
A general framework for computational soundness proofs – or–
The computational soundness of the applied pi-calculus

Michael Backes1,3, Dennis Hofheinz2, and Dominique Unruh1
1Saarland University 2CWI 3MPI-SWS

Abstract

We provide a general framework for conducting computa-
tional soundness proofs of symbolic models. Our framework
considers arbitrary sets of constructors, deduction rules, and
computational implementations, and it abstracts away from
many details that are not core for proving computational
soundness such as message scheduling, corruption models,
and even the internal structure of a protocol. We identify
several properties of a so-called simulator such that the exis-
tence of a simulator with all these properties already entails
computational soundness in the sense of preservation of trace
properties in our framework. This simulator-based charac-
terization allows for proving soundness results in a concep-
tually modular and generic way.

We exemplify the usefulness of our framework by proving
the first computational soundness result for the full-fledged
appliedπ-calculus under active attacks. Concretely, we em-
bed the appliedπ-calculus into our framework and give a
sound implementation of public-key encryption.

1 Introduction

Proofs of security protocols are known to be error-prone
and, owing to the distributed-system aspects of multiple in-
terleaved protocol runs, awkward for humans to make. Hence
work towards the automation of such proofs started soon af-
ter the first protocols were developed. From the start, the
actual cryptographic operations in such proofs were ideal-
ized into so-called Dolev-Yao models, following [19, 20, 26],
e.g., see [22, 29, 2, 25, 28, 9]. This idealization sim-
plifies proof construction by freeing proofs from crypto-
graphic details such as computational restrictions, proba-
bilistic behavior, and error probabilities. While it was ini-
tially not clear whether Dolev-Yao models are a sound ab-
straction from real cryptography with its computational se-
curity definitions, a large number of results in the last years
helped to establish a general understanding which crypto-
graphic primitives can or cannot be proven computationally
sound in which adversarial settings under which assump-
tions. (A far from being complete list of these works in-
cludes [3, 7, 5, 6, 24, 27, 18, 10, 21, 15, 17, 4, 23, 16].)

A careful inspection of this series of results, however, re-
veals that the soundness theorems stated in these works, and
even more so the frameworks that underly these theorems,
differ considerably in many respects. These differences range
from various ways of syntactically expressing security proto-
cols and corresponding restrictions on the set of permitted
protocol classes, to different semantics for modelling proto-
col communication and communication with the adversary,
to different (often incomparable) notions of computational
soundness, to different assumptions on the adversary’s ca-
pabilities, etc.1 Moreover, many of these frameworks were
freshly invented in the respective papers; they hence lack
support of suitable verification tools and are more likely to
suffer from idiosyncracies than more established frameworks
for reasoning about security protocols.

The lack of a common framework that underlies compu-
tational soundness results complicates the thorough compar-
ison of their strengths and limitations. Even worse, it often
even remains unclear if restrictions in computational sound-
ness results, e.g., to require additional randomization inthe
cryptographic implementation or to require the absence of
key cycles, stem from idiosynracies of the underlying frame-
work, or if they constitute conceptual limitations for estab-
lishing the desired computational soundness result for the
prevalent cryptographic definitions. Moreover, framework-
specific assumptions complicate the extension of these re-
sults to other frameworks, or to more comprehensive settings,
e.g., a more expressive set of cryptographic primitives or a
stronger adversary. Actually, such results are often proven
from scratch again (for an extended new framework).

The present situation calls for a general unified framework

1To get a small impression of the diversity of the statements:[7, 23, 16]
all establish (among others results) the computational soundness of symbolic
encryption (either symmetric or asymmetric): First, [7] expresses protocols
as probabilistic input-output automata, exploits the communication model
offered by the Reactive Simulatability (RSIM) framework [8], and shows
computational soundness in the sense of reactive simulatability for IND-
CCA2-secure, additionally randomized encryption schemes. Second, [23]
expresses protocols and their communication using a newly introduced con-
cept called abstract algebras, and shows computational soundness as preser-
vation of static equivalence in the presence of an adaptive,but passive adver-
sary for IND-CPA-secure encryption schemes that are additionally length-
concealing. Third, [16] expresses protocols and their communication within
a small fragment of the appliedπ-calculus, and shows computational sound-
ness as preservation of observational equivalence in the presence of an active
adversary for IND-P1-C1-secure encryption schemes.

1

for computational soundness results. This framework should
be designed in a modular, extensible way and allow for con-
veniently enbedding existing frameworks, thereby leveraging
existing soundness results. Moreover, the framework should
be tightly linked to a formal calculus that is well understood
and accepted by the scientific community, that is expressive
enough for expressing and reasoning about state-of-the-art
protocols, and that is accessible to state-of-the-art verifica-
tion tools.

1.1 Our contribution

A general framework for computational soundness
proofs. We provide a general framework for conducting
computational soundness proofs of symbolic models that al-
lows to formulate soundness results in a unified and compa-
rable manner. The framework comprises a general definition
of symbolic protocols, their symbolic and computational ex-
ecution, as well as a definition of computational soundness
for trace properties.2

The framework does not put constraints on the symbolic
model; in particular, it permits arbitrary sets of constructors,
deduction rules, and computational implementations, and it
is specifically tailored at establishing soundness resultsin
that it abstracts away from many details that are not core for
proving computational soundness such as message schedul-
ing, corruption models, and even the internal structure of a
protocol. Instead, we treat a protocol as one entity that inter-
acts with an attacker. This allows for a unified treatment of
different symbolic models.

In order to simplify conducting soundness proofs in this
framework, we identify several properties of a so-called
simulator such that the existence of a simulator with all
these properties already entails computational soundnessin
the sense of preservation of trace properties in our frame-
work. Intuitively, a simulator interacts with the symbolic
protocol in a way that mimics the interaction of a compu-
tational adversary with the implementation. It thus might re-
mind of the simulation-based proofs of computational sound-
ness [7, 5, 6, 15], but it does not depend on framework-
specific details such as scheduling, polynomial runtime re-
strictions, etc. This simulator-based characterization allows
for proving soundness results in a conceptually modular and
generic way, as it holds for arbitrary models that are embed-
ded in the framework.

Computational soundness of the appliedπ-calculus As
the second contribution of this paper, we show how to use
our framework to establish the first computational soundness

2We currently only consider the preservation of trace properties in the
framework. Existing definitions of the preservation of moresophisticated
properties such as observational equivalence [16] can be easily cast in
our framework. However, deriving a sufficient criterion forcomputational
soundness by means of the existence of a good simulator, see below, requires
conceptual future work.

result for a fully-fledged appliedπ-calculus under active at-
tacks. We consider the process calculus proposed in [14]
additionally augmented with events; the calculus in [14] it-
self is a combination of the original appliedπ-calculus [1]
with one of its dialects [13]. This combination offers the
richness of the original appliedπ-calculus while additionally
being accessible to state-of-the-art verification tool such as
ProVerif [12]. We first syntactically embed the appliedπ-
calculus into our framework. This embedding is particularly
instructive because the calculus’ syntax vastly differs from
the framework’s syntax. We then show that computational
soundness of the embedding entails computational soundness
of the appliedπ-calculus (in the sense of preservation of trace
properties). Second, we provide a computational implemen-
tation of the embedding, and we prove it sound within our
framework by constructing a suitable simulator. We stress
that this result not only implies that our embedding is com-
putationally sound; it also proves the appliedπ-calculus itself
sound under active attacks.

As an example, we used ProVerif to analyze the entity au-
thentication property of the Needham-Schroeder-Lowe pro-
tocol. Using the aforementioned results, this yields an imple-
mentation of this protocol within the appliedπ-calculus that
is provably secure under active attacks.

1.2 Outline of the paper

Section 2 introduces our framework for computational
soundness proofs. Section 3 introduces the notion of a sim-
ulator, and it identifies which properties a simulator need to
have to entail a computational soundness result. Section 4
contains a case study: how to establish the computational
soundness of public-key encryption within the general frame-
work by constructing a suitable simulator. Section 5 estab-
lishes the computational soundness of the appliedπ-calculus.
Section 6 concludes and outlines future work.

2 A general framework for computational
soundness proofs

2.1 Preliminaries

We first introduce basic notations that are used in this pa-
per, as well as central concepts such as constructors, destruc-
tors, and deduction relations.

Notation Given a termt and a substitutionϕ, we denote by
tϕ the result of applyingϕ to t. Given a functionf , f(x :=
y) is the functionf ′ with f ′(x) = y andf ′(z) = f(z) for
z 6= x. We abbreviatex1, . . . , xn with x if n is clear from the
context. We call a setM efficiently decidableif there is a de-
terministic polynomial-time algorithm deciding membership
in M . We callM prefix-closedif x ∈ M impliesx′ ∈ M

2

for all prefixesx′ of x. A non-negative functionf is negligi-
ble if for every c and sufficiently largen, f(n) < n−c. f is
overwhelmingif 1− f is negligible.

Definition 1 (Constructors and destructors) A construc-
tor C is a symbol with an arity. For a (possibly infinite) set
of constructorsC, we denote the set of all terms over these
constructors (respecting the arities) byT (C). We write
C/n ∈ C to denote thatC contains a constructorC with
arity n.

A destructorD of arity n, writtenD/n, over a set of con-
structorsC is a partial mapT (C)n → T (C). If D is unde-
fined ont, we writeD(t) = ⊥.

In the following, we only consider sets of constructorsC

such that the same constructors cannot have different arities,
i.e.,C/n, C/m ∈ C impliesn = m. (This restriction simpli-
fies notion and is without loss of generality, as one can sim-
ulate multi-arity constructors by adding the arity to the name
of the constructor.) We moreover assume that constructors
have symbols that are bitstrings, and similarly for destruc-
tors and node identifiers in symbolic protocols as introduced
below.

A predicateP of arity n over a set of constructorsC is
a subset ofT (C)n. Since each predicateP can be real-
ized using a destructorD by definingD(t1, . . . , tn) := t1
if P (t1, . . . , tn) = true and D(t1, . . . , tn) := ⊥ other-
wise, predicates however do not require an explicit treatment.
Predicates can be used to describe arbitrary tests that a proto-
col may perform. In particular, they can describe the equality
test= which is the diagonal onT 2 for free equational theo-
ries and the equivalence relation between terms in non-free
equational theories.

We now define which terms can be deduced from other
terms; this is formalized using a deduction relation` over a
set of termsT . The intuition ofS ` m for S ⊆ T andm ∈ T
is that the termm can be deduced from the terms inS.

Definition 2 (Deduction relation) A deduction relation`
over a set of constructorsC is a relation between2T (C) and
T (C).

In most cases, the adversary can apply all constructors and
destructors. This can be modelled by definingS ` t ⇒ S `
C(t) for every constructorC andS ` t ∧ D(t) 6= ⊥ ⇒
S ` D(t) for every destructorD, respectively. However, our
model does not assume this in general, i.e., it supports private
constructors as used by, e.g., ProVerif.

2.2 Symbolic protocols

We define a symbolic protocol as a tree with a distin-
guished root and with labels on both nodes and edges. In-
tuitively, the node labels correspond to different protocol ac-
tions: Constructor and destructor nodesproduce terms (us-
ing a constructor or destructor);communication nodescorre-
spond to receive and send operations;nondeterministic nodes

encode nondeterministic choices in the protocol. Moreover,
the node labels contain unique identifiers for each node. The
edge labels intuitively allow for distinguishing branchesin
the protocol execution, e.g., destructor nodes have two out-
going edges labelled withyes andno, corresponding to the
two cases that the destructor is defined on the input term or
not; hence we can, e.g., speak about theyes-successor of a
destructor node.

Definition 3 (Symbolic protocol) A symbolic protocolis a
tree with a distinguished root and labels on both edges and
nodes. Each node has a unique identifierN and one of the
following types (labels):

• Constructor nodesare annotated with a constructor
C/n together with the identifiers ofn (not necessar-
ily distinct) nodes. Constructor nodes have exactly one
successor; the corresponding edge is labeled withyes .

• Destructor nodesare annotated with a destructorD/n
together with the identifiers ofn (not necessarily dis-
tinct) nodes. Destructor nodes have exactly two succes-
sors; the corresponding edges are labeled withyes and
no, respectively.

• Communication nodesare annotated with the identi-
fier of n ≥ 0 nodes and with a bitstringl called out-
metadata (out-metadata can be used to, e.g., model
additional information leakage to the adversary). A
communication node can have countably many suc-
cessors; the corresponding edges are labeled with bit-
strings called in-metadata (in-metadata allows the ad-
versary to control the protocol flow).

• Nondeterministic nodeshave no further annotation.
Nondetermininistic nodes have at least one and at most
finitely many successors; the corresponding edges are
labeled with bitstrings.

If a nodeN contains an identifierN ′ in its label, thenN ′

has to be on the path from the root toN (including the root,
excludingN), andN ′ must be a constructor node, destruc-
tor node, or communication node. In caseN ′ is a destruc-
tor node, then the path fromN ′ to N has to additionally go
through the outgoing edge ofN ′ with labelyes .

Assigning each nondeterministic node a probability distri-
bution over its successors yields the notion of a probabilistic
symbolic protocol.

Definition 4 (Probabilistic symbolic protocol) A proba-
bilistic symbolic protocolis a symbolic protocol, where
each nondeterministic node is additionally annotated witha
probability distribution on the labels of the outgoing edges.

In the following, we assume that such a probability dis-
tribution is encoded as a list of pairs, consisting of a label

3

and a rational probability. Any probabilistic symbolic pro-
tocol can be transformed canonically into a corresponding
symbolic protocol by erasing the probability distributions.

Probabilistic symbolic protocols will be crucial in the
definition of computational soundness. Moreover, they of-
ten constitute an intermediate technical step within a larger
proof. For instance, reasoning about implementations of
symbolic protocols is difficult since they do not have a unique
such implementation if nondeterministic nodes are present,
in contrast to probabilistic symbolic protocols. With the no-
tion of probabilistic symbolic protocols at hand, one can in-
stead consider the set of all implementations of all probabilis-
tic symbolic protocols whose corresponding symbolic proto-
col isΠ.

Definition 5 (Efficient protocol) We call a probabilistic
symbolic protocolefficient if:

• There is a polynomialp such that for any nodeN , the
length of the identifier ofN is bounded byp(m) where
m is the length (including the total length of the edge-
labels) of the path from the root toN .

• There is a deterministic polynomial-time algorithm that,
given the identifiers of all nodes and the edge labels on
the path to a nodeN computes the label ofN .

We finally provide the notions of a symbolic model and of
a symbolic execution of a protocol.

Definition 6 (Symbolic model) A symbolic modelM =
(C,N,D,`) consists of a set of constructorsC, a sub-
setN ⊆ C containing only constructors of arity0 (called
nonces), a set of destructorsD overC, and a deduction re-
lation ` overC.

The symbolic execution of a protocol for a given sym-
bolic model consists of a sequence of triples(S, ν, f) where
S represents the knowledge of the adversary,ν represents
the current node identifier in the protocol, andf represents
a partial function mapping already processed node identifiers
to messages.

Definition 7 (Symbolic execution)Let a symbolic model
(C,N,D,`) and a symbolic protocolΠ be given. Afull
traceis a (finite) list of tuples(Si, νi, fi) such that the fol-
lowing conditions hold:

• Correct start: S1 = ∅, ν1 is the root ofΠ, f1 is a totally
undefined partial function mapping node identifiers to
terms.

• Valid transition: For every two consecutive tuples
(S, ν, f) and (S′, ν′, f ′) in the list, let ν̃ be the node
identifiers in the label ofν and t̃k := f(ν̃k). We have:

– If ν is a constructor node with constructorC, then
S′ = S, ν′ is the successor ofν in Π, andf ′ =
f(ν := m) for m := C(t̃).

– If ν is a destructor node with destructorD, then
S′ = S. Letm := D(t̃). If m 6= ⊥, thenν′ is the
yes-successor ofν in Π; if m = ⊥, thenν′ is the
no-successor ofν in Π. We havef ′ = f(ν := m).

– If ν is a communication node, thenS′ = S ∪ {t̃},
ν′ is the successor ofν in Π, and there exists anm
with S′ ` m andf ′ = f(ν := m).

– If ν is a nondeterministic node, thenS′ = S, ν′ is
some successor ofν in Π, andf ′ = f .

A list of node identifiers(νi) is a node traceif there is a
full trace with these node identifiers.

2.3 Computational model

We now define the computation implementation of a sym-
bolic model as a family of functions that provide computation
interpretations to constructors and destructors.

Definition 8 (Computational implementation) Let a sym-
bolic modelM = (C,N,D,`) be given. Acomputa-
tional implementation ofM is a family of functionsA =
(Ax)x∈C∪D such thatAC for C/n ∈ C \N is a total deter-
ministic functionN× ({0, 1}∗)n → {0, 1}∗, AD for D/n ∈
D is a partial deterministic functionN × ({0, 1}∗)n →
{0, 1}∗, andAN for N ∈ N is a probabilistic function with
range{0, 1}∗ (i.e., it specifies a probability distribution that
depends on its argument).

All functionsAC , AD have to be computable in deter-
ministic polynomial-time, andAN has to be computable in
probabilistic polynomial-time.3

RequiringAC andAD to be deterministic is without loss
of generality, since one can always add an explicit random-
ness argument that takes a nonce as input.

The computational execution of a probabilistic symbolic
protocol defines an overall probability distribution on allpos-
sible node traces that the protocol proceeds through. In con-
trast to symbolic executions, we do not aim at defining the
notion of a full trace: the adversary’s symbolic knowledgeS
has no formal counterpart in the computational setting, and
the functionf occuring in the computational executions will
not be needed in our later results.

Definition 9 (Computational execution) Let a symbolic
modelM = (C,N,D,`), a computational implementation
A of M, and a probabilistic symbolic protocolΠ be given.
Let a probabilistic polynomial-time interactive machineE
(the adversary) be given (polynomial-time in the sense that
the number of steps in all activations are bounded in the

3More precisely, there has to exist a single uniform probabilistic
polynomial-time algorithmA that, given the name ofC, D, or N , together
with an integerk and the inputsm, computes the output ofAC , AD, and
AN or determines that the output is undefined. This algorithm must run in
polynomial-time ink+ |m| and may not use random coins when computing
AC andAD .

4

length of the first input ofE), and letp be a polynomial.
We define a probability distributionNodes

p
M,A,Π,E(k) on (fi-

nite) lists of node identifiers (νi) according to the following
probabilistic algorithm (both the algorithm andE are run on
input1k):

• Initial state: ν1 := ν is the root ofΠ. Let f be an
initially empty partial function from node identifiers to
bitstrings, andn an initially empty partial function from
N to bitstrings.

• For i = 1, . . . do the following:

– Let ν̃ be the node identifiers in the label ofν. Let
m̃k := f(ν̃k).

– Proceed depending on the type of nodeν:

∗ If ν is a constructor node with constructor
C ∈ C \N, thenm′ := AC(k, m̃) let ν′ be
the successor ofν, and letf ′ = f(ν := m′).
Letf := f ′ andν := ν′.
∗ If ν is a constructor node with constructor

N ∈ N: Let m′ := n(N) if n(N) 6= ⊥
and samplem′ according toAN (k) other-
wise. Letν′ be the successor ofν, f ′ :=
f(ν := m′), andn′ := n(N := m′). Let
ν := ν′, f := f ′ andn := n′.
∗ If ν is a destructor node with destructorD,

thenm′ := AD(k, m̃). If m′ 6= ⊥, thenν′ is
theyes-successor ofν, if m′ = ⊥, thenν′ is
theno-successor ofν. Letf ′ := f(ν := m′).
Letν := ν′ andf := f ′.
∗ If ν is a communication node labeled with a

string l, give (l, m̃) to E and get an answer
(l′, m′). Abort the loop ifE halts. Letν′

be the successor ofν along the edge labeled
l′ (or the lexicographically smallest edge if
there is no edge with labell′). Let f :=
f(ν := m′) andν := ν′.
∗ If ν is a nondeterministic node, letD be the

probability distribution on the label ofν. Pick
ν′ according to the distributionD, and let
ν := ν′.

– Letνi := ν.

– Let len be the number of nodes from the root toν
plus the total length of all bitstrings in the range
of f . If len > p(k), stop.

2.4 Computational Soundness

We first define trace properties and their fulfillment by a
(probabilistic) symbolic protocol. After that, we providethe
definition of computational soundness for trace properties.

Definition 10 (Trace property) A trace propertyP is an ef-
ficiently decidable and prefix-closed set of (finite) lists of
node identifiers.

Let M = (C,N,D,`) be a symbolic model andΠ′ a
symbolic protocol. ThenΠ′ symbolically satisfiesa trace
propertyP in M iff every node trace ofΠ′ is contained inP .
LetA be a computational implementation ofM and letΠ be
a probabilistic symbolic protocol. Then(Π, A) computation-
ally satisfiesa trace propertyP in M iff for all probabilistic
polynomial-time interactive machinesE and all polynomials
p, the probability is overwhelming thatNodes

p
M,A,Π,E(k) is

contained inP .

Definition 11 (Computational soundness)A com-
putational implementation A of a symbolic model
M = (C,N,D,`) is computationally soundfor a
classP of symbolic protocols iff for every trace property
P and for every efficient probabilistic symbolic protocol
Π, we have that(Π, A) computationally satisfiesP if the
corresponding symbolic protocolΠ′ of Π symbolically
satisfiesP andΠ′ ∈ P .

3 On simulators that entail computational
soundness proofs

In this section, we introduce the notion of a simulator and
identify several properties a simulator might enjoy. We show
that the existence of a simulator that enjoys all of these prop-
erties already suffices to establish computational soundness
in the sense of Definition 11. Future soundness proofs can
thus concentrate on the construction of a suitable simulator.

In the following, we fix a symbolic modelM =
(C,N,D,`) and a computational implementationA of M.
Let Tx(C) denote the set of terms over the constructorsC

that may contain variables, i.e,T (C) are the ground terms in
Tx(C). Similarly, letTx(C,D) denote the set of terms over
constructorsC and destructorsD that contain variables, and
let T (C,D) denote the corresponding ground terms. By the
definition of destructors, anyt ∈ T (C,D) evaluates to some
t′ ∈ T (C)∪ {⊥}. We writeeval(t) to denote this termt′. In
the following, we moreover assume that whenever a machine
sends a term or a node, the term / node is suitably encoded as
bitstring.

Definition 12 (Question, answer, valid substitution)A
questionis a term inTx(C,D). An answerA to a question
Q is a termQ = b whereb ∈ {true, false}. An answerA is
correctfor a questionQ ∈ T (C,D) iff b = (eval(Q) 6= ⊥).
A substitutionϕ from variables toT (C) is valid for a setA
of answersif Aϕ is correct for allA ∈ A.

We proceed by introducing the notion of a simulator, es-
sentially by imposing syntactic constraints on the set of all
interactive machines.

Definition 13 (Simulator) A simulatoris an interactive ma-
chineSim that satisfies the following syntactic requirements:
• If it is activated with a questionQ, it sends an answer

to Q.

5

• If it is activated with a termt ∈ Tx(C,D), it replies
with a termm ∈ Tx(C,D).
• If it is activated with(info, ν, t) whereν is a node iden-

tifier andt ∈ T (C), it either replies with(proceed), or
with (terminate).
• At any point (in particular instead of sending a reply),

it may terminate and output eitherfail or a substitution
ϕ from variables toT (C).

A simulator Sim is intuitively expected to constitute a
translation routine that transforms a computational attack
into a corresponding symbolic attack. ThusSim essentially
translates bitstrings to terms, and vice versa. GrantingSim

the ability to process terms with variables (i.e., unknown sub-
terms) freesSim from providing a final translation at the time
a term is sent; instead,Sim can lazily complement transla-
tions if it is subsequently queried with a corresponding ques-
tion when the value of such a variable determines the flow of
the protocol.

We proceed by defining the hybrid execution of a proba-
bilistic symbolic protocol. We call this execution hybrid be-
cause it is a mixture of the symbolic and the computational
execution. Roughly, we define a hybrid protocol machineΠC

that is associated toΠ. Intuitively, ΠC behaves asΠ but in-
coming communication terms are allowed to have variables
thatΠC lazily instantiates by asking questions to a simulator.

Definition 14 (Hybrid execution) Let Π be a probabilistic
symbolic protocol, and letSim be a simulator. We define a
probability distributionH -Trace

M,Π,Sim(k) on (finite) lists
of tuples(Si, νi, fi) called thefull hybrid traceaccording to
the following probabilistic algorithmΠC , run on input1k,
that interacts withSim. (ΠC is called the hybrid protocol
machine associated withΠ and internally runs a symbolic
simulation ofΠ as follows:)
• Start: S1 := S := ∅, ν1 := ν is the root ofΠ, and

f1 := f are totally undefined partial functions mapping
node identifiers toTx(C,D). RunΠ onν.
• Transition: For i = 1, . . . do the following:

– Let ν̃ be the node identifiers in the label ofν. Let
m̃k := f(ν̃k).

– Proceed depending on the type ofν:

∗ If ν is a constructor node with constructorC,
let m := C (̃t), ν′ be the successor ofν, and
f ′ := f(ν := m). Letν := ν′ andf := f ′.
∗ If ν is a destructor node with destructorD,

then letm := D(̃t). If m is ground, then letν′

be theyes- or no-successor ofν, depending
on whethereval(m) 6= ⊥ or not, and letf ′ :=
f(ν := eval(m)). If m is not ground, then
askSim the questionm. If the answer ism =
true, let f ′ := f(ν := m) and letν′ be the
yes-successor ofν. Otherwise letν′ be the
no-successor ofν andf ′ := f . Let ν := ν′

andf := f ′.

∗ If ν is a communication node with out-
metadatal, send(l, t̃) toSim. Upon receiving
(l′, m) with l ∈ {0, 1}∗ andm ∈ Tx(C,D)
from Sim, let f ′ := f(ν := m), let ν′ be the
successor ofν with in-metadatal′ (or the lex-
icographically smallest successor, ifl′ does
not occur), and letS′ := S ∪ {m}. Let
S := S′, ν := ν′, andf := f ′.
∗ If ν is a nondeterministic node, sampleν′ ac-

cording to the probability distribution speci-
fied inν. Letν := ν′.

– Send(info, ν, t) to Sim . When receiving an an-
swer(proceed) fromSim, continue. When receiv-
ing (terminate), stop.

– If Sim has output a substitutionϕ or fail , stop.
Otherwise let(Si, νi, fi) := (S, ν, f).

We writeSim + ΠC to denote the execution ofSim and
ΠC . We denote the probability on node traces of this execu-
tion by H -Nodes

M,Π,Sim(k). By H -SubstM,Π,Sim(k) we
denote the probability on the substitution that is output by
Sim at the end of this execution (or⊥ if Sim outputsfail).
By H -AnswersM,Π,Sim(k) we denote the probability on the
list of answers sent bySim in the execution.

We proceed by defining several properties of a simulator,
such as never outputtingfail and thus causing the hybrid ex-
ecution to abort, correctly answering all queries, or adhering
to a Dolev-Yao style deduction relation. Later we will show
that simulators that satisfy all these properties entail com-
putational soundness results. Treating these properties sep-
arately instead of immediately conjoining them into a gen-
eral soundness criterion allows us to more careful identify
where these individual properties are exploited in computa-
tional soundness proofs.

The first property – abort-freeness – ensures thatSim only
outputsfail with negligible probability.

Definition 15 (Abort-free simulator) A simulator Sim is
abort-freefor M andΠ, if the probability thatSim outputs
fail in the hybrid executionSim + ΠC is negligible.

The next property – consistency – captures that the node
traces obtained by interacting withSim adhere to the rules
from Definition 7 that determine the successor node. More
precisely, wheneverSim answers a question that will deter-
mine the successor node in a hybrid execution, this answer
will be consistent with the rules of Definition 7 for the full
hybrid trace (with substituted variables).

Definition 16 (Consistent simulator) A simulator Sim is
consistent for M and Π, if with overwhelming prob-
ability there exists a substitutionϕ that is valid for
H -AnswersM,Π,Sim(k).

The next property – Dolev-Yao-style – captures thatSim

adheres to the deduction relation` in Definition 7 for com-
munication nodes. More precisely, the communication terms

6

thatSim sendsto the symbolic protocol have to be derivable
from Sim ’s symbolic view so far. (However, this is formally
only determinedafterSim ’s substitutionϕ is applied.)

Definition 17 (Dolev-Yao style simulator) A simulator
Sim is Dolev-Yao style(short: DY) for M and Π, if with
overwhelming probability the following holds:

Whenever Sim outputs a valid substitionϕ for
H -AnswersM,Π,Sim(k) in a given execution ofSim + ΠC ,
let t` be the`-th term sent fromΠC to Sim during the pro-
cessing of a communication node in a given execution of
Sim + ΠC , and letm` be the response sent fromSim to ΠC

in that execution (i.e., the term sent fromSim to ΠC directly
after receivingt`).

Then for all`, we havet1ϕ, . . . , t`ϕ ` m`ϕ.

The final property – indistinguishability – captures that
the hybrid node traces are computationally indistinguishable
from real node traces, i.e., the corresponding random vari-
ables cannot be distinguished by any probabilistic algorithm
that runs in polynomial time in the security parameter. We

write
c
≈ to denote computational indistinguishability.

Definition 18 (Indistinguishable simulator) A simulator
Sim is indistinguishablefor M, Π, an implementationA, an
adversaryE, and a polynomialp, if

Nodes
p
M,A,Π,E(k)

c
≈ H -NodesM,Π,Sim(k),

i.e., if the node trace and the hybrid node trace are computa-
tionally indistinguishable.

We define the following abbreviation.

Definition 19 (Good simulator) A simulator isgoodfor M,
Π, A, E, andp if it is abort-free, consistent, and Dolev-Yao
style forM, andΠ,and indistinguishable forM, Π, A, E,
andp.

We can now formally state and prove the main result of
this section: the existence of a good simulator implies com-
putational soundness.

Theorem 1 (Good simulator implies soundness)LetM =
(C,N,D,`) be a symbolic model, letP be a class of sym-
bolic protocols, and letA be a computational implementation
of M. Assume that for every efficient probabilistic symbolic
protocolΠ (whose corresponding symbolic protocol is inP),
every probabilistic polynomial-time adversaryE, and every
polynomialp, there exists a good simulator forM, Π, A, E,
andp. ThenA is computationally sound for protocols inP .

Proof. We have to show that for every probabilistic symbolic
protocolΠ, we have that(Π, A) computationally satisfiesP
wheneverΠ′ symbolically satisfies a propertyP (whereΠ′ is
the corresponding symbolic protocol ofΠ). Thus, for every
E andp, Nodes

p
M,A,Π,E(k) has to be contained inP with

overwhelming probability. FixΠ, E, andp, and letSim be
a good simulator forM, Π, A, E, andp. Let AP denote a
polynomial-time algorithm that decides propertyP .

We first show a lemma on the hybrid node traces and then
proceed with the overall proof; the proof of the lemma is
postponed to Appendix C.

Lemma 1 Consider a hybrid execution ofSim + ΠC in
whichSim is abort-free, consistent and DY, i.e.,
• Sim does not outputfail ,
• Sim finally outputs a substitionϕ that is valid forSim ’s

answers in this execution,
• Sim behaves as a Dolev-Yao adversary, i.e., we have
{t1, . . . , t`} ` m` for all ti andm` as in Definition 17
and all `.

Let tr be the full hybrid trace of that execution. Thentr ′ :=
trϕ is a full symbolic trace ofΠ′.

Lemma 1 immediately entails that the probability is over-
whelming thatH -NodesM,Π,Sim(k) is a symbolic node trace
of Π′, and hence thatH -Nodes

M,Π,Sim ∈ P . SinceAP de-
cidesP , this means that

Pr
[

AP(H -Nodes
M,Π,Sim(k)) = 1

]

is overwhelming. (1)

By Sim ’s indistinguishability property, we know that

Nodes
p
M,A,Π,E(k)

c
≈ H -NodesM,Π,Sim(k).

Since AP is polynomial-time in its input, and
Nodes

p
M,A,Π,E(k) is polynomially-sized in k by con-

struction, this implies that

Pr
[

AP(Nodes
p
M,A,Π,E(k)) = 1

]

is overwhelming,

and hence thatNodes
p
M,A,Π,E(k) ∈ P with overwhelming

probability. This concludes the proof of Theorem 1. �

4 Case study: computational soundness of
public-key encryption

In this section, we provide a symbolic model that allows
for expressing encryption, decryption and pairs, and we de-
rive criteria under which a computational execution of that
model is computationally sound.

The symbolic model. We first specify the symbolic model
M = (C,N,D,`):
• Constructors: We haveC := {E/3, pk/1, sk/1,

pair/2, garbage/1, garbageE/2}∪N with N = NP ∪
NE . HereNP andNE are countably infinite sets rep-
resenting protocol and adversary nonces, respectively.
Intuitively, E(pk (r′), m, r) encryptsm using the public
key pk (r′) and randomnessr. garbage andgarbageE

are constructors necessary to express certain invalid
terms the adversary may send.

7

• Destructors: D := {ispk/1, isenc/1, D/2, fst/1,
snd/1, pkof /1, equals/2}. The destructorsispk and
isenc realize predicates to test whether a term is a pub-
lic key or a ciphertext, respectively.pkof extracts the
public key from a ciphertext.D(sk (r), c) decrypts the
ciphertextc.
The behavior of the destructors is given by the follow-
ing rules; an application matching none of these rules
evaluates to⊥:

D(sk (t1), E(pk (t1), m, t2)) = m

ispk (pk (t)) = pk (t)

isenc(E(pk (t1), t2, t3)) = E(pk (t1), t2, t3)

isenc(garbageE (pk (t1), t2)) = garbageE (pk (t1), t2)

fst(pair (x, y)) = x

snd(pair (x, y)) = y

pkof (E (pk (t1),m, t2)) = pk (t1)

pkof (garbageE (pk (t1), t2)) = pk (t1)

• Deduction relation:̀ is the smallest relation such that
m ∈ S ⇒ S ` m, N ∈ NE ⇒ S ` N , and such that
for any constructor or destructorf /∈ C ∪ D \ N and
for any t1, . . . , tn with S ` t andf(t) 6= ⊥ we have
S ` f(t).

The computational implementation. Obtaining a compu-
tational soundness result for the symbolic modelM requires
its implementation to use an IND-CCA2 secure encryption
scheme. More precisely, we require that(Apk , Ask), AE , and
AD form the key generation, encryption and decryption algo-
rithm of an IND-CCA2-secure scheme. LetAispk (m) = m
andAisenc(m) = m iff m is a public key or a ciphertext, re-
spectively. (Only a syntactic check is performed; it is not nec-
essary to check whetherm was correctly generated.)Apkof

extracts the public key from a ciphertext, i.e., we assume that
ciphertexts are tagged with their public key. Nonces are im-
plemented as randomk-bit strings. Apair , Afst , andAsnd

construct and destruct pairs. We require that the implemen-
tation of the constructors are length regular, i.e., the length
of the result of applying a constructor depends only on the
lengths of the arguments. No restrictions are put onAgarbage

andAgarbageE as these are never actually used.

Protocol conditions. The computational soundness result
we derive in this section requires that the symbolic proto-
col satisfies certain constraints. In a nutshell, these con-
straints require that encryption and key generation alwaysuse
fresh randomness, that decryption only uses honestly gen-
erated secrets keys, and that the protocol does not produce
garbage terms. We call protocols satisfying these conditions
encryption-safe. For an exact characterization of the assump-
tions concerning the implementation and of the protocol con-
ditions, we refer to Appendix D.

Theorem 2 A is a computationally sound implementation of
M for encryption-safe protocols.

Proof sketch:We construct a simulatorSim that internally
runs the adversaryE and forwards the messages betweenE
and the protocol to the protocolΠC in the hybrid model.
Sim translates all terms sent by the protocol into bitstrings
by evaluating all constructorsC using their implementation
AC . The values of protocol nonces are chosen bySim . In the
other direction,Sim converts bitstrings to terms by apply-
ing the destructorsAD, Afst , Asnd , andApkof . SinceSim

chooses the values of all protocol nonces, it knows the secret
keys needed to parse ciphertexts encrypted with respect to
honestly generated public keys. Ciphertextsc with respect
to other public keys are considered as invalid encryptions
garbageE (. . .). This is possible since the protocol only at-
tempts to decrypt using honestly generated secret keys. Since
the translation between bitstrings and terms is done using the
implementation of constructors and destructors,Sim is in-
distinguishable. Consistency and abort-freeness follow di-
rectly from the construction. To show thatSim is DY, we
construct another simulatorSimf that behaves likeSim but
uses fake encryptions: Instead of applyingAE to the plain-
text m, it instead applies it to an all-zero string of the same
length. From the IND-CCA property we get that the execu-
tions ofSim andSimf are indistinguishable. We show that
if Simf is not DY, then a certain termtbad is sent bySimf .
The termtbad is shown to contains a nonce that is never ac-
cessed (asSimf does not have to compute the plaintexts of
encryptions) and hence the bitstringmbad corresponding to
tbad is information-theoretically hidden. However,mbad is
easy to extract from the message sent byE using destructor
applications. Hence we have a contradiction andSimf is DY.
Since the executions ofSimf andSim are indistinguisable,
Sim is DY. ThusSim is good and the theorem follows. A
detailed proof is given in Appendix D. �

5 Computational soundness of the appliedπ-
calculus

In this section we show how to use our framework to
establish the first computational soundness result for the
applied π-calculus. Strictly speaking, we consider the
process calculus proposed in [14] additionally augmented
with events. The calculus in [14] itself is a combination
of the original applied pi-calculus [1] with one of its di-
alects [13]. This combination offers the richness of the orig-
inal applied pi-calculus while additionally being accessible
by ProVerif [12]. The embedding of this calculus into our
general formal model is particularly instructive because the
calculus’ syntax vastly differs from the framework’s syntax,
e.g., the appliedπ-calculus models secrecy of nonces via re-
strictions, it does not rely on a labeled transition system,but
it considers an equational theory.

8

M, N ::= terms

x, y, z variables

a, b, c names

f(M1, . . . , Mn) constructor application

D ::= destructor terms

M terms

d(D1, . . . , Dn) destructor application

f(D1, . . . , Dn) constructor application

P, Q ::= processes

M̄〈N〉.P output

M(x).P input

0 nil

P | Q parallel composition

!P replication

νa.P restriction

let x = D destructor application

in P else Q

event(e).P event

Figure 1. Syntax of the process calculus.

5.1 Overview of this section

We briefly outline the structure of this section, since it can
be seen as a general guideline on how to embed other calculi
into our framewoek, and how to derive computational sound-
ness guarantees for them.

We first review the syntax and the semantics of the ap-
plied π-calculus in Section 5.2. In Section 5.3, we define
a computational execution of the calculus (this is only nec-
essary since the appliedπ-calculus does not come with an
a-priori defined computational execution), called computa-
tional π-execution, as well as trace properties in the applied
π-calculus, calledπ-trace properties. In Section 5.4, we es-
tablish the actual soundness result using our framework: We
first define a symbolic model of the appliedπ-calculus (in the
sense of Definition 6) as well as a computational interpreta-
tion of this model (in the sense of Definition 8). The final
theorem then asserts that if this computational implementa-
tion is computationally sound with respect to this symbolic
model, then everyπ-calculus process that symbolically ful-
fills a π-trace property also computationally fulfills this prop-
erty.

5.2 Review of the calculus’ syntax and se-
mantics

The syntax of the process calculus that we consider is
provided in Figure 1. (We do not explicitly include an if-
statement, but instead emulate it using destructor applica-
tions, see below.) Technically, it corresponds to the one con-
sidered in [14], except that we add processes of the form
event(e).P for a stringe. The intuitive meaning of such a
process is that it raises an evente and then proceeds to exe-
cuteP .

In the following, we often call terms in the process calcu-
lus π-terms and terms in the framework, i.e., in the sense of
Section 2.2fw-terms, in order to avoid ambiguities. We pro-
ceed similarly for other homonyms, such asπ-constructors,
π-traces, etc. The set of groundπ-terms is denotedTπ. By
fn(P) we denote the set of free names ofP , i.e., the names
n not protected by a restriction. Byfv(P) we denote the free
variables ofP , i.e., the variables that are not protected by a
destructor application or an input. We call a process closedif
it has no free variables (but it may have free names).

The calculus is parametrized over a (possibly infinite)
set of π-constructorsCπ, a (possibly infinite) set ofπ-
destructorsDπ , and an equivalence relation≈ over ground
π-terms (called the equational theory). A destructord of ar-
ity n is a partial functionT n

π → Tπ. We require that the
equational theory is compatible with theπ-destructors and
π-constructors in the following sense: For allπ-constructors
f and π-destructorsd of arity n, for all groundπ-terms
M1, . . . , Mn, M ′

1, . . . , M
′
n with Mi ≈ M ′

i for i = 1, . . . , n,
we have thatf(M) ≈ f(M ′), thatd(M) = ⊥ iff d(M ′) =
⊥, and thatd(M) ≈ d(M ′). We also required(Mτ) =
d(M)τ for any renamingτ of names.

We did not explicitly include an if-statement in the syntax
of the calculus since such a statement can be expressed using
an additional destructorequals : Let equals(x, y) = x for
x ≈ y and defineif M = N then P else Q as let x =
equals(M, N) in P else Q for somex /∈ fv (P). In the
following, we will assumeequals ∈ Dπ .

Given a ground destructorπ-termD, we can evaluate it to
a groundπ-termevalπ D by evaluating allπ-destructors. If
one of theπ-destructors returns⊥, we setevalπ D := ⊥.

The semantics of the calculus is standard and corresponds
to the one defined in [14] except for the addition of events.
The semantics hence consists of two possible transitions:→

and
e
→. The latter denotes that the evente occurred, and we

can define trace properties as properties over the sequence of
events occurring in an execution of a process. Again, we pre-
fix some notions withπ to distinguish them from their cor-
responding notions in Section 2.2. The semantics is formally
defined in Figure 4 in Appendix A.

Definition 20 (π-Trace properties) A list of strings
e1, . . . , en is an event traceof P if there is a pro-
cess Q that does not contain events such that
P | Q →∗ e1→→∗ e2→→∗ · · · →∗en→. A π-trace property

9

is an efficiently decidable and prefix-closed set of strings.A
processP symbolically satisfies aπ-trace property℘ if we
havee ∈ ℘ for all event tracese of P .

5.3 Defining a computational execution

A computationalπ-implementation assigns a total de-
terministic polynomial-time algorithmAπ

f to each π-
constructorf , and a partial deterministic polynomial-time
algorithm Aπ

d to eachπ-destructord. The formal defini-
tion is fully analogous to Definition 8, except that we do not
require an implementation for nonces (they will be chosen
uniformly at random); we hence omit this definition due to
space constraints. We require thatAπ

equals(1
k, x, x) = x and

Aπ
equals(1

k, x, y) = ⊥ for x 6= y (i.e., the computational
interpretation of≈ is the identity on bitstrings). Given an
assignmentµ from names to bitstrings and an assignmentη
from variables to bitstrings for names and variables occurring
in a destructor termD, we can (computationally) evaluateD
to a bitstringcevalη,µ D. (Formally, the security parameter
k is an additional input toceval, but we omitk for readabil-
ity). We setcevalη,µ D := ⊥ if the application of one of the
algorithmsAπ

d fails.
Given a computational implementation of the constructors

and destructors, the computational execution of a processP
is already determined, except for resolving nondeterminism
and which messages the adversary is allowed to observe. To
resolve the non-determinism in the calculus, we uniformly
randomly select the next action to take. This is the conceptu-
ally simplest approach and helps to increases the readability
of the proof of computational soundness of the appliedπ-
calculus. We stress that our proof does not exploit this spe-
cific way of resolving nondeterminism, but that the proof can
easily be adapted to more sophisticated scheduling mecha-
nisms. Furthermore, we have to reflect that the calculus al-
lows the adversary to receive messages on any channel in
his knowledge. Since the knowledge of the adversary is not
well-defined in a computational setting, we cannot model this
directly. Instead, we require that the adversary explicitly reg-
isters for any channelc he wants to eavesdrop on, by sending
the message(listen , c).

The computational implementation of a process is then
defined using evaluation contexts: An evaluation context is
a context with either one hole, or with two (distinguished)
holes. In the case of two holes, we writeE[P][Q] to denote
the replacement of the first hole byP and of the second hole
by Q.

Definition 21 (Step contexts and input contexts)Let P be
a process,η a function from variables to bitstrings,µ a func-
tion from names to bitstrings, andpub a set of bitstrings. An
evaluation contextE is astep contextfor P if one of the fol-
lowing structural conditions holds true:
• P = E[νa.P1],
• P = E[M1〈N〉.P1][M2(x).P2] with cevalη,µ M1 =

cevalη,µ M2,

• P = E[let x = D in P1 else P2],
• P = E[event(e).P1],
• P = E[!P1],
• P = E[M〈N〉.P1] with cevalη,µ M ∈ pub.

An input context forP is an evaluation contextE such that
P = E[M(x).P1] andcevalη,µ M = c.

Intuitively, a step context specifies all possible actions of a
process that do not involve input from the adversary, assum-
ing that the adversary can listen only on channels inpub. We
consider the restrictionνa.P1 as an executable action in the
computational setting because it involves choosing a random
bitstring for the corresponding nonce. Input contexts rep-
resent all possible positions in the process that can receive
inputs on a channelc.

The computationalπ-execution of a process is now de-
fined as an interactive machine that executes the process and
communicates with an adversary.

Definition 22 (Computational π-execution) Let P0 be a
closed process, and letC be an interactive machine called
the adversary. We define the computationalπ-execution as
an interactive machineExecP0

(1k) that takes a security pa-
rameterk as argument and interacts withC:
• Start: Let P := P0 (where we rename all bound vari-

ables and names such that they are pairwise distinct and
distinct from all unbound ones). Letη be a totally unde-
fined partial function mapping variables to bitstrings,
let µ be a totally undefined partial function mapping
names to bitstrings, and letpub be an empty set of bit-
strings. Leta1, . . . , an denote the free names inP0. For
eachi, pick ri ∈ {0, 1}k at random. Setµ := µ(a1 :=
r1, . . . , an := rn). Send(public, r1, . . . , rn) to C.4

• Transition: Proceed depending on the type of message
received fromC as follows:

– When receiving(listen , c) from C, set pub :=
pub ∪ {c} and send(ok) to C.

– When receiving(input , c, m) from C, choose an
input contextE for (P, η, µ, c) uniformly at ran-
dom. If no such input context exists, send(stuck)
to C. If such an input context exists (whereP then
is of the formE[M(x).P1]), setη := η(x := m),
P := E[P1], and send(ok) to C.

– When receiving(step) fromC, choose a step con-
text E for (P, η, µ, pub) uniformly at random. If
no step context exists, send(stuck) to C. Other-
wise, proceed as follows depending on the struc-
ture ofP :
∗ P = E[νa.P1]: pick r ∈ {0, 1}k at random,

setP := E[P1] andµ := µ(a := r). Send
(ok) to C.
∗ P = E[M1〈N〉.P1][M2(x).P2]: Set P :=

E[P1][P2] and η := η(x := cevalη,µ N).
Send(ok) to C.

4In the appliedπ-calculus, free names occurring in the initial process
represent nonces that are honestly chosen but known to the attacker.

10

∗ P = E[let x = D in P1 else P2]: If
m := cevalη,µ D 6= ⊥, setη := η(x := m)
andP := E[P1]; Otherwise setP := E[P2].
Send(ok) to C.
∗ P = E[event(e).P1]: Let P := E[P1] and

send(event , e) to C.
∗ P = E[!P1]: Rename all bound variables of

P1 such that they are pairwise distinct and
distinct from all variables and names inP
and in the domains ofη andµ, yielding a pro-
cessP̃1. SetP := E[P̃1 |!P1]. Send(ok) to
C.
∗ P = E[M〈N〉.P1]: SetP := E[P1]. Send

(output , cevalη,µ M, cevalη,µ N) to C.
• When receiving anything else, send(stuck) to C.

The execution ofExecP0
(1k) maintains the invariant that

all bound variables and names inP are pairwise distinct and
that they are distinct from all variables and names inP and in
the domains ofη andµ. Moreover, all events occuring in the
process can be extracted from the messages sent byExecP0

.
For a given polynomial-time interactice machineC, a closed
processP0, and a polynomialp, we letEventsC,P,p(k) de-
note the list of the stringse output byExecP0

(1k) (as part of
(event , e)-messages) within the firstp(k) computation steps
(jointly counted forC(1k) andExecP0

(1k)).
We finally define the computational fulfillment ofπ-trace

properties.

Definition 23 (Computational π-trace properties) Let E
be a polynomial-time interactive machine,P0 a closed pro-
cess, andp a polynomial. We say thatP0 computationally
satisfiesa π-trace property℘ if for all polynomial-time in-
teractive machinesC and all polynomialsp, we have that
Pr[EventsC,P,p(1

k) ∈ ℘] is overwhelming ink.

5.4 Computational soundness of the calcu-
lus

We will now derive the computational soundness of the
appliedπ-calculus, i.e., we will show that if its computational
implementation is computationally sound in the sense of
Definition 11, then every symbolically satisfiedπ-trace prop-
erty is also computationally satisfied. Applying Definition11
first requires us to specify a symbolic model of the applied
π-calculus (in the sense of Definition 6) and a computational
implementation of this model (in the sense of Definition 8).

The symbolic model of the appliedπ-calculus contains all
the π-constructors andπ-destructors from the process cal-
culus. We additionally add an infinite number of adversary
noncesNE and protocol noncesNP to represent free and
bound names. The deduction relation allows the adversary
to derive all adversary nonces and everything derivable by
application of constructors and destructors.

Definition 24 (Symbolic model of the appliedπ-calculus)
For a π-destructord, we defined′ by d′(t) := d(tρ)ρ−1

whereρ is an injective map from the nonces inM to names.5

LetNE andNP be countably infinite sets.
Thesymbolic model of the appliedπ-calculusis given by

M = (C,N,D,`), whereN := NE ∪NP , C := Cπ ∪N,
D := {d′ : d ∈ Dπ}, and wherè is defined by the rules in
Figure 2.

In the following, we considerM,C,N,D,` as in
Definition 24. In particular, the destructorequals ′ thus in-
duces an equivalence relation∼= on the set offw-terms by
x ∼= y iff equals ′(x, y) 6= ⊥. The relation∼= is the analogue
to the equational theory≈.

The computational implementation of this sym-
bolic model is now specified by the computationalπ-
implementationsAf and Ad of the π-constructors and
π-destructors, with nonces being chosen uniformly at
random.

Definition 25 (Computational implementation of Def. 24)
The computational implementationA of the symbolic model
of the appliedπ-calculusM is given byAf := Aπ

f for all
f ∈ C \N andAd := Aπ

d for all d ∈ D. AN for N ∈ N

picksr ∈ {0, 1}k uniformly at random and returnsr.

In order to relate the symbolic and the computational se-
mantics of a process, we define an additional symbolic ex-
ecution for closed processes as a technical tool. This new
semantics constitutes a safe approximation of the originalse-
mantics of the process calculus while at the same time being
a direct analogue of the computational semantics presented
in Definition 22. The semantics is defined by means of an in-
teractive non-deterministic machineSExecP0

, analogous to
the machineExecP0

from Definition 22. Intuitively, the only
difference betweenExecP0

andSExecP0
is that the latter op-

erates immediately on terms whenever the former operates on
computational implementations of these terms. We postpone
the formal definition ofSExecP0

as well as further explana-
tory comments to Appendix B. There, it is also shown that
the machineSExecP0

can be realized as a symbolic proto-
col in the sense of Definition 3 by encoding protocol steps as
nodes; we call this protocolΠP0

. We obtain a probabilistic
symbolic protocolΠ′

P0
by annotating each non-deterministic

node inΠP0
with the uniform distribution on its successors.

The nodes inΠP0
(andΠ′

P0
) that output(event , e) for some

stringe, we call event nodes and say that they raise the event
e. (Since bothevent ande are hard-coded in the node, this
is well-defined.) For a sequence of node identifiersν, let
events(ν) denote the sequence of the events raised by the
event nodes inν.

Definition 26 A non-deterministic interactive machineC is
a Dolev-Yao adversaryif the following holds in an interac-
tion with any interactive machineM in each step of the in-
teraction: LetS be the set of allfw-terms sent byM up to

5This is well-defined and independent ofρ since for any renaming of
namesτ , we haved(Mτ) = d(M)τ ; intuitively d′ behaves asd except
that it uses nonces instead of names.

11

m ∈ S

S ` m

N ∈ NE

S ` N

S `M f ∈ C \N

S ` f(M)

S `M d ∈ D d(M) 6= ⊥

S ` d(M)

Figure 2. Deduction rules for the symbolic model of the applied π-calculus

P symb. satisfies℘ SExecP0
satisfies℘ ΠP0

symb. satisfiesevents−1(℘)

P comp. satisfies℘ (Π′
P0

, A) comp. satisfiesevents−1(℘)

Lemma 4 Lemma 2

Lemma 2

Lemma 3
A computationally sound

Figure 3. Overview of the proof of Theorem 3.

the current step. Letm be the term sent byC in the current
step. ThenS ` m.

SExecP0
satisfies aπ-trace property℘ if in interaction

with any Dolev-Yao adversary, the sequence of events output
bySExecP0

is contained in℘.

Before we finally state and prove the soundness of the ap-
plied π-calculus, we provide three lemmas that are used to
relateP0, SExecP0

, ΠP0
, and(Π′

P0
, A), and to assert the ef-

ficiency of the protocolΠ′
P0

. Figure 3 illustrates the use of
these lemmas in the overall proof.

Lemma 2 Let℘ be a trace property. ThenSExecP0
satisfies

℘ iff ΠP0
symbolically satisfiesevents−1(℘) (in the sense of

Definition 10). Moreover,P0 computationally satisfies℘ iff
(Π′

P0
, A) computationally satisfiesevents−1(℘) (in the sense

of Definition 10).

Lemma 3 The protocolΠ′
P0

is efficient.

Lemma 4 If a closed processP0 symbolically satisfies aπ-
trace property℘, thenSExecP0

satisfies℘.

The proof of the lemmas is postponed to Appendix C. With
these lemmas at hand, we are finally ready to state and prove
the computational soundness of the appliedπ-calculus as the
main result of this section.

Theorem 3 (Comp. soundness in the appliedπ-calculus)
Assume that the computational implementation of the applied
π-calculus (Definition 25) is a computationally sound im-
plementation (in the sense of Definition 11) of the symbolic
model of the appliedπ-calculus (Definition 24).

If a processP0 symbolically satisfies aπ-trace property
℘, thenP0 computationally satisfies℘.

Proof. By Lemma 4,SExecP0
satisfies℘. By Lemma 2,

ΠP0
symbolically satisfiesevents−1(℘). Furthermore, since

℘ is an efficiently decidable set, so isevents−1(℘). Using
Lemma 3, we have thatΠ′

P0
is an efficient protocol. By as-

sumption, the computational implementation of the applied
π-calculus is computationally sound; henceΠ′

P0
computa-

tionally satisfiesevents−1(℘). Using Lemma 2, we obtain
thatP0 computationally satisfies℘. �

Soundness of encryption in the appliedπ-calculus Com-
bining the results from this section with those from Section4
immediately entails a computational soundness result for the
appliedπ-calculus for public-key encryption. The protocol
conditions from Section 4 translate into syntactic conditions
for the process. As an illustrating example, we used ProVerif
to analyze the entity authentication property of the Needham-
Schroeder-Lowe protocol. Using the aforementioned results,
this yields an implementation of this protocol within the ap-
pliedπ-calculus that is provably secure under active attacks.
Further details are provided in Appendix E.

6 Conclusion and future work

We have provided a general framework for conducting
computational soundness proofs of symbolic models that ab-
stracts away from many details that are not core for proving
computational soundness such as message scheduling, cor-
ruption models, and even the internal structure of a protocol.
Computational soundness in this framework is shown to be
entailed by a novel simulation-based criterion, which allows
for proving soundness results in a conceptually modular and
generic way. We finally have shown how to use our frame-
work to establish the first computational soundness result for
the full-fledged appliedπ-calculus under active attacks.

The framework currently only considers computational
soundness as the preservation of trace properties. Existing
definitions of the preservation of more sophisticated prop-
erties such as static or observational equivalence [23, 16]
can be easily cast in our framework. However, deriving
a corresponding simulation-based criterion that entails such
stronger soundness results requires conceptual future work.
Moreover, we plan to derive the computational soundness of
additional calculi, especially those ones that strive for analyz-
ing security protocols in more realistic settings. Calculifor
reasoning about implementations of security protocols such
as RCF [11] are hence particularly promising targets for this
future work.

12

References

[1] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. InProc. 28th Symposium
on Principles of Programming Languages (POPL),
pages 104–115, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for crypto-
graphic protocols: The spi calculus. InProc. 4th ACM
Conference on Computer and Communications Secu-
rity, pages 36–47, 1997.

[3] Martín Abadi and Phillip Rogaway. Reconciling two
views of cryptography (the computational soundness of
formal encryption).Journal of Cryptology, 15(2):103–
127, 2002.

[4] Pedro Adão and Cédric Fournet. Cryptographically
sound implementations for communicating processes.
In Proc. 32nd International Confererence on Automata,
Languages and Programming (ICALP), pages 83–94,
2006.

[5] Michael Backes and Birgit Pfitzmann. Symmetric
encryption in a simulatable Dolev-Yao style crypto-
graphic library. InProc. 17th IEEE Computer Security
Foundations Workshop (CSFW), pages 204–218, 2004.

[6] Michael Backes and Birgit Pfitzmann. Relating sym-
bolic and cryptographic secrecy. InProc. 26th IEEE
Symposium on Security & Privacy, pages 171–182,
2005. Extended version in IACR Cryptology ePrint
Archive 2004/300.

[7] Michael Backes, Birgit Pfitzmann, and Michael Waid-
ner. A composable cryptographic library with nested
operations (extended abstract). InProc. 10th ACM
Conference on Computer and Communications Secu-
rity, pages 220–230, 2003. Full version in IACR Cryp-
tology ePrint Archive 2003/015, Jan. 2003,http:
//eprint.iacr.org/.

[8] Michael Backes, Birgit Pfitzmann, and Michael Waid-
ner. The reactive simulatability (RSIM) framework for
asynchronous systems.Information and Computation,
205(12):1685–1720, 2007.

[9] David Basin, Sebastian Mödersheim, and Luca Viganò.
OFMC: A symbolic model checker for security pro-
tocols. International Journal of Information Security,
2004.

[10] M. Baudet, V. Cortier, and S. Kremer. Computationally
sound implementations of equational theories against
passive adversaries. InProc. 32nd International Col-
loquium on Automata, Languages and Programming
(ICALP), volume 3580 ofLecture Notes in Computer
Science, pages 652–663. Springer, 2005.

[11] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Four-
net, Andrew D. Gordon, and Sergio Maffeis. Refine-
ment types for secure implementations. InProc. 21st
IEEE Security Foundations Symposium (CSF), pages
17–32, 2008.

[12] Bruno Blanchet. An efficient cryptographic protocol
verifier based on Prolog rules. InProc. 14th IEEE Com-
puter Security Foundations Workshop (CSFW), pages
82–96, 2001.

[13] Bruno Blanchet. Automatic proof of strong secrecy for
security protocols. InProc. 25th IEEE Symposium on
Security & Privacy, pages 86–100, 2004.

[14] Bruno Blanchet, Martín Abadi, and Cédric
Fournet. Automated verification of selected
equivalences for security protocols. Journal
of Logic and Algebraic Programming, 75:3–
51, 2008. Online available athttp://www.
di.ens.fr/~blanchet/publications/
BlanchetAbadiFournetJLAP07.pdf.

[15] Ran Canetti and Jonathan Herzog. Universally compos-
able symbolic analysis of mutual authentication and key
exchange protocols. InProc. 3rd Theory of Cryptogra-
phy Conference (TCC), volume 3876 ofLecture Notes
in Computer Science, pages 380–403. Springer, 2006.

[16] Hubert Comon-Lundh and Véronique Cortier. Com-
putational soundness of observational equivalence. In
Proc. ACM Conference on Computer and Communica-
tions Security, pages 109–118, 2008.

[17] Véronique Cortier, Steve Kremer, Ralf Küsters, and
Bogdan Warinschi. Computationally sound symbolic
secrecy in the presence of hash functions. InProc.
26th International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science
(FSTTCS), pages 176–187, 2006.

[18] Véronique Cortier and Bogdan Warinschi. Computa-
tionally sound, automated proofs for security protocols.
In Proc. 14th European Symposium on Programming
(ESOP), pages 157–171, 2005.

[19] Danny Dolev and Andrew C. Yao. On the security of
public key protocols.IEEE Transactions on Informa-
tion Theory, 29(2):198–208, 1983.

[20] Shimon Even and Oded Goldreich. On the security
of multi-party ping-pong protocols. InProc. 24th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 34–39, 1983.

[21] Romain Janvier, Yassine Lakhnech, and Laurent
Mazaré. Completing the picture: Soundness of for-
mal encryption in the presence of active adversaries.
In Proc. 14th European Symposium on Programming
(ESOP), pages 172–185, 2005.

13

http://eprint.iacr.org/
http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf

[22] Richard Kemmerer, Catherine Meadows, and Jon
Millen. Three systems for cryptographic protocol anal-
ysis. Journal of Cryptology, 7(2):79–130, 1994.

[23] Steve Kremer and Laurent Mazaré. Adaptive soundness
of static equivalence. InProc. 12th European Sympo-
sium On Research In Computer Security (ESORICS),
pages 610–625, 2007.

[24] Peeter Laud. Symmetric encryption in automatic anal-
yses for confidentiality against active adversaries. In
Proc. 25th IEEE Symposium on Security & Privacy,
pages 71–85, 2004.

[25] Gavin Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. InProc. 2nd
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), vol-
ume 1055 ofLecture Notes in Computer Science, pages
147–166. Springer, 1996.

[26] Michael Merritt. Cryptographic Protocols. PhD thesis,
Georgia Institute of Technology, 1983.

[27] Daniele Micciancio and Bogdan Warinschi. Soundness
of formal encryption in the presence of active adver-
saries. InProc. 1st Theory of Cryptography Conference
(TCC), volume 2951 ofLecture Notes in Computer Sci-
ence, pages 133–151. Springer, 2004.

[28] Lawrence Paulson. The inductive approach to verify-
ing cryptographic protocols.Journal of Cryptology,
6(1):85–128, 1998.

[29] Steve Schneider. Security properties and CSP. InProc.
17th IEEE Symposium on Security & Privacy, pages
174–187, 1996.

A Semantics of the appliedπ-calculus (with
events)

The semantics is formally defined in Figure 4.

B Postponed definitions

In this section, we provide the postponed definitions.

B.1 Symbolic execution of a π-process

For relating the symbolic and the computational semantics
of a π-process, we introduce an additional symbolic execu-
tion for closedπ-processes. To formulate these semantics,
we define a variant of the notion of step and input contexts
for the case thatη andµ map tofw-terms instead of bitstrings.

Let pub be a set offw-terms andc a fw-term: An evalu-
ation contextE is astep context for(P, η, µ, pub) if one of
the following structural condictions holds true (we mark the

differences to Definition 22 in boldface to increase readabil-
ity):
• P = E[νa.P1] or
• P = E[M1〈N〉.P1][M2(x).P2] with evalfw M1ηµevalfw M1ηµevalfw M1ηµ ∼=∼=∼=

evalfw M2ηµevalfw M2ηµevalfw M2ηµ or
• P = E[let x = D in P1 else P2] or
• P = E[event(e).P1] or
• P = E[!P1] or
• P = E[M〈N〉.P1] with evalfw Mηµ ∼= M ′evalfw Mηµ ∼= M ′evalfw Mηµ ∼= M ′ for some

M ′ ∈ pubM ′ ∈ pubM ′ ∈ pub.
An input context for(P, η, µ, c) is an evaluation contextE
such thatP = E[M(x).P1] andevalfw Mηµ ∼=evalfw Mηµ ∼=evalfw Mηµ ∼= c. For π-
termsM , we hence have thatevalfw Mηµ = Mηµ (this
does not hold for destructor termsD). In these cases, we
write the redundantevalfw anyway to emphasis the analogy
to Definition 22.

Definition 27 (Symbolic execution of aπ-process) Let P0

be a closed process, and letC be an interactive ma-
chine called the adversary. We define the computationalπ-
execution as an interactive machineExecP0

(1k) that takes a
security parameterk as argument and interacts withC:
• Start: Let P := P0 (where we rename all bound vari-

ables and names such that they are pairwise distinct
and distinct from all unbound ones). Letη be a totally
undefined partial function mapping variables toterms,
let µ be a totally undefined partial function mapping
names toterms, and let pub be an empty set of bit-
strings. Leta1, . . . , an denote the free names inP0. For
eachi, choose a different ri ∈ NPri ∈ NPri ∈ NP Setµ := µ(a1 :=
r1, . . . , an := rn). Send(public, r1, . . . , rn) to C.6

• Transition: Proceed depending on the type of message
received fromC as follows:

– When receiving(listen , c) fromC where ccc is a fwfwfw-
term, setpub := pub ∪ {c} and send(ok) to C.

– When receiving(input , c, m) from C where c, mc, mc, m
are terms, non-deterministically choose an input
contextE for (P, η, µ, c) uniformly at random. If
no such input context exists, send(stuck) to C.
If such an input context exists (whereP then is
of the formE[M(x).P1]), setη := η(x := m),
P := E[P1], and send(ok) to C.

– When receiving(step) fromC, choose a step con-
text E for (P, η, µ, pub) uniformly at random. If
no step context exists, send(stuck) to C. Other-
wise, proceed as follows depending on the struc-
ture ofP :
∗ P = E[νa.P1]: Choose r ∈ NP \ rangeµr ∈ NP \ rangeµr ∈ NP \ rangeµ,

setP := E[P1] andµ := µ(a := r). Send
(ok) to C.
∗ P = E[M1〈N〉.P1][M2(x).P2]: Set P :=

E[P1][P2] and η := η(x := evalfw Nηµevalfw Nηµevalfw Nηµ).
Send(ok) to C.

6In theπ-calculus, free names occurring in the initial process represent
nonces that are honestly chosen but known to the attacker.

14

P | 0 ≡ P P ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

P ≡ Q Q ≡ R

P ≡ R

νa.νb.P ≡ νb.νa.P

P ≡ Q

P | R ≡ Q | R

a /∈ fn(P)

νa.(P | Q) ≡ P | νa.Q

P ≡ Q

νa.P ≡ νa.Q

N ≈ N ′

N〈M〉.Q | N ′(x).P → Q | P{M/x}

evalπ D 6= ⊥

let x = D in P else Q→ P{evalπ D/x}

evalπ D = ⊥

let x = D in P else Q→ Q !P → P |!P

P → Q

P | R→ Q | R νa.P → νa.Q

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′
event(e).P

e
→ P

P
e
→ Q

P | R
e
→ Q | R νa.P

e
→ νa.Q

P ′ ≡ P P
e
→ Q Q ≡ Q′

P ′ e
→ Q′

Figure 4. Semantics of the applied π-calculus with events.

∗ P = E[let x = D in P1 else P2]: If
m := evalfw Dηµevalfw Dηµevalfw Dηµ 6= ⊥, setη := η(x := m)
andP := E[P1]; Otherwise setP := E[P2].
Send(ok) to C.
∗ P = E[event(e).P1]: Let P := E[P1] and

send(event , e) to C.
∗ P = E[!P1]: Rename all bound variables of

P1 such that they are pairwise distinct and
distinct from all variables and names inP
and in the domains ofη andµ, yielding a pro-
cessP̃1. SetP := E[P̃1 |!P1]. Send(ok) to
C.
∗ P = E[M〈N〉.P1]: SetP := E[P1]. Send

(output ,evalfw Mηµevalfw Mηµevalfw Mηµ,evalfw Nηµevalfw Nηµevalfw Nηµ) to C.
• When receiving anything else, send(stuck) to C.

The only differences between Definition 22 and
Definition 27 are that the latter operates onfw-terms
instead of bitstrings, it computesevalfw Xηµ instead of
cevalη,µ X , it comparesfw-terms using∼= instead of check-
ing for equality of bitstrings, it performs a non-deterministic
choice instead of choosing step or input contexts uniformly,
and it chooses a freshfw-noncer ∈ NP instead of choosing
a random bitstringr as value for a restricted name.

The interactive machineSExecP0
performs only the fol-

lowing operations onfw-terms: Applyingfw-constructors
(this includes nonces) andfw-destructors, comparing using
∼= (which can be realized by an application of the destructor
equals ′), and sending and receiving terms. Hence this inter-
active machine can be realized as a symbolic protocol in the
sense of Definition 3: The state of theSExecP0

is used as a
node identifier. However,fw-terms are not encoded directly

into the node identifier; instead, the node in which they were
created (or received) is referenced instead.7 This is due to the
fact that a symbolic protocol allows to treatfw-terms only as
black boxes. Note that the processP and theπ-terms occur-
ring within P will be encoded in the node identifier (encoded
as bitstrings). Operations onfw-terms can then be performed
by using constructor and destructor nodes, and the input and
output offw-terms is handled using communication nodes.8

We call the resulting protocolΠP0
.

C Postponed proofs

This section contains the postponed proofs.

C.1 Proof of Lemma 1

We show thattr ′ fulfills the conditions on full traces of
Definition 7.

This is clear for constructor nodes, since the processing
of constructor nodes in the hybrid setting of Definition 14
matches the one in the symbolic setting of Definition 7, with
the exception that terms with variables can occur in the hy-
brid setting. However, since we apply the substitutionϕ con-

7For technical reasons, we do not reference the nodes by its identifier,
but instead by the its index in the path from the root to the referring node.
Otherwise, the size of node identifiers would grow exponentially.

8All communication steps inSExecP0
sendπ-terms that are tagged with

bitstrings. These can be encoded by using communication nodes since the
latter allow to attach metadatal to inputs and outputs. Inputs toSExecP0

that consist only of a bitstring without a term encoded by ignoring the at-
tachedπ-term. Inputs toSExecP0

with containing two terms can be imple-
mented by chaining two communication nodes.

15

sistently to all terms intr (i.e.,C(t)ϕ = C(tϕ) holds), con-
structor nodes in the substituted tracetr ′ = trϕ fulfill the
symbolic requirement of Definition 7.

Destructor nodes are treated similarly, except that there
may be several possible successor nodes. We thus have to
ensure that the respective successor node intr ′ fulfills the
requirements in Definition 7. This immediately follows from
the validity ofϕ, which ensures thatSim ’s answers (which
determine the respective successor node) are consistent (in
the sense of Definition 7) withtr ′.

Finally, communication nodes intr ′ consist of a termt ∈
Tx(C,D) sent fromΠC to Sim, and a termt′ sent back from
Sim to ΠC . By the DY property ofSim , we know thatSϕ `
t′ϕ, whereS denotes all terms (includingt) sent fromΠC

to Sim so far. Hence, the node satisfies the requirement for
communication nodes from Definition 7. This completes the
proof of the lemma.

C.2 Proof of Lemma 2

The symbolic case is immediate from the construction
of ΠP0

. For the computational case, note the fact that the
computational implementation ofP0 is defined like the sym-
bolic one, except that it uses the implementations of thefw-
constructors andfw-destructors instead of the operating on
abstractly on terms (and the implementation ofequals uses
the identity on bitstrings).

C.3 Proof of Lemma 3

By construction, there are efficient algorithms for comput-
ing the labels and successors of a node given its node identi-
fier. It is left to show that the length of the node identifier ofa
nodep is polynomial in the length of the path leading to that
node. This is equivalent to showing that the state ofSExecP0

is of polynomial-length (when not counting the length of the
representations of thefw-terms). For the variablesη, µ, and
pub, this is immediately satisfied because they grow by at
most one entry in each activation ofSExecP0

. To show that
the length ofP is polynomially bounded, note the following
facts: In each activation ofSExecP0

, P either gets smaller,
or we haveP = E[!P1] andP grows by the size ofP1. If
P = E[!P1], then!P1 is also a subterm ofP0 (up to renaming
of names and variables). Hence in each activation,P grows
at most by the size ofP0. Thus the size ofP is linear in the
number of activations ofSExecP0

.

C.4 Proof of Lemma 4

To show this lemma, it is sufficient to show that if
SExecP0

outputs eventse1, . . . , en, then e is an eventπ-
trace ofP0. Hence, for the following we fix an execution
of SExecP0

in interaction with a Dolev-Yao adversaryE in
whichSExecP0

outputs the eventse1, . . . , en.
For a given activation ofSExecP0

, let P, η, µ, pub de-
note the corresponding variables from the state ofSExecP0

at the beginning of that activation. LetE denote the step
or input context chosen in that activation. Letn be the do-
main ofµ without the namesr1, . . . , rn sent in the message
(public, r1, . . . , rn) in the very beginning of the execution of
SExecP0

. P ′, η′, µ′, pub′, n′ are the corresponding valuesaf-
ter that activation. Letin be the input andout be the output
of SExecP0

in that activation. ByP̄0, η0, µ0, pub0, n0 we de-
note the corresponding values before the first activation but
after the sending of the message(public, r1, . . . , rn),9 and by
P∗, η∗, µ∗, pub∗, n∗ the values after the last activation. We
call a name or variableusedif it occurs in the domain ofµ∗

or η∗, respectively. Note thatµ0 = (a1 7→ r1, . . . , an 7→ r1)
wherea are the free names inP0, butn0 = ∅. Note thatP
will never contain unused free variables or names.

Let S denote the list of allfw-terms output bySExecP0

up to the current activation. We encodeS = (s1, . . . , sn)
as a substitutionϕ mappingxi 7→ si wherexi are arbitrary
unused variables. We denote byS′, ϕ′ andS0, ϕ0 andS∗, ϕ∗

the values ofS, ϕ after the current activation, before the first
activation (but after sending(public, r1, . . . , rn)), and after
the last activation, respectively. Note thatS0 = (r1, . . . , rn).

Let γ be an injective partial function that maps everyN ∈
NE to an unused name, and everyN ∈ rangeµ∗ to µ−1

∗ (N).
(Note thatγ is well-defined becauserangeµ∗ ⊆ NP andµ∗

is injective.) We additionally require that all unused names
are inrange γ. (This is possible since bothNE and the set of
unused names are countably infinite.)

Note that for anyπ-destructord and anyπ-terms M
with fv (M) ⊆ dom η and fn(M) ⊆ domµ, we have
d′(Mηµ)γ = d(Mηµγ) (whered′ is as in Definition 24).
Hence for a destructor termD with fv(D) ⊆ dom η and
fn(D) ⊆ domµ, we haveevalfw(Dηµ)γ = evalπ(Dηµγ).
Since aµγ = a for all namesa ∈ domµ, Dηµγ =
Dηγ. Since evalfw(Dηµ) does not contain variables,
evalfw(Dηµ) = evalfw(Dηµ)η. Thus

evalfw(Dηµ)ηγ = evalπ(Dηγ) (2)

where the left hand side is defined iff the right hand side is.
Similarly to (2), if fv (D) ⊆ domϕ and fn(D) ⊆

domγ−1, we haveevalfw(Dϕγ−1)γ = evalπ(Dϕγ). For
a fw-term t with S ` t, from the definition of̀ is follows
thatt = evalfw Dtϕγ−1 for some destructorπ-termDt con-
taining only unused names and variables indomϕ (note that
everyN ∈ NE can be expressed asaγ−1 for some unused
a). Since all unused names are indom γ−1, we have

tγ = evalfw(Dtϕγ−1)γ = evalπ(Dtϕγ). (3)

Given two fw-termst ∼= u such thatt, u only contains
noncesN ∈ NE ∪ rangeµ∗, we have thatequals ′(t, u) 6=
⊥. By definition of equals ′ (Definition 24) and us-
ing that γ is injective and defined onNE ∪ rangeµ∗,
we have equals ′(t, u) = equals(tγ, uγ)γ−1 and hence

9We use the variable namēP0 becauseP0 is already used for the input
of SExecP0

. Note however that̄P0 ≡ P0.

16

equals(tγ, uγ) 6= ⊥. Hence, fort, u only containing nonces
N ∈ NE ∪ rangeµ∗, we have

t ∼= u =⇒ tγ ≈ uγ (4)

We call a processQ valid for ϕ if it does not contain
events, all its free names are unused names, and all its free
variables are in the domain ofϕ.

Claim: For all Q′ valid for ϕ′, there is aQ valid for ϕ
such thatνn.(Qϕγ|Pηγ) νn′.(Q′ϕ′γ|P ′η′γ). Here
denotes

e
→ if out = (event , e), and→∗ otherwise.

Assuming that we have shown this claim, it follows that
for all Q∗ valid for ϕ∗, there is aQ0 valid for ϕ0 such
that νn0.(Q0ϕ0γ|P0η0γ) →∗ e1→→∗ e2→→∗ · · · →∗en→→∗

νn.(Q∗ϕ∗γ|P∗η∗γ). Sinceη0 = ∅ and sinceP̄0 does not
containN ∈ N (being aπ-term) and sincēP0 is a renam-
ing of P0, we haveP̄0η0γ = P̄0γ = P̄0 ≡ P0. Then,
with Q̃ := Q0ϕ0γ and usingn0 = ∅ we haveQ̃|P0 ≡

νn0.(Q0ϕ0γ|P̄0η0γ) →∗ e1→→∗ e2→→∗ · · · →∗en→→∗. Since
Q̃ does not contain events, this implies thate is an eventπ-
trace ofP0. This shows the lemma.

It is left to prove the claim. We distinguish the following
cases:

• out = stuck or in = (listen , c): ThenP = P ′, ϕ =
ϕ′, η = η′, andn = n′. Hence withQ := Q′, we have
νn.(Qϕγ | Pηγ) = νn′.(Q′ϕ′γ | P ′η′γ).

• (in , out) = (step, ok) and P = E[νa.P1]: Then
P ′ = E[P1], ϕ′ = ϕ, η = η′, andn′ = n‖a for
somer ∈ NP \ rangeµ, andµ′ = µ(a := r). Since
a ∈ domµ′ ⊆ dimµ∗, a is used. SinceQ′ is valid
for ϕ = ϕ′, this impliesa /∈ fn(Q′). SetQ := Q′.
ThenQ is valid for ϕ. Since we maintain the invari-
ant that all bound names inP are pairwise distinct and
distinct from all other names inP or domµ, we have
r /∈ fn(E) andr /∈ n. Furthermore, by the same in-
variant, we haver /∈ domµ. Note that the execution of
SExecP0

maintains the following invariant: Any nonce
N ∈ NP occurring (as a subterm) in the range ofη
or ϕ is also in the range ofµ. (This uses the fact that
the Dolev-Yao adversary cannot derive protocol nonces
that have never been sent.) Hencer ∈ NP \ rangeµ
does not occur in the range ofη or ϕ. By definition
of γ and sincea is used, this implies that forN 6= r,
γ(N) 6= a. Thus for all variablesx, xηγ andxϕγ do not
containa, and hencea /∈ fn(Qϕγ)∪fn(Eηγ). Together
with r /∈ n we getνn.(Qϕγ | Pηγ) = νn.(Qϕγ |
(Eηγ)[νa.P1ηγ]) ≡ νn.νa.(Qϕγ | (Eηγ)[P1ηγ]) =
νn′.(Q′ϕ′γ | (Eη′γ)[P1η

′γ]) = νn′.(Q′ϕ′γ | P ′η′γ).

• (in , out) = (step, ok) and P =

E[M1〈N〉.P1][M2(x).P2] with evalfw M1ηµ ∼=
evalfw M2ηµ: ThenP ′ = E[P1][P2] andn′ = n and
ϕ′ = ϕ andη′ = η(x := t) with t := evalfw Nηµ.
Since we maintain the invariant that all bound variables

in P are distinct from all other names inP or dom η,
we havex /∈ fv (E) ∪ fv(P1) andx /∈ dom η. Hence
Eηγ = Eη′γ and P1ηγ = P1η

′γ. Furthermore,
we have P2ηγ{Nηγ/x} = P2ηγ{Nηµγ/x} =
P2η{Nηµ/x}γ = P2η{t/x}γ = P2η

′γ. Since a
Dolev-Yao adversary will never derive protocol nonces
that have never been sent, we have that only nonces
N ∈ NE ∪ rangeµ∗ occur inM1ηµ andM2ηµ. With
M1ηµ = evalfw M1ηµ ∼= evalfw M2ηµ = M2ηµ and
Equation 4 we getM1ηγ = M1ηµγ ≈ M2ηµγ =
M2ηγ.

Hence withQ := Q′, we have

νn.(Qϕγ | Pηγ)

= νn.(Qϕγ | (Eηγ)[M1ηγ〈Nηγ〉.P1ηγ][M2ηγ(x).P2ηγ])

→ νn.(Qϕγ | (Eηγ)[P1ηγ][P2ηγ{Nηγ/x}]

= νn′.(Qϕ′γ | (Eη′γ)[P1η
′γ][P2η

′γ])

= νn′.(Q′ϕ′γ | P ′η′γ).

SinceQ′ is valid forϕ′ = ϕ, Q = Q′ is valid forϕ.

• (in , out) = (step, ok) and P = E[let x =

D in P1 else P2] andevalfw Dηµ = ⊥: ThenP ′ =
E[P2] and ϕ′ = ϕ, and n′ = n and η′ = η. Set
Q := Q′. Then Q is valid for ϕ = ϕ′. By (2),
evalπ(Dηγ) = ⊥. Hence

νn.(Qϕγ|Pηγ)

= νn.(Qϕγ|(Eηγ)[let x = Dηγ in . . . else P2ηγ])

→ νn.(Qϕγ|(Eηγ)[P2ηγ])

= νn′.(Q′ϕ′γ|P ′η′γ).

• (in , out) = (step, ok) and P = E[let x =

D in P1 else P2] and evalfw Dηµ 6= ⊥: Then
P ′ = E[P1] and ϕ′ = ϕ and n′ = n and η′ =

η(x := evalfw Dηµ). Set Q := Q′. Then Q is
valid for ϕ = ϕ′. By (2), t := evalπ(Dηγ) =

evalfw(Dηµ)ηγ 6= ⊥. Since we maintain the invari-
ant that all bound variables inP are distinct from all
other names inP or dom η, we havex /∈ fv(E)
and x /∈ dom η. HencePηγ = (Eηγ)[let x =
Dηγ in P1ηγ else . . .] → (Eηγ)[P1ηγ{t/x}]). Fur-
thermore,P1ηγ{t/x} = P1ηγ{evalfw(Dηµ)ηγ/x} =

P1{evalfw(Dηµ)/x}ηγ = P1η
′γ. Sincex /∈ fv (E) ∪

dom η, (Eηγ)[P1η
′γ] = E[P1]η

′γ = P ′η′γ. Hence
Pηγ → P ′η′γ. SinceQ = Q′, ϕ = ϕ′, andn = n′, it
follows thatνn.(Qϕγ | Pηγ)→ νn′.(Q′ϕ′γ | P ′η′γ).

• (in , out) = (step, ok) andP = E[!P1]: ThenP ′ =

E[!P1 | P̃1] for someP̃1 ≡ P1 andϕ′ = ϕ andn′ = n
andη′ = η. SetQ := Q′. ThenQ is valid for ϕ = ϕ′.

17

Hence

νn.(Qϕγ | Pηγ)

= νn.(Qϕγ | (Eηγ)[!P1ηγ])

→ νn.(Qϕγ | (Eηγ)[P1ηγ |!P1ηγ]

≡ νn.(Qϕγ | (Eηγ)[P̃1ηγ |!P1ηγ]

= νn′.(Q′ϕ′γ | P ′η′γ).

• (in , out) = (step, (output , tM , tN)) and P =

E[M〈N〉.P1] with tM := evalfw Mηµ and tN :=

evalfw Nηµ andtM ∼= M ′ for someM ′ ∈ pub: Then
P ′ = E[P1] andS′ = S‖tM‖tN andϕ′ = ϕ(xn+1 :=
tM , xn+2 := tN) wherexn+1, xn+2 /∈ domϕ are un-
used andn′ = n and η′ = η. SinceM ′ ∈ pub,
the adversary must have sentM ′, henceS ` M . By
Equation 3, there is a destructorπ-term DM ′ contain-
ing only unused names and variables indomϕ such that
M ′γ = evalπ(DM ′ϕγ).

Since a Dolev-Yao adversary will never derive proto-
col nonces that have never been sent, we have that
only noncesN ∈ NE ∪ rangeµ occur in M ′ and
Mηµ. Hence with (4), fromtM ∼= M ′ it follows that
Mηγ = Mηµγ ≈M ′γ.

Let Q := let xn+1 = DM ′ in xn+1(xn+2).Q
′ else 0.

ThenQϕγ →M ′γ(xn+2).Q
′ϕγ{M ′γ/xn+1}. Then

Qϕγ | Pηγ = Qϕγ | (Eηγ)[Mηγ〈Nηγ〉.P1ηγ]

→M ′γ(xn+2).Q
′ϕγ{M ′γ/xn+1}

| (Eηγ)[Mηγ〈Nηγ〉.P1ηγ]

→ Q′ϕγ{Mηγ/xn+1}{Nηγ/xn+2} | (Eηγ)[P1ηγ]

= Q′ϕ{Mηµ/xn+1}{Nηµ/xn+2}γ|P
′ηγ

Since xn+1, xn+2 /∈ domϕ,
Q′ϕ{Mηµ/xn+1}{Nηµ/xn+2}γ = Q′ϕ′γ. Hence
Qϕ | Pηγ →∗ Q′ϕ′γ | Pηγ = Q′ϕ′γ | Pη′γ. Since
n = n′ we haveνn.(Qϕ | Pηγ) →∗ νn′.(Q′ϕ′γ |
Pη′γ).

SinceQ′ is valid, Q does not contain events, and its
free names are unused names, andfv (Q) ⊆ domϕ′ =
domϕ∪{xn+1, xn+2}. Sincexn+1 andxn+2 are bound
on top level inQ, xn+1, xx+2 /∈ fv(Q), fv(Q) ⊆
domϕ. HenceQ is valid.

• (in , out) = (step, (event , e)) and P =
E[event(e).P1]: Then P ′ = E[P1] and ϕ′ = ϕ
andn′ = n andη′ = η. We haveνn.(Qϕγ | Pηγ) =

νn.(Qϕγ | (Eηγ)[event(e).P1ηγ])
e
→ νn.(Qϕγ |

(Eηγ)[P1ηγ]) = νn′.(Q′ϕ′γ | P ′η′γ).

• (in , out) = ((input , c, m), ok) andP = E[M(x).P1]

andevalfw Mηµ ∼= c: ThenP ′ = E[P1] andϕ′ = ϕ
and n′ = n and η′ = η(x := m). Furthermore,
since SExecP0

interacts with a Dolev-Yao adversary,

S ` c, m. By Equation 3, there are destructorπ-terms
Dc, Dm containing only unused names and variables
in domϕ such thatcγ = evalπ(Dcϕγ) and mγ =
evalπ(Dmϕγ). Since a Dolev-Yao adversary will never
derive protocol nonces that have never been sent, we
have that only noncesN ∈ NE∪rangeµ occur inc and
in Mηµ. Hence with (4), fromMηµ = evalfw Mηµ ∼=
c it follows thatMηγ = Mηµγ ≈ cγ.

Pick somey, z /∈ fv (Q′) ∪ domϕ′. Let Q := let y =
Dc in let z = Dm in y〈z〉.Q′ else 0 else 0. Then
Qϕγ → cγ〈mγ〉.Q′ϕγ. Then

Qϕγ | Pηγ

= Qϕγ | (Eηγ)[Mηγ(x).P1ηγ]

→ cγ〈mγ〉.Q′ϕγ | (Eηγ)[Mηγ(x).P1ηγ]

→ Q′ϕγ | (Eηγ)[P1ηγ{mγ/x}].

Since we maintain the invariant that all bound variables
in P are distinct from all other names inP or dom η, we
havex /∈ fv (E) andx /∈ dom η. HenceEηγ = Eη′γ
and P1ηγ = P1η{m/x}γ = P1η

′γ. Furthermore
sinceϕ = ϕ′ we haveQ′ϕγ = Q′ϕ′γ. ThusQ′ϕγ |
(Eηγ)[P1ηγ{mγ/x}] = Q′ϕ′γ | (Eη′γ)[P1η

′γ] =
Q′ϕ′γ | P ′η′γ. ThusQϕγ | Pηγ →∗ Q′ϕ′γ | P ′η′γ
and withn = n′ we haven.Qϕγ | Pηγ →∗ n′.Q′ϕ′γ |
P ′η′γ.

SinceQ′ is valid and allfv (Dc, Dm) ⊆ domϕ, we have
thatQ is valid.

D Encryption (postponed details)

Implementation We require that the implementationA of
the symbolic modelM has the following properties:
• There are disjoint and efficiently recognizable sets of

bitstrings representing the types nonces, ciphertexts,
public keys, secret keys, and pairs. We require that the
type nonces consists of allk-bit strings. (Here and in
the following,k denotes the security parameters.)
• The functionsAE , Apk , Ask , andApair length-regular.

We call ann-ary functionf length regular if|mi| =
|m′

i| for i = 1, . . . , n implies|f(m)| = |f(m′)|.
• AN for N ∈ N returns a uniformly randomr ∈ {0, 1}k.
• For all m1, m2 ∈ {0, 1}∗ we have

Afst (Apair (m1, m2)) = m1 and
Asnd (Apair (m1, m2)) = m2. Every m of type
pair is in the range ofApair .
• Apkof (AE(p, x, y)) = p for all p, x ∈ {0, 1}∗, y ∈
{0, 1}k. Apkof (e) 6= ⊥ for anye of type ciphertext and
Apkof (e) = ⊥ for anye that is not of type ciphertext.
• AD(Ask (r), m) = ⊥ if r ∈ {0, 1}∗ andApkof (m) 6=

Apk (r). (This implies that the public key is uniquely
determined by the secret key.)
• AD(Ask (r), AE(Apk (r), m, r′)) = m for all r, r′ ∈
{0, 1}k.

18

• Aispk (x) = x for anyx of type public key.Aispk (x) =
⊥ for anyx not of type public key.
• Aisenc(x) = x for any x of type ciphertext.

Aisenc(x) = ⊥ for anyx not of type ciphertext.
• We define an encryption scheme(KeyGen, Enc, Dec)

as follows: KeyGen picks a randomr ← {0, 1}k and
returns(Apk (r), Ask (r)). Enc(p, m) picks a random
r ← {0, 1}k and returnsAE(p, m, r). Dec(k, c) returns
AD(k, c). We require that then(KeyGen, Enc, Dec) is
IND-CCA secure.

Protocol conditions. The computational soundness result
we derive in this section requires that the symbolic protocol
satisfies certain constraints. In a nutshell, these constraints
require that encryption and key generation always use fresh
nonces, that decryption only uses honestly generated secrets
keys, and that the protocol does not produce garbage terms.
We call protocols satisfying these conditionsencryption-safe.
In detail, the conditions are the following:

1. The argument of everypk -constructor node and of ev-
ery sk -constructor node and the third argument of ev-
ery E-constructor node is anN -constructor node with
N ∈ NP . (Here and in the following, we call the nodes
referenced by a protocol node its arguments.)

2. Every constructor node that is the argument of a
pk -constructor node or of ansk -constructor node on
some pathp occurs only as argument topk - and sk -
constructor nodes on that pathp.

3. Every constructor node that is the third argument of an
E-constructor node on some pathp occurs exactly once
as an argument in that pathp.

4. Everysk -constructor node occurs only as the first argu-
ment of aD-destructor node.

5. The first argument of aD-destructor node is ansk -
constructor node.

6. The first argument of anE-constructor node is apk -
constructor node or anispk -destructor node.

7. There are no constructor nodes with the constructors
garbage , garbageE , or N ∈ NE.

Construction of the simulator. In the following, we define
distinct noncesNm ∈ NE for eachm ∈ {0, 1}∗. In a hybrid
execution, we call a termt honestly generatedif it occurs as
a subterm of a term sent by the protocolΠC to the simula-
tor before it has occurred as a subterm of a term sent by the
simulator to the protocolΠC .

For an adversaryE and a polynomialp, we construct the
simulatorSim as follows: In the first activation, it chooses
rN ∈ {0, 1}k for every N ∈ NP . It maintains an in-
teger len , initially 0. At any point in the execution,N
denotes the set of all noncesN ∈ NP that occurred in
terms received fromΠC . Sim internally simulates the ad-
versaryE. When receiving a tuple(l, t̃1, . . . , t̃n) from ΠC , it
passes(l, β(t̃1), . . . , β(t̃n)) to E where the partial function
β : T (C) → {0, 1}∗ is defined below. WhenE answers

with (l′, m), the simulator sends(l′, τ(m)) to ΠC where the
function τ : {0, 1}∗ → T (C) is defined below. When the
simulator receives(info, ν, t), the simulator increaseslen by
`(t) + 1 where` : T (C) → {0, 1}∗ is defined below. If
len > p(k), the simulator answers with(timeout), other-
wise with (proceed). If the simulator receives a question, it
fails. At the end,Sim outputs the substitutionϕ = ∅.

Translation functions. The partial functionβ : Tx(C) →
{0, 1}∗ is defined as follows (where the first matching rule is
taken):
• β(N) := rN

• β(pk (N)) := Apk (rN) if N ∈ N .
• β(sk(N)) := Ask (rN) if N ∈ N .
• β(pk (Nm)) := m.
• β(pair (t1, t2)) := Apair (β(t1), β(t2)).
• β(E(pk (N), t, M)) := AE(Apk (rN), β(t), rM) if

N, M ∈ N .
• β(E(pk (t1), t1, M)) := AE(β(pk (t1)), β(t1), rM) if

M ∈ N .
• β(E(pk (M), t, Nm)) := m if M ∈ N .
• β(garbage(N c)) := c.
• β(garbageE (t, N c)) := c.
• β(t) = ⊥ in all other cases.
The total functionτ : {0, 1}∗ → T (C) is defined as fol-

lows (where the first matching rule is taken):
• τ(r) := N if r = rN for someN ∈ N .
• τ(r) := N r if r is of type nonce.
• τ(e) := pk(N) if e has earlier been output by

β(pk (N)) for someN ∈ N .
• τ(e) := pk (Ne) wheree is of type public key.
• τ(m) := pair (τ(Afst (m)), τ(Asnd (m))) if m of type

pair.
• τ(c) := E(pk (M), t, N) if c has earlier been output by

βf (E(pk (M), t, N)) for someN, M ∈ N , t ∈ T (C).
• τ(c) := E(pk (N), τ(AD(Ask (rN), c), N c) if c is

of type ciphertext andτ(Apkof (c)) = pk (N) for
some N ∈ N . If the AD returns⊥, τ(c) :=
garbageE (pk (N), N c).
• τ(c) := garbageE (τ(Apkof (e)), N

c) if c is of type ci-
phertext.
• τ(m) := garbage(Nm) otherwise.
The function` : T (C) → {0, 1}∗ is defined as̀ (t) :=

|β(t)|. Note that`(t) does not depend on the values ofrN

because of the length-regularity ofApk , Ask , Apair , andAE .
Hencè (t) can be computed without accessingrN .

The faking simulator. The simulatorSim ′ is defined ex-
actly like Sim, except that when computingβ(pk (N))
with N ∈ N , it picks a new public/secret key pair
(pkN , skN) usingKeyGen (unless(pkN , skN) are already
defined) and returnspkN . Analogously for β(sk (N)).
When computingβ(E(pk (N), t, M)) with N, M ∈ N ,
the simulator invokesEnc(pkN , β(t)) instead of computing

19

AE(Apk (rN), β(t), rM), and when computingτ(c) it in-
vokesDec(skN , c) instead of computingAD(Ask (rN), c).

The simulator Simf is defined like Sim ′, except
that instead of invokingEnc(pkN , β(t)), it invokes
Enc(pkN , 0`(t)).

Properties of the simulator. We derive several properties
of the simulatorsSim andSimf that will finally allow to
show thatSim is a good simulator for encryption-safe pro-
tocols. In the following, letΠ′ always denote an encryption-
safe probabilistic symbolic protocol.

Lemma 5 The simulatorsSim , Sim ′ andSimf run in poly-
nomial time.Sim is consistent and abort-free.

Proof. By inspection of the construction of the simulators
we see that they run in polynomial time. SinceSim never
sends terms containing variables,ΠC never sends questions,
so Sim is trivially consistent. SinceSim only aborts when
receiving a question, it is abort-free. �

Lemma 6 The full traces H -Trace
M,Π,Sim and

H -TraceM,Π,Simf
are computationally indistinguishable.

Proof. Note that the difference betweenSim andSim ′ is
that the randomness for the key generation and the encryp-
tion is chosen by the algorithmsKeyGen andEnc in Sim ′,
while Sim uses noncesrN instead. However, from protocol
conditions 1, 2, 3, it follows thatSim never uses a given ran-
domnessrN twice. Hence the full tracesH -TraceM,Π,Sim

andH -Trace
M,Π,Sim′ are indistinguishable.

Note thatSim ′ invokesDec(skN , c) only for valuesc
that have not been output byβ(E(pk (M), t, N)). Thus
Dec(skN , c) is invoked only for valuesc that have not been
output byEnc(pkN , ·). Since|β(t)| = |0`(t)| by definition
of `, the IND-CCA property of(KeyGen, Enc, Dec) implies
that the full tracesH -Trace

M,Π,Sim′ andH -Trace
M,Π,Simf

are indistinguishable. Using the transitivity of computational
indistinguishability, the lemma follows. �

Lemma 7 Sim is indistinguishable forM, Π, A, and for
every polynomialp.

Proof. We will first show that when fixing the ran-
domness of the adversary and the protocol, the node trace
Nodes

p
M,A,Π,E in the computational execution and the node

traceH -Nodes
M,Π,Sim in the hybrid execution are equal.

Hence, fix the variablesrN for all N ∈ NP , fix a random
tape for the adversary, and for each nodeν fix a choiceeν of
an outgoing edge.

Assume thatrN , Apk (rN), andAsk (rN) are pairwise dis-
tinct for all N ∈ N ∗. (This happens with overwhelming
probability when the randomness is uniformly chosen.)

In the following, we designate the valuesfi andνi in the
computational execution byf ′

i andν′
i, and in the hybrid exe-

cution byfC
i andνC

i . Lets′i denote the state of the adversary

E in the computational model, andsC
i the state of the simu-

lated adversary in the hybrid model.
Claim 1: In the hybrid execution, for anyb ∈ {0, 1}∗,
β(τ(b)) = b.

This claim follows by induction over the length ofb and
by distinguishing the cases in the definition ofτ .
Claim 2: In the hybrid execution, at any constructor or de-
structor nodeν = νi with constructor or destructorF and
arguments̄ν1, . . . , ν̄n the following holds: Letti be the term
stored at nodēνi (i.e., tj = f ′

i(ν̄j)). Then β(F (t)) =
AF (β(t1), . . . , β(tn)). Here the left hand side is defined iff
the right hand side is.

We show Claim 2. For noncesF = N ∈ NP , the
claim holds becauseβ(N) = rN = AN . For F = pk ,
note that by protocol condition 1, we havet1 ∈ NP . Then
β(pk (t1)) = Apk (rt1) = Apk (β(t1)). Analogously for
F = sk . ForF = pair , F = fst , F = snd this follows di-
rectly from the definition ofβ. ForF = ispk , if t1 = pk(t′1),
we have thatt′1 = pk (N) with N ∈ N or t′1 = pk (Nm)
wherem is of type ciphertext (as other subterms of the form
pk(·) are neither produced by the protocol nor byτ). In both
cases,β(t1) is of type public key. Henceβ(ispk (t1)) =
β(pk (t′1)) = Aispk (β(pk (t′1))) = Aispk (β(t1)). If t1 is not
of the formpk(·), thenβ(t1) is not of type public key (this
uses thatτ only usesNm with m of type public key inside
a termpk(Nm)). Henceβ(ispk (t1)) = ⊥ = Aispk (β(t1)).
Similarly for isenc, pkof , E (the latter using protocol condi-
tion 1), andD (using protocol condition 5). By construction
of τ , for all termst1 6= t2 that may occur in the hybrid execu-
tion, β(t1) 6= β(t2) (using the fact that allrN , pk (rN), and
sk(rN) are pairwise distinct). Henceβ(Aequals(t1, t2)) =
β(t1) iff t1 = t2 and Aequals(β(t1), β(t2)) = β(t1) iff
β(t1) = β(t2) iff t1 = t2. By protocol condition 7, the
constructorsgarbage , garbageE , andN ∈ NE do not occur
in the protocol. This shows Claim 2.

We will now show that for the random choices fixed
above,Nodes

p
M,A,Π,E = H -Nodes

M,Π,Sim .
To prove this, we show the following invariant:f ′

i = β ◦
fC

i andν′
i = νC

i andsi = s′i for all i.
We havef ′

0 = fC
0 = ∅ andν′

0 = νC
0 is the root node, so

the invariant is satisfied fori = 0. Assume that the invariant
holds for somei. If ν′

i is a non-deterministic node,ν′
i+1 =

νC
i+1 is determined byeν′

i
= eνC

i
. Since a non-deterministic

node does not modifyf and the adversary is not activated,
τ ◦ f ′

i+1 = fC
i+1 andsi = s′i. Hence the invariant holds for

i + 1 if ν′
i is a non-deterministic node.

If ν′
i is a constructor node with constructorC,

we have thatf ′
i+1(ν

′
i) = AC(f ′

i(ν̄1), . . . , f
′
i(ν̄n)) =

AC(β(fC
i (ν̄1)), . . . , β(fC

i (ν̄n))) for some nodes̄νs depend-
ing on the label ofν′

i. And fC
i+1(ν

′
i) = fC

i+1(ν
C
i) =

C(fC
i (ν̄1), . . . , f

C
i (ν̄n)). From Claim 2 it follows that

β(fC
i+1(ν

′
i)) = f ′

i+1(ν
′
i) and henceβ ◦ fC

i+1 = f ′
i+1. The

successor node of a constructor node is unique, henceν′
i+1 =

νC
i+1, and the adversaryE is not invoked, hences′i+1 = sC

i+1.
Hence the invariant holds fori+1 if ν′

i is a constructor node.

20

If ν′
i is a constructor node with destructorD, β ◦

fC
i+1 = f ′

i+1 and s′i+1 = sC
i+1 are shown like in the

case of constructor nodes. Furthermore, from Claim 2
it also follows thatAC(f ′

i(ν̄1), . . . , f
′
i(ν̄n)) is defined iff

C(fC
i (ν̄1), . . . , f

C
i (ν̄n)) is. Hence the same successor node

is taken in both executions, so the invariant holds fori + 1 if
ν′

i is a destructor node.
In the case of a communication node, the adversary

E in the computational execution gets a tuplem′ :=
(l, f ′

i(ν̄1), . . . , f
′
i(ν̄n)) where l is the out-metadata of the

nodeν′
i and the nodes̄νs depend on the label ofν′

i. In the
hybrid execution, the simulator gets(l, fC

i (ν̄1), . . . , f
C
i (ν̄n))

and sendsmC := (l, β(fC
i (ν̄1)), . . . , β(fC

i (ν̄n))) to the sim-
ulated adversaryE. By Claim 2 we then havem′ = mC , so
the adversary gets the same input in both executions. Thus
s′i+1 = sC

i+1 and the adversary sends the same pair(l′, b1)

in both executions. The successor nodesν′
i+1 andνC

i+1 are
determined by the in-metadatal′, henceν′

i+1 = νC
i+1. Fi-

nally, we havef ′
i+1(ν

′
i) = b andfC

i+1(ν
′
i) = τ(b) (because

the simulator translates the bitstringb usingτ before passing
it to ΠC). Thus the invariant holds fori + 1 in the case of a
communication node.

From the invariant it follows, that the node trace is the
same in both executions.

Since random choices with allrN , pk(rN), andsk(rN)
being pairwise distinct forN ∈ N ∗ occur with overwhelm-
ing probability, the node traces of the real and the hybrid ex-
ecution are indistinguishable. �

Lemma 8 In a given step of the hybrid execution withSimf ,
let S be the set of messages sent fromΠc to Simf . Letu′ ∈
T (C) be the message sent fromSimf to in that step. LetC
be a context andu ∈ T (C) such thatu′ = C[u] andS 0 u.

Then there exists a termtbad and a contextD such thatD
obeys the following grammar

D ::= � | pair(D, t) | pair(t,D) | E(pk (N),D, M)

| E(D, t, M) | garbageE (D, M)

with N ∈ NP , M ∈ NE, t ∈ T (C)

and such thatu = D[tbad] and such thatS 0 tbad and
such that one of the following holds:tbad ∈ NP , or tbad =
E(p, m, N) with N ∈ NP , or tbad = pk (N) with N ∈ NP .

Proof. We prove the lemma by structural induction onM .
We distinguish the following cases:

Case “u = garbage(u1)”: By protocol condition 7 the
protocol does not containgarbage-constructor nodes. Thus
u is not a honestly generated term. Hence it was produced
by an invocationτ(m) for somem ∈ {0, 1}∗, and hence
u = garbage(Nm). HenceS ` u in contradiction to the
premise of the lemma.

Case “u = garbageE (u1, u2)”: By protocol condition 7
the protocol does not containgarbageE -constructor nodes.
Thusu is not a honestly generated term. Hence it was pro-
duced by an invocationτ(c) for somec ∈ {0, 1}∗, and hence

u = garbageE (u1, N
m). SinceS ` Nm andS 0 u, we

haveS 0 u1. Hence by the induction hypothesis, there
exists a subtermtbad of u1 and a contextD satisfying the
conclusion of the lemma foru1. Then tbad and D′ :=
garbageE (D, Nm) satisfy the conclusion of the lemma for
u.

Case “u = sk(u1)”: By protocol condition 4, anysk -
constructor node occurs only as the first argument of aD-
destructor node. The output of the destructorD only contains
a subtermsk(u1) if its second argument already contained
such a subterm. Hence a termsk(u1) cannot be honestly
generated. But terms of the formsk(·) are not in the range of
τ . Henceu cannot be a subterm ofu′.

Case “u = pk (u1) with u1 /∈ NP ”: By protocol con-
dition 1, the argument of apk -constructor node is aN -
constructor node withN ∈ NP . Henceu is not honestly
generated. Hence it was produced by an invocationτ(e) for
somee ∈ {0, 1}∗, and henceu = pk (Ne). HenceS ` u in
contradiction to the premise of the lemma.

Case “u = pk (N) with N ∈ NP ”: The conclusion of the
lemma is fulfilled withD := � andtbad := u.

Case “u = pair (u1, u2)”: SinceS 0 u, we haveS 0 ui

for somei ∈ {1, 2}. Hence by induction hypothesis, there
exists a subtermtbad of ui and a contextD satisfying the con-
clusion of the lemma forui. Thentbad andD′ = pair (D, u2)
orD′ = pair (u1,D) satisfy the conclusion of the lemma for
u.

Case “u ∈ NP ”: The conclusion of the lemma is fulfilled
with D := � andtbad := u.

Case “u ∈ NE”: Then S 0 u in contradiction to the
premise of the lemma.

Case “u = E(u1, u2, N) with N ∈ NP ”: The conclusion
of the lemma is fulfilled withD := � andtbad := u.

Case “u = E(u1, u2, u3) with S 0 u2 andu3 /∈ NP ”: By
protocol condition 1, the third argument of anE-constructor
node is aN -constructor node withN ∈ NP . Henceu
is not honestly generated. Hence it was produced by an
invocation τ(c) for some c ∈ {0, 1}∗, and henceu =
E(pk (N), u2, N

c) for someN ∈ NP . SinceS 0 u1, by
induction hypothesis, there exists a subtermtbad of pk (N)
and a contextD satisfying the conclusion of the lemma for
pk(N). Thentbad andD′ = E(D, u2, N

c) satisfy the con-
clusion of the lemma foru.

Case “u = E(u1, u2, u3) with S ` u2 andu3 /∈ NP ”:
Analogous to the previous case,u = E(pk (N), u2, N

c) for
someN ∈ NP . From S ` u2, S ` N c, and S 0 u
we haveS 0 u2. Hence by induction hyposthesis, there
exists a subtermtbad of u2 and a contextD satisfying the
conclusion of the lemma foru2. Then Thentbad andD′ =
E(pk (N),D, N c) satisfy the conclusion of the lemma foru.
�

Lemma 9 Simf is DY forM andΠ.

Proof. Let a1, . . . , an be terms sent by the protocol toSimf .
Let u1, . . . , un be the terms sent bySimf to the protocol.

21

Let Si := {a1, . . . , ai}. If Simf is not DY, then with non-
negligible probability there exists ani such thatSi 0 ui. Fix
the smallest suchi0 and setS := Si0 andu := ui0 . By
Lemma 8 (withu′ := u andC := �), we have that there is
a termtbad and a contextD obeying the grammar given in
Lemma 8 and such thatu = D[tbad] and such thatS 0 tbad
and such that one of the following holds:tbad ∈ NP , or
tbad = E(p, m, N) with N ∈ NP , or tbad = pk (N) with
N ∈ NP .

By construction of the simulator, if the simulator outputs
u, we know that the simulated adversaryE has produced a
bitstring m such thatτ(m) = u = D[tbad]. By definition
of τ , during the computation ofτ(m), some recursive invo-
cation ofτ has returnedtbad . Hence the simulator has com-
puted a bitstringmbad with τ(mbad) = tbad .

We are left to show that such a bitstringmbad can be found
only with negligible probability.

SinceS 0 tbad , we have thattbad occurs inS only as a
part of a subtermt′ of a termt′′ ∈ S whereS ` t andS 0

E [tbad] for some contextE andt′ = E(t1, E [tbad], t3) or t′ =
E(t1, t2, E [tbad]) or t′ = pk (E [tbad]) or t′ = sk(E [tbad]) or
t′ = garbage(E [tbad]) or t′ = garbageE (t1, E [tbad]).

For all i < i0, we have thatSi ` ui. With S 0 E [tbad],
we have thatt′ is a subterm ofui only if t′ was a subterm
of aj with j ≤ i. Hencet′ must be honestly generated.
Because of protocol conditions 1, 4, 7, this leaves only the
possibilitiest′ = E(t1, E [tbad], N) with N ∈ NP , or t′ =
E(t1, t2, E [tbad]) with E [tbad] ∈ NP , or t′ = pk(E [tbad])
with E [tbad] ∈ NP .

Note that in all three cases, the computationβ(t′) in Simf

has been defined not to invokeβ(E [tbad]). (This was the
modification ofSimf with respect toSim .) Henceβ(tbad)
is never invoked. Iftbad = N ∈ NP , thenmbad = rN and
rN is never used. So the probability thatmbad = rN oc-
curs as output ofτ is negligible. Iftbad = E(p, m, N) with
N ∈ NP , thenτ(mbad) returnstbad only if mbad was the
output of an invocation ofβ(E(p, m, N)) = β(tbad). But
sinceβ(tbad) is never invoked, this case does not occur. Fi-
nally, if tbad = pk (N) with N ∈ NP , thenβ(tbad) is never
computed andpkN is never used. Furthermore,skN is only
accessed bySimf when evaluatingτ(c) wherec is a cipher-
text tagged withpkN . Hence the probability thatpkN occurs
as output ofτ is negligible. (The IND-CCA property implies
that guessing an unknown public key has negligible proba-
bility.)

Summarizing, we have show that if the simulatorSimf is
not DY, then with non-negligible probabilitySimf performs
the computationτ(mbad), butmbad can only occur with neg-
ligible probability as an argument ofτ . Hence we have a
contradiction to the assumption thatSimf is not DY. �

Theorem 4 A is a computationally sound implementation of
M for encryption-safe protocols.

Proof. By Lemma 9,Simf is DY for encryption-safe pro-
tocols. Whether a full trace satisfies the conditions from

Definition 17 can be efficiently verified (sincèis efficiently
decidable). Hence Lemma 6 implies thatSim is DY for
encryption-safe protocol, too. By Lemma 5,Sim is consis-
tent and abort-free. By Lemma 7,Sim is indistinguishable.
HenceSim is a good simulator forM, encryption-safeΠ, A,
and polynomialsp. By Theorem 1, the computational sound-
ness ofA for encryption-safe protocols follows. �

E Encryption in the applied π-calculus

Consider an instantiation of our process calculus
with constructors E/3, pk/1, sk/1, pair/2, garbage/1,
garbageE/2 and destructorsispk/1, isenc/1, D/2, fst/1,
snd/1, pkof /1, equals/2.

The semantics of the destructors is given by
D(sk(t1), E(pk (t1), m, t2)) = m. ispk (pk (t)) =
pk(t). isenc(E(pk (t1), t2, t3)) = E(pk (t1), t2, t3)
isenc(garbageE (pk (t1), t2)) = garbageE (pk (t1), t2).
fst(pair (x, y)) = x. snd(pair (x, y)) = y.
pkof (E (pk (t1),m, t2)) = pk(t1). In all other cases,
the destructors return⊥.

Assume an implementation of the constructors or de-
structors satisfying the implementation conditions givenin
section D.

We call a process̃P encryption-safe if it has the following
grammar: Letx ands stand for two different sets of vari-
ables (general purpose and secret key variables). Leta andr
stand for two sets of names (general purpose and random-
ness names). Then the allowed terms areM̃, Ñ ::= x |
a | pair (M̃, Ñ), the allowed destructor terms arẽD ::=

M̃ | ispk (D̃) | isenc(D̃) | D(s, D̃) | fst(D̃) | snd(D̃) |
pkof (D̃). The allowed processes are

P̃ , Q̃ ::= M̃〈Ñ〉.P̃ | M̃(x).P̃ | 0 | (P̃ | Q̃) | !P̃ | νa.P̃ |

let x = D̃ in P̃ else Q̃ | event(e).P̃ |

νr.let x = pk(r) in let s = sk(r) in P̃ |

νr.let x = E(ispk (D̃1), D̃2, r) in P̃ else Q̃

(Note that in the last production rules for key generation and
for encryption, all occurrences ofr denote the same name.)

Then from Theorem 2 and Theorem 3, we immediately
get the following soundness result in this process calculus:

Theorem 5 If a closed encryption-safe processP symboli-
cally satisfies aπ-trace property℘, thenP computationally
satisfies℘.

Analysis of Needham-Schroeder-Lowe The Needham-
Schroeder-Lowe protocol can be written as follows in our

22

fun E/3. fun pk/1. fun sk/1.
fun pair/2. fun garbage/1. fun garbageEnc/2.
reduc D(sk(t1),E(pk(t1),m,t2)) = m.
reduc ispk(pk(t)) = pk(t).
reduc isenc(E(pk(t1),t2,t3)) = E(pk(t1),t2,t3);

isenc(garbageEnc(pk(t1),t2)) = garbageEnc(pk(t1),t2).
reduc fst(pair(x,y)) = x.
reduc snd(pair(x,y)) = y.
reduc pkof(E(pk(t1),m,t2)) = pk(t1);

pkof(garbageEnc(pk(t1),t2)) = pk(t1).
reduc equals(x,x) = x.

query evinj:endAB() ==> evinj:beginAB().

let A = !in(net,pkX); if pkX=pkB then event beginAB(); A’ else A’.
let A’ = new nA; out(net,nA); new r2; in(net,c); let m=D(skA,c) in

if nA=fst(m) then if pkX=snd(snd(m)) then
let c’=E(ispk(pkX),fst(snd(m)),r2) in out(net,c’).

let B = !in(net,pkX); in(net,nA); new nB;
new r1; let c=E(ispk(pkX), pair(nA,pair(nB,pkB)), r1) in
out(net,c); in(net,c’); if nB=D(skB,c’) then if pkX=pkA then event endAB().

process new rA; let pkA=pk(rA) in let skA=sk(rA) in out(net,pkA);
new rB; let pkB=pk(rB) in let skB=sk(rB) in out(net,pkB); A|B

Figure 5. Needham-Schroeder-Lowe in ProVerif syntax

calculus (we use syntactic sugar(x, y) for pair (x, y)):

A := !net(pkX).

if pkX = pkB then event(beginAB).A′ else A′

A′ := νnA.net〈nA〉.net(c).let m = D(skA, c) in

if nA = fst(m) then if pkX = snd(snd(m)) then

νr2.let c′ = E(ispk (pkX), fst(snd(m)), r2) in

net〈c′〉.0

B := !net(pkX).net(nA).νnB.

νr1.let c = E(ispk (pkX), (nA, (nB, pkB)), r1) in

net〈c〉.net(m).if nB = D(skB , m) then

if pkX = pkA then event(endAB)

P := νrA.let pkA = sk(rA) in let skA = sk(rA) in net〈pkA〉.

νrB .let pkB = sk(rB) in let skB = sk(rB) in net〈pkB〉.

(A | B).

We model the participantsA and B as processes with an
unbounded number of sessions that perform authentications
with arbitrary participants (the adversary may control with
which communication partner an authentication is performed
by sending a public keypkX over the public channelnet).
If A believes to perform an authentication withB (pkX =
pkB), it raises the eventbeginAB . If B believes to have com-
pleted an authentication withA, it raises the eventendAB .
Entity authentication can be expressed by requiring that ev-
ery endAB event is preceded by abeginAB event. The pro-

cessP describing the whole protocol is an encryption-safe
process (ifr1, r2, rA, rB are declared as randomness names
andskA, skB as secret key variables).

We can encode the processes and the equational theory in
ProVerif as show in Figure 5. Note that we movedνr2 in
A′ up in front of the inputnet(c). Obviously, this leads to
an equivalent process (in terms of event traces), but it helps
ProVerif to terminate.10 ProVerif verifies the entity authenti-
cation property with no noticeable delay.

10In general, when ProVerif does not terminate, it is helpful to move all
restrictions upwards as far as possible.

23

	Introduction
	Our contribution
	Outline of the paper

	A general framework for computational soundness proofs
	Preliminaries
	Symbolic protocols
	Computational model
	Computational Soundness

	On simulators that entail computational soundness proofs
	Case study: computational soundness of public-key encryption
	Computational soundness of the applied π-calculus
	Overview of this section
	Review of the calculus' syntax and semantics
	Defining a computational execution
	Computational soundness of the calculus

	Conclusion and future work
	Semantics of the applied -calculus (with events)
	Postponed definitions
	Symbolic execution of a -process

	Postponed proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Encryption (postponed details)
	Encryption in the applied -calculus

