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Abstract. Since the Merkle-Damg̊ard (MD) type hash functions are differentiable from ROs
even when compression functions are modeled by ideal primitives, there is no guarantee as to
the security of cryptosystems when ROs are instantiated with structural hash functions. In
this paper, we study the security of the instantiated cryptosystems whereas the hash functions
have the well known structure of Merkle-Damg̊ard construction with Stam’s type-II compression
function (denoted MD-TypeII) in the Ideal Cipher Model (ICM). Note that since the Type-II
scheme includes the Davies-Meyer compression function, SHA-256 and SHA-1 have the MD-
TypeII structure.

We show that OAEP, RSA-KEM, PSEC-KEM, ECIES-KEM and many other encryption schemes
are secure when using the MD-TypeII hash function. In order to show this, we customize the in-
differentiability framework of Maurer, Renner and Holenstein. We call the customized framework
“indifferentiability with condition”. In this framework, for some condition α that cryptosystem
C satisfies, if hash function H is indifferentiable from RO under condition α, C is secure when
RO is instantiated with H. We note the condition of “prefix-free” that the above schemes satisfy.
We show that the MD-TypeII hash function is indifferentiable from RO under this condition.
When the output length of RO is incompatible with that of the hash function, the output size
is expanded by Key Derivation Functions (KDFs). Since a KDF is specified as MGF1 in RSA’s
PKCS #1 V2.1, its security discussion is important in practice. We show that, KDFs using the
MD-TypeII hash function (KDF-MD-TypeII) are indifferentiable from ROs under this condition
of “prefix-free”. Therefore, we can conclude that the above practical encryption schemes are
secure even when ROs are instantiated with (KDF-)MD-TypeII hash functions.

Dodis, Ristenpart and Shrimpton showed that FDH, PSS, Fiat-Shamir, and so on are secure
when RO is instantiated with the MD-TypeII hash function in the ICM, their analyses use the
different approach from our approach called indifferentiability from public-use RO (pub-RO).
They showed that the above cryptosystems are secure in the pub-RO model and the MD-TypeII
hash function is indifferentiable from pub-RO. Since their analyses did not consider the structure
of KDFs, there might exist some attack using a KDF’s structure. We show that KDFs using
pub-RO (KDF-pub-RO) is differentiable from pub-RO. Thus, we cannot trivially extend the
result of Dodis et al to the indifferentiability for KDF-MD-TypeII hash functions. We propose
a new oracle called private interface leak RO (privleak-RO). We show that KDF-pub-ROs are
indifferentiable from privleak-ROs and the above cryptosystems are secure in the privleak-RO
model. Therefore, by combining the result of Dodis et al. with our result, we can conclude
that the above cryptosystems are secure when ROs are instantiated with KDF-MD-TypeII hash
functions.

Since OAEP, RSA-KEM, PSEC-KEM, ECIES-KEM and many other encryption schemes are
insecure in the pub-RO (privleak-RO) model, we cannot confirm the security of these encryption
schemes from the approach of Dodis et al. Therefore, the result of Dodis et al can be supple-
mented with our result. Consequently, from the two results we can confirm the security of almost
practical cryptosystems when ROs are instantiated with (KDF-)MD-TypeII hash functions.

Keywords: Indifferentiability with condition, weakened random oracle, Merkle-Damg̊ard, type-
II compression function, Davies-Meyer, PGV, key-derivation functions, OAEP, RSA-KEM, PSEC-
KEM, ECIES-KEM.



1 Introduction

The Random Oracle (RO) Methodology is a well known methodology for designing efficient
cryptosystems and many important cryptosystems have been designed on RO methodology.
For example, RSA-OAEP [3], RSA-PSS [3], RSA-KEM [37], PSEC-KEM [37], and ECIES-
KEM [37], which are standardized in RSA’s PKCS #1 V2.1 or ISO 18033-2, are designed by
the methodology. In this methodology, hash functions are viewed as ROs. When implementing
a cryptosystem, RO is instantiated by a cryptographic hash function such as SHA-2 family
and SHA-1 [31]. However, since there are several separation results for ROs and cryptographic
hash functions [11], the heuristic evidence of the methodology is questionable.

In order to fill the theoretical gap, Coron, Dodis, Malinaud, and Puniya [15] introduced
a new property of hash functions called indifferentiability from RO. In this property, while
underlying primitive P (e.g. compression function) is in the ideal model, if hash function
HP , which is constructed from P , is indifferentiable from RO, we can use HP as an RO.
Namely, this property fills the structural gap between hash functions and ROs while underlying
primitives follow ideal models.

The popular hash functions are SHA-2 family hash functions (e.g. SHA-256 and SHA-
512) that are published as FIPS standard. These hash functions use the Merkle-Damg̊ard
(MD) structure [17, 29] and the Davies-Meyer compression function (DMCF). While the MD
hash function with DMCF (DMMDHF) offers collision resistance in the Ideal Cipher Model
(ICM) [5], the DMMDHF is differentiable from RO due to the extension attack. The attack
is that for DMMDHF H, H(m1||m2) is calculated from H(m1) and m2. Explicitly, the attack
cannot be applied to ROs. Due to the state of differentiability, there is no guarantee as to
the security of cryptosystems when RO is instantiated with DMMDHF. This leaves open the
question whether or not cryptosystems can be securely instantiated when RO is replaced by
DMMDHF.

Dodis, Restinpart and Shrimpton answered the question for several cryptosystems [19].
They proved that several cryptosystems are secure when RO is instantiated with a MD hash
function that use Stam’s Type-II compression function [39] (denoted MD-TypeII) in the ICM.
Note that since the Type-II scheme includes DMCF (and also several PGV schemes [35, 5]), the
MD-TypeII hash function includes DMMDHF. In order to prove the security, they proposed
the Weakened Random Oracle (WRO) approach. This approach states that for hash function
H (1) define a WRO such that H is indifferentiable from WRO and (2) prove the security of
cryptosystems in the WRO model. They defined public-use Random Oracle (pub-RO) that
leaks the hash list of a random oracle. They showed that the MD-typeII hash function is
indifferentiable from pub-RO. Since adversaries know all inputs of random oracles for FDH
[2], PFDH [14], Fiat-Shamir [20], BLS [8], PSS [4], a variant of Boneh-Franklin IBE [36] and
Boneh-Boyern IBE [9], the additional function of pub-RO does not leak any useful information
to the adversaries. Therefore, these cryptosystems are secure in the pub-RO model. Thus these
cryptosystems are secure when RO is instantiated with the MD-typeII hash function. We call
these cryptosystems “pub-RO secure cryptosystems”.

Open Problems. While many cryptosystems are secure when RO is instantiated with the
MD-TypeII hash function, the security of the following important cryptosystems remains
unclear.
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1. Since OAEP [4], RSA-KEM [37], PSEC-KEM [37], ECIES-KEM [37] and many other
encryption schemes are insecure in the pub-RO model [40, 30], the result of Dodis et al.
[19] provide no support for the security of these cryptosystems with the MD-TypeII hash
function. Therefore, the security of these important encryption schemes remains an open
problem.

2. When RO has longer output length than the hash function, RO is instantiated by the Key
Derivation Function (KDF) [37]. Note that KDFs include MGF1 [26], Bellare-Rogaway 96
scheme [4] and so on. While Dodis et al. proved that pub-RO secure cryptosystems are
secure when RO is instantiated with the MD-TypeII hash function, they did not consider
KDF structure. Therefore, the security of these cryptosystems using KDFs remains an
open problem, since there might exist some attack based on the KDF’s structure.

Security of Encryption Schemes. First, we show that OAEP, RSA-KEM, PSEC-KEM,
ECIES-KEM, and many other encryption schemes (e.g. OAEP+ [38], SAEP [7], SAEP+ [7],
and many other schemes [1, 13, 16, 18, 25, 24, 33, 34]) are secure in ICM when using the MD-
typeII hash function and KDFs with MD-typeII hash functions (denote KDF-MD-typeII).
To confirm the security of these encryptions, we customize the indifferentiability framework
of Maurer, Renner and Holenstein [28]. We call the customized framework indifferentiability
with condition. In this framework, we consider some condition α that cryptosystem C satisfies.
If hash function H is indifferentiable from RO under condition α, C is secure when RO is
replaced by H. α is the condition of inputs to H. Namely, we say that “cryptosystem C satisfies
condition α” if all input values from C to H satisfy condition α and “H is indifferentiable
from RO under condition α” if H is indifferentiable from RO when all queries from any
distinguisher to H/RO satisfy condition α. We introduce the following procedure to confirm
the security of the cryptosystems.

1. Identify condition α that the cryptosystems satisfy.
2. Prove that the (KDF-)MD-typeII hash function is indifferentiable from RO under condi-

tion α.

Step 1 : We note the condition of the encryption schemes: the input size of the hash function
is fixed. Namely, all input values, x, x′, of the hash function satisfy |x| = |x′|. For any different
two values x, x′ that yield |x| = |x′|, x is not a prefix of x′, the encryption schemes satisfy the
condition “prefix-free”. Therefore, we use the condition “prefix-free”.

Step 2 : In order to prove that the (KDF-)MD-typeII hash functions are indifferentiable from
ROs under the condition “prefix-free”, we propose the following approach. Let H be a hash
function and pfpad be any prefix-free padding function.

– If H ◦pfpad is indifferentiable from RO, H is indifferentiable from RO under the condition
“prefix-free” where H ◦ pfpad is a hash function with prefix-free padding.

– H ◦ pfpad is indifferentiable from RO.

The first item implies that the result of the indifferentiability for H ◦pfpad can be transformed
into the result of the indifferentiability with condition for H. From the second item, we can
conclude that H is indifferentiable from RO under the condition “prefix-free”. We show that
the (KDF-)MD-TypeII hash functions with any prefix-free padding are indifferentiable from
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ROs. Therefore, the (KDF-)MD-TypeII hash functions are indifferentiable from ROs under
the condition “prefix-free”.

The above two steps allow us to conclude that OAEP, RSA-KEM, PSEC-KEM, ECIES-
KEM and many other encryption schemes are secure when ROs are instantiated with the
(KDF-)MD-TypeII hash function. Several papers [10, 6, 23, 32] showed that padding-based
encryption schemes (e.g., OAEP) are provably unprovable in the standard model when using
a black-box reduction. Namely, the encryption schemes are provably unprovable when consid-
ering “full” structures of hash functions. Our result shows that the security of the encryption
schemes are provable when considering structures of the (KDF-)MD-TypeII hash functions
except for block ciphers. That is, our result shows that there is no generic attack on the
encryption schemes that use (KDF-)MD-TypeII hash functions that treat block ciphers like
ideal ciphers.

Security of Pub-RO Secure Cryptosystems Using KDF-MD-TypeII Hash Func-
tions. By using the WRO approach, we show that the pub-RO secure cryptosystems are
secure when ROs are instantiated with KDF-MD-TypeII hash functions in the ICM. First we
show that KDFs using pub-RO are differentiable from pub-RO. Thus we cannot simply extend
the result of Dodis et al. to the indifferentiability for the KDF-MD-TypeII hash functions.
Therefore we propose a new WRO called private interface leaking RO (privleak-RO). The
oracle leaks all input-output pairs of a private interface of RO that are used in cryptosystem
calculations but does not leak input-output pairs of the public interface. Since adversaries
know all inputs of the random oracles in pub-RO secure cryptosystems, these cryptosystems
are secure even when ROs replaced by privleak-ROs. We show that KDFs using pub-ROs
are indifferentiable from privleak-ROs. Since MD-typeII hash functions are indifferentiable
from pub-RO, the KDF-MD-typeII hash functions are indifferentiable from privleak-ROs. As
a result, pub-RO secure cryptosystems are secure when RO is instantiated with the KDF-
MD-typeII hash function.

Remark. Note that our new approach is different from the WRO approach. It uses the
customized indifferentiability framework. The WRO approach uses a variant of RO. In the
WRO approach, we prove the two facts: a cryptosystem is secure in the WRO model (Note
that we can easily confirm the security of pub-RO secure cryptosystems in the pub-RO model)
and a hash function is indifferentiable from WRO. On the other hand, in our new approach,
we only prove one fact: a hash function is indifferentiable from RO under some condition.

We can confirm the security of many encryption schemes by using our new approach.
However, we cannot confirm the security of pub-RO secure cryptosystems, since no condition
is set for the inputs of hash functions in pub-RO secure cryptosystems. On the other hand,
we can confirm the security of pub-RO secure cryptosystems by using the WRO approach.
However, we cannot confirm the security of many encryption schemes when we use pub-RO as
WRO, since many encryption schemes (e.g. OAEP and RSA-KEM) are insecure in the pub-
RO model 4. By combining our result with the result of Dodis et al, we succeed in confirming
the security of almost practical cryptosystems using the (KDF-)MD-TypeII hash functions.
4 In Appendix A, we define a new WRO in order to prove the security of cryptosystems other than pub-RO

secure cryptosystems using DMMDHF in ICM. We show that the new WRO is equal to DMMDHF. Namely,
the new WRO allows us to fully confirm the security of cryptosystems that use DMMDHF.
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Related Works. Leurent and Nguyen [27] studied the security of cryptosystems when ROs
are replaced with KDFs that use weakened hash functions such as SHA-1 and MD5. They
showed that these hash functions offer much lower security than the theoretical security of
RO. For example, when the output length of RO is 1024 bits, a collision of KDF3 using MD5
is found with 2106 MD5 computations and a preimage is found with 2166 MD5 computations.
They also examined the security of padding-based signature schemes when ROs are replaced
with the weakened hash functions. They showed that for several signature schemes a collision
of a hash function can be transformed into a key recovery attack. Their analyses examined
the case of weakened hash functions. Our analyses examine the case of secure hash functions.

Coron, Dodis, Malinaud and Puniya [15], Chang, Lee, Nandi and Yung [12], and Gong,
Lai and Chen [21] proved that the MD hash functions with any prefix-free padding with
several PGV schemes are indifferentiable from ROs. However, these results don’t imply that
cryptosystems satisfying the “prefix-free” condition are secure when ROs are instantiated with
MD hash functions without prefix-free padding. The result of the first point of the above step
2 is needed to prove the security of the cryptosystems. Note that by using the above first
point, these indifferentiability results can be transformed into a proof of indifferentiability
with condition.

Naito, Yoneyama, Wang and Ohta [30] defined Extension Attack Simulatable Random
Oracle (ERO) to which the extension attack can be applied. They showed that the MD
hash function in the fixed input length (FIL) RO model is indifferentiable from ERO and
OAEP, its variants and RSA-KEM are secure in the ERO model. Since the Type-II scheme is
differentiable from FILRO, the result cannot be transformed into a proof of indifferentiable
for the (KDF-)MD-TypeII hash functions.

2 Preliminaries

Notation. For two values x, y, x||y is the concatenated value of x and y. x ← y means
assigning y to x. ⊕ is bitwise exclusive or. |x| is the bit length of value x. 〈i〉 is the 64 bit
value encoded as a string of i. For set (list) T and element W , T ← W means to insert W into
T (if W is already inserted in T , W is not inserted.). For some jn bit value x, let x[1], . . . , x[j]
be n bit values of each block of x (namely x = x[1]|| · · · ||x[j]). For some value x, x[w] is the
last w bit value of x and x(w) is the first |x| − w bit value of x (namely x = x(w)||x[w]).
Cd,n = (E,D) be a ideal cipher where E : {0, 1}d × {0, 1}n → {0, 1}n is an encryption oracle,
D : {0, 1}d ×{0, 1}n → {0, 1}n is a decryption oracle, the key size is d bits and the cipher text
size is n bits. Fb : {0, 1}∗ → {0, 1}b is a random oracle.

Indifferentiability Framework [28]. Let U and W be some primitives. In this framework,
we consider two interfaces: public interface and private interface. Honest parties (e.g. cryp-
tosystems) can access the public interface and adversaries can access the private interface.
The private interface of U (W) denotes Upriv (Wpriv) and the public interface of U (W) de-
notes Upub (Wpub). We consider two experiments. Let A be any distinguisher. One is that
A accesses to Wpriv and Wpub. Another is that A accesses to Upriv and a simulator S that
simulates Wpub by accessing Upub. The definition of indifferentiability is as follows.
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Definition 1. W is (tA, tS , ε)-indifferentiable from U , if there exists S of running time at
most tS for any A of running time at most tA such that

|Pr[AWpriv ,Wpub ⇒ 1] − Pr[AUpriv ,S(Upub) ⇒ 1]| ≤ ε. (1)

We denote “W is indifferentiable from U” by W @ U .

We say “W is indifferentiable from U” or W @ U when ε is negligible. From the definition,
the following lemma is obtained.

Lemma 1. If W @ U , then for any cryptosystem C C(W) is at least as secure as C(U). We
denote “C(W) is at least as secure as C(U)” by C(W) Â C(U).

C(W) Â C(U) means that if C(W) is secure then C(U) is also secure. Hash function HP

using a primitive P is indifferentiable from RO is that no A can distinguish (HP , P ) from
(RO,S(RO)). The definition of C(W) Â C(U) is as follows.

Definition 2. C(W) Â C(U) if for all environments Env (distinguisher of C) the following
holds: For any attacker A accessing C(Wpriv) and Wpub there exists an attacker A′ accessing
C(Upriv) and Upub such that |Pr[EnvC(Wpriv),A ⇒ 1] − Pr[EnvC(Upriv),A′ ⇒ 1] is negligible in
the security parameter of C.

Merkle-Damg̊ard. Let h : {0, 1}d+n → {0, 1}n be a compression function using primitive
P (more strictly hP ) and pad : {0, 1}∗ → ({0, 1}d)∗ be a padding function. We define Merkle-
Damg̊ard hash function MDh as follows where IV is an n-bit initial value.

MDh(M)
z[0] ← IV ;
Break pad(M) into d-bit blocks, pad(N) = M [1]|| · · · ||M [l];
for i = 1, . . . , l do z[i] ← h(z[i − 1],M [i]);
Ret z[l];

We write MDh, when padding pad is the prefix-free padding pfpad, by PFMDh.

Generalized Rate-1 Block-cipher-based Compression Function [17, 29, 35]. Stam
generalized rate-1 block-cipher-based compression functions [39, 35]. He considered compres-
sion functions SCFCd,n that, on input of chaining variable v ∈ {0, 1}n and message block
m ∈ {0, 1}d, operates as follows where CPRE : {0, 1}n × {0, 1}d → {0, 1}d × {0, 1}n and
CPOST : {0, 1}d × {0, 1}n × {0, 1}n → {0, 1}n are functions called preprocessing and postpro-
cessing, respectively.

SCFCd,n(v,m)
(k, x) ← CPRE(v,m);
y ← E(k, x)
Ret w ← CPOST(v,m, y);

He also defined auxiliary post-processing function CAUX : {0, 1}d×{0, 1}n×{0, 1}n → {0, 1}n

such that CAUX(k, x, y) = CPOST(v,m, y). Stam defined a Type-II scheme iff Stam defined
Type-II block-cipher-based compression function [39]. Compression function SCF is the Type-
II scheme if: 1) CPRE is bijective, 2) for all v,m CPOST(v,m, ·) is bijective, and 3) for all k,
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the inverse map C−PRE
1 (k, ·) is bijective. Here the map C−PRE

1 : {0, 1}d × {0, 1}n → {0, 1}n

is defined by C−PRE
1 (k,m) = v where (v,m) = C−PRE(k, x). The Type-II scheme includes

the Group-2 PGV schemes and 8 Group PGV schemes (e.g. Davies-Meyer) in [5, 35]. The
Davies-Meyer has CPRE(v,m) = (m, v), CPOST(v,m, y) = v ⊕ y and CAUX(k, x, y) = x ⊕ y.

KDFs [37]. Let H : {0, 1}∗ → {0, 1}n be a hash function. KDF1, KDF2 and KDF3 are de-
fined by KDF1-H(M) = H(M ||〈0〉)||H(M ||〈1〉)|| . . ., KDF2-H(M) = H(M ||〈1〉)||H(M ||〈2〉)|| . . .,
and KDF3-H(M) = H(〈0〉||M)||H(〈1〉||M)|| . . ..

Public-use Random Oracle [19]. Pub-RO consists of RO Fb and Leak Oracle (LO) Fleak

that leaks the RO list. The description is as follows where Fb is a RO whose the output size
is b bit and Fleak is a LO.

Fb(M)
001 If Fb(M) 6=⊥, ret Fb(M);

002 Fb(M) $←− {0, 1}n;
003 Lleak ← (M, Fb(M));
004 Ret Fb(M));

Fleak()
011 Ret Lleak;

When the output size of a RO is b, we write it by pub-ROb. Dodis et al. showed that when
SCF is the type-II scheme, MDSCF

Cd,n is indifferentiable from pub-ROn up to O(2n/2) query
complexity.

3 Security of Encryption Schemes Using (KDF-)MD-typeII Hash
Functions

We customize the indifferentiability framework [28] called “the indifferentiability with condi-
tion”. By using the framework, we show that OAEP, RSA-KEM, PSEC-KEM, ECIES-KEM
and many other encryption schemes using (KDF-)MD-typeII hash functions are secure in the
ICM.

3.1 Indifferentiability with Condition

We propose indifferentiability with condition. In this framework, we restrict queries to a
private interface by some condition. Let P be an ideal primitive and HP be a hash function.

Definition 3. HP is (tA, tS , ε) indifferentiable from random oracle Fn under condition α,
denoted HP @α Fn, if there exists simulator S of running time at most tS such that for any
distinguisher A of running time at most tA such that queries from A to HP /Fn are restricted
by condition α |Pr[AHP ,P ⇒ 1] − Pr[AFn,S(Fn) ⇒ 1] ≤ ε.

From the definition, the following theorem is obtained.

Theorem 1. Let C be any cryptosystem wherein queries to hash functions are restricted to
condition α. Then, HP @α Fn ⇔ C(HP ) Â C(Fn).

Proof. Let us start with the first implication (“⇒”). Assume that ∀A,∃S such that A is
restricted by the condition α, |Pr[AHP ,P ⇒ 1] − Pr[AFn,S(Fn) ⇒ 1]| ≤ ε and ε is neglitible.
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We show that ∀Env, ∀A,∃A′ : |Pr[EnvC(HP ),A ⇒ 1] − Pr[EnvC(Fn),A′ ⇒ 1]| ≤ ε such that C
satisfies condition α. Since for ∀A ∃S |Pr[AHP ,P ⇒ 1]−Pr[AFn,S(Fn) ⇒ 1]| ≤ ε holds such that
A is restricted by the condition α, when A = EnvC,A, |Pr[AHP ,P ⇒ 1]−Pr[AFn,S(Fn) ⇒ 1]| ≤
ε holds. We define attacker A′ by combining any attacker A and S. Then, |Pr[EnvC(HP ),A ⇒
1] − Pr[EnvC(Fn),A′ ⇒ 1]| ≤ ε holds.

The second implication (“⇐”) is proven similarly. Since we do not use this result, we omit
its proof (follows the proof of Theorem 1 of [28]). ut

3.2 Indifferentiability Results for (KDF-)MD-type-II Hash Functions

First we pick up the condition “prefix-free”. Since input sizes of OAEP, RSA-KEM, PSEC-
KEM, ECIES-KEM and many other encryption schemes are fixed, these cryptosystems satisfy
the condition “prefix-free”.

Second we prove that (KDF-)MD-TypeII hash functions are indifferentiable from ROs un-
der the condition “prefix-free”. Let P be an ideal function, HP be a hash function using P and
GP be a hash function HP with a prefix-free padding pfpad. Namely GP (M) = HP (pfpad(M)).
First we show that if GP is indifferentiable from RO, HP is indifferentiable from RO under
the condition “prefix-free” (Theorem 2).

Theorem 2. GP @ Fn ⇒ HP @α Fn where α is the condition “prefix-free”.

Proof. We assume that GP @ Fn. Namely |Pr[AFn,S ⇒ 1] − Pr[AGP ,P ⇒ 1]| ≤ ε and
ε is negligible. We modify Fn to Fn ◦ pfpad. Since pfpad is bijective, for a fresh query it
returns a freshly-chosen random value. Therefore, |Pr[AFn,S ⇒ 1] − Pr[AGP ,P ⇒ 1]| ≤ ε ⇒
|Pr[AFn◦pfpad,S ⇒ 1]−Pr[AHP ◦pfpad,P ⇒ 1]| ≤ ε. Note that GP = HP ◦pfpad. We define a new
distinguisher A1 by combining A with pfpad. Thus |Pr[AFn◦pfpad,S ⇒ 1] − Pr[AHP ◦pfpad,P ⇒
1]| ≤ ε ⇒ |Pr[AFn,S

1 ⇒ 1] − Pr[AHP ,P
1 ⇒ 1]| ≤ ε. Since A is any distinguisher and pfpad

is any prefix-free padding, A1 is any distinguisher where queries to HP /Fn are restricted by
condition “prefix-free”. The proof is completed. ut

Therefore all we have to do is to prove that (KDF-)MD-TypeII hash functions are indifferen-
tiable from ROs under the condition “prefix-free”. First we show that the MD-TypeII hash
function with a prefix-free padding is indifferentiable from RO as follows.

Theorem 3. Let SCF be the type-II scheme. PFMDSCF
Cd,n @ Fn where for any tA, tS =

tA + O((qE + qD)2)

ε ≤ 3(lqH + qE + qD)2 + 2(lqH + qE)2 + 2(lqH + qE + qD)
2n+1

where A can make queries to PFMDSCF
Cd,n

/Fn at most qH times where the maximum blocks
of the query are l blocks and A can make queries to E/SE and D/SD at most qE and qD

times, respectively.

This proof is shown in Subsection 3.3.
For KDF1, we can see that Fn(∗||〈0〉),Fn(∗||〈1〉), . . . ,Fn(∗||〈m−1〉) are independent ran-

dom oracles. A hash function concatenating m independent random oracles is a random oracle.
The same is true for KDF2 and KDF3. Thus, the following theorem holds.
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Theorem 4. For i = 1, 2, and 3 KDFi-Fn @ Fmn where for any tA, tS = tA + O(q), and
ε = 0 where A can make queries to Fn/S at most q times.

Result. By combining above theorems, (KDF-)MD-typeII hash functions are indifferentiable
from ROs. The indifferentiable result and Theorem 1 offer that OAEP, RSA-KEM, PSEC-
KEM, ECIES-KEM and many other encryption schemes are secure when ROs are instantiated
with (KDF-)MD-TypeII hash functions.

3.3 Proof of Theorem 3

We define a simulator S = (SE , SD) as follows.

simulator SE(k, x)
001 If E(k, x) 6=⊥, ret E(k, x);
002 (m, v) ← C−PRE(k, x);

003 y
$←− {0, 1}n;

004 V(IV ) ← ε;
005 If V(v) 6=⊥,
006 If ∃M s.t. pfpad(M) = V(v)||m,
007 w ← Fn(M);
008 y ← C−POST(v,m,w);
009 w ← CPOST(v,m, y);
010 V(w) ← V(v)||m;
011 E(k, x) ← y; D(k, y) ← x;
012 Ret y;

simulator SD(k, y)
101 If D(k, y) 6=⊥, ret D(k, y)

102 x
$←− {0, 1}n;

103 V(IV ) ← ε;
104 If ∃v s.t. V(v) 6=⊥ s.t. ∃M s.t. pfpad(M) = V(v)||m
where v = C−PRE

1 (k, x′) and (v,m) = CPRE(k, x′),
105 w ← Fn(M);
106 If w = CPOST(v,m, y), x ← x′;
107 E(k, x) ← y; D(k, y) ← x;
108 Ret x;

SE simulates E and SD simulates D. In the following proof, we write an input-output triple
of SE/E and SD/D by (k, x, y), the input of the type-II scheme using SE by (v,m) and the
output by w. Namely (v,m) ← C−PRE(k, x) and w ← CPOST(v,m, y). We define chain triples
and pf-chain triples.

Definition 4. (k1, x1, y1), . . . , (ki, xi, yi) are chain triples if v1 = IV , wt = vt+1 (t = 1, . . . , i−
1) and there does not exist M such that pfpad(M) = m1|| · · · ||mi.

Definition 5. (k1, x1, y1), . . . , (ki, xi, yi) are pf-chain triples if (k1, x1, y1), . . . , (ki−1, xi−1, yi−1)
are chain triples, wi−1 = vi and there exists M such that pfpad(M) = m1|| · · · ||mi.

Tables E and D record all input-output triples of SE and SD. The table V records all messages
from chain-triples.

We give a proof using the game sequences Game 0, Game 1, and Game 2. In this proof,
A interacts OH , OE and OD.

– Game 0: This game is the RO scenario. Namely, OH = Fn, OE = SE and OD = SD.
– Game 1: In this game, we modify OH where OH = PFMDSCFSE . Namely PFMDSCFSE is

the PFMD hash function with the type-II scheme using SE .
– Game 2: This is the final game. In this game, we modify all oracles; OH = PFMDSCFE

,
OE = E and OD = D. Namely, this game is the ideal cipher scenario.

9



Game 0→Game 1: We prove that Game 0 is equal to Game 1 unless the following bad
events occur.

– Event E1: The triple (k, x, y) is such that (k, x, y) is defined by OE and there is another
triple (k′, x′, y′) such that w = w′ and (k′, x′, y′) is defined by OE .

– Event E2: The triple (k, x, y) is such that (k, x, y) is defined by OE and w = IV .
– Event E3: The triple (k, x, y) is such that (k, x, y) is defined by OE and there is another

triple (k′, x′, y′) such that w = v′ and (k′, x′, y′) is defined before (k, x, y) is defined.
– Event E4: The triple (k, x, y) is such that (k, x, y) is defined by OD and there exist triples

(k1, x1, y1), . . . , (ki, xi, yi) such that (k1, x1, y1), . . . , (ki, xi, yi), (k, x, y) are chain triples.
– Event E5: The triple (k, x, y) is such that (k, x, y) is defined by OD, v = IV and there

does not exists M such that pfpad(M) = m.

In order to prove that Game 0 is equal to Game 1 unless the following bad events occur, we
use the technique of [22]. Namely, we show the following three points.

1. In Game 0, unless a bad event occurs, the answers given by OE and OD are consistent
with those given by OH .

2. In Game 1, unless a bad event occurs, the answers given by OE and OD are consistent
with those given by OH .

3. Unless a bad event occurs, for any M OH(M) = Fn(M) in Game 0 and Game 1.

Let G0 and G1 be events that A outputs 1 in Game 0 and Game 1, respectively. If the above
three points hold, |Pr[G1]−Pr[G0]| ≤ Pr[E1∨E2∨E3∨E4∨E5] ≤ Pr[E1]+Pr[E2]+Pr[E3]+
Pr[E4] + Pr[E5]. So we show that Pr[E1], P r[E2], P r[E3], P r[E4] and Pr[E5] are negligible.

Before starting the proof of the above points, we give a useful lemma.

Lemma 2. For any pf-chain triples (k1, x1, y1), . . . , (ki, xi, yi), unless a bad event occurs, wi =
Fn(M∗) where pfpad(M∗) = m1|| · · · ||mi.

Proof. To the contrary, assume that there are pf-chain triples (k1, x1, y1), . . . , (ki, xi, yi) such
that wi 6= Fn(pfpad−1(m1|| · · · ||mi)). We divide this case into the following cases.

1. (ki, xi, yi) is defined by OE .
(a) (ki, xi, yi) is defined in line 003.
(b) (ki, xi, yi) is defined in line 008.

2. (ki, xi, yi) is defined by OD.
(a) (ki, xi, yi) is defined in line 102.
(b) (ki, xi, yi) is defined in line 106.

Since if i = 1 w1 = Fn(m1) holds due to lines 005-010 and line 104-106, we assume that i > 1.
First we consider the case 1-a. Since yi is defined in line 003 (V(vi−1) =⊥), when (ki, xi, yi)

is defined, there does not exist some triple (kt, xt, yt) in triples (k1, x1, y1), . . . , (ki−1, xi−1, yi−1)
such that (kt, xt, yt) is defined after (ki, xi, yi) is defined. We assume that t is the minimum
value such that (kt, xt, yt) satisfies such conditions.

– Case t = 1: If (k1, x1, y1) is defined by the OE query, since (k1, x1, y1) is defined after
(k2, x2, y2) is defined and w1 = v2, event E3 occurs. If (k1, x1, y1) is defined by the OD

query, since pfpad is a prefix-free padding and m1 is the prefix of m1|| · · · ||mi, there does
not exist M such that pfpad(M) = m1. Since v1 = IV , event E5 occurs.
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– Case 1 < t < i: If (kt, xt, yt) is defined by the OE query, since wt = vt+1 and (kt+1, xt+1, yt+1)
is defined before (kt, xt, yt) is defined, event E3 occurs. If (kt, xt, yt) is defined by the OD

query, since wt−1 = vt , (k1, x1, y1), . . . , (kt, xt, yt) are chain triples and (kt, xt, yt) is defined
before (kt−1, xt−1, yt−1) is defined, event E4 occurs.

We consider the case 1-b. In this case, since V(vi−1) 6=⊥, when (ki, xi, yi) is defined, there
exists M such that pfpad(M) = V(vi−1)||mi. Since wi 6= Fn(pfpad−1(m1|| · · · ||mi)), V(vi−1) 6=
m1|| · · · ||mi−1. Namely, there are another chain triples (k′

1, x
′
1, y

′
1), . . . , (k

′
j , x

′
j , y

′
j) such that

(k′
1, x

′
1, y

′
1), . . . , (k

′
j , x

′
j , y

′
j), (k1, xi, yi) are pf-chain triples where V(vi−1) = m′

1|| · · · ||m′
j . We

divide the case into the following cases.

– (k′
1, x

′
1, y

′
1), . . . , (k

′
j , x

′
j , y

′
j), (k1, x1, y1), . . . , (ki−1, xi−1, yi−1) are defined by OE : Since wi−1 =

w′
j and m′

1|| · · · ||m′
j 6= m1|| · · · ||mi−1, a collision occurs for the hash function iterating the

type-II scheme using OE . Since a collision of the hash function can be reduced into an
event of the compression function; finding a collision or finding a preimage of IV , event
E1 or E2 occurs.

– Some triple (kt, xt, yt) of (k′
1, x

′
1, y

′
1), . . . , (k

′
j , x

′
j , y

′
j), (k1, x1, y1), . . . , (ki−1, xi−1, yi−1) is de-

fined by OD: We assume that t is the minimum value. When t = 1, E5 occurs from the
same discussion as the case 1-a-(t = 1). When t > 2, if (kt−1, xt−1, yt−1) is defined after
(kt, xt, yt) is defined, since (kt−1, xt−1, yt−1) is defined by OE (t is the minimum value),
event E3 occurs. If (kt, xt, yt) is defined after (kt−1, xt−1, yt−1) is defined, event E4 occurs
from the same discussion as the case 1-a-(1 < t < i).

We consider the case 2-a. Since yi is defined in line 102 (V(vi−1) =⊥), when (ki, xi, yi) is
defined, there does not exist some triple (kt, xt, yt) such that t < i and (kt, xt, yt) is defined
after (ki, xi, yi) is defined. This case is equal to the case 1-a. Therefore, in this case event
E3, E4 or E5 occurs.

Finally we consider the case 2-b. In this case, since V(vi−1) 6=⊥, when (ki, xi, yi) is defined,
there exists M such that pfpad(M) = V(vi−1)||mi and V(vi−1) 6= m1|| · · · ||mi−1. This case is
equal to the case 1-b. Therefore, in this case event E1, E2, E3, E4 or E5 occurs.

The proof of the lemma is completed. ut

By using the lemma, we prove the three points.

Proof of point 1. From Lemma 2, for any pf-chain triples (k1, x1, y1), . . . , (ki, xi, yi), unless a
bad event occurs, wi = Fn(M∗) where pfpad(M∗) = m1|| · · · ||mi. Since OH = Fn, the answers
given by OE and OD are consistent with those given by OH .

Proof of point 2. Since OH uses OE (OH = PFMDSCFOE ), the answers given by OE and OD

are consistent with those given by OH .

Proof of point 3. From Lemma 2, unless a bad event occurs, in Game 1 for any M OH(M) =
Fn(M). And in Game 0 OH = Fn.

Thus Game 1 is equal to Game 0 unless a bad event occurs.
Next we evaluate the probabilities Pr[E1], P r[E2], P r[E3], P r[E4] and Pr[E5].
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– Pr[E1]: This is the collision event for SCFOE . Since an output of SE is chosen uniformly
from {0, 1}n and CPOST(v,m, ·) is bijective, for any triples (k, x, y), (k′, x′, y′), w and w′

are chosen uniformly from {0, 1}n. Since the maximum number of times that OE is called
is lqH + qE , Pr[E1] ≤ (lqH+qE)2

2n .
– Pr[E2]: This is the event of finding a preimage of IV for SCFOE . Since the maximum

number of times that OE is called is lqH + qE , Pr[E2] ≤ lqH+qE
2n .

– Pr[E3]: Since y is chosen uniformly from {0, 1}n that is independent from (k′, x′, y′), w
are chosen uniformly from {0, 1}n that is independent from (k′, x′, y′). Since the maximum
number of such triple is lqH + qE + qD, Pr[E3] ≤ (lqH+qE+qD)(lqH+qE)

2n .
– Pr[E4]: Since (k1, x1, y1), . . . , (ki, xi, yi), (k, x, y) are chain triples (not pf-chain triples), x

is chosen uniformly from {0, 1}n that is independent from (ki, xi, yi). Since C−PRE
1 (k, ·) is

bijective, v is chosen uniformly from {0, 1}n. Thus, since OD is called at most qD times and
the maximum number of triple (ki, xi, yi) is lqH +qE+qD, (k, x, y) Pr[E4] ≤ qD(lqH+qE+qD)

2n .
– Pr[E5]: Since there does not exist M such that pfpad(M) = m, triple (k, x, y) is defined in

line 102. Since C−PRE
1 (k, ·) is bijective, v is chosen uniformly from {0, 1}n. Thus Pr[E5] ≤

qD
2n

Therefore, |Pr[G1] − Pr[G0] ≤ (lqH+qE+qD)2+(lqH+qE)2+lqH+qE+qD

2n .

Game 1→Game 2: Let G2 be an event that A outputs 1 in Game 2. Since outputs of SE

and SD are chosen uniformly from {0, 1}n, SE = E and SD = D unless a collision occurs.
Thus we have via a straightforward birthday analysis that |Pr[G2]−Pr[G1]| ≤ (lqH+qE+qD)2

2n+1 .
The proof of the theorem is completed. ut

4 Security of Pub-RO Secure Cryptosystems Using KDF-MD-typeII
Hash Functions

In this section, by using the WRO approach, we show that pub-RO secure cryptosystems are
secure when ROs are instantiated with the KDF-MD-TypeII hash functions. Note that pub-
RO secure cryptosystems are that all inputs of hash functions are public (e.g. FDH, PFDH,
Fiat-Shamir, BLS, PSS, a variant of Boneh-Franklin IBE and Boneh-Boyern IBE). First we
show that KDFs using pub-RO are differentiable from pub-RO. Therefore, we cannot trivially
extend the result of [19] to a proof of indifferentiability for KDF-MD-TypeII hash functions.
Therefore, we propose a new WRO, called private interface leaking random oracle (privleak-
RO). Roughly speaking, privleak-RO leaks all input-output pairs of the private interface of
RO but does not leak an input-output pairs of the public interface of RO. Since an adversary
can obtain all inputs of hash functions in pub-RO secure cryptosystems in the RO model,
the pub-RO secure cryptosystems are secure in the privleak-RO model. We show that KDFs
using pub-RO are indifferentiable from privleak-ROs. Since the MD-TypeII hash function is
indifferentiable from pub-RO [19], the KDF-MD-TypeII hash functions are indifferentiable
from privleak-ROs.

4.1 Differentiable Attack for KDFs using pub-RO

We show that KDF1-pub-ROn, KDF2-pub-ROn and KDF3-pub-ROn are differentiable from
pub-ROnm as follows. We only show that KDF1-pub-ROn is differentiable from pub-ROnm.
For KDF2-pub-ROn and KDF3-pub-ROn, we can prove them by similar proofs.
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Let S = (Sleak, SFpub) be any simulator that simulates Fleak and Fpub
nm respectively. Let

OH = KDF1-Fn/Fnm, Oleak = Fleak/Sleak and OF = Fpub
n /SFpub . We define a distinguisher

A as follows.

1. For i = 1, . . . , qH/2 (where qH is the maximum number of queries to OH made by distin-
guisher A)
(a) j

$←− {0, 1};
(b) M

$←− {0, 1}ns such that 1 ≤ s ≤ l where l is the maximum number of blocks of OH on
a one query;

(c) makes a query M ||〈0〉 to OFpub and receives w;
(d) If j = 0, makes a query M to OH ;
(e) makes a query to Oleak and receives list L;
(f) makes a query M to OH and receives z;
(g) If z[0] 6= w, return 1;
(h) If j = 0 and there does not exist (M ||〈1〉, z[2]) in L, return 1;

2. return 0;

Consider that A interacts with (Fpriv
nm , S). When S does not make query M to Fnm(M), the

probability passing the step is negligible due to step 1-g. This implies that S should make the
query M to Fnm(M). Thus when the step 1-e is executed, in list Lleak of Fnm the pair (M, z)
shold be stored regardless of step 1-d. When step 1-e is invoked, S does not know whether
A makes query M to Fpriv

mn or not. Note that if j = 0, pairs (M ||〈0〉, z[1]), (M ||〈1〉, z[2]), . . .
should be stored in list L and if j = 1, only the pair (M ||〈0〉, z[1]) should be stored in list
L. Since j is chosen uniformly from {0, 1}, when A interacts with (Fpriv

nm , S), in Step 1-e
Sleak mistakes the simulation yet, thus A outputs 1 with non-negligible probability. On the
other hand, when A interacts with (KDF1-Fpriv

n ,Fpub
n ,Fleak), A explicitly outputs 0 with

probability of 1. Therefore, KDF1-pub-ROn is differentiable from pub-ROnm. We can prove
that KDF2-pub-ROn and KDF3-pub-ROn are differentiable from pub-ROnms by using the same
as the above attack. To avoid the attack, we define the privleak-RO to avoid the above attack.

4.2 privleak-RO

Since no simulator can know whether a pair in Lleak is defined on the public interface or the
private interface, the above attack works. Therefore we define privleak-RO in Fig. ?? such
that S can know all input-output pair defined on the private interface. Privleak-RO consists
of a random oracle Fb and a private interface leak oracle Fprivleak where the output size of
Fb is b bits. Let Fpriv

b be a private interface of a RO and Fpub
b be a public interface of a RO.

Fprivleak leaks all input-output pairs of Fpriv
b . The description is as follows.

Fpriv
b (M)

001 If Fb(M) 6=⊥,
002 Lprivleak ← (M, Fb(M));
003 Ret Fb(M);

004 Fb(M) $←− {0, 1}b;
005 Lprivleak ← (M, Fb(M));
006 Ret Fb(M);

Fpub
b (M)

011 If Fb(M) 6=⊥, ret Fb(M);

012 Fb(M) $←− {0, 1}b;
013 Ret Fb(M);

Fprivleak()
021 Ret Lprivleak;

When the output size of a RO is b, we denote it by privleak-ROb.
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4.3 Indifferentiability Results for KDFs

We show that KDFs using pub-ROn are indifferentiable from privleak-ROnm as follows.

Theorem 5. Let SCFCd,n be a type-II scheme. KDFi-MDSCF
Cd,n @ privleak-RO (i = 1, 2, 3)

where for any tA, tS = tA + O(qE + qD) and ε = 0.

We give the proof of KDF1-MDSCF
Cd,n @ privleak-RO in Subsection 4.4. We can prove that

KDF2-MDSCF
Cd,n @ privleak-RO and KDF3-MDSCF

Cd,n @ privleak-RO by the same as the
proof of Theorem 5. So we ommit these proofs.

Result. From Theorem 5 and Theorems 7.1 and 7.2 of [19], KDFi-MDSCF
Cd,n @ privleak-RO

(i = 1, 2, 3) hold. Since pub-RO secure cryptosystems are secure in the privleak-RO model,
these cryptosystems are secure when ROs are instantiated with KDF-MD-typeII Hash Func-
tions.

4.4 Proof of Theorem 5

We define a simulator S that simulates Fn and Fleak as follows.

SFn(M)
101 If FS(M) 6=⊥, ret FS(M);
102 If M[64] = 〈t〉 ∈ {〈0〉, . . . . , 〈m − 1〉},
103 w ← Fpub

mn (M(64));
104 FS(M) ← w[t + 1];
105 Else FS(M) ← {0, 1}n;
106 LS ← (M, FS(M));
107 Ret FS(M);

Sprivleak()
111 (M1, w1), . . . , (M j , wj) ← Fleak();
112 For i = 1, . . . , j and t = 1, . . . ,m,
113 LS ← (M i||〈t − 1〉, wi[t]);
114 Ret LS ;

Since a last 64 bit value of an input of Fn in KDF1-Fn is one of {〈0〉, . . . , 〈m−1〉}, on a query
x where x[64] ∈ {〈0〉, . . . , 〈m − 1〉} the output is defined by using Fpub

mn and on other type
queries the outputs are defined by a random choice. We define Fleak that leaks input-output
pairs of Sleak and pairs that are defined by using Fleak.

We give a proof using the game sequences Game 0, Game 1, ..., Game 6 that are shown
in Figs. 1, 2, 3, 4, 5 and 6. Without loss of generality, we assume that distinguisher A does
not repeat a query to any of its oracles. In each game, A interacts with oracles O0,O1, and
O2. Let Gi be the event that A outputs 1 in Game i.

Game 0. In this game, O0 is KDF1-Fn, O1 is Fleak and O2 is Fn as follows. This is the
pub-RO scenario. Thus Pr[G0] = Pr[AKDF1-Fn,Fn,Fleak ⇒ 1].

Game 1. In this game, we modify the subroutine choose-Fn. We use new tables Fj (j =
0, . . . ,m − 1) in addition to table F. These tables are used if X[64] ∈ {〈0〉, . . . , 〈m − 1〉}. This
modification explicitly does not affect the view of the distinguisher A. Thus Pr[G0] = Pr[G1].

Game 2 (boxed procedures included). In this game, we modify the procedure of the case
of X[64] ∈ {〈0〉, . . . , 〈m − 1〉} in the subroutine choose-Fn. F1(X(64)), . . . , Fm(X(64)) is defined
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O0(M)

201 For j = 0, . . . , m − 1
202 wj ← choose-Fn(M ||〈j〉);
203 Ret w0|| · · · ||wm−1;
O1()

211 Ret LS ;
O2(X)

221 Ret choose-Fn(X);

choose-Fn(X)

231 If F(X) =⊥, F(X)
$←− {0, 1}n;

232 LS ← (X, F(X));
233 Ret F(X);

Fig. 1. Game 0

O0(M)

301 For j = 0, . . . , m − 1
302 wj ← choose-Fn(M ||〈j〉);
303 Ret w0|| · · · ||wm−1;
O1()

311 Ret LS ;
O2(X)

321 Ret choose-Fn(X);

choose-Fn(X)

331 If X[64] = 〈t〉 ∈ {0, . . . , m − 1},
332 For j = 0, . . . , m − 1

333 If Fj(X(64)) =⊥, Fj(X(64))
$←− {0, 1}n;

334 w ← Ft(X(64));
335 Else

336 If F(X) =⊥, F(X)
$←− {0, 1}n;

337 w ← F(X)
338 LS ← (X, w);
339 Ret w;

Fig. 2. Game 1

O0(M)

401 For j = 0, . . . , m − 1
402 wj ← choose-Fn(M ||〈j〉);
403 Ret w0|| · · · ||wm−1;
O1()

411 Ret LS ;
O2(X)

421 Ret choose-Fn(X);

choose-Fn(X)

431 If X[64] = 〈t〉 ∈ {0, . . . , m − 1},
432 If F∗(X(64)) =⊥, F∗(X(64))

$←− {0, 1}mn;

433 For j = 0, . . . , m − 1

434 If Fj(X(64)) =⊥, Fj(X(64)) ← F∗(X(64))[j + 1];

435 w ← F∗(X(64))[t + 1];
436 Else

437 If F(X) =⊥, F(X)
$←− {0, 1}n;

438 w ← F(X);
439 LS ← (X, w); 440 Ret w;

Fig. 3. Game 2 and Game 3

O0(M)

501 For j = 0, . . . , m − 1
502 wj ← choose-Fn(0, M ||〈j〉);
503 Ret w0|| · · · ||wm−1;
O1()

511 Ret LS ;
O2(X)

521 If X[64] = 〈t〉 ∈ {〈0〉, . . . , 〈m − 1〉},
522 Ret choose-Fn(1, X);
523 Else ret choose-Fn(2, X);

choose-Fn(s, X)

531 If s 6= 2,

532 If F∗(X(64)) =⊥, F∗(X(64))
$←− {0, 1}mn;

533 w ← F∗(X(64))[t + 1]; //〈t〉 = X[64]

534 Else

535 If F(X) =⊥, F(X)
$←− {0, 1}n;

536 w ← F(X)
537 LS ← (X, w);
538 Ret w;

Fig. 4. Game 4

in line 432 in advance. These values are stored in a new table F∗. In line 435 an output is
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O0(M)

601 If F∗(M) =⊥, F∗(M)
$←− {0, 1}mn;

602 For j = 0, . . . , m − 1,
603 LS ← (M ||〈j〉, F∗[j + 1]);
604 Ret F∗(M);
O1()

611 Ret LS ;
O2(X)

621 If X[64] = 〈t〉 ∈ {〈0〉, . . . , 〈m − 1〉},
622 Ret choose-Fn(1, X);
623 Else ret choose-Fn(2, X);

choose-Fn(s, X)

631 If s = 1,

632 If F∗(X(64)) =⊥, F∗(X(64))
$←− {0, 1}mn;

633 w ← F∗(X(64))[t + 1]; //〈t〉 = X[64]

634 If s = 2,

635 If F(X) =⊥, F(X)
$←− {0, 1}n;

636 w ← F(X)
637 LS ← (X, w);
638 Ret w;

Fig. 5. Game 5

O0(M)

701 If F∗(M) =⊥, F∗(M)
$←− {0, 1}mn;

702 T ← (M, F∗(M));
703 Ret F∗(M);
O1()

711 (M1, w1), . . . , (M i, wi) ← T ;
712 For j = 1, . . . , i t = 0, . . . , m − 1,
713 LS ← (M j ||〈t〉, wj [t + 1]);
714 Ret LS ;
O2(X)

721 If X[64] = 〈t〉 ∈ {〈0〉, . . . , 〈m − 1〉},
722 Ret choose-Fn(1, X);
723 Else ret choose-Fn(2, X);

choose-Fn(s, X)

731 If s = 1,

732 If F∗(X(64)) =⊥, F∗(X(64))
$←− {0, 1}mn;

733 w ← F∗(X(64))[t + 1]; //〈t〉 = X[64]

734 If s = 2,

735 If F(X) =⊥, F(X)
$←− {0, 1}n;

736 w ← F(X)
737 LS ← (X, w);
738 Ret w;

Fig. 6. Game 6

defined by F∗(X(64))[t + 1]. Since F∗(X(64))[t + 1] = Ft(X(64)), these modifications does not
affect the view of the distinguisher A. Thus Pr[G1] = Pr[G2].

Game 3 (boxed procedures removed). In this game, we remove boxed procedures (line
433 and line 434). Since tables F0, . . . , Fm−1 are not used in other procedures, this modification
does not affect the view of A. Thus Pr[G2] = Pr[G3].

Game 4. In this game, we modify O2 and choose-Fn. Inputs of choose-Fn are two values. The
first value s is such that s = 0 if choose-Fn is called in O0, s = 1 if choose-Fn is called in O2 and
X[64] ∈ {〈0〉, . . . , 〈m−1〉}, and s = 2 if choose-Fn is called in O2 and X[64] 6∈ {〈0〉, . . . , 〈m−1〉}.
Since when s = 0 or s = 1 X[64] ∈ {〈0〉, . . . , 〈m − 1〉}, these modifications do not affect the
view of A. Thus Pr[G3] = Pr[G4].

Game 5. In this game, we hard-code choose-Fn in lines 602-603 in O0 and remove the case of
s = 0 in choose-Fn. These modifications do not affect the view of A. Thus Pr[G4] = Pr[G5].

Game 6. This is the final game. We modify O0 and O1. We remove line 602-603 and
all input-output pairs are stored in a new table T . Line 602-603 is moved in lines 712-713.

16



Since A cannot see these procedures, these modifications don’t affect the view of A. Thus
Pr[G5] = Pr[G6].

In Game 6, O0 is equal to Fpriv
mn . O1 is equal to Sleak. Fpub

mn is hard-coded in line 732-733.
Thus O2 is equal to SFn and Pr[G6] = Pr[AFpriv

mn ,S ]. The proof is completed. ut
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16. Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier. Universal Padding Schemes for
RSA. In CRYPTO, pages 226–241, 2002.

17. Ivan Damg̊ard. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in
Computer Science, pages 416–427. Springer, 1989.

18. Yevgeniy Dodis, Michael J. Freedman, Stanislaw Jarecki, and Shabsi Walfish. Versatile padding schemes
for joint signature and encryption. In ACM Conference on Computer and Communications Security, pages
344–353, 2004.

19. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical
Applications. In ePrint 2009/177 and EUROCRYPT 2009, 2009.

20. Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems.

21. Zheng Gong, Xuejia Lai, and Kefei Chen. A synthetic indifferentiability analysis of some block-cipher-based
hash functions. In Des. Codes Cryptography 48, pages 293–305, 2008.

17



22. Jonathan J. Hoch and Adi Shamir. On the Strength of the Concatenated Hash Combiner When All the
Hash Functions Are Weak. In ICALP, Lecture Notes in Computer Science, pages 616–630. Springer, 2008.

23. Eike Kiltz and Krzysztof Pietrzak. On the Security of Padding-Based Encryption Schemes (Or: Why we
cannot prove OAEP secure in the Standard Model). In EUROCRYPT, pages 389–406, 2009.

24. Kazukuni Kobara and Hideki Imai. OAEP++ : A Very Simple Way to Apply OAEP to Deterministic
OW-CPA Primitives. In ePrint, page 2002/130, 2002.

25. Yuichi Komano and Kazuo Ohta. Efficient Universal Padding Techniques for Multiplicative Trapdoor
One-Way Permutation. In CRYPTO, pages 366–382, 2003.

26. RSA Laboratories. PKCS #1 v2.1: RSA cryptography standard. June 14, 2002.
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Fb(M)

001 If Fb(M) 6=⊥,
002 Ret Fb(M);

003 Fb(M)
$←− {0, 1}b;

004 Ret Fb(M);
EO(k, x)

101 If EO(k, x) 6=⊥, ret EO(k, x);

102 y
$←− {0, 1}b;

103 If x = IV , z ← Fb(k); y ← z ⊕ x;
104 Else if there exists a value M s.t. Fb(M) = x,
105 z ← Fb(M ||k); y ← z ⊕ x;
106 EO(k, x) ← y;
107 IO(k, y) ← x;
108 Ret y;

IO(k, y)

201 If IO(k, y) 6=⊥, ret D(k, y);

202 x
$←− {0, 1}n;

203 If Fb(k) = y ⊕ IV, x ← IV ;
204 Else if there exists a value M s.t.
Fb(M) = z and Fb(M ||k) = z ⊕ y,
205 x ← z;
206 EO(k, x) ← y;
207 IO(k, y) ← x;
208 Ret x;

Fig. 7. EIRO

A Indifferentiability Result for Davies-Meyer Merkle-Dam̊ard Hash
Function

In this appendix, we define a new WRO called Random Oracle with Extension and Inverse
Attacks (EIRO). We show that the MD hash function with Davies-Meyer compression function
(denoted DM-MD) is equal to EIRO.

A.1 Random Oracle with Extension and Inverse Attacks

The extension attack is that for the DMMD hash function DM-MDCd,n DM-MDCd,n(M ||m)
can be obtained from DM-MDCd,n(M) and m without calculating DM-MDCd,n(M ||m). The
inverse attack is that an input-output triple (k, x, y) of the ideal cipher can be obtained
from DM-MDCd,n(M) (= x) and DM-MDCd,n(M ||k) (= x ⊕ y) without calculating E(k, x) or
D(k, y). Therefore, we define EIRO such that Fn(M ||m) can be obtained from Fn(M) and m
and (k, x, y) can be obtained from Fn(M) and Fn(M ||k).

The description of EIRO is shown in Fig. 7. EO is the oracle that realizes the extension
attack (line 103 and line 104) and IO is the oracle that realizes the inverse attack (line 203
and line 204).

A.2 Indifferentiability Result for DMMD Hash Function in the Ideal Cipher
Model

We prove that the DMMD hash function is indifferentiable from EIRO as follows.

Theorem 6. DM-MDE @ EIROn where for any tA, tS = tA + O(qE + qD)

ε ≤ 5(lqH+qE+qD)2+2(lqH+qE+qD)
2n+1

where A can make queries to DM-MDCd,n/Fn, E/SE and D/SD at most qH , qE and qD times,
respectively. The maximum blocks of a DM-MDCd,n/Fn query are l blocks.

The proof is shown in Appendix A.3.
We prove that EIRO is indifferentiable from the DMMD hash function as follows.
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Theorem 7. EIROn @ DM-MDCd,n where for any tA, tS = tA + O(qEO + qIO)

ε ≤ 5(lqH+qEO+qIO)2+2(lqH+qEO+qIO)
2n+1

where A can make queries to DM-MDCd,n/Fn at most qH times, the maximum blocks of the
query are l blocks and A can make queries to SEO/EO and SIO/IO at most qEO and qIO

times, respectively. SEO and SIO are simulators that simulate EO and IO respectively.

The proof is shown in Appendix A.4.

A.3 Proof of Theorem 6

We define a simulator S = (SE , SD) as follows where SE and SD are simulators of E and D
respectively.

– SE(k, x) : 001) y ← EO(k, x); 002) Ret y;
– SD(k, y) : 101) x ← IO(k, y); 102) Ret x;

We give a proof using the game sequences Game 0, Game 1, and Game 2. In this proof,
A interacts OH , OE and OD.

– Game 0: This game is the RO scenario. Namely, OH = Fn, OE = SE and OD = SD.
– Game 1: In this game, we modify OH where OH = DM-MDSE . Namely DM-MDSE is the

DMMD hash function using SE .
– Game 2: This is the final game. In this game, we modify all oracles; OH = DM-MDE ,

OE = E and OD = D. Namely, this game is the ideal cipher scenario.

In the following proof, an input-output triple of OE and OD denotes (k, x, y) where OE(k, x) =
y and OD(k, y) = x and w = x ⊕ y. Before starting game sequences, we define chain triples.

Definition 6 (Chain Triples). Triples (m1, x1, y1), . . . , (mi, xi, yi) are chain triples if x1 =
IV and xj+1 = wj (j = 1, . . . , i − 1) hold.

Without loss of generality, we assume that distinguisher A does not repeat a query to any of
its oracles.

Game 0 → Game 1: We show that Game 0 is equal to Game 1 unless the following bad
events occur.

– Event E1: The triple (k, x, y) is such that (k, x, y) is defined by OD in line 202 of IO and
x = IV .

– Event E2: The triple (k, x, y) is such that (k, x, y) is defined by OD in line 202 of IO and
there exists M such that F(M) = x.

– Event E3: The pair (M, z) such that Fn(M) = z and z = IV .
– Event E4: The pairs (M, z) and (M ′, z′) are such that Fn(M) = z, Fn(M ′) = z′ and

z = z′.
– Event E5: The pair (M, z) is such that Fn(M) = z and there exists a triple (k, x, y) such

that z = x and the triple is defined in line 102 of EO or 202 of IO.

In order to prove that Game 0 is equal to Game 1 unless the following bad events occur, we
show the following three points.
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1. In Game 0, unless a bad event occurs, the answers given by OE and OD are consistent
with those given by OH .

2. In Game 1, unless a bad event occurs, the answers given by OE and OD are consistent
with those given by OH .

3. Unless a bad event occurs, for any M OH(M) = Fn(M) in Game 0 and Game 1.

If the above three points hold, |Pr[G1] − Pr[G0]| ≤ Pr[E1 ∨ E2 ∨ E3 ∨ E4 ∨ E5] ≤ Pr[E1] +
Pr[E2] + Pr[E3] + Pr[E4] + Pr[E5]. So we also show that Pr[E1], P r[E2], P r[E3], P r[E4] and
Pr[E5] are negligible.

Before starting the proof of the above points, we give a useful lemma.

Lemma 3. For any chain triples (k1, x1, y1), . . . , (ki, xi, yi) defined by OE or OD, unless a
bad event occurs, wi = Fn(k1|| · · · ||ki).

Proof. To the contrary, assume that there exist chain triples (k1, x1, y1), . . . , (ki, xi, yi) defined
by OE or OD such that wi 6= Fn(k1|| · · · ||ki).

We consider two cases: (Case 1) ∀j ∈ {1, . . . , i} : wj 6= Fn(k1|| · · · ||kj). (Case 2) ∃j ∈
{1, . . . , i − 1} such that wj = Fn(k1|| · · · ||kj) (Note that since wi 6= Fn(k1|| · · · ||ki), j 6= i).

We consider Case 1. From the condition of this case, w1 6= Fn(k1) holds. (k1, x1, y1) is
defined by EO or IO. Since x1 = IV , if (k1, x1, y1) is defined by EO, (k1, x1, y1) is defined in
line 103 of EO. Therefore, in this case w1 = Fn(k1). This contradicts Case 1. If (k1, x1, y1)
is defined by IO, since x1 = IV and w1 6= Fn(k1), this triple is defined in line 202 of IO.
Therefore, event E1 occurs.

We consider Case 2. We assume that j is the maximum number in {1, . . . , i−1} such that
wj = Fn(k1|| · · · ||kj) holds. We divide Case 2 into two cases: (Case 2-1) (kj+1, xj+1, yj+1) is
defined by Fn. (Case 2-2) (kj+1, xj+1, yj+1) is not defined by Fn.

We consider Case 2-1. In this case, ∃M such that wj+1 = Fn(M ||kj+1). From the condition
of j, M 6= k1|| · · · ||kj holds. We divide Case 2-1 into two cases: (Case 2-1-1) M =⊥. (Case
2-1-2) M 6=⊥.

In Case 2-1-1, wj+1 = Fn(kj+1) holds. From the definition of EIRO, (kj+1, xj+1, yj+1) is
defined by Fn in line 103 of EO, 105 of EO, 203 of IO or 204 of IO. Since M =⊥, the line
is 103 of EO or 203 of IO. From the condition of executing line 103 of EO or line 203 of IO,
xj+1 = IV holds. Since xj+1 = wj = Fn(k1|| · · · ||kj) and xj+1 = IV hold, event E3 occurs.

In Case 2-1-2, M 6=⊥ holds. From the definition of EIRO, (kj+1, xj+1, yj+1) is defined by
Fn in line 103 of EO, 104 of EO, 203 of IO or 204 of IO. Since M 6=⊥ holds, the line is
104 of EO or 204 of IO. From the condition of executing line 104 of EO or line 204 of IO,
xj+1 = RO(M) holds. Since xj+1 = wj = Fn(k1|| · · · ||kj) and xj+1 = Fn(M) holds, event E4
occurs.

We consider Case 2-2. Since (kj+1, xj+1, yj+1) is not defined by Fn, the triple is defined
in line 102 of EO or 202 of IO. We consider the case that (kj+1, xj+1, yj+1) is defined in line
102 of EO. In this case, since xj+1 = wj = Fn(k1|| · · · ||kj) holds, when (kj , xj , yj) is defined,
(kj+1, xj+1, yj+1) is already defined (If (mj , xj , yj) is defined before defining (kj + 1, xj+1, yj+1),
wj+1 = Fn(k1|| · · · ||kj+1) holds from line 104 of EO). Therefore in this case event E5. Finally,
we consider the case that (kj+1, xj+1, yj+1) is defined in line 202 of IO. This case occurs in
event E2 or E5.

The proof is completed. ut
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By using the lemma, we prove the three points.
First we prove the first point. From Lemma 3, for any chain triples (k1, x1, y1), . . . , (ki, xi, yi),

unless a bad event occurs, wi = Fn(k1|| · · · ||ki). Since OH = Fn, the answers given by OE

and OD are consistent with those given by OH .
We prove the second point. Since OH uses OE (OH = DM-MDOE ), the answers given by

OE and OD are consistent with those given by OH .
We prove the third point. From Lemma 3, unless a bad event occurs, in Game 1 for any

M OH(M) = Fn(M). And in Game 0 OH = Fn.
Thus Game 1 is equal to Game 0 unless a bad event occurs.
Next we bound the probabilities Pr[E1], P r[E2], P r[E3], P r[E4] and Pr[E5].

– Pr[E1]: An output of SD is chosen uniformly from {0, 1}n. Since the maximum number of
times that OD is called is qD, Pr[E1] ≤ qD

2n .
– Pr[E2]: Since an output of Fn is chosen uniformly from {0, 1}n and the maximum number

of times that Fn is called is lqH + qE + qD, Pr[E2] ≤ (lqH+qE+qD)qD

2n .
– Pr[E3]: Since an output of Fn is chosen uniformly from {0, 1}n and the maximum number

of times that Fn is called is lqH + qE + qD, Pr[E3] ≤ lqH+qE+qD
2n .

– Pr[E4]: Since an output of Fn is chosen uniformly from {0, 1}n and the maximum number
of times that Fn is called is lqH + qE + qD, Pr[E4] ≤ (lqH+qE+qD)n

2n .
– Pr[E5]: Since (k′, x′, y′) is defined in line 102 or 202, the triple is defined independently

from Fn. Since an output of Fn is chosen uniformly from {0, 1}n and the maximum number
of times that Fn is called is lqH + qE + qD, Pr[E5] ≤ (lqH+qE+qD)(qE+qD)

2n

Therefore, |Pr[G1] − Pr[G0] ≤ 2(lqH+qE+qD)2+lqH+qE+qD

2n .

Game 1 → Game 2: Since outputs of SE and SD are chosen uniformly from {0, 1}n, SE = E
and SD = D unless a collision occurs. Thus we have via a straightforward birthday analysis
that |Pr[G2] − Pr[G1]| ≤ (lqH+qE+qD)2

2n+1 .
The proof of the theorem is completed. ut

A.4 Proof of Theorem 7

We define simulator S = (SEO, SIO) as follows.
Simulator S:
SEO(m,x): y ← E(m,x) and S returns y.
SIO(m, y), x ← E−1(m, y) and S returns x.
The running time of S is at most O(qE) time.

This proof utilizes the proof of Theorem 6. The proof involves a hybrid argument starting
in the EIRO scenario, and ending in the ideal cipher scenario through a sequence of mutually
indistinguishable hybrid games.

Game 0. This game is the same as the EIRO scenario. Let G0 be the event that A outputs
1 in this game. Pr[G0] = Pr[DEIRO ⇒ 1] holds.
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Game 1. In this game, A interacts with (DM-MDE , Cd,n). In the proof of Theorem 6, SE(m,x)
returns the output of EO(m, x), and SD(m, y) returns the output of IO(m, y). Therefore, the
view of A in Game 0 is identical with that of A in Game 0 of the proof of Theorem 6. Game 1
is identical with Game 2 in the proof of Theorem 6. Let G1 be the event that A outputs 1 in
this game. From the proof of Theorem 6, |Pr[G1]−Pr[G0]| ≤ 5(lqH+qEO+qIO)2+2(lqH+qEO+qIO)

2n+1 .

Game 2. This is the final game. In this game, A interacts with (DM-MDE , S). Let G2 be
the event that A outputs 1 in this game. Since for a query SE simply returns the output of E
and for a query SD simply returns the output of D, Pr[G2] = Pr[G1].

Now we can complete the proof of Theorem 6 by combining Games 0 to 2, and observing
that Game 1 is the same as EIRO scenario while Game 3 is same as DM-MDE scenario. Hence
we can deduce that ε ≤ 5(lqH+qEO+qIO)2+2(lqH+qEO+qIO)

2n+1 . ut
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