure in the RO model, C-KDF1, C-KDF2 and C-KDF3 are
secure in the RO model.
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3 WRO Approach for DM-MDE

In this section, by using the WRO approach, we show that RSA-KEM and pub-RO cryptosystems
(FDH, PSS, Fiat-Shamir and so on) are secure when using DM-MDE and pub-RO cryptosystems
are secure when using an OLE algorithm (KDF1, KDF2, and KDF3) with DM-MDE .

We show the inverse attack that enables D to distinguish (DM-MDE , E) from (RO, S). We
propose a new oracle extension attack and inverse attack simulatable random oracle EIRO as WRO,
which enables S to simulate the extension attack and the inverse attack. We prove DM-MDE is
equivalent to EIRO (DM-MDE @ EIRO and EIRO @ DM-MDE). Since EIRO is RO with the extension
attack and the inverse attack, the only differences between RO and DM-MDE are these properties.
We prove that RSA-KEM and pub-RO cryptosystems are secure in the EIRO model. We also prove
that pub-RO cryptosystems are secure when using KDF1-EIRO, KDF2-EIRO and KDF3-EIRO.

3.1 Inverse Attack

In this subsection we show the inverse attack that enables (DM-MDE , E) to be distinguished
from (RO, S). This attack uses the property that block ciphers are invertible. In this attack,
z = E−1(m, z ⊕ z′) holds for z = DM-MDE(M) and z′ = DM-MDE(M ||m). We show the dis-
tinguishing attack that uses this attack as follows.

In the ideal cipher scenario, on inverse query (−,m, y) where y = z ⊕ z′ such that z =
DM-MDE(M), z′ = DM-MDE(M ||m), E returns z = DM-MDE(M). However, in the RO scenario,
no simulator S can simulate the inverse attack. On inverse query (−, m, y) where y = z ⊕ z′ where
z = RO(M) and z′ = RO(M ||m), no S can return z, since no S can know z and z′ from (m, y) by
using just RO.

Therefore DM-MDE 6@ RO holds due to the inverse attack.

3.2 EIRO

The extension attack and the inverse attack separate RO and DM-MDE in the indifferentiability
theory. In this subsection, we propose EIRO which enables S to simulate the attacks. EIRO consists
of three oracles, RO, EO and inverse oracle IO. EO is defined in [18] and enables simulation of the
extension attack. Note that EO used in our analyses is slightly different from that in [18]. IO enables
to simulate the inverse attack. EO and IO have list L that is initially empty.

– EO: For query (m,x) where |x| = n,
1. If m =⊥, y ←⊥ and go to step 7.
2. Else if ∃(m,x, y′) ∈ L, y ← y′. (if there are two or more such triples, choose a triple at

random, y ← y′ of the triple.)
3. Else if x = IV , z ← RO(m) and y ← z ⊕ x.
4. Else if there is only one pair (M,x) ∈ LRO, z ← RO(M ||m) and y ← z ⊕ x.
5. Else choose y from {0, 1}n at random.
6. L ← (m,x, y).
7. returns y.

– IO: For query (m, y) where |y| = n,
1. If m =⊥, x ←⊥ and go to step 7.
2. Else if ∃(m,x′, y) ∈ L, x ← x′. (if there are two or more such triples, chooses a triple at

random, x ← x′ of the triple.)
3. Else if ∃(m, y ⊕ IV ) ∈ LRO, x ← IV .
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4. Else if ∃(M, z), (M ||m, z ⊕ y) ∈ LRO, x ← z.
5. Else choose x from {0, 1}n at random.
6. L ← (m,x, y).
7. returns x.

Note that when we prove EIRO is equivalent to DM-MDE , the length of first elements m of EO
and IO are fixed length k, the length of the key element of E. When we prove the security of
cryptosystems in EIRO model, this length is any length. Since EIRO wherein this length is fixed
is stronger than EIRO wherein this length is not fixed, this restriction does not affect our security
analyses.

3.3 Relationship between DM-MDE and EIRO in the Indifferentiability Framework

In this section we prove DM-MDE @ EIRO and EIRO @ DM-MDE as follows. In theorem 1, we use
statements σH and qE instead of the total number of queries, q. σH is the total number of message
blocks for RO/DM-MDE and qE is the total number of queries to S/E. Fig.2 in Appendix E shows
the indifferentiability of DM-MDE from EIRO.

Theorem 1. DM-MDE @ EIRO, for any tD, with tS = O(qE) and ε ≤ 4(qH+σH)2+2(qE+σH)
2n .

This proof is given in subsection 3.4.
In theorem 2, we use statements σH and qE instead of the total number of queries q. σH is

the total number of message blocks for RO/DM-MDE and qE is the total number of queries to
(EO, IO)/S. Fig.4 in Appendix E shows the indifferentiability of EIRO from DM-MDE .

Theorem 2. EIRO @ DM-MDE, for any tD, with tS = O(qE) and ε ≤ 4(qH+σH)2+2(qE+σH)
2n .

This proof is given in subsection B.
From Theorem 1 and Theorem 2, EIRO is equivalent to DM-MDE in the indifferentiability

theory.

3.4 Proof of Theorem 1

First we define simulator S as follows. We define chain triples as follows.

Definition 2 (Chain Triples). Triples (m1, x1, y1), . . . , (mi, xi, yi) are chain triples if x1 = IV
and xj+1 = xj ⊕ yj (j = 1, . . . , i − 1) holds.

Simulator S: On a forward query (+, m, x): (1) y ← EO(m,x). (2) S returns y.
On an inverse query (−,m, y): (1) x ← IO(m, y). (2) S returns x.
The running time of S is at most O(qE) time.

We need to prove that D cannot tell apart two scenarios: EIRO and DM-MDE . In one scenario,
D has oracle access to RO and S, while in the other D has access to DM-MDE and E. The proof
involves a hybrid argument starting in the EIRO scenario, and ending in the DM-MDE scenario
through a sequence of mutually indistinguishable hybrid games. Fig.3 in Appendix E shows the
game structure in this proof.

Game 1: This is the EIRO model, where D has oracle access to RO and S. Let G1 denote the
event that D outputs 1 after interacting with RO and S. Thus Pr[G1] = Pr[DRO,S(EIRO) = 1].
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Game 2: In this game, we give the distinguisher oracle access to a dummy relay algorithm R0

instead of direct oracle access to RO. R0 is given oracle access to RO. On query M to R0, the
response value is R0(M) = RO(M). Let G2 denote the event that D outputs 1 in Game 2. Since
the view of D remains unchanged in this game, Pr[G2] = Pr[G1].

Game 3: In this game, we modify the relay algorithm R0 to R1 as follows. For hash oracle query
M , R1 applies the DM-MD construction to M by making forward queries to S. R1 is essentially the
same as DM-MDS.

We show that Game 3 is identical to Game 2 unless the following bad events occur. For inverse
query (−,m, y), IO chooses response x in Step 5:

– E1: It is the case that x = IV .
– E2: There is a pair (M, z) ∈ LRO such that x = z.

For query M to RO, RO returns z:

– E3: z = IV
– E4: There is a pair (M ′, z′) ∈ LRO, with M 6= M ′ such that z = z′.
– E5: There is a triple (m′, x′, y′) ∈ L such that z = x′ where if (m′, x′, y′) is defined by IO, the

triple is defined in Step 5 of EO or Step 5 of IO.

We demonstrate that Game 3 is identical to Game 2 unless bad events occur and the probability
that bad events occur is negligible. First we give a useful property as follows.

Lemma 2. For any chain triples (m1, x1, y1), . . . , (mi, xi, yi) in L, xi⊕yi = RO(m1|| · · · ||mi) holds
unless bad events occur.

Proof. On the contrary, assume that ∃ chain triples (m1, x1, y1), . . . , (mi, xi, yi) ∈ L such that
yi ⊕ xi 6= RO(m1|| · · · ||mi).

We consider two cases: (Case 1) ∀j ∈ {1, . . . , i} : yj ⊕ xj 6= RO(m1|| · · · ||mj). (Case 2) ∃j ∈
{1, . . . , i − 1} such that yj ⊕ xj = RO(m1|| · · · ||mj) (Note that since yi ⊕ xi 6= RO(m1|| · · · ||mi),
j 6= i).

We consider Case 1. From the condition of this case, y1 ⊕ x1 6= RO(m1) holds. (m1, x1, y1) is
defined by EO or IO. Since x1 = IV , if (m1, x1, y1) is defined by EO, the step that defines (m1, x1, y1)
is Step 3 of EO. Therefore, in this case y1 ⊕x1 = RO(m1). This contradicts Case 1. If (m1, x1, y1) is
defined by IO, since x1 = IV and x1⊕y1 6= RO(m1), this triple is defined in Step 5 of IO. Therefore,
event E1 occurs.

We consider Case 2. We assume that j is the maximum number in {1, . . . , i − 1} such that
yj ⊕ xj = RO(m1|| · · · ||mj) holds. We divide Case 2 into two cases: (Case 2-1) (mj+1, xj+1, yj+1) is
defined by RO. (Case 2-2) (mj+1, xj+1, yj+1) is not defined by RO.

We consider Case 2-1. In this case, ∃M such that xj+1 ⊕ yj+1 = RO(M ||mj+1). From the
condition of j, M 6= m1|| · · · ||mj holds. We divide Case 2-1 into two cases: (Case 2-1-1) M =⊥.
(Case 2-1-2) M 6=⊥.

In Case 2-1-1, xj+1 ⊕ yj+1 = RO(mj+1) holds. From the definition of EIRO, the step where
(mj+1, xj+1, yj+1) is defined by RO is Step 3 of EO, Step 4 of EO, Step 3 of IO or Step 4 of IO.
Since M =⊥, this step is Step 3 of EO or Step 3 of IO. From the condition of executing Step 3 of
EO or Step 3 of IO, xj+1 = IV holds. Since xj+1 = xj ⊕ yj = RO(m1|| · · · ||mj) and xj+1 = IV
hold, event E3 occurs.

In Case 2-1-2, M 6=⊥ holds. From the definition of EIRO, the step where (mj+1, xj+1, yj+1) is
defined by RO is Step 3 of EO, Step 4 of EO, Step 3 of IO or Step 4 of IO. Since M 6=⊥ holds, this
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step is Step 4 of EO or Step 4 of IO. From the condition of executing Step 4 of EO or Step 4 of IO,
xj+1 = RO(M) holds. Since xj+1 = xj ⊕ yj = RO(m1|| · · · ||mj) and xj+1 = RO(M) holds, event E4
occurs.

We consider Case 2-2. Since (mj+1, xj+1, yj+1) is not defined by RO, this triple is defined in
Step 5 of EO or Step 5 of IO. We consider the case that (mj+1, xj+1, yj+1) is defined in Step 5
of EO. In this case, since xj+1 = xj ⊕ yj = RO(m1|| · · · ||mj) holds, when (mj , xj , yj) is defined,
(mj+1, xj+1, yj+1) is already defined (If (mj , xj , yj) is defined before defining (mj+1, xj+1, yj+1),
xj+1 ⊕ yj+1 = RO(m1|| · · · ||mj+1) holds from Step 4 of EO). Therefore in this case event E5.
Finally, we consider the case that (mj+1, xj+1, yj+1) is defined in Step 5 of IO. This case occurs in
event E2 or E5.

From the above discussions, if yi ⊕ xi 6= RO(m1|| · · · ||mi) holds, then a bad event occurs. ut

Next by using Lemma 2 we prove that the view of D in Game 3 is identical to that in Game 2
unless a bad event occurs. We prove this by the same technique as [13]. First, since the definition
of R1 is different from R0, we prove that outputs of R1 are identical with those of R0 unless a bad
event occurs. Second, since R0 does not access S and R1 accesses S, we prove that R0 is consistent
with S as “R1 is consistent with S”.

From Lemma 2, for any chain triples (m1, x1, y1), . . . , (mi, xi, yi) ∈ L, xi⊕yi = RO(m1|| · · · ||mi)
holds. Since R1 is the Davies-Meyer Merkle-Damg̊ard hash function with S, for any query M
R1(M) = RO(M) holds unless a bad event occurs. For any query M , outputs R0 are RO(M).
Therefore, the outputs of R1 are the same as those of R0.

Second we discuss consistency. From Lemma 2, for any chain triples (m1, x1, y1), . . . , (mi, xi, yi) ∈
L, xi ⊕ yi = RO(m1|| · · · ||mi) = R0(m1|| · · · ||mi) holds. Therefore, R0 is consistent with S as “R1

is consistent with S”.
Finally we show the probability that a bad event occurs.

Lemma 3. Pr[E1∨E2∨E3∨E4∨E5] ≤ q2
2+2q1q2+q1+q2

2n where q1 is the maximum number of times
the simulator is invoked and q2 is the maximum number of times RO is invoked.

Proof. We will examine each of the five events and determine bounds of their probability. Since event
E1 is that a random value is equal to IV , the probability that E1 occurs is Pr[E1] ≤ 1− (2n−1

2n )q1 ≤
q1

2n . Since event E2 is that a random value is equal to some output value of RO, the probability
that E2 occurs is Pr[E2] ≤ 1− (2n−q2

2n )q1 ≤ q1q2

2n . Since event E3 is that some output of RO is equal
to IV , the probability that E3 occurs is Pr[E3] ≤ q2

2n . Since event E4 is that a collision of RO

occurs, Pr[E4] ≤ 1 − 2n−1
2n · · · 2n−q2+1

2n ≤ q2
2

2n . Since event E5 is some output of RO is equal to the
second element value of some triple in L, the probability that E5 occurs is Pr[E5] ≤ q1q2

2n . Therefore,

Pr[E1 ∨ E2 ∨ E3 ∨ E4 ∨ E5] ≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4] + Pr[E5] ≤ q2
2+2q1q2+q1+q2

2n . ut

Let G3 denote the event that distinguisher D outputs 1 in Game 3, B2 be the event wherein
E1∨E2∨E3∨E4∨E5 occurs in Game 2 and B3 be the event wherein E1∨E2∨E3∨E4∨E5 occurs
in Game 3. From Lemma 3, since q1 ≤ qE and q2 ≤ qE +σH in Game 2 and q1 ≤ qE +σH and q2 ≤
qE + σH the probability that bad events occur in Game 2 is less than (qE+σH)2+2qE(qE+σH)+2qE+σH

2n

and the probability that bad events occur in Game 3 is less than 3(qH+σH)2+2(qE+σH)
2n . Therefore,

|Pr[G3] − Pr[G2]| = |Pr[G3 ∧ B3] + Pr[G3 ∧ ¬B3] − Pr[G2 ∧ B2] − Pr[G2 ∧ ¬B2]| ≤ |Pr[G3|B3] ×
Pr[B3] − Pr[G2|B2] × Pr[B2]| ≤ max{Pr[B2], P r[B3]} = 3(qH+σH)2+2(qE+σH)

2n .

Game 4: In this Game, we modify simulator S to S1. RO is removed from simulator S1 as follows.
S1 has initially empty list T .
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For forward query (+,m, x),

1. If ∃(m, x, y′) ∈ T , y ← y′. (if there are two or more such triples, choose a triple at random and
y ← y′.)

2. Else S1 chooses y from {0, 1}n at random.
3. T ← (m,x, y).
4. S1 responds with y.

For inverse query (−,m, y),

1. If ∃(m,x′, y) ∈ T , x ← x′. (if there are two or more such triple, choose a triple at random and
x ← x′.)

2. Else S1 chooses x from {0, 1}n at random.
3. T ← (m,x, y).
4. S1 responds with x.

An output of S is chosen at random or chosen by RO. Therefore, for any fresh query to S, the
response is chosen at random. Since RO is invoked only by S, no D can access RO. Namely, no
D distinguish S1 from S, though RO is removed in S1, so Game 4 is identical to Game 3. Let G4
denote the event that distinguisher D outputs 1 in Game 4. Pr[G4] = Pr[G3] holds.

Game 5. This is the final game. In this game, we replace S1 with ideal cipher E. Let G5 be the event
that D outputs 1 in Game 5. Since the outputs of S1 are chosen at random, if a collision of outputs
of S1 does not occur, the view of Game 5 is equal to that of Game 4. Let Coll be the event that a
collision of outputs of S1 occurs. |Pr[G5]−Pr[G4]| = |Pr[G5]− (Pr[G4∧Coll] + Pr[G4∧¬Coll])| =
Pr[G4 ∧ Coll] = Pr[Coll] × Pr[G4|Coll] ≤ Pr[Coll]. Since the maximum number times S1 is invoked
is qE + σH , Pr[Coll] ≤ (qE+σH)2

2n . Therefore, |Pr[G5] − Pr[G4]| ≤ (qE+σH)2

2n .
Now we can complete the proof of the Theorem by combining Games 1 to 5, and observing that

Game 1 is the same as EIRO scenario while Game 5 is same as DM-MDE scenario. Hence we can
deduce that ε ≤ 4(qH+σH)2+2(qE+σH)

2n . ut

3.5 The Security of Cryptosystems in the EIRO Model

In this subsection, we show that RSA-KEM and pub-RO cryptosystems are secure in the EIRO
model.

Since pub-RO leaks information that EIRO does not, pub-RO cryptosystems are explicitly secure
in the EIRO model. We show this by the indifferentiable theory as follows.

Theorem 3. EIRO @ pub-RO.

Fig.6 in Appendix E shows the indifferentiability of EIRO from pub-RO. In the indifferentiability
of EIRO from pub-RO, D interacts with EIRO or (RO, S(pub-RO)) where S simulates EO and IO.
If we can prove that no D can distinguish EIRO from (RO, S(pub-RO)), then pub-RO @ EIRO
holds. Since S can obtain hash list LRO, S can explicitly simulate EO and IO by using pub-RO.
Therefore, Theorem 3 holds. Therefore, pub-RO cryptosystems are secure in the EIRO model from
the indifferentiability theory.

Next we show that RSA-KEM is secure in the EIRO model. We can also prove the security of
RSA-KEM in the EIRO model as well as in the RO model. The definition of RSA-KEM is described
in Appendix D.
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Theorem 4 (Security of RSA-KEM in the EIRO model). If the RSA problem is (t′, ε′)-hard,
then RSA-KEM satisfies (t, ε)-IND-CCA for KEM as follows:

t′ = t + (qRO + qEO) · expo,

ε′ ≥ ε − qD

n
− qIO

|Zn|
,

where H is modeled as the EIRO, qRO is the number of hash queries to the RO of H, qEO is the
number of extension attack queries to the EO of H, qIO is the number of inverse attack queries
to the IO of H, qD is the number of queries to the decryption oracle DO, |Zn| is the number of
elements of Zn and expo is the computational cost of exponentiation modulo n.

The full proof of Theorem 4 is shown in Appendix D. From Theorem 1, Theorem 3 and Theorem
4, the following corollary is obtained.

Corollary 1. ∀ cryptosystem C ∈ {RSA-KEM and pub-RO cryptosystems}, C(DM-MDE) Â C(RO).

3.6 Security of Cryptosystems with an OLE algorithm (KDF1, KDF2 and KDF3)

In this subsection, we prove that pub-RO cryptosystems are secure when using an OLE algorithm
(KDF1, KDF2 and KDF3) with DM-MDE . Let H be pub-RO, HRO be RO of H whose output
length is jn bits and HLO be LO of H. Let LHRO

be the hash list of HRO. Let F be EIRO, FRO

be RO of F whose output length is n bits, FEO be EO of F , and FIO be IO of F . Let LFRO
be

the hash list of FRO and LF be the list of EO and IO. We prove these cryptosystems by proving
KDF1-F @ H, KDF2-F @ H and KDF3-F @ H. If above points are proven, since DM-MDE @ EIRO
and EIRO @ pub-RO hold, cryptosystems secure in the pub-RO model are also secure when using
KDF1-DM-MDE , KDF2-DM-MDE and KDF3-DM-MDE . For example, we discuss the KDF1 case.
The same discussion can be applied to KDF2 and KDF3.

In theorem 5, we use statements σ, qRO, qEO and qIO instead of the total number of queries, q.
σ is the total number of message blocks for KDF1-FRO/HRO, qRO is the total number of queries for
FRO/S of RO qEO is the total number of queries for FEO/S of EO, qIO is the total number of queries
for FIO/S of IO.

Theorem 5. KDF1-F @ H for any tD, with tS = O((qRO+σ)(qEO+qIO)) and ε ≤ j(σ+qRO+qEO+qIO)(qEO+qIO)
2n .

This proof is given in Appendix C. Fig.7 in Appendix E shows the indifferentiability of KDF1-F
from H.

Similarly, the following theorem can be proven.

Theorem 6. KDF2-F @ H and KDF3-F @ H for any tD, with tS = O((qRO + σ)(qEO + qIO)) and
ε ≤ j(σ+qRO+qEO+qIO)(qEO+qIO)

2n .

Therefore we can obtain the following corollary.

Corollary 2. ∀C ∈ {pub-RO cryptosystems}, C(KDF1-DM-MDE) Â C(RO), C(KDF2-DM-MDE) Â
C(RO) and C(KDF3-DM-MDE) Â C(RO).

4 Indifferentiability with Condition Approach

In this section, we propose a variant of the indifferentiability theory called indifferentiability with
condition. By using this theory, we prove that cryptosystems secure in the RO model wherein input
length from cryptosystems to hash functions are fixed, denote FIL cryptosystems, (e.g. OAEP,
OAEP+, SAEP, SAEP+ and so on) are secure when using DM-MDE or an OLE algorithm (KDF1,
KDF2 and KDF3) with DM-MDE by a simple and clear proof.
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4.1 Indifferentiability with Condition

In this subsection, we propose the indifferentiability with condition and reveal the relationship
between the theory and the security of cryptosystems.

In the indifferentiability from RO, D is any distinguisher. Therefore, if hash function H is
indifferentiable from RO, any cryptosystem secure in the RO model is secure when RO is replaced
with H. However, when D is any distinguisher, MD type hash functions are not indifferentiable
from RO due to the extension attack. Therefore, we cannot analyze the security of cryptosystems
that use the MD type hash function such as Davies-Meyer Merkle-Damg̊ard and so on.

In the indifferentiability with condition, we restrict the behavior of the distinguishers by some
condition. More strictly, the definition of the indifferentiability with condition is as follows. Let I
be ideal primitive such as FILRO and ideal cipher and HI a hash function with I.

Definition 3. Hash function HI is indifferentiable from RO with condition α, denote HI @ RO
with condition α, if for any distinguisher D with binary output (0 or 1) whose queries to HI and
RO are restricted within condition α, there is a simulator, S, such that the advantage |Pr[DHI ,I ⇒
1] − Pr[DRO,S(RO) ⇒ 1]| is negligible in the security parameter k.

Fig.9 in Appendix E shows the figure of this definition. In this figure, queries of dotted lines are
satisfied with condition α and queries of other lines are not restricted by condition α. By using this
definition, we can analyze the security of cryptosystems wherein all inputs from the cryptosystems
to hash functions satisfy condition α. More strictly, the following theorem is obtained.

Theorem 7. Let C be any cryptosystem whose queries to a hash function are restricted to condition
α. Then, HI @ RO with condition α ⇔ C(HI) Â C(RO).

This proof is obtained in a similar way to the proof of Theorem 1 of [16].

Proof. Before starting the proof, we define C(HI) Â C(RO). We use the same definition as the
definition 1 of [16]. Let C be a cryptosystem wherein queries to hash functions are restricted within
condition α and Env is a random system with binary output, called environment.

Definition 4. C(HI) Â C(RO) holds if for all environments Env (distinguisher for C) the following
holds: For any attacker A accessing C(HI) and I there is another attacker A′ accessing C(RO) and
RO such that the difference between the probability distributions of the binary outputs of EnvC(HI),A

and EnvC(RO),A′
, |Pr[EnvC(HI),A ⇒ 1]−Pr[EnvC(RO),A′ ⇒ 1]| is negligible in the security parameter

k.

Fig.10 in Appendix E shows the figure of this definition. In this figure, queries of dotted lines are
satisfied with condition α and queries of other lines are not restricted by condition α.

Let us start with the first implication (“⇒”). Fig.11 in Appendix E shows the figure of this
proof. Assume that ∀D,∃S such that |Pr[DHI ,I ⇒ 1] − Pr[DRO,S(RO) ⇒ 1]| is neglitible. We show
that ∀Env, ∀A,∃A′ such that |Pr[EnvC(HI),A ⇒ 1] − Pr[EnvC(RO),A′ ⇒ 1]| is negligible. Since for
∀D ∃S, |Pr[DHI ,I ⇒ 1] − Pr[DRO,S(RO) ⇒ 1]| is negligible, for D that is restricted by D = EnvC,A,
|Pr[DHI ,I ⇒ 1] − Pr[DRO,S(RO) ⇒ 1]| is also negligible. We define A′ by combining any attacker A
and S. Then, |Pr[EnvC(HI),A ⇒ 1] − Pr[EnvC(RO),A′ ⇒ 1]| is negligible.

The second implication (“⇐”) is proven similarly. Since we do not use this result, we omit its
proof (follows the proof of Theorem 1 of [16]). ut

The generalized version of indifferentiability with condition is discussed in Appendix A.
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4.2 Confirm the Security of Cryptosystems using Indifferentiability with Condition

We prove the security of cryptosystems with DM-MDE by the following approach. We start by
discussing hash function HI (e.g. DM-MDE) where I is the underlying primitive of the hash function
(e.g. ideal cipher E).

1. Find condition α such that HI is indifferentiable from RO with condition α.
2. Find cryptosystem C whose queries to a hash function are restricted within condition α and

which is secure in the RO model.

If the above approach works for some condition α, cryptosystem C(HI) is secure from indifferen-
tiability with condition.

We discuss the case that condition α is “prefix-free”. By using this condition, we prove that FIL
cryptosystems are secure when using DM-MDE or an OLE algorithm (KDF1, KDF2 and KDF3)
with DM-MDE .

First, we show that DM-MDE @ RO with condition “prefix-free”. Condition “prefix-free” is
that for any different queries M,M ′ from D to DM-MDE and RO, M is not the prefix of M ′. This
can be easily and simply proven by using the previous result of prefix-free DM-MDE @ RO [8].
Let PF be the prefix-free padding where for any different two values, M ′ and M , PF (M) is not
the prefix of PF (M ′). The prefix-free DM-MDE is that for input M prefix-free DM-MDE(M) =
DM-MDE(PF (M)). Note that prefix-free DM-MDE @ RO holds for any prefix-free padding.

Theorem 8. DM-MDE @ RO with condition “prefix-free”.

Proof. Since prefix-free DM-MDE @ RO [8], no distinguisher D can distinguish (prefix-free DM-MDE , E)
from (RO,S). Therefore, no D that is restricted by condition “prefix-free” can distinguish
(prefix-free DM-MDE , E) from (RO, S).

Since D is restricted by condition “prefix-free”, even when the prefix-free padding is removed,
inputs to DM-MDE satisfy “prefix-free”. Therefore, no D that is restricted by condition “prefix-free”
can distinguish (DM-MDE , E) from (RO,S). Therefore, DM-MDE @ RO with condition “prefix-free”
holds. ut

Finally, we find cryptosystems that satisfy condition “prefix-free”. We pick up FIL cryptosys-
tems and explain that these cryptosystems satisfy this condition. For any M,M ′ such that |M | =
|M ′| and M 6= M ′, M is not the prefix of M ′. Therefore, FIL cryptosystems satisfy condition
“prefix-free”.

From above discussions, the following corollary is obtained.

Corollary 3. ∀C ∈ {FIL cryptosystems}, C(DM-MDE) Â C(RO).

From Lemma 1, FIL cryptosystems with an OLE algorithm (KDF1, KDF2 and KDF3) are also
secure in the RO model. Since the input length of hash functions in FIL cryptosystems with an
OLE algorithm (KDF1, KDF2 and KDF3) is fixed, the following corollary obtained.

Corollary 4. ∀C ∈ {FIL cryptosystems}, C(KDF1-DM-MDE) Â C(RO), C(KDF2-DM-MDE) Â
C(RO), and C(KDF3-DM-MDE) Â C(RO).

Remark 1. Let H be one of MD type hash functions such that H with the prefix-free padding @ RO
holds [7]. Then FIL cryptosystems and FIL cryptosystems with an OLE algorithm (KDF1, KDF2
and KDF3) are also secure when using H from the same discussion as the above discussion.
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A Generalization of Indifferentiability with Condition

The indifferentiability with condition extends the standard idea of indifferentiability by considering
the addition of condition α of queries to private interfaces. The definition of this framework is as
follows.

Definition 5. V is (tD, tS, q, ε) indifferentiable from U with condition α, denote V @ U with condi-
tion α, if for any distinguisher D with binary output (0 or 1) such that queries to a private interface
are restricted by condition α there is a simulator S such that |Pr[DVpriv,Vpub ⇒ 1]−Pr[DUpriv,S(Upub) ⇒
1]| < ε. ε is negligible in security parameter k.
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Let x be any query from D to a private interface. Then, for any cryptosystem C such that queries of
C to a private interface are restricted by condition α, V @ U with condition α ⇔ C(Vpriv) Â C(Upriv)
holds. This result is easily proved by extending the proof of Theorem 1 of [16].

B Proof of Theorem 2

We define simulator S as follows.
Simulator S:
On forward query (+,m, x), y ← E(m,x) and S returns y.
On inverse query (−, m, y), x ← E−1(m, y) and S returns x.
The running time of S is at most O(qE) time.

This proof utilizes the proof of Theorem 1. The proof involves a hybrid argument starting in
the EIRO scenario, and ending in the DM-MDE scenario through a sequence of mutually indistin-
guishable hybrid games. Fig.5 in Appendix E shows the game structure in this proof.

Game 1. This game is the same as the EIRO scenario. Let G1 be the event that D outputs 1 in
this game. Pr[G1] = Pr[DEIRO ⇒ 1] holds.

Game 2. In this game, D interacts with (DM-MDE , E). In the proof of Theorem 1, for forward
query (+,m, x), S returns the output of EO(m,x), and for inverse query (−,m, y), S returns the
output of IO(m, y). Therefore, the view of D in Game 1 is identical with that of D in Game 1
of the proof of Theorem 1. Game 2 is identical with Game 5 in the proof of Theorem 1. Let G2
be the event that D outputs 1 in this game. From the proof of Theorem 1, |Pr[G2] − Pr[G1]| ≤
4(qH+σH)2+2(qE+σH)

2n .

Game 3. This is the final game. In this game, D interacts with (DM-MDE , S). Let G3 be the
event that D outputs 1 in this game. Since for any query S simply returns the output of E,
Pr[G3] = Pr[G2].

Now we can complete the proof of Theorem 2 by combining Games 1 to 3, and observing that
Game 1 is the same as EIRO scenario while Game 3 is same as DM-MDE scenario. Hence we can
deduce that ε ≤ 4(qH+σH)2+2(qE+σH)

2n . ut

C Proof of Theorem 5

In indifferentiability for KDF1-F from H, D interacts with (KDF1-FRO, F ) and (HRO, S(H)). We
define S that simulates F and show that no D can distinguish (KDF1-FRO, F ) from (HRO, S(H)). S
has initially empty list TRO and T .

– S of FRO, denote SRO: On query M ,
1. If (M, z′) ∈ TRO, z ← z′.
2. Else if ∃i ∈ {0, . . . , j − 1} such that M[w] = 〈i〉, z∗ ← HRO(M(w)) and z ← z∗[i + 1].
3. Else, z is chosen from {0, 1}n at random.
4. TRO ← (M, z).
5. Return z.

– S of FEO, denote SEO: On query (m,x),
1. Make a leak query to HLO and receive lists THRO

.
2. For ∀(M, z) ∈ LHRO

, for i = 0, . . . , j − 1, TRO ← (M ||〈i〉), z[i + 1]).
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3. If m =⊥, y ←⊥ and goto Step 9.
4. Else if ∃(m,x, y′) ∈ T , y ← y′ (if there are two or more such triples, choose a triple at

random, y ← y′ of the triple and go to step 9.).
5. Else if x = IV , z ← SRO(m) and y ← z ⊕ x.
6. Else if there is only one pair (M,x) ∈ TRO, z ← SRO(M ||m) and y ← z ⊕ x.
7. Else y is chosen from {0, 1}n at random.
8. T ← (m,x, y).
9. return y.

– S of FIO, denote SIO: On query (m, y),
1. Make a leak query to HLO and receive lists LHRO

.
2. For ∀(M, z) ∈ LHRO

, for i = 0, . . . , j − 1, TRO ← (M ||〈i〉), z[i + 1]).
3. If m =⊥, y ←⊥ and goto Step 9.
4. Else if ∃(m,x′, y) ∈ T , x ← x′ (if there are two or more such triples, choose a triple at

random, x ← x′ of the triple and go to step 9.).
5. Else if ∃(m, y ⊕ IV ) ∈ TRO, x ← IV .
6. Else if ∃(M, z), (M ||m, z ⊕ y) ∈ TRO, x ← z.
7. Else, x is chosen from {0, 1}n at random.
8. T ← (m,x, y).
9. return x.

The proof involves a hybrid argument starting in the H scenario, and ending in the KDF1-F scenario
through a sequence of mutually indistinguishable hybrid games. Fig.8 in Appendix E shows the
figure of games of this proof.

Game 1. In this game, D interacts with (HRO, S(H)). Let G1 be the event that D outputs 1 in this
game. Pr[DHRO,S(H) ⇒ 1] = Pr[G1].

Game 2. In this game, we replace HRO with KDF1-SRO. Namely, for query M , KDF1-SRO returns
SRO(M ||〈0〉)|| · · · || SRO(M ||〈j−1〉). From the definition of SRO, for query M ||〈i−1〉 (i ∈ {1, . . . , j}),
SRO returns z[i] where z = HRO(M). Therefore, KDF1-SRO(M) = HRO(M) holds. Let G2 be the
event that D outputs 1 in this game. Pr[G1] = Pr[G2] holds.

Game 3. This is the final game. In this game, we replace S with F and remove H. Namely this
game is the KDF1-F scenario. In Game 2, S is identical with F except for Step 1 and 2 of SEO and
Step 1 and 2 of SIO. From the steps, there is the event that there is (M, z) in TRO where M is not
queried to SRO. This event occurs when M is queried to SRO such that for some i ∈ {0, . . . , j − 1}
M[w] = 〈i〉 and SEO or SIO is invoked, since (M ||〈0〉, z[1]), . . . , (M ||〈i − 1〉, z[i]), (M ||〈i + 1〉, z[i +
2]), . . . , (M ||〈j − 1〉, z[j]) are inserted in TRO where z = HRO(M) when SEO or SIO is invoked.
However, since z[1], . . . , z[i], z[i+2], . . . , z[j] are chosen at random and D cannot see TRO, D cannot
know these pairs. If for some s ∈ {0, . . . , i − 1, i + 1, . . . , j − 1} M ||〈s〉 is queried to SRO, since
z[s + 1] is chosen at random, this query is not helpful for D to distinguish Game 3 from Game 2.
However, if for some s ∈ {1, . . . , i, i + 2, . . . , j} a query corresponding with z[s] is queried to SEO

or SIO, D can distinguish Game 3 from Game 2. For example, if (m, z[s]) is queried to EO, Step
6 is executed. On the other hand, in EIRO, since M ||〈0〉, . . . ,M ||〈i − 1〉,M ||〈i + 1〉, . . . ,M ||〈j − 1〉
are not inserted in LHRO

, the same event as S does not occurs. Therefore, in Game 2, if for some
s ∈ {1, . . . , i, i+2, . . . , j} (M ||〈s−1〉, z[s]) is queried to SRO, D can distinguish Game 3 from Game
2. However, since no D can know TRO and z[1], . . . , z[i], z[i + 2], . . . , z[j] is chosen from {0, 1}n at
random, the probability that for some s ∈ {0, . . . , i − 1, i + 1, . . . , j − 1} a query corresponding
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with z[s] to SEO or SIO is made is negligible. More strictly, since the maximum numbre of invoking
HRO is σ + qRO + qEO + qIO and the maximum number of invoking SEO and SIO is qEO + qIO, the
probability is less than j(σ+qRO+qEO+qIO)(qEO+qIO)

2n . Let G3 be the event that D outputs 1 in this game
and Bad the event that for some s ∈ {1, . . . , i, i + 2, . . . , j} a query corresponding with z[s] to SEO

or SIO is made. |Pr[G3] − Pr[G2]| = |Pr[G2 ∧ Bad] + Pr[G2 ∧ ¬Bad] − Pr[G3]| = Pr[G2 ∧ Bad] ≤
Pr[Bad] × Pr[G2|Bad] ≤ Pr[Bad] ≤ j(σ+qRO+qEO+qIO)(qEO+qIO)

2n holds.

Therefore |Pr[DKDF1-F,F ⇒ 1] − Pr[DHRO,S(H) ⇒ 1]| ≤ j(σ+qRO+qEO+qIO)(qEO+qIO)
2n . ut

D Security of RSA-KEM

D.1 Security Notion of KEM

First, we briefly review the model and the security notion of KEM schemes.

Definition 6 (Model for KEM Schemes).
A KEM scheme consists of the following 3-tuple (KEM.Gen,KEM.Enc,KEM.Dec):

KEM.Gen : a key generation algorithm which on input 1k, where k is the security parame-
ter, outputs a pair of keys (ek, dk). ek and dk are called encryption key and decryption key,
respectively.

KEM.Enc : an encryption algorithm which takes as input encryption key ek, outputs key K and
ciphertext c.

KEM.Dec : a decryption algorithm which takes as input decryption key dk and ciphertext c,
outputs key K.

In particular, a scheme which cannot even satisfy one-wayness under chosen plaintext attacks (OW-
CPA) cannot be called a KEM scheme. In general, indistinguishability under chosen ciphertext
attacks (IND-CCA) is recognized as the strongest security notion. Here, we recall definitions of
OW-CPA and IND-CCA for KEM as follows.

Definition 7 (OW-CPA for KEM).
A KEM scheme is (t, ε)-OW-CPA for KEM if the following property holds for security parameter

k;
For any adversary A = (A1,A2), Pr[ (ek, dk) ← KEM.Gen(1k); (state) ← A1(ek); (K∗, c∗) ←

KEM.Enc(ek); K ′ ← A2(c∗, state); K ′ = K∗] ≤ ε, where state is state information which A wants
to preserve from A1 to A2 and A runs in at most t steps.

Definition 8 (IND-CCA for KEM). A KEM scheme is (t, ε)-IND-CCA for KEM if the fol-
lowing property holds for security parameter k; For any adversary A = (A1,A2), |Pr[ (ek, dk) ←
KEM.Gen(1k); (state) ← ADO(dk,·)

1 (ek); b
R← {0, 1}; (K∗

0 , c∗0) ← KEM.Enc(ek); K∗
1

R← K; b′ ←
ADO(dk,·)

2 (ek, (K∗
b , c∗0), state); b′ = b] − 1/2| ≤ ε, where DO is the decryption oracle, K is the key

space, state is state information which A wants to preserve from A1 to A2 and A runs in at most
t steps. A cannot submit the ciphertext c = c∗0 to DO.

D.2 RSA-KEM

The security of RSA-KEM is based on the RSA assumption.
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Definition 9 (RSA assumption). Let n be an RSA modulus that is the product of two large
primes (p, q) for security parameter k and e be an exponent such that gcd(e, φ(n)) = 1. We say
that the RSA problem is (t, ε)-hard if for any adversary Alg, Pr[y ← Zn; Alg(n, e, y) = x; y ≡ xe

(mod n)] ≤ ε, where Alg runs in at most t steps.

The description of RSA-KEM is as follows:

Key generation : For input k, output encryption key (ek = (n, e)) and decryption key (dk = d)
such that n is an RSA modulus that is the product of two large primes (p, q) for security
parameter k, gcd(e, φ(n)) = 1 and ed ≡ 1 (mod φ(n)).

Encryption : Generate randomness r
R← Zn, compute c = re mod n and K = H(r), and output

ciphertext c and key K where H : Zn → {0, 1}k is a hash function.

Decryption : Upon input of ciphertext c, compute r = cd mod n and output K = H(r).

In [21], security of RSA-KEM in the RO model is proved as follows;

Lemma 4 (Security of RSA-KEM in the RO model [21]). If the RSA problem is hard, then
RSA-KEM satisfies IND-CCA for KEM where H is modeled as the RO.

D.3 Insecurity of RSA-KEM in pub-RO Model

Though RSA-KEM is secure in the RO model, it is insecure in the pub-RO model. More specifically,
we can show RSA-KEM does not satisfy even OW-CPA for KEM in the pub-RO model.

Theorem 9 (Insecurity of RSA-KEM in the pub-RO model). Even if the RSA problem is
hard, RSA-KEM does not satisfy OW-CPA for KEM where H is modeled as pub-RO.

Proof. We construct an adversary A which successfully plays the OW-CPA game by using pub-RO
H. The construction of A is as follows;

Input : (n, e) as the public key

Output : K ′

Step 1 : Return state and receive c∗ as the challenge ciphertext. Pose the leak query to LO of
H, obtain the hash list {(r,K)}.

Step 2 : For all r in {(r,K)}, check whether re ?≡ c∗ (mod n). If there is r∗ that satisfies the
relation, output K ′ which is the tally of (r∗,K ′).

We estimate the success probability of A. When the challenge ciphertext c∗ is generated, r∗ such
that K∗ = H(r∗) is certainly posed to H because c∗ is generated in accordance with the protocol
description. Thus, LH contains (r∗,K∗) where LH is the local hash list of H. Therefore, A can
successfully play the OW-CPA game.

ut
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D.4 Intuition of Proof of Theorem 4

The difference between the proof in the EIRO model and that in the RO model consists in whether
or not the adversary can use EO and IO queries. To obtain some information about bit b by an
EO query, the adversary has to pose the randomness r∗ which was used to generate the challenge
ciphertext to RO previously because of the definition of EIRO. However, if the adversary posed r∗

to RO, then he has already obtained key K∗ and can decide bit b. Thus, the probability that the
adversary obtains some information about bit b by an EO query is negligible. Then, using EO queries
gives no advantage to the adversary beside RO queries. Also, to obtain some information about
bit b by an IO query, the adversary has to pose both the hash query r∗||r to RO and the inverse
attack query (r,H(r∗||r) ⊕ K∗) to IO for some r because of the definition of EIRO. However, the
probability that the adversary poses r∗||r to RO before obtaining information about r∗ is negligible.
Thus, as in the case of EO, the probability that the adversary obtains some information about bit
b by an IO query is negligible. Therefore, we have succeeded in proving that RSA-KEM is secure
by way of a proof similar to that used in [21].

D.5 Proof of Theorem 4

First, we transform the experiment of IND-CCA for RSA-KEM into the experiment where queries
to DO, EO and IO do not give any advantage to the adversary.

Let Exp0 be the initial experiment and Succ0 be the probability that adversary A succeeds in
guessing bit b in Exp0. A receives (K∗

b , c∗0) as the challenge such that c∗0 = r∗e for r∗.
Let Exp1 be the same experiment as Exp0 except the case that A is queried c∗0 to DO before

receiving c∗0 as the challenge ciphertext. Exp1 aborts in the above case. Let Succ1 be the probability
that A succeeds in guessing bit b in Exp1 and E1 be the event that the experiment aborts. Then,
the probability that event E1 occurs is equal or lower than qD/n because A has no information
about the challenge. Thus, we obtain that |Succ1 − Succ0| ≤ qD/n.

Let Exp2 be the same experiment as Exp1 except the case that the challenge (K∗
b , c∗0) is generated

at the beginning of the experiment. Let Succ2 be the probability that A succeeds in guessing bit
b in Exp2. Then, we trivially obtain that |Succ2 − Succ1| = 0 because the challenge is determined
independently from the behavior of A.

Let Exp3 be the same experiment as Exp2 except the case that A does not pose either the
hash query r∗||r to RO or the inverse attack query (m, H(r∗||r) ⊕ K∗

b ) to IO for some r before
posing the hash query r∗ to RO. Let Succ3 be the probability that A succeeds in guessing bit b in
Exp3 and E3 be the event that A poses both the hash query r∗||r to RO and the inverse attack
query (r,H(r∗||r) ⊕ K∗

b ) to IO for some r before posing the hash query r∗ to RO. Also, let AskH
be the event that A poses the hash query r∗||r to RO before posing the hash query r∗ to RO.
Then, the probability that event E4 occurs is equal or lower than the probability that event AskH
occurs. Moreover, the probability that event AskH occurs is equal or lower than qIO/|Zn| because
A has not posed r∗ to RO yet and so r∗ is unknown for A because H is RO. Thus, we obtain
|Succ3 − Succ2| ≤ qIO/|Zn|.

Let Exp4 be the same experiment as Exp3 except the case that A is queried r∗ to RO. Exp4
aborts in the above case. Let Succ4 be the probability that A succeeds in guessing bit b in Exp4
and E4 be the event that the experiment aborts by this case. Then, to evaluate the probability that
event E4 occurs, Pr[E4], we show that Pr[E4] is equal or lower than the probability that the RSA
problem is broken as follows.
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Lemma 5. If event E4 occurs with probability ε′′ in time t′′, we can construct an inverter I that
breaks the RSA problem with probability ε′ in time t′ as follows:

t′ = t′′ + (qRO + qEO) · expo,

ε′ = ε′′.

Proof. We assume that A does not repeat previous hash queries to the EIRO H or previous de-
cryption queries to the DO. Let LH be the local hash list of H. LH consists of tuples (ri, ci, hi)
(0 ≤ i ≤ qRO + qD + qEO). Let L be the local EO and IO list of H. L consists of tuples (ri, ai, hi)
(0 ≤ i ≤ qEO + qIO). The concrete construction of I is as follows.

Input : (n, e, y∗) s.t. n is RSA modulus, e is the exponent where gcd(e, φ(n)) = 1 and y∗
R← Zn

Output : x∗ s.t. x∗ ≡ y∗d (mod n)

Input public key : Send (n, e) to A in Exp4 as the input public key.

DO simulation : When A poses decryption query ci to DO, then behave as follows:
Find (ri, ci, hi) from LH such that ci = re

i . If there is a tuple (ri, ci, hi) satisfying the condition,
then return hi as the answer. Otherwise, generate hi ∈ {0, 1}k, add (∅, ci, hi) to LH and return
hi as the answer.

RO simulation : When A poses query ri to RO, then behave as follows:
<If ci = y∗ s.t. ci = re

i mod n >
Output ri as x∗ and halt.

<If (ri, ∗, hi) ∈ LH >
Return hi to A as the answer.

<If (ri, ∗, ∗) /∈ LH and (∅, ci, hi) ∈ LH s.t. ci = re
i mod n >

Replace (∅, ci, hi) to (ri, ci, hi) in LH and return hi to A as the answer.
<If (ri, ∗, ∗) /∈ LH and (∅, c, h) /∈ LH s.t. c = re

i mod n >
Compute ci = re

i mod n, generate hi ∈ {0, 1}k, add (ri, ci, hi) to LH and return hi to A as
the answer.

EO simulation : When A poses extension attack query (ri, ai) to EO, then behave as follows:
Find (ri, ai, ∗) from L. If ai = K∗

b , then return randomly chosen value hi ∈ {0, 1}k and add
(ri, ai, hi). If there is tuple (ri, ai, hi), then return ri ⊕ hi. Else if hi = IV , then obey the RO
simulation by input ri and return ri ⊕ hi where hi is the output of the RO simulation. Else
if there is only one tuple (r′, ∗, ai) in LH , then obey the RO simulation by input r′||ri and
return ri ⊕hi where hi is the output of the RO simulation. Otherwise, generate hi ∈ {0, 1}k add
(ri, ai, hi) to L, and return ri ⊕ hi.

IO simulation : When A poses an inverse attack query, (ri, bi), to IO, then behave as follows:
If there is tuple (ri, ai, bi) in L, then return ai. Else if there is (ri, ∗, IV ⊕ bi) in LH , then return
IV . Else if there are tuples (r′, ∗, h′) and (r′||ri, ∗, h′ ⊕ bi) in LH , then add (ri, h

′, bi) to L, and
return h′. Otherwise, generate hi ∈ {0, 1}k add (ri, hi, bi) to L, and return hi.

Challenge ciphertext : When A outputs (state), then compute (K∗, y′) by the encryption
procedure and return (K∗, y∗) as the challenge.
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We determine the success probability of I. In the RO simulation, if ci = y∗ such that ci = re
i

mod n holds, I can successfully break the RSA problem. This event is the same as E4 in Exp4. In
the EO simulation, if A poses query (r,K∗

b ) for some r, I returns a randomly chosen value instead
of returning H(r∗||r). However, this simulation is indistinguishable from the real interface of EO as
follows. Here, we consider distinguisher D which tries to distinguish the simulation from the real
EO.

Lemma 6. If the output of RO H is independently chosen from the input, D cannot distinguish
the simulation from the real EO.

Proof. We show that we can construct an algorithm ALG which can distinguish an output of RO
H from a random value if there exists D which can distinguish the simulation from the real EO.
The concrete construction of ALG is as follows.

Step 1 : Simulate Exp4 for D, as the adversary, except when D poses query (r,K∗
b ) for some r

to EO.

Step 2 : On receiving query (r,K∗
b ) for some r to EO, forward r∗||r to RO H, receive h as the

output where h is H(r∗||r) or a random value rand, and return h to D.

Step 3 : If D decides that he is interacting with the real EO, decide that h is H(r∗||r). Otherwise,
decide that h is rand.

The interface of D is identical with the real EO when h is H(r∗||r). Also, the interface of D is
identical with the simulation when h is rand. Therefore, if D succeeds, then ALG also succeeds. ut

Thus, it is clear that I perfectly simulates Exp4 for A. Therefore, we obtain

ε′ = ε′′.

I computes at most qRO + qEO exponentiations modulo n. Thus, we obtain

t′ = t′′ + (qRO + qEO) · expo.

ut

Exp3 and Exp4 are identical until E4 occurs. Thus, |Succ4 − Succ3| = ε′.
A can obtain no information about random bit b because key K∗

b is independent from in-
formation which A can obtain in Exp4. Therefore, Succ4 = 1/2. Since Succ0 ≤ |Succ1 − Succ0|
+|Succ2− Succ1| +|Succ3− Succ2| +|Succ4− Succ3| +Succ4, Succ0 ≤ ε′ + qD

n + qIO

|Zn| + 1/2. Hence,
ε′ ≥ ε − qD

n − qIO

|Zn| . ut
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DM-MDE ED RO SD
Fig. 1. Indifferentiability of DM-MDE from RO

DM-MDE ED RO SD
EO IO

Fig. 2. Indifferentiability for Theorem 1

DEOGame1 Game2IORO S DEO IORO SR0 Game3
DEO IORO SR1 Game4
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D EDMMDE

Fig. 3. Indifferentiable Games in Theorem 1
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Fig. 4. Indifferentiability for Theorem 2DM-MDE EDRO DEO IOGame1 Game2 DM-MDE ED
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Fig. 5. Indifferentiable Games in Theorem 2

RO DEO IO RO D
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Fig. 6. Indifferentiability for Theorem 3
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Fig. 7. Indifferentiability for Theorem 5

HRO DHLOGame1S Game2KDF1-SROD S Game3KDF1-FROD FHRO HLO
Fig. 8. Indifferentiable Games in Theorem 5RO SDH ID

Fig. 9. Definition 3
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Fig. 10. Definition 4
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Fig. 11. Proof of “⇒” of Theorem 7
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