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Abstract

Recently, Dartyge and Sárközy investigated the measures, i.e., the well dis-
tribution measure and the correlation measure of order k, of pseudorandom-
ness of subsets of the set {1, 2, . . . ,N}, and they presented several construc-
tive examples for subsets with strong pseudorandom properties when N is
a prime number. In this article, we present a construction of pseudorandom
subsets using elliptic curves over finite fields and estimate the pseudorandom
measures. Character sums play an important role in the proofs.
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1 Introduction
In many applications (cryptography, simulation, etc.) we need a random subset R
of the positive integers not exceeding a certain fixed integer N. Recently, Dartyge,
Mosaki and Sárközy introduced and studied the pseudo-random measures of sub-
sets of the set of the integers not exceeding N [4, 5, 6]. These measures are closely
related to the measures of pseudorandomness of binary sequences introduced by
Mauduit and Sárközy [13] and of the p-pseudorandom binary sequences defined
by Hubert and Sárközy [10].
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For a subset R of {1, 2, . . . ,N}, define the associated sequence EN by

EN = EN(R) = {e1, . . . , eN} ∈
{

1 − | R |
N

,−| R |
N

}N

with

em =

{
1 − |R|N for m ∈ R
− |R|N otherwise

(m = 1, . . . ,N). (1)

Then the well-distribution measure of the subset R of {1, 2, . . . ,N} is defined by

W(R, EN) = max
a,b,t

∣∣∣∣∣∣∣
t−1∑

j=0

ea+ jb

∣∣∣∣∣∣∣

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤
a + (t − 1)b ≤ N, while the correlation measure of order k of R is defined as

Ck(R, EN) = max
M,D

∣∣∣∣∣∣∣
M∑

m=1

em+d1em+d2 · · · em+dk

∣∣∣∣∣∣∣

where the maximum is taken over all D = (d1, . . . , dk) with non-negative integers
0 ≤ d1 < · · · < dk and M such that M + dk ≤ N. One would expect that these
measures are “small”. Thus we may consider a subset R of {1, 2, . . . ,N} as a
“good” pseudo-random subset if W(R, EN) and Ck(R, EN) (at least for small k) are
small; they must be o(N) and ideally, they are O(N1/2+ε) [7].

Dartyge, Mosaki and Sárközy present some good constructions of pseudo-
random subsets when N is a prime number in [4, 5, 6, 7]. However in applications
one usually needs large families of pseudo-random subsets. It is an interesting
to design “good” pseudo-random subsets for different N (for example, non-prime
numbers) and using different algebraic systems. It is a natural way to choose
elliptic curves over finite fields, partially for the elliptic curve cryptography for
extensive use. We will apply elliptic curves to construct some families of pseudo-
random subsets and analyze their pseudorandomness in the present paper.

We first introduce some notions and basic facts of elliptic curves over finite
fields. Let p > 3 be a (large) prime, Fp the finite field of p elements which we
identify with the set {0, 1, · · · , p− 1}, F∗p the set of non-zero elements of Fp. Let E
be an elliptic curve over Fp, given by an affine Weierstrass equation of the standard
form

y2 = x3 + Ax + B
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with coefficients A, B ∈ Fp and nonzero discriminant, see [8]. It is known that the
set E(Fp) of Fp-rational points of E forms an Abelian group under an appropriate
composition rule denoted by ⊕ and with the point at infinity O as the neutral
element. We recall that

|#E(Fp) − p − 1| ≤ 2p1/2,

where #E(Fp) is the number of Fp-rational points, including the point at infinity
O. The translation map by W ∈ E(Fp) on E(Fp) is defined as

τW : P 7→ P ⊕W.

It is obvious that ( f ◦ τW)(P) = f (τW(P)) = f (P ⊕W).
In this article, for convenience, we always suppose that E(Fp) is a cyclic group

of order N and G ∈ E(Fp) is a generator, i.e., E(Fp) = 〈G〉. In particular, N ∼ p
in this case. A multiple of G is taken by nG = ⊕n

i=1G. We write nG = (xn, yn) ∈
Fp × Fp on E for all 1 ≤ n ≤ N − 1 and set X(nG) = xn and Y(nG) = yn.

We would like to study the pseudorandom properties of the subset R of {1, 2,
. . . ,N} defined by

R :=
{
n | 1 ≤ n ≤ N, X(nG) ≡ h (mod p) for any h ∈ H

}
(2)

where r ∈ Z, s ∈ N, s < p/2 and H = {r, r + 1, . . . , r + s − 1}.
We remark that R can be defined in several different ways using elliptic curves,

we refer to a preprint version of [9], which is available at
http://iml.univ-mrs.fr/editions/preprint2002/preprint2002.html,

and [1, 2, 3] for related issues.

2 The cardinality of R
Exponential sums play an important role in the proofs to estimate the cardinality
of R and its pseudo-random measures.

For any positive integer m, we identify Zm with the residue ring modulo m.
Put

em(z) = exp(2πiz/m).

The exponential sums enter into our problem by means of the following well
known basic identity.
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Lemma 1 ([12]) For any element c ∈ Zm, we have

∑

z∈Zm

em(cz) =

{
m, if c = 0
0, otherwise.

We also need the following statement.

Lemma 2 ([12]) The bound

m−1∑

c=0

∣∣∣∣∣∣∣
u+v∑

z=u+1

em(cz)

∣∣∣∣∣∣∣ ≤ m(1 + log m)

holds for any integers u and 1 ≤ v ≤ m.

Let ψ(z) = exp(2πiz/p) be a classical additive character of Fp. We also need the
following upper bound which is a special case of [11, Corollary 1].

Lemma 3 Let f be a nonconstant rational function and G ∈ E(Fp) be a rational
point of order N. Then the bound

∣∣∣∣∣∣∣∣∣∣

N−1∑
z=0

f (zG),∞

ψ(λ f (zG))eN(ηz)

∣∣∣∣∣∣∣∣∣∣
≤ 2deg( f )p1/2

holds for all λ ∈ F∗p and η ∈ ZN . Hence the bound on incomplete sums
∣∣∣∣∣∣∣∣∣

v∑
z=u

f (zG),∞

ψ(λ f (zG))

∣∣∣∣∣∣∣∣∣
≤ 2deg( f )p1/2(1 + log N)

holds for all λ ∈ F∗p and integers 0 ≤ u < v ≤ N − 1.

We now present a bound on the cardinality of R.

Theorem 1 Let R be defined as in (2). Then the cardinality of R satisfies
∣∣∣∣∣|R| −

sN
p

∣∣∣∣∣ ≤ 4p1/2(1 + log p).
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Proof. From the definition of R in (2) and Lemma 1, we have
r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG) − h)) =

{
p, if n ∈ R
0, otherwise.

Hence by Lemmas 2 and 3 we obtain

|R| =

N∑

n=1

1
p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG) − h))

=
s(N − 1)

p
+

1
p

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)
N∑

n=1

ψ(λX(nG))

≤ s(N − 1)
p

+
1
p

∑

λ∈F∗p

∣∣∣∣∣∣∣
r+s−1∑

h=r

ψ(−λh)

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

N∑

n=1

ψ(λX(nG))

∣∣∣∣∣∣∣

≤ sN
p

+ 4p1/2(1 + log p).

We complete the proof of Theorem 1.

3 Pseudo-random measures of R
Now we present upper bounds on the well-distribution measure and the correlation
measure of order k of R defined in (2). The associated sequence EN defined by (1)
is

em =

{
1 − α for m ∈ R
−α otherwise,

where
α =
| R |
N

=
s
p

+ 8θp−1/2(1 + log p)

with some θ satisfying |θ| < 1, since N ∼ p. Let β = s
p − α.

Throughout this paper, the implied constant in the symbol “ � ” is absolute.

Theorem 2 Let R be a subset of {1, . . . ,N} defined as in (2), we have

W(R, EN) � p1/2(1 + log p)(1 + log N).

Theorem 3 Let R be a subset of {1, . . . ,N} defined as in (2), for k < p we have

Ck(R, EN) � kp1/2(2 + log p)k(1 + log N).
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3.1 Proofs
For 1 ≤ n ≤ N − 1, it is easy to see that

en = (1 − α)
1
p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG) − h))

−α
1 −

1
p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG) − h))



=
1
p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG) − h)) − α

=
s
p
− α +

1
p

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX(nG))

= β +
1
p

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX(nG)). (3)

While eN = −α, since NG = O.

Proof of Theorem 2. Assume that a, b, t ∈ N and 1 ≤ a ≤ a + b(t − 1) ≤ N.
According to (3), we obtain

∣∣∣∣∣∣∣
t−1∑

i=0

ea+ib

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
1
p

t−1∑

i=0

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX((a + ib)G))

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
t−1∑

i=0

β

∣∣∣∣∣∣∣ + 1

≤ 1
p

∑

λ∈F∗p

∣∣∣∣∣∣∣
r+s−1∑

h=r

ψ(−λh)

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

t−1∑

i=0

ψ(λX((a + ib)G))

∣∣∣∣∣∣∣ + |tβ| + 1

≤ 4p1/2(1 + log p)(1 + log N) + |tβ| + 1

by Lemma 2 and Lemma 3 or [1, Lemma 5], which is derived from Lemma 3.
While

|tβ| = 8tθp−1/2(1 + log p) ≤ 16p1/2(1 + log p)

Since t ≤ N ∼ p. So we have
∣∣∣∣∣∣∣

t−1∑

i=0

ea+ib

∣∣∣∣∣∣∣ � p1/2(1 + log p)(1 + log N).

6



We complete the proof of Theorem 2.

Proof of Theorem 3. Assume that integers d1, . . . , dk and M ∈ N with

0 ≤ d1 < · · · < dk,M + dk ≤ N.

Now using (3), we obtain
∣∣∣∣∣∣∣

M∑

m=1

em+d1em+d2 · · · em+dk

∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣

M∑

m=1

k∏

i=1

β +
1
p

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX((m + di)G))



∣∣∣∣∣∣∣∣
+ 1

=
1
pk

∣∣∣∣∣∣∣∣

M∑

m=1

k∏

i=1

pβ +
∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX((m + di)G))



∣∣∣∣∣∣∣∣
+ 1

=
1
pk

∣∣∣∣∣∣∣∣

M∑

m=1

k∑

u=0

∑

1≤ j1<...< ju≤k

(pβ)k−u
u∏

i=1


∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX((m + d ji)G))



∣∣∣∣∣∣∣∣
+ 1

=
1
pk

∣∣∣∣∣∣∣∣

k∑

u=0

(pβ)k−u
∑

1≤ j1<...< ju≤k

∑

λ1∈F∗p
· · ·

∑

λu∈F∗p

r+s−1∑

h=r

ψ(−h(λ1 + . . . + λu))

M∑

m=1

ψ(λ1X((m + d j1)G) + . . . + λuX((m + d ju)G))

∣∣∣∣∣∣∣ + 1

=
1
pk

∣∣∣∣∣∣∣∣

k∑

u=0

(pβ)k−u
∑

1≤ j1<...< ju≤k

∑

λ1∈F∗p

r+s−1∑

h=r

ψ(−hλ1) · · ·
∑

λu∈F∗p

r+s−1∑

h=r

ψ(−hλu)

M∑

m=1

ψ((λ1X ◦ τd j1G + . . . + λuX ◦ τd juG)(mG))

∣∣∣∣∣∣∣ + 1

≤ 1
pk

k∑

u=0

(
k
u

)
(pβ)k−u pu(1 + log p)uZ + 1

(where

∣∣∣∣∣∣∣
M∑

m=1

ψ((λ1X ◦ τd j1G + . . . + λuX ◦ τd juG)(mG))

∣∣∣∣∣∣∣ ≤ Z)
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=
1
pk (pβ + p(1 + log p))kZ + 1

= (β + 1 + log p)kZ + 1 ≤ (2 + log p)kZ + 1.

It suffices to estimate the value of Z, i.e., the upper bound of

M∑

m=1

ψ((λ1X ◦ τd j1G + . . . + λuX ◦ τd juG)(mG))

for any λ1, . . . , λu ∈ F∗p and 1 ≤ u ≤ k. By [1, Lemma 1],

λ1X ◦ τd j1G + . . . + λuX ◦ τd juG

is a nonconstant rational function of degree at most 2u. So by Lemma 3 again, we
obtain

∣∣∣∣∣∣∣
M∑

m=1

ψ((λ1X ◦ τd j1G + . . . + λuX ◦ τd juG)(mG))

∣∣∣∣∣∣∣
≤ 4up1/2(1 + log N) ≤ 4kp1/2(1 + log N).

We complete the proof of Theorem 3 by setting

Z = 4kp1/2(1 + log N).
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[7] C. Dartyge, A. Sárközy. On pseudo-random subsets of Zn. Monatsh. Math.
(2008) DOI 10.1007/s00605-008-0072-0.

[8] A. Enge. Elliptic Curves and Their Applications to Cryptography : An In-
troduction. Kluwer Academic Publishers, Dordrecht, 1999.
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