A general framework for computational soundness proofs — or
The computational soundness of the applied pi-calculus

Michael Backes?, Dennis HofheinZ and Dominique Unruh
!Saarland University 2CWI 3*MPI-SWS

Abstract A careful inspection of this series of results, however, re-
veals that the soundness theorems stated in these works, and

We provide a general framework for conducting computa- even more so the frameworks that underly these theorems,
tional soundness proofs of symbolic models. Our frameworkdiffer considerably in many respects. These differencegea
considers arbitrary sets of constructors, deduction ruses from various ways of syntactically expressing securityt@ro
computational implementations, and it abstracts away from cols and corresponding restrictions on the set of permitted
many details that are not core for proving computational protocol classes, to different semantics for modellingg@ro
soundness such as message scheduling, corruption modelsol communication and communication with the adversary,
and even the internal structure of a protocol. We identify to different (often incomparable) notions of computationa
several properties of a so-called simulator such that this-ex soundness, to different assumptions on the adversary’s ca-
tence of a simulator with all these properties already dstai pabilities, etfl Moreover, many of these frameworks were
computational soundness in the sense of preservationeg tra freshly invented in the respective papers; they hence lack
properties in our framework. This simulator-based charac- support of suitable verification tools and are more likely to
terization allows for proving soundness results in a corcep suffer from idiosyncracies than more established framks/or
tually modular and generic way. for reasoning about security protocols.

We exemplify the usefulness of our framework by proving The lack of a common framework that underlies compu-
the first computational soundness result for the full-fledge tational soundness results complicates the thorough cempa
appliedw-calculus under active attacks. Concretely, we em- ison of their strengths and limitations. Even worse, it ofte
bed the appliedr-calculus into our framework and give a even remains unclear if restrictions in computational sbun
sound implementation of public-key encryption. ness results, e.g., to require additional randomizaticthén

cryptographic implementation or to require the absence of

key cycles, stem from idiosynracies of the underlying frame
1 Introduction work, or if they constitute conceptual limitations for dsta
lishing the desired computational soundness result for the
prevalent cryptographic definitions. Moreover, framework

angrcc))arisn Oftgiﬁgrg)i/sfrzgla?ggi asrteer';nggvnegsbgf ?;ﬁgg;oi?]e specific assumptions complicate the extension of these re-
' 9 Y P sults to other frameworks, or to more comprehensive setting

terleaved protocol runs, awkward for humans to make. Hence

work towards the automation of such proofs started soon af':f?c;’ngerrng(rﬁ/ :r);grress,x?tlf:l: Ofs(;rgﬁ tfe%rﬁﬁshg:reprgn%glr\: es (;)J ea
ter the first protocols were developed. From the start, the Y- Y, o

actual cryptographic operations in such proofs were ideal-from scratch again (for an extended new framework).
ized into so-called Dolev-Yao models, followirig [£9] 20] 26 The present situation calls for a general unified framework

e.g., seell22["29.12, 2%, 28] 9]. This idealization sim- 1To get a small impression of the diversity of the stateme[@id23,[16]
plifies proof construction by freeing proofs from crypto- all establish (among others results) the computationaidioess of symbolic
hic detail h tati | tricti b encryption (either symmetric or asymmetric): FirBl, [7peesses protocols
g!"f"p. Ic de aI.S such as compu a.'P.na res r.|c '9”3' pro A as probabilistic input-output automata, exploits the camization model
bilistic behavior, and error probabilities. While it wad-in offered by the Reactive Simulatability (RSIM) framewofH,[&nd shows
tially not clear whether Dolev-Yao models are a sound ab- computational soundness in the sense of reactive similigtafor IND-
straction from real Cryptography with its computationa4 se CCA2-secure, additionally randomized encryption schen&econd,[[2B]

ity definiti | b f Its in the | expresses protocols and their communication using a netrlyduced con-
curity definitions, a large number of results in the last gear cept called abstract algebras, and shows computationatisess as preser-

helped to establish a general understanding which crypto-vation of static equivalence in the presence of an adaitivieyassive adver-
graphic primitives can or cannot be proven computationally sary for IND-CPA-secure encryption schemes that are aniciliy length-

sound in which adversarial settings under which ass‘w,r.'p_concealmg. Third [116] expresses protocols and their cumoatlpn within
a small fragment of the appliettcalculus, and shows computational sound-

tions. (A far from being complete list Of_these WOrks in- pessas preservation of observational equivalence in #sepce of an active
cludes|B[¥ B, 1€, 24, 2¥, 18,110,121] 15] 114, 4,123, 16].) adversary for IND-P1-C1-secure encryption schemes.

for computational soundness results. This framework shoul result for a fully-fledged applied-calculus under active at-
be designed in a modular, extensible way and allow for con-tacks. We consider the process calculus proposed_in [14]
veniently enbedding existing frameworks, thereby leviergg additionally augmented with events; the calculusiin [14] it
existing soundness results. Moreover, the framework shoul self is a combination of the original appliedcalculus [[1]

be tightly linked to a formal calculus that is well undersfoo with one of its dialects[[13]. This combination offers the
and accepted by the scientific community, that is expressiverichness of the original applieccalculus while additionally
enough for expressing and reasoning about state-of-the-arbeing accessible to state-of-the-art verification toohsas
protocols, and that is accessible to state-of-the-arfivari ProVerif [12]. We first syntactically embed the applied

tion tools. calculus into our framework. This embedding is particylarl
instructive because the calculus’ syntax vastly diffewsrir
the framework’s syntax. We then show that computational
soundness of the embedding entails computational sousdnes
of the appliedr-calculus (in the sense of preservation of trace

; i properties). Second, we provide a computational implemen-
proofs. We provide a general framework for conducting tation of the embedding, and we prove it sound within our

computational soundness proofs of s_ymbolig_models that al'framework by constructing a suitable simulator. We stress
lows to formulate soundness results in a unified and compa-,

bl The f K . | definit that this result not only implies that our embedding is com-
rable manner. 1he framework cComprises a generaj defini Ionputationally sound; it also proves the appledalculus itself
of symbolic protocols, their symbolic and computational ex

: - : sound under active attacks.
ecution, as well as a definition of computational soundness . .
. As an example, we used ProVerif to analyze the entity au-
for trace properties.

The f K d t out traint h boli thentication property of the Needham-Schroeder-Lowe pro-

d Ie' _rame\t/_vorl (_)tes no _tpu %(_)tns ralnts 0? € ?gum OlC tocal. Using the aforementioned results, this yields anémp
model, In particular, it permits aroitrary SEts of COnstaus, - o yiation of this protocol within the appliedcalculus that
deduction rules, and computational implementations, and i

is specifically tailored at establishing soundness resalts 's provably secure under active attacks.
that it abstracts away from many details that are not core for .

proving computational soundness such as message schedul-2 Outline of the paper

ing, corruption models, and even the internal structure of a

1.1 Owur contribution

A general framework for computational soundness

protocol. Instead, we treat a protocol as one entity thatint Section[® introduces our framework for computational
acts with an attacker. This allows for a unified treatment of soundness proofs. Sectibh 3 introduces the notion of a sim-
different symbolic models. ulator, and it identifies which properties a simulator nesd t

In order to simplify conducting soundness proofs in this have to entail a computational soundness result. Setlion 4
framework, we identify several properties of a so-called contains a case study: how to establish the computational
simulator such that the existence of a simulator with all soundness of public-key encryption within the general fam
these properties already entails computational soundness work by constructing a suitable simulator. Sectidn 5 estab-
the sense of preservation of trace properties in our frame-lishes the computational soundness of the appliediculus.
work. Intuitively, a simulator interacts with the symbolic Sectior® concludes and outlines future work.
protocol in a way that mimics the interaction of a compu-
tational adversary with the implementation. It thus might r .
mind of the simulation-based proofs of computational seund 2 A general framework for computational
ness [[7 [506[-15], but it does not depend on framework- ~ Soundness proofs
specific details such as scheduling, polynomial runtime re-
strictions, etc. This simulator-based characterizatitows 2.1 Preliminaries
for proving soundness results in a conceptually modular and
generic way, as it holds for arbitrary models that are embed-

ded in the framework. We first introduce basic notations that are used in this pa-

per, as well as central concepts such as constructorsydestr
tors, and deduction relations.

Computational soundness of the appliedr-calculus As

the second contribution of this paper, we show how to use)) o

our framework to establish the first computational sounsines Notation ~ Given a termt and a substitutiop, we denote by
ty the result of applying to ¢. Given a functionf, f(z :=

2\We currently only consider the preservation of trace prigein the y) is the functionf’ with f/(z) = y and f'(z) = f(z) for
framework. Existing definitions of the preservation of meophisticated z # x. We abbreviate, . . ., z,, with z if n is clear from the

properties such as observational equivalerice [16] can blyezmst in - context \We call a se¥ efficiently decidablé there is a de-
our framework. However, deriving a sufficient criterion fmmputational

soundness by means of the existence of a good simulatorek®e bequires _terminiStiC p0|yn0mia|_'time algorithm de?idin_g membesh
conceptual future work. in M. We call M prefix-closedf x € M impliesz’ € M

for all prefixesz’ of z. A non-negative functiorf is negligi-
bleif for every ¢ and sufficiently larger, f(n) < n=¢. fis
overwhelmingdf 1 — f is negligible.

Definition 1 (Constructors and destructors) A construc-
tor C' is a symbol with an arity. For a (possibly infinite) set
of constructorsC, we denote the set of all terms over these
constructors (respecting the arities) BWy(C). We write
C/n € C to denote thatC contains a constructo€' with
arity n.

A destructorD of arity n, written D /n, over a set of con-
structorsC is a partial mapT'(C)" — T'(C). If D is unde-
fined ont, we write D(¢) = L.

In the following, we only consider sets of construct@rs
such that the same constructors cannot have differergsriti
i.e.,C/n,C/m € Cimpliesn = m. (This restriction simpli-
fies notion and is without loss of generality, as one can sim-
ulate multi-arity constructors by adding the arity to thenea

of the constructor.) We moreover assume that constructors o

have symbols that are bitstrings, and similarly for destruc
tors and node identifiers in symbolic protocols as introduce
below.

A predicateP of arity n over a set of constructosS is
a subset ofl’'(C)™. Since each predicat® can be real-
ized using a destructdd by definingD(t1,...,t,) = t1
if P(ty,...,t,) = true and D(ty,...,t,) := L other-
wise, predicates however do not require an explicit treatme
Predicates can be used to describe arbitrary tests thata pro
col may perform. In particular, they can describe the etyali
test= which is the diagonal off”? for free equational theo-

ries and the equivalence relation between terms in non-free

equational theories.

We now define which terms can be deduced from other
terms; this is formalized using a deduction relatioover a
setoftermd". The intuitionofS - mforS C Tandm € T
is that the termm can be deduced from the termsSn

Definition 2 (Deduction relation) A deduction relation-
over a set of constructol€ is a relation betweeg”(©) and
T(C).

encode nondeterministic choices in the protocol. Moreover
the node labels contain unique identifiers for each node. The
edge labels intuitively allow for distinguishing branclias

the protocol execution, e.g., destructor nodes have two out
going edges labelled withes and no, corresponding to the
two cases that the destructor is defined on the input term or
not; hence we can, e.g., speak aboutghesuccessor of a
destructor node.

Definition 3 (Symbolic protocol) A symbolic protocois a
tree with a distinguished root and labels on both edges and
nodes. Each node has a unique identifdérand one of the
following types (labels):

e Constructor nodesire annotated with a constructor
C'/n together with the identifiers of (not necessar-
ily distinct) nodes. Constructor nodes have exactly one
successor; the corresponding edge is labeled with

Destructor nodeare annotated with a destructdp/n
together with the identifiers ot (not necessarily dis-
tinct) nodes. Destructor nodes have exactly two succes-
sors; the corresponding edges are labeled with and

no, respectively.

Communication nodeare annotated with the identi-
fier of n > 0 nodes and with a bitstring called out-
metadata (out-metadata can be used to, e.g., model
additional information leakage to the adversary). A
communication node can have countably many suc-
cessors; the corresponding edges are labeled with bit-
strings called in-metadata (in-metadata allows the ad-
versary to control the protocol flow).

Nondeterministic nodesave no further annotation.
Nondetermininistic nodes have at least one and at most
finitely many successors; the corresponding edges are
labeled with bitstrings.

If a node N contains an identifie?N’ in its label, thenN’
has to be on the path from the root 26 (including the root,
excludingN), and N’ must be a constructor node, destruc-

In most cases, the adversary can apply all constructors andor node, or communication node. In cas® is a destruc-

destructors. This can be modelled by definfg t = S +-
C(t) for every constructo' andS + t A D(t) # L =
S+ D(t) for every destructoD, respectively. However, our
model does not assume this in general, i.e., it supportateriv
constructors as used by, e.g., ProVerif.

2.2 Symbolic protocols

We define a symbolic protocol as a tree with a distin-

tor node, then the path frov’ to NV has to additionally go
through the outgoing edge of’ with labelyes.

Assigning each nondeterministic node a probability distri
bution over its successors yields the notion of a probaiailis
symbolic protocol.

Definition 4 (Probabilistic symbolic protocol) A proba-
bilistic symbolic protocolis a symbolic protocol, where

guished root and with labels on both nodes and edges. In-each nondeterministic node is additionally annotated \aith

tuitively, the node labels correspond to different protam
tions: Constructor and destructor nod@soduce terms (us-
ing a constructor or destructogpmmunication nodesrre-
spond to receive and send operatiaradeterministic nodes

probability distribution on the labels of the outgoing edge

In the following, we assume that such a probability dis-
tribution is encoded as a list of pairs, consisting of a label

and a rational probability. Any probabilistic symbolic pro
tocol can be transformed canonically into a corresponding
symbolic protocol by erasing the probability distribution
Probabilistic symbolic protocols will be crucial in the
definition of computational soundness. Moreover, they of-
ten constitute an intermediate technical step within adarg
proof. For instance, reasoning about implementations of
symbolic protocols is difficult since they do not have a ueiqu
such implementation if nondeterministic nodes are present
in contrast to probabilistic symbolic protocols. With the-n
tion of probabilistic symbolic protocols at hand, one can in
stead consider the set of all implementations of all prdizabi
tic symbolic protocols whose corresponding symbolic proto
colisTI.

Definition 5 (Efficient protocol) We call a probabilistic
symbolic protocoekfficientif:

e There is a polynomiab such that for any nodé&/, the
length of the identifier ofV is bounded by(m) where
m is the length (including the total length of the edge-
labels) of the path from the root ty'.

e There is a deterministic polynomial-time algorithm that,
given the identifiers of all nodes and the edge labels on
the path to a nodév computes the label a¥.

We finally provide the notions of a symbolic model and of
a symbolic execution of a protocol.

Definition 6 (Symbolic model) A symbolic modelM =
(C,N,D,I) consists of a set of constructofs, a sub-
setN C C containing only constructors of arity (called
nonce}, a set of destructor® over C, and a deduction re-
lation - overC.

The symbolic execution of a protocol for a given sym-
bolic model consists of a sequence of trip{&sv, f) where
S represents the knowledge of the adversaryepresents
the current node identifier in the protocol, afidepresents
a partial function mapping already processed node iderstifie
to messages.

Definition 7 (Symbolic execution) Let a symbolic model
(C,N,D,I) and a symbolic protocoll be given. Afull
traceis a (finite) list of tupleqS;, v;, f;) such that the fol-
lowing conditions hold:

e Correctstart.S; = @, vy is the root off1, f; is a totally
undefined partial function mapping node identifiers to
terms.

e Valid transition For every two consecutive tuples
(S,v, f) and (S',/, f') in the list, letz be the node
identifiers in the label of andt, := f (7). We have:

— If v is a constructor node with construct6f, then
S’ = S, v is the successor of in 11, and f’
f(v:=m)form = C(¢).

— If v is a destructor node with destructd?, then
S’ =S. Letm := D(t). If m # L, thenv/ is the
yes-successor of in IT; if m = L, thens' is the

no-successor aof in II. We havef’ = f(v := m).

— If v is a communication node, thetf = S U {{},
V' is the successor ofin I, and there exists am
with S’ - mand f’ = f(v :=m).

— If v is a nondeterministic node, theti = S, v/ is
some successor ofin II, and f' = f.

A list of node identifiergy;) is anode tracef there is a
full trace with these node identifiers.

2.3 Computational model

We now define the computation implementation of a sym-
bolic model as a family of functions that provide computatio
interpretations to constructors and destructors.

Definition 8 (Computational implementation) Let a sym-
bolic modelM (C,N,D,I) be given. Acomputa-
tional implementation oM is a family of functionsd =
(A.)zecup such thatdq for C'//n € C\ N is a total deter-
ministic functiorlN x ({0,1}*)" — {0,1}*, Ap for D/n €
D is a partial deterministic functiolN x ({0,1}*)" —
{0,1}*, and Ay for N € N is a probabilistic function with
range{0, 1}* (i.e., it specifies a probability distribution that
depends on its argument).

All functions A¢, Ap have to be computable in deter-
ministic polynomial-time, andl; has to be computable in
probabilistic ponnomiaI-timE.

RequiringA¢ and Ap to be deterministic is without loss
of generality, since one can always add an explicit random-
ness argument that takes a nonce as input.

The computational execution of a probabilistic symbolic
protocol defines an overall probability distribution ongadis-
sible node traces that the protocol proceeds through. In con
trast to symbolic executions, we do not aim at defining the
notion of a full trace: the adversary’s symbolic knowledge
has no formal counterpart in the computational setting, and
the functionf occuring in the computational executions will
not be needed in our later results.

Definition 9 (Computational execution) Let a symbolic
modelM = (C,N, D,), a computational implementation

A of M, and a probabilistic symbolic protocdl be given.

Let a probabilistic polynomial-time interactive machiie
(the adversary) be given (polynomial-time in the sense that
the number of steps in all activations are bounded in the

3More precisely, there has to exist a single uniform prolisthil
polynomial-time algorithmA that, given the name af', D, or N, together
with an integerk and the inputsn, computes the output o, Ap, and
Ap or determines that the output is undefined. This algorithnstrmun in
polynomial-time ink + |m| and may not use random coins when computing
Ac andAp.

length of the first input of2), and letp be a polynomial.
We define a probability distributioWodes?, , ; (k) on (fi-

nite) lists of node identifiers/{) according to the following
probabilistic algorithm (both the algorithm anél are run on

input1¥):

e Initial state: v; := v is the root oflI. Let f be an
initially empty partial function from node identifiers to
bitstrings, andn an initially empty partial function from
N to bitstrings.

e Fori=1,...do the following:

— Let? be the node identifiers in the label of Let
mg = f(Dk).
— Proceed depending on the type of nede

x If v is a constructor node with constructor
C € C\ N, thenm' := Ac(k,m) letv' be
the successor of, and letf’ = f(v :=m’).
Letf:= f/ andv := 1.

x If v is a constructor node with constructor
N € N: Letm/ := n(N) if n(N) # L
and samplem’ according to Ay (k) other-
wise. Lety’ be the successor of, f/ =
fv = m'), andn’ := n(N := m’). Let
v:=v,f:=f andn:=n'.

x If v is a destructor node with destructdp,
thenm’ := Ap(k,m). If m’ # L, thenv' is
the yes-successor of, if m’ = L, thenv' is
the no-successor of. Let f' := f(v := m/).
Letyv:=v andf := f’.

* If v is a communication node labeled with a

string {, give (I,m) to E' and get an answer
(I',m’). Abort the loop ifE halts. Lety’
be the successor of along the edge labeled
I’ (or the lexicographically smallest edge if
there is no edge with labdl). Let f :=
flv:=m')yandv :=1'.
x If v is a nondeterministic node, 1@ be the
probability distribution on the label of. Pick
v/ according to the distributioriD, and let
vi="1.
— Lety; :=v.
— Letlen be the number of nodes from the rootito
plus the total length of all bitstrings in the range
of f. If len > p(k), stop.

2.4 Computational Soundness

We first define trace properties and their fulfillment by a

(probabilistic) symbolic protocol. After that, we provitiee
definition of computational soundness for trace properties

Definition 10 (Trace property) Atrace property is an ef-

ficiently decidable and prefix-closed set of (finite) lists of

node identifiers.

LetM = (C,N,D,F) be a symbolic model anfl’ a
symbolic protocol. Thedl’ symbolically satisfiesa trace
property’? in M iff every node trace dfl’ is contained irP.
Let A be a computational implementation®f and letII be
a probabilistic symbolic protocol. Thefl, A) computation-
ally satisfiesa trace propertyP in M iff for all probabilistic
polynomial-time interactive machinésand all polynomials
p, the probability is overwhelming tha¥odesy; 4 (k) is
contained inP. S

Definition 11 (Computational soundness)A com-
putational implementation A of a symbolic model
M = (C,N,D,}) is computationally soundfor a
class P of symbolic protocols iff for every trace property
P and for every efficient probabilistic symbolic protocol
II, we have thatII, A) computationally satisfie® if the
corresponding symbolic protocall’ of II symbolically
satisfiesP andIl’ € P.

3 On simulators that entail computational
soundness proofs

In this section, we introduce the notion of a simulator and
identify several properties a simulator might enjoy. Wevgho
that the existence of a simulator that enjoys all of thesppro
erties already suffices to establish computational sows®ine
in the sense diDefinifion11. Future soundness proofs can
thus concentrate on the construction of a suitable simulato

In the following, we fix a symbolic modeM =
(C,N, D,) and a computational implementatighof M.

Let T,,(C) denote the set of terms over the construcors
that may contain variables, i.&(C) are the ground terms in
T,(C). Similarly, letT,.(C, D) denote the set of terms over
constructor€C and destructor® that contain variables, and

let T(C, D) denote the corresponding ground terms. By the
definition of destructors, anye T'(C, D) evaluates to some

t' e T(C)U{L}. We writeeval(t) to denote this terry. In

the following, we moreover assume that whenever a machine
sends a term or a node, the term / node is suitably encoded as
bitstring.

Definition 12 (Question, answer, valid substitution) A
questionis a term in7,,(C, D). AnanswerA to a question
Q is aterm@ = b whereb € {true, false}. An answerA is
correctfor a question) € T(C, D) iff b = (eval(Q) # L).
A substitutiony from variables tol'(C) is valid for a setA
of answersf Ay is correct forallA € A.

We proceed by introducing the notion of a simulator, es-
sentially by imposing syntactic constraints on the set bf al
interactive machines.

Definition 13 (Simulator) A simulatoris an interactive ma-
chineSim that satisfies the following syntactic requirements:
o If it is activated with a question, it sends an answer

to Q.

e If it is activated with a termt € T,,(C,D), it replies
with atermm € T,,(C, D).

o Ifitis activated with(info, v, t) wherev is a node iden-
tifier andt € T'(C), it either replies with(proceed), or
with (terminate).

e At any point (in particular instead of sending a reply),
it may terminate and output eith¢il or a substitution
 from variables tdl'(C).

A simulator Sim is intuitively expected to constitute a
translation routine that transforms a computational &ttac
into a corresponding symbolic attack. Thtign essentially
translates bitstrings to terms, and vice versa. Graniiing
the ability to process terms with variables (i.e., unknowlo-s
terms) freesSim from providing a final translation at the time
a term is sent; insteadyim can lazily complement transla-
tions if it is subsequently queried with a correspondingsjue

tion when the value of such a variable determines the flow of

the protocol.

We proceed by defining the hybrid execution of a proba-

bilistic symbolic protocol. We call this execution hybrid-b

x If v is a communication node with out-
metadatd, send(l, £) to Sim. Upon receiving
(I',m) with ! € {0,1}* andm € T,(C,D)
from Sim, let f' := f(v := m), letv’ be the
successor af with in-metadatd’ (or the lex-
icographically smallest successor, lif does
not occur), and letS’ := S U {m}. Let
S:=8,v:=v,andf := f'.

x If v is a nondeterministic node, sampleac-
cording to the probability distribution speci-
fiedinv. Lety := /.

— Send(info,v,t) to Sim. When receiving an an-
swer (proceed) from Sim, continue. When receiv-
ing (terminate), stop.

— If Sim has output a substitutiop or fail, stop.
Otherwise le{(S;, v;, fi) := (S, v,).

We write Sim + II¢ to denote the execution ¢fim and
II¢. We denote the probability on node traces of this execu-
tion by H-Nodesyg 11, g (k). BY H-Substy i, sim (k) we
denote the probability on the substitution that is output by

cause it is a mixture of the symbolic and the computational ¢, . 4t the end of this execution (ar if Sim outputsfail).

execution. Roughly, we define a hybrid protocol machifte
that is associated td. Intuitively, II® behaves a8l but in-

coming communication terms are allowed to have variables

thatII® lazily instantiates by asking questions to a simulator.

Definition 14 (Hybrid execution) LetII be a probabilistic
symbolic protocol, and lesim be a simulator. We define a
probability distribution H - Traceys 1 g;,,, (k) on (finite) lists
of tuples(S;, v;, f;) called thefull hybrid traceaccording to
the following probabilistic algorithniI¢, run on input1¥,
that interacts withSim. (II¢ is called the hybrid protocol
machine associated witll and internally runs a symbolic
simulation oflI as follows:)

e Start S; := S := @, 11 := v is the root ofIl, and
f1 := f are totally undefined partial functions mapping
node identifiers td@,(C, D). RunlIl onwv.

e Transition For ¢ = 1, ... do the following:

— Let 7 be the node identifiers in the label of Let
mg = f(Dk).
— Proceed depending on the typerof

x If v is a constructor node with constructat,
letm := C(t), v be the successor of and
fli=f(v:=m). Letv:=v and f := f'.

x If v is a destructor node with destructadp,
then letm := D(Z). If mis ground, then let’
be theyes- or no-successor of,, depending
onwhetheeval(m) # L ornot, and letf’ :=
f(v = eval(m)). If m is not ground, then
askSim the questiomn. If the answer isn =
true, let f' := f(v := m) and letv’ be the
yes-successor of. Otherwise let’ be the
no-successor of and f' := f. Letv := 1/
andf := f'.

By H-Answersm m,sim (k) We denote the probability on the
list of answers sent b§im in the execution.

We proceed by defining several properties of a simulator,
such as never outputtinfgil and thus causing the hybrid ex-
ecution to abort, correctly answering all queries, or aitiger
to a Dolev-Yao style deduction relation. Later we will show
that simulators that satisfy all these properties entaih-co
putational soundness results. Treating these propegjes s
arately instead of immediately conjoining them into a gen-
eral soundness criterion allows us to more careful identify
where these individual properties are exploited in computa
tional soundness proofs.

The first property — abort-freeness — ensuresgtvatonly
outputsfail with negligible probability.

Definition 15 (Abort-free simulator) A simulator Sim is
abort-freefor M and1l, if the probability thatSim outputs
fail in the hybrid executioim + II¢ is negligible.

The next property — consistency — captures that the node
traces obtained by interacting witfim adhere to the rules
from [Definifion 1 that determine the successor node. More
precisely, wheneve$im answers a question that will deter-
mine the successor node in a hybrid execution, this answer
will be consistent with the rules 7 for the full
hybrid trace (with substituted variables).

Definition 16 (Consistent simulator) A simulator Sim is
consistentfor M and II, if with overwhelming prob-
ability there exists a substitutionp that is valid for
H-Answersm 1, sim (k).

The next property — Dolev-Yao-style — captures that
adheres to the deduction relatibrin [Definifion 4 for com-
munication nodes. More precisely, the communication terms

that Sim sendgo the symbolic protocol have to be derivable overwhelming probability. FiXI, F, andp, and letSim be
from Sim’s symbolic view so far. (However, this is formally a good simulator fobM, II, A, F, andp. Let Ap denote a
only determinedfter Sim’s substitutiony is applied.) polynomial-time algorithm that decides propeRy

We first show a lemma on the hybrid node traces and then
Definition 17 (Dolev-Yao style simulator) A simulator proceed with the overall proof; the proof of the lemma is
Sim is Dolev-Yao style(short: DY) for M and I, if with postponed to Append[xIC.
overwhelming probability the following holds:

Whenever Sim outputs a valid substitiony for Lemma 1 Consider a hybrid execution ofim + II° in
H-Answersm i sim (k) in @ given execution afim + I11¢, which Sim is abort-free, consistent and DY, i.e.,
let t, be thel-th term sent frondI® to Sim during the pro- e Sim does not outpufail,
cessing of a communication node in a given execution of e Sim finally outputs a substitiop that is valid forSim’s
Sim + II¢, and letm, be the response sent frafim to I1¢ answers in this execution,
in that execution (i.e., the term sent fraffm to I1I€ directly e Sim behaves as a Dolev-Yao adversary, i.e., we have
after receivingy). {t1,...,ts} F my for all t; andm, as in[Definition Tf
Then for all, we havet; o, . .., typ F mep. and all .

Let ¢r be the full hybrid trace of that execution. That :=
The final property — indistinguishability — captures that ¢ry is a full symbolic trace ofI'.
the hybrid node traces are computationally indistinguiéha
from real node traces, i.e., the corresponding random vari
ables cannot be distinguished by any probabilistic algorit
that runs in polynomial time in the security parameter. We

write ~ to denote computational indistinguishability.

[Cemmal immediately entails that the probability is over-
whelming thatll - Nodesy; 11 s:,,, (k) is @ Symbolic node trace
of II', and hence thali- Nodes g 11 gim € P. SinceAp de-
cidesP, this means that

Definition 18 (Indistinguishable simulator) A simulator Pr [Ap (H-Nodesng 5 () = 1] is overwhelming. (1)

adversaryF, and a polynomiap, if

. Nodes® (k) ~ H-Nodes i (k).
NodesZy 4 1 (k) & H-Nodesyg 11 sim (k) MAILE MILS
o) Since Ap is polynomial-time in its input, and
i.e., if the node trace and the hybrid node trace are computa- Nodes? , , (k) is polynomially-sized ink by con-
tionally indistinguishable. struction, this implies that

We define the following abbreviation. Pr [AP(NOdesﬁ/I,A,H,E(k)) —1] is overwhelming,

Definition 19 (Good simulator) A simulator isgoodfor M,

II, A, E, andp if it is abort-free, consistent, and Dolev-Yao and hence thaNodesy, 4 i (k) € P with overwhelming
style forM, andIlI,and indistinguishable foM, II, A, E, probability. This concludes the prooflogf Thearem 1. O
andp.

We can now formally state and prove the main result of 4 Case study: computational soundness of

this section: the existence of a good simulator implies com- Public-key encryption
putational soundness.

In this section, we provide a symbolic model that allows
Theorem 1 (Good simulator implies soundness).etM = for expressing encryption, decryption and pairs, and we de-
(C,N,D,F) be a symbolic model, lg? be a class of sym- rive criteria under which a computational execution of that
bolic protocols, and letl be a computationalimplementation model is computationally sound.
of M. Assume that for every efficient probabilistic symbolic
protocolII (whose corresponding symbolic protocol isfty, The symbolic model. We first specify the symbolic model
every probabilistic polynomial-time adversafy, and every (C,N,D,F):
polynomialp, there exists a good simulator fod, 11, A, F, e

! _ e Constructors: We haveC := {FE/3,pk/1,sk/1,

andp. ThenA is computationally sound for protocols . pair /2, garbage /1, garbageE /2} UN with N = Np U
Ng. HereNp andNg are countably infinite sets rep-

Proof. We have to show that for every probabilistic symbolic resenting protocol and adversary nonces, respectively.
protocolIl, we have thatIl, A) computationally satisfie® Intuitively, E(pk(r"), m,r) encryptsn using the public
whenevell’ symbolically satisfies a propery (wherell’ is key pk(r') and randomness garbage and garbageEl
the corresponding symbolic protocol Bf). Thus, for every are constructors necessary to express certain invalid
E andp, Nodesyy 411 (k) has to be contained i® with terms the adversary may send.

e Destructors: D := {ispk/1,isenc/1,D/2, fst/1, Theorem 2 A is a computationally sound implementation of
snd /1, pkof /1, equals/2}. The destructorgspk and M for encryption-safe protocols.
isenc realize predicates to test whether a term is a pub-
lic key or a ciphertext, respectivelykof extracts the
public key from a ciphertextD(sk(r), ¢) decrypts the
ciphertextc.
The behavior of the destructors is given by the follow-
ing rules; an application matching none of these rules
evaluates tal :

Proof sketch:We construct a simulata$im that internally
runs the adversarf and forwards the messages betwéen
and the protocol to the protoc®I® in the hybrid model.
Sim translates all terms sent by the protocol into bitstrings
by evaluating all constructoxs using their implementation
Ac. The values of protocol nonces are chosewby. Inthe
other direction,Sim converts bitstrings to terms by apply-

D(Sk(tl)’E(pk('tl)’m’tz) m ing the destructorsip, Az, Asma, and Aprs. SinceSim
ispk(pk(t)) = pk(?) chooses the values of all protocol nonces, it knows the secre
isenc(E(pk(t1),ta, t3 = E(pk(t1),ta,t3) keys needed to parse ciphertexts encrypted with respect to

= garbageE (pk(t1), ta) honestly generated public keys. Ciphertextsith respect

1senc(garbageE (pk(ty),t .)) . .
(garbageB (pk(t1), b2 to other public keys are considered as invalid encryptions

)
)
)
)
) —
)
)
)

)
)
fst(pair(z,y)) = = garbageE(...). This is possible since the protocol only at-
snd(pair(z,y)) = y tempts to decrypt using honestly generated secret keyse Sin
pkof (E(pk(t1),m,t2)) = pk(t;) the translation between bitstrings and terms is done ubing t
pkof (garbageE (pk(ty), t2) pk(t1) implementation of constructors and destructdisn is in-

distinguishable. Consistency and abort-freeness follow d

« Deduction relationt is the smallest relation such that 'ectly from the construction. To show théim is DY, we
meS=S+mNecNg=SF N,andsuchthat construct another simulatatim s that behaves likevim but
for any constructor or destructgr ¢ C UD \ N and uses fake encryptions: Instead of applyitg to the plain-

for any , t, with S - t and f(t) # L we have textm, it instead applies it to an all-zero string of the same
SE f(b). T - - length. From the IND-CCA property we get that the execu-

tions of Sim and Sim; are indistinguishable. We show that
if Simy is not DY, then a certain term,qq is sent bySim .
The computational implementation. Obtaining a compu- The termt,,, is shown to contains a nonce that is never ac-
tational soundness result for the symbolic masElequires cessed (asim; does not have to compute the plaintexts of
its implementation to use an IND-CCA2 secure encryption encryptions) and hence the bitstring,,; corresponding to
scheme. More precisely, we require that,,, Aq), Ag, and tpeq 1S information-theoretically hidden. However,,,, is
Ap formthe key generation, encryption and decryption algo- easy to extract from the message senttbysing destructor
rithm of an IND-CCA2-secure scheme. Lét,,,(m) = m applications. Hence we have a contradiction &t ; is DY.
andA;s...(m) = m iff mis a public key or a ciphertext, re- ~ Since the executions dim ¢ and Sim are indistinguisable,
spectively. (Only a syntactic check is performed;itisnatn Sim is DY. ThusSim is good and the theorem follows. A
essary to check whethet was correctly generatedd s detailed proof is given in AppendixID. O
extracts the public key from a ciphertext, i.e., we assurae th
ciphertexts are tagged with their public key. Nonces are im- .)
plemented as randombit strings. A,qir, Asr, and Agng 5 Computational soundness of the appliedr-
construct and destruct pairs. We require that the implemen- calculus
tation of the constructors are length regular, i.e., thgtlen
of the result of applying a constructor depends only on the
lengths of the arguments. No restrictions are putQp-sqge
andA .rbq9.E as these are never actually used.

In this section we show how to use our framework to
establish the first computational soundness result for the
applied m-calculus. Strictly speaking, we consider the
process calculus proposed inJ14] additionally augmented
Protocol conditions. The computational soundness result with events. The calculus ir_[lL4] itself is a combination
we derive in this section requires that the symbolic proto- of the original applied pi-calculus[1] with one of its di-
col satisfies certain constraints. In a nutshell, these con-alects|[18]. This combination offers the richness of thg-ori
straints require that encryption and key generation alwags inal applied pi-calculus while additionally being accessi
fresh randomness, that decryption only uses honestly genby ProVerif [12]. The embedding of this calculus into our
erated secrets keys, and that the protocol does not producgeneral formal model is particularly instructive because t
garbage terms. We call protocols satisfying these comditio calculus’ syntax vastly differs from the framework’s syxta
encryption-safeFor an exact characterization of the assump- e.g., the applied-calculus models secrecy of nonces via re-
tions concerning the implementation and of the protocotcon strictions, it does not rely on a labeled transition systeut,
ditions, we refer to AppendixID. it considers an equational theory.

5.2 Review of the calculus’ syntax and se-
M,N ::= terms mantics

xT,Y, 2 variables

a.b,c names The syntax of the process calculus that we consider is

L provided in[Figure]l. (We do not explicitly include an if-
f(My,..., M) constructor application statement, but instead emulate it using destructor applica

tions, see below.) Technically, it corresponds to the ome co

D= destructor terms sidered in [[14], except that we add processes of the form
M terms event(e).P for a stringe. The intuitive meaning of such a
d(D1,...,Dy) destructor application process is that it raises an everaind then proceeds to exe-
f(D1,...,Dy) constructor application cuteP.

In the following, we often call terms in the process calcu-

PQ = processes lus 7-terms and terms in the framework, i.e., in the sense of
M(N).P output Beciion Zw-terms, in order to avoid ambiguities. We pro-

. ceed similarly for other homonyms, suchagonstructors,
M(z).P |n_put w-traces, etc. The set of groundterms is denoted’,. By
0 nil fn(P) we denote the set of free names/ofi.e., the names
P|Q parallel composition n not protected by a restriction. By (P) we denote the free
1p replication variables ofP, i.e., the variables that are not protected by a

- destructor application or an input. We call a process clifsed
va.P restriction it has no free variables (but it may have free names).
let w=D destructor application The calculus is parametrized over a (possibly infinite)
in P else Q set of w-constructorsC,, a (possibly infinite) set ofr-

cvent(e).P event destructord,;, and an equivalence relatiea over ground

m-terms (called the equational theory). A destructaf ar-
ity n is a partial functionl? — T,.. We require that the
Figure 1. Syntax of the process calculus. equational theory is compatible with thedestructors and
m-constructors in the following sense: For alconstructors
f and w-destructorsd of arity n, for all groundn-terms
Ml,...,Mn,M{,...,MJLWith M; ~ M{forl =1,...,n,
we have thalf (M) ~ f(M'), thatd(M) = L iff d(M') =
1, and thatd(M) ~ d(M'). We also requirel(M7) =
d(M)T for any renaming- of names.

We did not explicitly include an if-statement in the syntax
of the calculus since such a statement can be expressed using

We briefly outline the structure of this section, since it can an additional destructotquals: Let equals(z,y) = x for
be seen as a general guideline on how to embed other calcult =~ y and defineif M = N then P else Q aslet x =
into our framewoek, and how to derive computational sound- equals(M, N) in P else) for somez ¢ fo(P). In the
ness guarantees for them. following, we will assumeequals € D;.

Given a ground destructarterm D, we can evaluate it to

We first review the syntax and the semantics of the ap-a groundr-termeval™ D by evaluating allr-destructors. If
plied w-calculus in[Secfionbl2. IA—Seciionb.3, we define one of ther-destructors returnsg, we seteval™ D = 1.
a computational execution of the calculus (this is only nec- The semantics of the calculus is standard and corresponds
essary since the appliet-calculus does not come with an to the one defined il [14] except for the addition of events.
a-priori defined computational execution), called computa The semantics hence consists of two possible transitiens:
tional -execution, as well as trace properties in the applied and-%. The latter denotes that the everdccurred, and we
m-calculus, calledr-trace properties. IRSecfion’d.4, we es- can define trace properties as properties over the sequénce o
tablish the actual soundness result using our framework: Weevents occurring in an execution of a process. Again, we pre-
first define a symbolic model of the applieetalculus (inthe fix some notions withr to distinguish them from their cor-
sense ofDefinifion]6) as well as a computational interpreta- responding notions fiSechion®.2. The semantics is foymall
tion of this model (in the sense 8). The final defined ifFigure}4 in AppendxIA.
theorem then asserts that if this computational implementa
tion is computationally sound with respect to this symbolic Definition 20 (7-Trace properties) A list of strings

5.1 Overview of this section

model, then everyr-calculus process that symbolically ful- e1,...,e, is an event traceof P if there is a pro-
fills a w-trace property also computationally fulfills this prop- cess @ that does not contain events such that
erty. P | Q =38+ ... =5 A gr-trace property

is an efficiently decidable and prefix-closed set of strirys.
processP symbolically satisfies a-trace propertypo if we
havee € p for all event traces of P.

5.3 Defining a computational execution

A computationalr-implementation assigns a total de-
terministic polynomial-time algorithmA7% to each =-
constructorf, and a partial deterministic polynomial-time
algorithm A7 to eachn-destructord. The formal defini-
tion is fully analogous to Definifionl 8, except that we do not
require an implementation for nonces (they will be chosen
uniformly at random); we hence omit this definition due to
space constraints. We require b, ., (1, z, z) = = and

AT (17, 2,y) = L for z # y (i.e., the computational
interpretation ofx is the identity on bitstrings). Given an
assignmenf;, from names to bitstrings and an assignment
from variables to bitstrings for names and variables oéegrr
in a destructor ternD, we can (computationally) evaluate
to a bitstringceval,, , D. (Formally, the security parameter
k is an additional input teeval, but we omitk for readabil-
ity). We setceval,, , D := L if the application of one of the
algorithmsA7 fails.

Given a computational implementation of the constructors
and destructors, the computational execution of a proPess
is already determined, except for resolving nondeterminis

and which messages the adversary is allowed to observe. To

resolve the non-determinism in the calculus, we uniformly
randomly select the next action to take. This is the coneeptu
ally simplest approach and helps to increases the reatyabili
of the proof of computational soundness of the appited
calculus. We stress that our proof does not exploit this spe-
cific way of resolving nondeterminism, but that the proof can

easily be adapted to more sophisticated scheduling mecha-

nisms. Furthermore, we have to reflect that the calculus al-

lows the adversary to receive messages on any channel in

his knowledge. Since the knowledge of the adversary is not
well-defined in a computational setting, we cannot modsl thi
directly. Instead, we require that the adversary expjiceh-
isters for any channelhe wants to eavesdrop on, by sending
the messag@isten, c).

The computational implementation of a process is then
defined using evaluation contexts: An evaluation context is
a context with either one hole, or with two (distinguished)
holes. In the case of two holes, we wriigP][Q] to denote
the replacement of the first hole yand of the second hole

by Q.

Definition 21 (Step contexts and input contexts)Let P be
a processy a function from variables to bitstringg, a func-
tion from names to bitstrings, and:b a set of bitstrings. An
evaluation contexF is astep contexfor P if one of the fol-
lowing structural conditions holds true:

e P = FE[va.Py),

o P = E[M<N>P1][M2($)P2] with cevalmu M, =

cevaly, , M,

10

let x = D in Py else Ps,

event(e).P1],

[Py,

P = E[M(N).P,] with ceval,, , M € pub.

Aninput context forP is an evaluation context’ such that
P = E[M(x).P1] andceval, , M = c.

P
P
P

E|
E|
E|

Intuitively, a step context specifies all possible actioha o
process that do not involve input from the adversary, assum-
ing that the adversary can listen only on channelsiih We
consider the restrictiona.P; as an executable action in the
computational setting because it involves choosing a nando
bitstring for the corresponding nonce. Input contexts rep-
resent all possible positions in the process that can receiv
inputs on a channel

The computationadr-execution of a process is now de-
fined as an interactive machine that executes the process and
communicates with an adversary.

Definition 22 (Computational r-execution) Let P, be a
closed process, and Iét be an interactive machine called
the adversary. We define the computationadxecution as
an interactive machin&xecp, (1*) that takes a security pa-
rameterk as argument and interacts witH:

e Start Let P := P, (where we rename all bound vari-
ables and names such that they are pairwise distinct and
distinct from all unbound ones). Letbe a totally unde-
fined partial function mapping variables to bitstrings,
let 1 be a totally undefined partial function mapping
names to bitstrings, and letb be an empty set of bit-
strings. Letay, . .., a, denote the free names ify. For
eachi, pickr; € {0,1}* at random. Set: := p(a; =
T1y ..o, Gn = Ty). Send public,ry,...,r,) t0 ch
Transition Proceed depending on the type of message
received fronC as follows:

— When receiving(listen, ¢) from C, set pub

pub U {c} and send ok) to C'.

— When receivindinput, ¢, m) from C, choose an
input contextE for (P,n, i, ¢) uniformly at ran-
dom. If no such input context exists, s€rtlick)
to C. If such an input context exists (whepethen
is of the formE[M (x).P1]), setn := n(z := m),

P := E[P], and send ok) to C.

— When receivingstep) from C, choose a step con-
text £ for (P,n, u, pub) uniformly at random. If
no step context exists, sefiduck) to C. Other-
wise, proceed as follows depending on the struc-
ture of P:

* P = Elva.Py]: pickr € {0,1}* at random,
setP := E[P]andp := p(a := r). Send
(ok) to C.

x*x P = E[M<N>P1][M2($)P2] SetP =
E[P|[P,] andn = n(z := ceval,, N).
Send(ok) to C.

4In the appliedr-calculus, free names occurring in the initial process
represent nonces that are honestly chosen but known tottoket

x* P = Ellet © = D in P else P If
m = ceval, , D # 1, setn := n(z := m)
and P := E[P,]; Otherwise setP := E[P,].
Send(ok) to C.

x P = FElevent(e).P,]: Let P := E[P;] and
send(event, e) to C.

x P = E[!P1]: Rename all bound variables of
P, such that they are pairwise distinct and
distinct from all variables and names iR
and in the domains of andy, yielding a pro-
cessP;. SetP := E[P; |!P]. Send(ok) to
C.

* P = E[M(N).P,]: SetP := E[P]. Send
(output, ceval, , M, ceval, ,, N)to C.

e When receiving anything else, sefsduck) to C.

The execution ofixecp, (1¥) maintains the invariant that
all bound variables and names#hare pairwise distinct and
that they are distinct from all variables and nameRiand in
the domains of) andyu. Moreover, all events occuring in the
process can be extracted from the messages sdikdayp, .
For a given polynomial-time interactice machifiea closed
processP;, and a polynomiap, we let Eventsc, p,,(k) de-
note the list of the strings output byExecp, (1¥) (as part of
(event, e)-messages) within the firg{k) computation steps
(jointly counted forC (1*) andExecp, (1%)).

We finally define the computational fulfilment aftrace
properties.

Definition 23 (Computational =-trace properties) Let FE
be a polynomial-time interactive maching; a closed pro-
cess, ancg a polynomial. We say thal, computationally
satisfiesa w-trace propertyp if for all polynomial-time in-
teractive machine€’ and all polynomialsgy, we have that
Pr[Eventsc,p,(1%) €] is overwhelming irk.

5.4 Computational soundness of the calcu-
lus

wherep is an injective map from the noncesii to name§l
LetNg andNp be countably infinite sets.

Thesymbolic model of the applied-calculusis given by
M= (C,N,D,I),whereN := Ny UNp,C:=C,UN,
D := {d' : d € D, }, and where- is defined by the rules in

'

In the following, we considerM,C,N,D,+ as in
Definifion 24. In particular, the destructequals’ thus in-
duces an equivalence relatiéa on the set offw-terms by
x =y iff equals’(z,y) # L. The relatiore is the analogue
to the equational theors.

The computational implementation of this sym-
bolic model is now specified by the computational
implementationsAy and A, of the m-constructors and
m-destructors, with nonces being chosen uniformly at
random.

Definition 25 (Computational implementation of Def[24)
The computational implementatiohof the symbolic model
of the appliedr-calculusM is given byA; := A7 for all
feC\NandA4,; := AT foralld € D. Ay for N € N
picksr € {0, 1}* uniformly at random and returns

In order to relate the symbolic and the computational se-
mantics of a process, we define an additional symbolic ex-
ecution for closed processes as a technical tool. This new
semantics constitutes a safe approximation of the origiexal
mantics of the process calculus while at the same time being
a direct analogue of the computational semantics presented
in[Definfion 22. The semantics is defined by means of an in-
teractive non-deterministic machiis&xecp,, analogous to
the machinéxecp, from[Definifion 22. Intuitively, the only
difference betweeRxecp, andSExecp, is that the latter op-
erates immediately on terms whenever the former operates on
computational implementations of these terms. We postpone
the formal definition oSExecp, as well as further explana-
tory comments to AppendXIB. There, it is also shown that
the machineSExecp, can be realized as a symbolic proto-

We will now derive the computational soundness of the col in the sense ¢fDefinifiod 3 by encoding protocol steps as

appliedr-calculus, i.e., we will show that if its computational

nodes; we call this protocdl 5,. We obtain a probabilistic

implementation is computationally sound in the sense of Symbolic protocoll’; by annotating each non-deterministic

[Definfion 11, then every symbolically satisfieetrace prop-
erty is also computationally satisfied. Applylng DeNNITbH

node inllp, with the uniform distribution on its successors.
The nodes il p, (andIl’,) that output(event, e) for some

first requires us to specify a symbolic model of the applied stringe, we call event nodes and say that they raise the event
n-calculus (in the sense bf Definifioh 6) and a computational €. (Since bothevent ande are hard-coded in the node, this

implementation of this model (in the sensd_of Definifidn 8).
The symbolic model of the appliedcalculus contains all

is well-defined.) For a sequence of node identifierdet
events(v) denote the sequence of the events raised by the

the w-constructors and-destructors from the process cal- €ventnodes iw.

culus. We additionally add an infinite number of adversary

noncesN g and protocol nonceN p to represent free and

bound names. The deduction relation allows the adversar)f’jl
to derive all adversary nonces and everything derivable by

application of constructors and destructors.

Definition 24 (Symbolic model of the appliedr-calculus)
For a w-destructord, we defined’ by d'(t) = d(tp)p~!

11

Definition 26 A non-deterministic interactive machidéis
Dolev-Yao adversarif the following holds in an interac-
tion with any interactive maching/ in each step of the in-
teraction: LetS be the set of alfw-terms sent byl\/ up to

5This is well-defined and independent pfsince for any renaming of
namesr, we haved(M7) = d(M)r; intuitively d’ behaves ag except
that it uses nonces instead of names.

me s N € Ng SHEM feC\N SHM deD d(M) # L
Skm SEN Stk f(M) St d(M)

Figure 2. Deduction rules for the symbolic model of the applied n-calculus

| P symb. satisfiep | SExecp, satisfiesp I1p, symb. satisfiesvents ' (p)

CemmaB

A computationally sound
| P comp. satisfiep (I, , A) comp. satisfiesvents ' ()

Figure 3. Overview of the proof of [hearem 3

the current step. Letr be the term sent bg' in the current Soundness of encryptionin the appliedr-calculus Com-

step. Therb - m. bining the results from this section with those from Sedflon
SExecp, satisfies ar-trace propertyg if in interaction immediately entails a computational soundness resulhfor t

with any Dolev-Yao adversary, the sequence of events outpuappliedr-calculus for public-key encryption. The protocol

by SExecp, is contained inp. conditions from Sectiofll4 translate into syntactic cowdisi

for the process. As anillustrating example, we used PréVeri
to analyze the entity authentication property of the Neattha
Schroeder-Lowe protocol. Using the aforementioned result
this yields an implementation of this protocol within the ap
plied w-calculus that is provably secure under active attacks.
Further details are provided in Appendik E.

Before we finally state and prove the soundness of the ap
plied w-calculus, we provide three lemmas that are used to
relate Py, SExecp,, l1p,, and(Il, , A), and to assert the ef-
ficiency of the protocoll’, . Figurel3 illustrates the use of
these lemmas in the overall proof.

Lemma 2 Letyp be atrace property. The$Execp, satisfies
o iff 15, symbolically satisfiegsvents~!(p) (in the sense of

[Definition 10). Moreoverf, computationally satisfies iff 6 Conclusion and future work

(I, A) computationally satisfiesvents ' () (in the sense

of[Defmition 1p).

Lemma 3 The protocolll}, is efficient. We have provided a general framework for conducting
0

computational soundness proofs of symbolic models that ab-
stracts away from many details that are not core for proving
computational soundness such as message scheduling, cor-
The proof of the lemmas is postponed to Apperidix C. With ruption models, and even the internal structure of a prdtoco
these lemmas at hand, we are finally ready to state and prov&omputational soundness in this framework is shown to be
the computational soundness of the appfiechiculus asthe entailed by a novel simulation-based criterion, whichwa#io
main result of this section. for proving soundness results in a conceptually modular and
generic way. We finally have shown how to use our frame-
work to establish the first computational soundness result f
the full-fledged applied-calculus under active attacks.

Lemma 4 If a closed proces$, symbolically satisfies a-
trace propertyp, thenSExecp, satisfiesp.

Theorem 3 (Comp. soundness in the applied-calculus)
Assume that the computational implementation of the aghplie

w-calculus [Definfion 2p) is a computationally sound im- _ _
plementation (in the sense [of Definitior] 11) of the symbolic The framework currently only considers computational
model of the applied-calculus [Defintion 24). soundness as the preservation of trace properties. Existin
If a processP, symbolically satisfies a-trace property defmltlons of the preservation of more soph|st|cated prop-
o, thenP, computationally satisfieg. erties such as static or observational equivalehce[[23, 16]

can be easily cast in our framework. However, deriving
Proof. By[[emma#,SExecp, satisfiesp. By [emmaP®, a corresponding simulation-based criterion that entaiths
I1p, symbolically satisfiegvents~' (). Furthermore, since stronger soundness results requires conceptual future. wor
o is an efficiently decidable set, so isents™*(p). Using Moreover, we plan to derive the computational soundness of
[Cemma’B, we have thdl’, is an efficient protocol. By as- additional calculi, especially those ones that strive falypz-
sumption, the computational implementation of the applied ing security protocols in more realistic settings. Caldati
m-calculus is computationally sound; hend¢, computa- reasoning about implementations of security protocolé suc
tionally satisfiesevents—1(p). Using[LéEmmaP, we obtain as RCFI[1L] are hence particularly promising targets fa thi
that Py computationally satisfieg. O future work.

12

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. Rroc. 28th Symposium
on Principles of Programming Languages (POPL)
pages 104-115, 2001.

M. Abadi and A. D. Gordon. A calculus for crypto-
graphic protocols: The spi calculus. Broc. 4th ACM
Conference on Computer and Communications Secu-
rity, pages 36-47, 1997.

Martin Abadi and Phillip Rogaway. Reconciling two
views of cryptography (the computational soundness of
formal encryption).Journal of Cryptology15(2):103—
127, 2002.

Pedro Addo and Cédric Fournet. Cryptographically
sound implementations for communicating processes.
In Proc. 32nd International Confererence on Automata,
Languages and Programming (ICALR)ages 83-94,
2006.

Michael Backes and Birgit Pfitzmann. Symmetric
encryption in a simulatable Dolev-Yao style crypto-
graphic library. InProc. 17th IEEE Computer Security
Foundations Workshop (CSFYages 204—-218, 2004.

Michael Backes and Birgit Pfitzmann. Relating sym-
bolic and cryptographic secrecy. Rroc. 26th IEEE
Symposium on Security & Privacyages 171-182,
2005. Extended version in IACR Cryptology ePrint
Archive 2004/300.

Michael Backes, Birgit Pfitzmann, and Michael Waid-
ner. A composable cryptographic library with nested
operations (extended abstract). Mhmoc. 10th ACM
Conference on Computer and Communications Secu-
rity, pages 220-230, 2003. Full version in IACR Cryp-
tology ePrint Archive 2003/015, Jan. 20CBt t p:
/leprint.iacr.org/.

Michael Backes, Birgit Pfitzmann, and Michael Waid-
ner. The reactive simulatability (RSIM) framework for
asynchronous systemiformation and Computatign
205(12):1685-1720, 2007.

David Basin, Sebastian Mddersheim, and Luca Vigano.
OFMC: A symbolic model checker for security pro-
tocols. International Journal of Information Security
2004.

M. Baudet, V. Cortier, and S. Kremer. Computationally
sound implementations of equational theories against
passive adversaries. Proc. 32nd International Col-
loquium on Automata, Languages and Programming
(ICALP), volume 3580 ofLecture Notes in Computer
Sciencepages 652-663. Springer, 2005.

13

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ran~

(18]

[19]

[20]

[21]

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Four-
net, Andrew D. Gordon, and Sergio Maffeis. Refine-
ment types for secure implementations. Aroc. 21st
IEEE Security Foundations Symposium (CSpages
17-32, 2008.

Bruno Blanchet. An efficient cryptographic protocol
verifier based on Prolog rules. Broc. 14th IEEE Com-
puter Security Foundations Workshop (CSEF\®Mages
82-96, 2001.

Bruno Blanchet. Automatic proof of strong secrecy for
security protocols. IProc. 25th IEEE Symposium on
Security & Privacy pages 86—100, 2004.

Bruno Blanchet, Martin Abadi, and Cédric
Fournet. Automated verification of selected
equivalences for security protocols. Journal
of Logic and Algebraic Programming 75:3—
51, 2008. Online available ahttp://ww.

di . ens. fr/~bl anchet/ publications/

Bl anchet Abadi Four net JLAPQO7. pdf.

Ran Canetti and Jonathan Herzog. Universally compos-
able symbolic analysis of mutual authentication and key
exchange protocols. Iaroc. 3rd Theory of Cryptogra-
phy Conference (TCCyolume 3876 ol_ecture Notes
in Computer Scienc@ages 380—403. Springer, 2006.

Hubert Comon-Lundh and Véronique Cortier. Com-
putational soundness of observational equivalence. In
Proc. ACM Conference on Computer and Communica-
tions Securitypages 109-118, 2008.

Véronique Cortier, Steve Kremer, Ralf Kisters, and
Bogdan Warinschi. Computationally sound symbolic
secrecy in the presence of hash functions. Phoc.
26th International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science
(FSTTCS)pages 176-187, 2006.

Véronique Cortier and Bogdan Warinschi. Computa-
tionally sound, automated proofs for security protocols.
In Proc. 14th European Symposium on Programming
(ESOP) pages 157-171, 2005.

Danny Dolev and Andrew C. Yao. On the security of
public key protocols.IEEE Transactions on Informa-
tion Theory 29(2):198-208, 1983.

Shimon Even and Oded Goldreich. On the security
of multi-party ping-pong protocols. IfProc. 24th
IEEE Symposium on Foundations of Computer Science
(FOCS) pages 34-39, 1983.

Romain Janvier, Yassine Lakhnech, and Laurent
Mazaré. Completing the picture: Soundness of for-
mal encryption in the presence of active adversaries.
In Proc. 14th European Symposium on Programming
(ESOP) pages 172-185, 2005.

http://eprint.iacr.org/
http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf

[22] Richard Kemmerer, Catherine Meadows, and Jon
Millen. Three systems for cryptographic protocol anal-
ysis. Journal of Cryptology7(2):79-130, 1994.

[23] Steve Kremer and Laurent Mazaré. Adaptive soundness

of static equivalence. IRroc. 12th European Sympo-
sium On Research In Computer Security (ESORICS)
pages 610-625, 2007.

[24] Peeter Laud. Symmetric encryption in automatic anal-
yses for confidentiality against active adversaries. In
Proc. 25th IEEE Symposium on Security & Privacy

pages 71-85, 2004.

[25] Gavin Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR.Rroc. 2nd
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TAC%®)
ume 1055 of_ecture Notes in Computer Scienpages

147-166. Springer, 1996.

[26] Michael Merritt. Cryptographic ProtocolsPhD thesis,

Georgia Institute of Technology, 1983.

[27] Daniele Micciancio and Bogdan Warinschi. Soundness
of formal encryption in the presence of active adver-

saries. IrProc. 1st Theory of Cryptography Conference

(TCC), volume 2951 of ecture Notes in Computer Sci-

ence pages 133-151. Springer, 2004.

[28] Lawrence Paulson. The inductive approach to verify-
ing cryptographic protocols.Journal of Cryptology

6(1):85-128, 1998.

[29] Steve Schneider. Security properties and CSHRrdrT.
17th IEEE Symposium on Security & Privagyages

174-187,1996.
A Semantics of the appliedr-calculus (with
events)

The semantics is formally defined[in Figuie 4.

B Postponed definitions
In this section, we provide the postponed definitions.
B.1 Symbolic execution of a m-process

For relating the symbolic and the computational semantics
of a m-process, we introduce an additional symbolic execu-
tion for closedr-processes. To formulate these semantics,
we define a variant of the notion of step and input contexts
for the case thaj andu, map tofw-terms instead of bitstrings.

Let pub be a set ofw-terms and: a fw-term: An evalu-
ation contextt' is astep context fof P, 7, i, pub) if one of
the following structural condictions holds true (we mark th

14

differences té_Definifion 22 in boldface to increase readabi

ity):
e P=FE[va.P]or

e P = E[M;(N).P][My(x).P,] with eval™ Mynu =

eval™ Monp or

P = El[let x = D in Py else P3] or

P = Elevent(e).P1] or

P =E[P]or

P = E[M(N).Py] with eval™ Mnu = M’ for some

M’ € pub.

An input context for(P,n, i, ¢) is an evaluation context

such thatP = E[M(z).P;] andeval™ Mnyu = c. For -

terms M, we hence have thatval™ My Mnp (this

does not hold for destructor terni®). In these cases, we

write the redundantval™ anyway to emphasis the analogy

to[Definifion 22.

Definition 27 (Symbolic execution of ar-process) Let P,
be a closed process, and l&t be an interactive ma-
chine called the adversary. We define the computatianal
execution as an interactive machiRgecp, (1%) that takes a
security parametek as argument and interacts with:

e Start Let P := P, (where we rename all bound vari-
ables and names such that they are pairwise distinct
and distinct from all unbound ones). Letbe a totally
undefined partial function mapping variablestems,
let 1 be a totally undefined partial function mapping
names toterms, and letpub be an empty set of bit-
strings. Letay, . .., a,, denote the free names iy. For
eachi, choose a different r; € Np Sety := u(a; =
T1y ..., Gn = Ty). Sendpublic,ry,...,r,) to ch
Transition Proceed depending on the type of message
received fronC' as follows:

— When receivinglisten, c) from C wherecisafw-

term, setpub := pub U {c} and sendok) to C'.

— When receivindinput, ¢, m) from C' where ¢,m
are terms, non-deterministically choose an input
contextE for (P, n, u, c) uniformly at random. If
no such input context exists, sefuck) to C.

If such an input context exists (whefe then is
of the formE[M (z).P1]), setn := n(z := m),
P := E[P], and send ok) to C.

— When receivingstep) from C, choose a step con-
text £ for (P, n, 1, pub) uniformly at random. If
no step context exists, sefuck) to C. Other-
wise, proceed as follows depending on the struc-
ture of P:

* P = FElva.Py]: Chooser € Np \ range p,
setP := E[P] andu := p(a := r). Send
(ok)to C.

x P = E[M(N).P\|[My(z).P;]: SetP :=
E[P][P,] and 7 = n(z = eval™ Nqu).
Send(ok) to C.

8In the w-calculus, free names occurring in the initial processasent
nonces that are honestly chosen but known to the attacker.

P=Q Q=R
Plo=P pP=pP PlQ=Q|P (P1Q)|R=P|(Q]|R) P=R
P=qQ a ¢ fn(P) P=qQ
va.vb.P = vbva.P P|R=Q|R va.(P| Q) =P |vaQ va.P =va.Q
N~N’ eval" D # |
N(M).Q| N'(x).P — Q| P{M/x} let = D in P else Q — P{eval™ D/x}
eval" D = L P—Q
let x =D in P else Q — Q P — P[P PIR—Q|R va.P — va.Q
P=P P—-Q Q=Q P5Q
P —Q event(e).P = P PIRSQ|R va.P % va.Q
P=P P5Q Q=¢Q
P/ i Q/
Figure 4. Semantics of the applied w-calculus with events.
x P = E[let x = D in Py else P]: If into the node identifier; instead, the node in which they were
m = eval™ Dnu # 1, setn := n(z := m) created (or received) is referenced instadhis is due to the
and P := E[P]; Otherwise setP := E[P,]. fact that a symbolic protocol allows to trefat-terms only as
Send(ok) to C. black boxes. Note that the proceBsand ther-terms occur-
x P = Elevent(e).P,]: Let P := E[P;] and ring within P will be encoded in the node identifier (encoded
send(event, e) to C. as bitstrings). Operations dw-terms can then be performed

x+ P = E['P]: Rename all bound variables of by using constructor and destructor nodes, and the input and
P, such that they are pairwise distinct and output offw-terms is handled using communication nokles.
distinct from all variables and names iR~ We call the resulting protocdl 5, .
and in the domains of and, yielding a pro-
x* P = E[M(N).P]: SetP := E[P;]. Send
(output, eval™ Mnu, eval™ Nnu)toC.
e When receiving anything else, sefduck) to C.

This section contains the postponed proofs.

C.1 Proof of [Lemma 1l
The only differences betweed _Definifion|22 and

Definfion 21 are that the latter operates dw-terms We show thatir’ fulfills the conditions on full traces of
instead of bitstrings, it computesval™ X7y instead of [Definifion 4.
ceval, ,, X, it comparegw-terms using® instead of check- This is clear for constructor nodes, since the processing

ing for equality of bitstrings, it performs a non-deternsiic of constructor nodes in the hybrid setting[of Definifion 14
choice instead of choosing step or input contexts uniformly matches the one in the symbolic setting of Definifibn 7, with
and it chooses a fredl-noncer € Np instead of choosing the exception that terms with variables can occur in the hy-
a random bitstring as value for a restricted name. brid setting. However, since we apply the substitutiocon-
The interactive machin8Execp, performs only the fol- - _ o
For technical reasons, we do not reference the nodes byeitdifiér,

|0V\{In9 operations orfw-terms: Applylngfw-cons.tructors but instead by the its index in the path from the root to therréfg node.

(this |UC|UdeS nonce?) arm/'deStrUCt_orSv. comparing using otherwise, the size of node identifiers would grow exporigti

= (which can be realized by an application of the destructor 8All communication steps iSExec p, sendr-terms that are tagged with
equalsl), and sending and receiving terms. Hence this inter- bitstrings. These can be encoded by using communicatioasnsitice the

active machine can be realized as a symbolic protocol in the!2!ter allow to attach metadatdo inputs and outputs. Inputs Kfixec p,
that consist only of a bitstring without a term encoded byorgng the at-

Sense‘_ 0 "“33 The state of tB&xecp, is used _as & tachedr-term. Inputs tdSExec p, with containing two terms can be imple-
node identifier. Howeveffw-terms are not encoded directly mented by chaining two communication nodes.

15

sistently to all terms inr (i.e.,C(t)p = C(typ) holds), con-
structor nodes in the substituted tragé = try fulfill the or input context chosen in that activation. Lebe the do-
symbolic requirement 7. main of ;. without the names,, ..., r, sentin the message
Destructor nodes are treated similarly, except that there(public,r1,...,r,) in the very beginning of the execution of
may be several possible successor nodes. We thus have t8Execp,. P, 7', i/, pub’, n’ are the corresponding valuak
ensure that the respective successor node-irulfills the ter that activation. Letrn be the input andut be the output
requirements ilDefiniionl 7. This immediately follows from of SExecp, in that activation. ByPy, 1, 10, pubg, n, we de-
the validity of ¢, which ensures thatim’s answers (which note the corresponding values before the first activatidn bu

at the beginning of that activation. Lét denote the step

determine the respective successor node) are consistent (iafter the sending of the messdgeblic, r1, . ..,

the sense 7) with'.

Finally, communication nodes ifa’ consist of a termt €
T.(C, D) sent fromII® to Sim, and a ternt’ sent back from
Sim to II¢. By the DY property ofSim, we know thatSy +
t'p, whereS denotes all terms (includint) sent fromII¢

to Sim so far. Hence, the node satisfies the requirement for
communication nodes frol Definitioh 7. This completes the up to the current activation. We encode= (s, ..

proof of the lemma.

C.2 Proof of Lemma 2

The symbolic case is immediate from the construction the last activation, respectively. Note thtat= (rq, .
of IIp,. For the computational case, note the fact that the

computational implementation &%, is defined like the sym-
bolic one, except that it uses the implementations ofithe
constructors andw-destructors instead of the operating on
abstractly on terms (and the implementatioregfals uses
the identity on bitstrings).

C.3 Proof of Lemma 3

rn)ﬂ and by
Py,ms, ps, pub,,n, the values after the last activation. We
call a name or variablaesedif it occurs in the domain of.
or 7., respectively. Note thaty = (a1 — 71,...,a, — 1)
whereq are the free names iRy, butn, = @. Note thatP
will never contain unused free variables or names.

Let S denote the list of alfw-terms output bySExecp,
- Sn)
as a substitutiop mappingz; — s; wherez; are arbitrary
unused variables. We denote BY ¢’ andSy, ¢o andS., ¢.
the values of5, ¢ after the current activation, before the first
activation (but after sendin@ublic,r1,...,r,)), and after
cyT)-

Let~ be an injective partial function that maps evéfyc
N to an unused name, and eveYye range ju, to u; 1 (N).
(Note thaty is well-defined becausenge p, € Np and .
is injective.) We additionally require that all unused name
are inrange . (This is possible since bolN ¢ and the set of
unused names are countably infinite.)

Note that for anyr-destructord and anyw-terms M
with fu(M) C domn and fn(M) C dompy, we have
d'(Mnu)y = d(Mnuy) (whered' is as in[Definifion 24).

By construction, there are efficient algorithms for comput- Hence for a destructor ter® with fu(D) C domn and
ing the labels and successors of a node given its node identifn(D) C dom p, we haveevalfW(Dnuh = eval™ (Dnury).

fier. Itis left to show that the length of the node identifieaof
nodep is polynomial in the length of the path leading to that
node. This is equivalent to showing that the stat8lotecp,

is of polynomial-length (when not counting the length of the
representations of thiev-terms). For the variableg ., and

pub, this is immediately satisfied because they grow by at

most one entry in each activation 8Execp,. To show that
the length ofP is polynomially bounded, note the following
facts: In each activation dExecp,, P either gets smaller,
or we haveP = E[!P;] and P grows by the size of;. If
P = E[!Py], then! P, is also a subterm a®, (up to renaming
of names and variables). Hence in each activatidogrows
at most by the size afy. Thus the size of is linear in the
number of activations d3Execp, .

C.4 Proof of Lemma 4|

To show this lemma, it is sufficient to show that if
SExecp, outputs eventg,...,e,, thene is an eventr-
trace of Py. Hence, for the following we fix an execution
of SExecp, in interaction with a Dolev-Yao adversa#y in
which SExecp, outputs the events,, ..., e,.

For a given activation oBExecp,, let P,n, u, pub de-
note the corresponding variables from the stat8lotecp,

16

Since auy a for all namesa € dompu, Dnuy
Dny. Since eval™(Dnu) does not contain variables,

eval™(Dnp) = eval™(Dnu)n. Thus

eval™(Dnp)ny = eval™ (D) (2)
where the left hand side is defined iff the right hand side is.
Similarly to @), if fv(D) C dom¢ and fn(D) C

dom~~1, we haveeval™(Dpy~1)y = eval™(Dyy). For
afw-term¢ with S + ¢, from the definition of- is follows
thatt = eval™ D~y ! for some destructor-term D, con-
taining only unused names and variableddm ¢ (note that
everyN € N can be expressed as—! for some unused
a). Since all unused names arediom v~ ', we have

®3)

Given two fw-termst = « such thatt, « only contains
noncesN € Ny U range ., we have thakquals'(t,u) #
1. By definition of equals’ (Definfionz24) and us-
ing that ~ is injective and defined oMNg U range p.,
we have equals’(t,u) = equals(ty,uy)y~! and hence

ty = eval™(Dypy 1)y = eval™ (Dy).

9We use the variable nanfal becauseP is already used for the input
of SExecp,. Note however thaPy = Fo.

equals(ty,uy) # L. Hence, fort, u only containing nonces
N € Ng Urange p.., we have
t=u = ty & uy (4)

We call a process) valid for ¢ if it does not contain
events, all its free names are unused names, and all its free
variables are in the domain ¢f

Claim: For all Q' valid for ¢, there is aQ valid for ¢
such thatvn.(Qey|Pry) ~ vi'.(Q'¢'y|P'n'y). Here~
denotes® if out = (event, e), and—"* otherwise.

Assuming that we have shown this claim, it follows that
for all Q. valid for ¢., there is aQy valid for ¢y such
that vng.(Qowoy|Ponoy) —*—*3—* _xen ok
vn.(Qup«y| Panyy). Sinceny = @ and sinceP, does not
containN € N (being ar-term) and sinceP, is a renam-
ing of Py, we havePynoy = Pyy = Py = Py. Then,
with @ := Qopoy and usingn, = @ we haveQ|Py =
vng.(Qopoy|Poroy) —*=—*3—=* ... =% Since
@ does not contain events, this implies tads an eventr-
trace of P,. This shows the lemma.

It is left to prove the claim. We distinguish the following
cases:

e out = stuck orin = (listen,c): ThenP = P’, ¢ =
¢',n =1, andn = n/. Hence withQ := Q’, we have
vn.(Qey | Pry) = v/ (Q'¢™y | P'n'y).

e (in,out) = (step,ok) and P = E[va.P1]: Then
P = E[P], ¢ = ¢, n = 7/, andn’ = nlla for
somer € Np \ rangep, andy’ = p(a := r). Since
a € domy' C dimpu., a is used. Since&)’ is valid
for ¢ = ¢/, this impliesa ¢ fn(Q’). SetQ = Q'.
Then@ is valid for . Since we maintain the invari-
ant that all bound names iR are pairwise distinct and
distinct from all other names i® or dom p, we have
r ¢ fn(E) andr ¢ n. Furthermore, by the same in-
variant, we have ¢ dom n. Note that the execution of
SExecp, maintains the following invariant: Any nonce
N € Np occurring (as a subterm) in the rangepf
or p is also in the range gf. (This uses the fact that
the Dolev-Yao adversary cannot derive protocol nonces
that have never been sent.) Hence Np \ range u
does not occur in the range gfor . By definition
of v and sinceu is used, this implies that fav # r,
~v(N) # a. Thusfor all variables, xny andz¢~y do not
containa, and hence ¢ fn(Qy~y)Ufn(Eny). Together
with r ¢ n we getvn.(Qpy | Pry) = vn.(Qpy |
(Eny)[va.Piny]) = vnva(Qey | (Eny)[Painy]) =
v (Q' "y | (En'v)[Pin'v]) = v/ (Q'¢"y | P'n'y).

e (in, out) = (step,ok) and P
E[M{(N).P\|[My(x).Py] with eval™ Minu
eval™ Mynu: ThenP’ = E[P,][P;] andn’ = n and
¢ = pandy = n(z := t) with ¢ := eval™ Nnpu.
Since we maintain the invariant that all bound variables

1l

17

in P are distinct from all other names iR or dom 7,

we haver ¢ fo(E)U fu(P;) andxz ¢ domn. Hence
Eny = Evn'y and Pipy = Pin'y. Furthermore,
we have Pony{Nny/z} = Pepy{Nnuy/z} =
Pon{Nnu/z}y = Pen{t/z}y = Py'y. Since a
Dolev-Yao adversary will never derive protocol nonces
that have never been sent, we have that only nonces
N € Ng Urange u, occur in Mynu and Manpu. With
Minp = eval™ Mynu = eval™ Monu = Manu and
we getViny = Minuy =~ Monuy =
Mony.

Hence withQ := Q’, we have

vn.(Qey | Pny)

= vn.(Qey | (Eny)[Muny(Nuy). Puny][Manyy (). Pany])
— vn(Qey | (Eny)[Pumy][Pany{Nny/z}]

= v’ (Q'y | (En'y)[Pin'~][Pan'~])

=vn' . (Q'¢'y | P'n'y).

SinceQ’ is valid fory’ = ¢, Q = Q' is valid for .

(in, out) = (step,ok) and P = E[let + =
D in Py else P,] andeval™ Dnu = 1: ThenP’ =
E[P] and¢’ = ¢, andn’ = n andy’ = 7. Set
Q := Q'. Thenq is valid for o = ¢'. By @),
eval” (Dny) = L. Hence

vn.(Qey|Pny)

=vn.(Qpy|(Eny)[let x = Dny in ... else Pyny])
— v (Qey|(Eny) [Pain])
=vn.(Q"¢"V|P'n"7).

(in,out) = (step,ok) and P = E[let « =

D in Py else Py] and eval™ Dy # L: Then

P = E[PjJand¢’ = ¢ andn’ = n andy =
n(z = eval™ Dnu). SetQ := Q. ThenQ is
valid for ¢ = ¢’. By @), t := eval"(Dny) =

eval™(Dnu)ny # L. Since we maintain the invari-
ant that all bound variables iR are distinct from all
other names inP or domn, we havex ¢ fu(F)
andz ¢ domrn. HencePny = (Eny)llet x =
Dny in Py else ...] — (Eny)[Piny{t/z}]). Fur-
thermore,Pyny{t/z} = Pipy{eval™ (Dnu)ny/a} =
P {eval™(Dnp)/x}ny = Piy'~y. Sincezx ¢ fu(E) U
domn, (Eny)[Pin'y] = E[Pr]n'y = P'n'y. Hence
Pny — P'n'y. Since@ = Q', ¢ = ¢', andn = 1/, it
follows thatvn.(Qey | Pny) — vn/ .(Q'¢'y | P'n'v).

(in,out) = (step,ok) andP = E[!P]: ThenP’ =
E[!P, | P;] forsomeP; = P, andy’ = pandn’ =n
andn’ = n. SetQ := @Q’. ThenQ is valid forp = ¢'.

Hence

vn.(Qyy | Pry)
=vn.(Qpy | (Eny)['Piny])
— vn.(Qey | (Eny)[Piny 'Piny]

= vn.(Qey | (Eny)[Puny ['Pimy]

=0 (Q"¢"y | P'n'y).
(in, out) = (step, (output,tp,ty)) and P =
E[M(N).P] with tp; = eval™ Mnu andty :=
eval™ Nnp andty, =2 M’ for someM’ € pub: Then
P’ = E[P]andS’ = S||ty||ty andy’ = (11 =
tars Tnye = tn) Wherez, 1, 2,42 ¢ domy are un-
used andn’ = n andn’ = 1. SinceM’ € pub,
the adversary must have selt’, henceS + M. By

[Equation B, there is a destructesterm D, contain-
ing only unused names and variabledim ¢ such that

M'y = eval™ (Dpgr).

Since a Dolev-Yao adversary will never derive proto-
col nonces that have never been sent, we have that
only noncesN € Ng U rangeyu occur in M’ and
Mnu. Hence with 1), fromy, = M’ it follows that
My = Mnuy = M'y.

Let @ := let xpt1 = Dy in Zpg1 (Tnp2).Q" else 0.
ThenQyy — M'y(zn+2).Q ¢y{M'y/Tn1}. Then

Qe | Py = Qe | (Eny)[Mny(Nny).Piny]
— M'y(2n42).Q o { M y/xni1}
| (Eny)[Mny(Nny).Pry)
— Q"o {Mny/xni 1 HNnY/ @02} | (Eny) [Py
= Q' o{Mnu/zn 1 H{Nnp/zn o}y |Pny

S F ¢,m. By[EqQuation B, there are destructotterms
D., D,, containing only unused names and variables

in dom ¢ such thatey = eval™ (D.pvy) andmy =
eval” (D,, 7). Since a Dolev-Yao adversary will never
derive protocol nonces that have never been sent, we
have that only nonce € Ny Urange p occur inc and

in Mnp. Hence with[[®), fromMnp = eval™ Mnp =

c it follows that Mny = Mnuy =~ c.

Pick somey, z ¢ fu(Q') Udom¢'. LetQ = let y =
D, in let z = Dy, in G(2).Q" else 0 else 0. Then
Qpy — y(mv).Q"¢y. Then

Qv | Py

= Qv | (Envy)[Mny(x).Piny]

— & (m).Q | (Eny)[Muny(x).Piy]
— Q"¢ | (Eny)[Prpy{my/z}].

Since we maintain the invariant that all bound variables
in P are distinct from all other names inor dom 1, we
havex ¢ fv(E) andz ¢ domn. HenceEny = En'y
and Py = Pip{m/x}y = Pin'y. Furthermore
sincep = ¢’ we haveQ'¢y = Q'¢'y. ThusQ'¢v |
(Eny)[Piny{imy/z}] = Q'¢'y | (En'y)[Pin'y] =
Qv | P'n'y. ThusQepy | Py = Q'¢'y | P'n'y
and withn = n’ we haven.Qpy | Pny —* n'.Q"¢'v |
P'n/~.

SinceQ’ is valid and allfv(D., D,,) C dom ¢, we have
that(is valid.

D Encryption (postponed details)

Implementation We require that the implementatiohof

the symbolic modeM has the following properties:

Since Tty Trt2 dom ¢,
QoA Mnp/zp i H{Nnp/zni2ty = Q'¢'y. Hence
Qe | Pny —* Q'¢'y | Pny = Q'¢'y | Py'y. Since
n = n' we havevn.(Qy | Piy) —* vn'(Q'¢'y |
Pn'y).

Since @’ is valid, (Q does not contain events, and its
free names are unused names, And)) C dom ¢’ =
dom pU{xy 11, Tni2}. Sincer, 1 andzx,, o are bound

on top level iNQ, xpi1,2.42 ¢ fo(Q), f(Q) C
dom ¢. HenceQ is valid.

(in, out) = (step, (event,e)) and P =
Elevent(e).Pi]: Then P’ = E[P;] and¢’ = ¢
andn’ = n andn’ = 7. We havevn.(Qyy | Pny) =
vn(Qey | (Eny)levent(e).Pin]) = vn.(Qpy |
(Eny)[Prmy]) = v/ .(Q'¢"y | P''y).

(in, out) = ((input,c,m), ok) andP = E[M (x).P:]
andeval™ Mnu = ¢: ThenP’ = E[P|] andy’ = ¢
andn’ = n andn’ = n(z := m). Furthermore,
since SExecp, interacts with a Dolev-Yao adversary,

18

e There are disjoint and efficiently recognizable sets of
bitstrings representing the types nonces, ciphertexts,
public keys, secret keys, and pairs. We require that the
type nonces consists of attbit strings. (Here and in
the following,k denotes the security parameters.)

e The functionsdg, A,i, Ask, andA,.;,. length-regular.
We call ann-ary function f length regular ifjm;| =

|mf| fori=1,...,nimplies|f(m)| = |f(m)|.
e Ay for N € Nreturns a uniformly random e {0, 1}*.
e For all mi,mo € {0,1}* we have
Afst (Apair (mh mQ)) = mi and

Asna(Apair(m1,ma)) = Every m of type
pair is in the range ofl ;.

L4 Apkof(AE(pv'rvy)) =P for all p,T € {031}*’ Yy €
{0,1}*. Apror(e) # L for anye of type ciphertext and
Apkos(e) = L for anye that is not of type ciphertext.

o Ap(Ag(r),m) = Lifr e {0,1}* andAppor(m) #
Api(r). (This implies that the public key is uniquely
determined by the secret key.)

i AD(Ask(r)’AE(APk(T)vmvrl)) =
{0,1}F.

ma.

m for all r,r" €

o Aispi(x) = z for anyz of type public key.A;spr(x) =

1 for anyz not of type public key.

Ajsenc(x) x for any z of type ciphertext.

Ajsenc(x) = L for anyz not of type ciphertext.

e We define an encryption scheniieyGen, Enc, Dec)
as follows: KeyGen picks a random « {0,1}* and
returns (A,x(r), Asx(r)). Enc(p, m) picks a random
r « {0,1}* and returnsA g (p, m,). Dec(k, c) returns
Ap(k,c). We require that theiKeyGen, Enc, Dec) is
IND-CCA secure.

Protocol conditions. The computational soundness result

with (I, m), the simulator send§’, 7(m)) to II¢ where the
functiont : {0,1}* — T(C) is defined below. When the
simulator receivesginfo, v, t), the simulator increaséden by
0(t) + 1 wherel : T(C) — {0,1}* is defined below. If
len > p(k), the simulator answers witf¥imeout), other-
wise with (proceed). If the simulator receives a question, it
fails. At the end,Sim outputs the substitutiop = .

Translation functions. The partial functiong : T,,(C) —
{0,1}* is defined as follows (where the first matching rule is
taken):

we derive in this section requires that the symbolic protoco : gEZf)(j\B;N Ap(ry) if N € .
satisfies certain constraints. In a nutshell, these cdnitra o B(sk(N)) := A :(r N) it N e
require that encryption and key generation always use fresh o B(pk(N™)) = m. N
nonces, that decryption only uses honestly generatedtsecre o B(pair(t1,ts)) = (B(t1), B(t2))-
keys, and that the protocol does not produce garbage terms. | B(E(pk(’) ; M)) p‘”; Ap ’(Ao (), B(#),rag) i
We call protocols satisfying these conditi@rryption-safe N MeN B P M
In detail, the conditions are the following: g \ ,7 :
1. The argument of everyk-constructor node and of ev- * %b;(]j\];(tl) vt M) = Ap(B(pk(t), B(t), rar) 1F
ery sk-constructor node and the third argument of ev- | B(E(pk(M),t,N™)) := m if M € N.
ery E-constructor node is aiV-constructor node with o ﬂ(garbage(]\fc)) —
N € Np. (Here and in the following, we call the nodes o B(garbageE(t, N°)) == c.
referenced by a protocol node its arguments.) e 3(t) = L in all other cases.
2. Every constructor node that is the argument of a The total functionr : {0, 1}* — T(C) is defined as fol-
pk-constructor node or of ark-constructor node on : L .)
some pathp occurs only as argument tak- and sk- lows (where thg first matching rule is taken):
constructor nodes on that path o 7(r) = Nif r =ry for someN € N.
3. Every constructor node that is the third argument of an ® 7(r) := N"if r is of type nonce.
E-constructor node on some patloccurs exactly once o 7(e) = pk(N) if e has earlier been output by
as an argument in that path B(pk(N)) for esomeN € N .
4. Everysk-constructor node occurs only as the firstargu- ® 7(e) := pk(N) Wheree is of type public _key.
ment of aD-destructor node. 7(m) := pair(7(Agsi(m)), 7(Awma (m))) if m of type
. i :) palr.
> I:ﬁstfr'lrjsgt;rggg]:m of @-destructor node is ank o T c = E(pk(M),t,N) if ¢ has earlier been output by
6. The first argument of af’-constructor node is ak- (k(M) ¢,)) for someN, M €, tf T(C).
constructor node or aizpk-destructor node. * T(C) = E@ (N)’T(AD(AS"J(TN)’C)’N) 1 ¢ is
7. There are no constructor nodes with the constructors of type ciphertext andr(Ayior(c)) = pk(N) for

garbage, garbageE, or N € Ng.

Construction of the simulator. In the following, we define
distinct noncesV™ € N for eachm € {0,1}*. In a hybrid
execution, we call a termhhonestly generateidi it occurs as
a subterm of a term sent by the proto€Bt to the simula-

some N € N. |If the Ap returns L, 7(c)
garbageE (pk(N), N°).
7(c) = garbageE (1(Apkos (€)), N€) if ¢ is of type ci-
phertext.

o 7(m) = garbage(Nm) otherwise.

The function? : T(C) — {0,1}* is defined ad(t) :=
|B(t)]. Note that/(t) does not depend on the valuesrgf

tor before it has occurred as a subterm of a term sent by theyecause of the length- regularity 8f ., A, pr. andAp.

simulator to the protocdll®.

For an adversary and a polynomiap, we construct the
simulator Sim as follows: In the first activation, it chooses
ry € {0,1}* for every N € Np. It maintains an in-
teger len, initially 0. At any point in the execution)\V'
denotes the set of all noncéé € Np that occurred in
terms received fromlI®. Sim internally simulates the ad-
versaryE. When receiving a tuplg, ¢y, . . ., t,) fromI1¢, it
passegl, 3(t1), ..., B(t,)) to E where the partial function
B : T(C) — {0,1}* is defined below. WhetEZ answers

19

Hencel(t) can be computed without accessing.

The simulatorSim’ is defined ex-
actly like Sim, except that when computing(pk(V))
with N € W, it picks a new public/secret key pair
(pk N, skn) using KeyGen (unless(pk y, sky) are already
defined) and returngk,. Analogously for G(sk(N)).
When computing3(E(pk(N),t, M)) with N,M € N,
the simulator invoke&nc(pk », 5(t)) instead of computing

The faking simulator.

Ap(Apk(rn), B(t),ra), and when computing (c) it in-
vokesDec(sk n, ¢) instead of computingl p (A (rn), ¢).

The simulator Simy is defined like Sim’, except
that instead of invoking Enc(pky,B(t)), it invokes
Enc(pk ., 040),

Properties of the simulator. We derive several properties
of the simulatorsSim and Sim [that will finally allow to
show thatSim is a good simulator for encryption-safe pro-
tocols. In the following, lefl’ always denote an encryption-
safe probabilistic symbolic protocol.

Lemma 5 The simulatorsSim, Sim’ and Sim ¢ run in poly-
nomial time.Sim is consistent and abort-free.

Proof. By inspection of the construction of the simulators
we see that they run in polynomial time. Singén never
sends terms containing variabl&E; never sends questions,
so Sim is trivially consistent. Sinc&'im only aborts when
receiving a question, it is abort-free. O

Lemma6 The full traces H-Traceys g, and
H-Traceng 11,54, @re computationally indistinguishable.

Proof. Note that the difference betweetim and Sim’ is

E in the computational model, and’ the state of the simu-
lated adversary in the hybrid model.

Claim 1: In the hybrid execution, for any < {0,1}*,
B(r(b)) = b.

This claim follows by induction over the length éfand
by distinguishing the cases in the definitionrof
Claim 2: In the hybrid execution, at any constructor or de-
structor noder = y; with constructor or destructaf” and
arguments,, .. ., i, the following holds: Let; be the term
stored at nodey; (i.e., t; = f/(7;)). Thenp(F(t))
Ap(B(t1),...,B(tn)). Here the left hand side is defined iff
the right hand side is.

We show Clain[R. For nonceB N € Np, the
claim holds becausg(N) = ry = Ayx. For F = pk,
note that by protocol conditidd 1, we have € Np. Then
B(pk(t)) = Api(r,) = Apr(B(t1)). Analogously for
F = sk. For F = pair, F' = fst, F = snd this follows di-
rectly from the definition ofs. ForF' = ispk, if t1 = pk(t}),
we have that|, = pk(N) with N € N or¢] = pk(N™)
wherem is of type ciphertext (as other subterms of the form
pk(-) are neither produced by the protocol nord)y In both
cases,3(t1) is of type public key. Hence(ispk(t1)) =
5(pk(t/1)) = A'Lspk(ﬁ(pk(tll))) = Aispk (ﬁ(tl)) If 131 is not
of the formpk(-), then3(t1) is not of type public key (this
uses that- only usesN™ with m of type public key inside

that the randomness for the key generation and the encrypz termpk(N™)). HenceB(ispk(t1)) = L = Aipr(B(t1)).

tion is chosen by the algorithm$eyGen andEnc in Sim/,
while Sim uses noncesy instead. However, from protocol
conditiondA[P[13, it follows thafim never uses a given ran-
domnessy twice. Hence the full trace&l - Tracen 11, sim
andH - Traceng 11 g:,,, @re indistinguishable.

Note thatSim’ invokes Dec(sky,c) only for valuesc
that have not been output b§(E(pk(M),t, N)). Thus
Dec(skn, c) is invoked only for valueg that have not been
output byEnc(pk v,). Since|3(t)| = |04")| by definition
of ¢, the IND-CCA property of KeyGen, Enc, Dec) implies
that the full traced? - Traceny 1y gim: @NAH - Traceny 1y gim
are indistinguishable. Using the transitivity of compidgaal
indistinguishability, the lemma follows. O

Lemma 7 Sim is indistinguishable foiM, II, A, and for
every polynomiap.

We will first show that when fixing the ran-

Nodesk; 4 1 in the computational execution and the node
trace H-Nodesyy 11 gi,, i the hybrid execution are equal.
Hence, fix the variablesy for all N € Np, fix a random
tape for the adversary, and for each nod& a choicee,, of

an outgoing edge.

Assume that, Api(rn), andAg, (rn) are pairwise dis-
tinct for all N € A*. (This happens with overwhelming
probability when the randomness is uniformly chosen.)

In the following, we designate the valugsandy; in the
computational execution bff andv;, and in the hybrid exe-
cution by f¢ andv¢. Let s, denote the state of the adversary

20

Similarly for isenc, pkof, E (the latter using protocol condi-
tion[), andD (using protocol conditiofil5). By construction
of 7, for all termst; # t5 that may occur in the hybrid execu-
tion, 5(t1) # B(t2) (using the fact that all v, pk(ry), and
sk(rn) are pairwise distinct). Hence(Acquais(t1,t2)) =
B(tr) iff t1 = t2 and Aeguais(B(t1), B(t2)) = B(t1) iff
B(t1) = B(ta) iff t1 = to. By protocol conditiord7, the
constructorgarbage, garbageE, andN € N g do not occur
in the protocol. This shows Claif 2.

We will now show that for the random choices fixed
above,Nodesﬁ,I,A,mE = H-NodesM,mSim.

To prove this, we show the following invariant; = o
f€ andv = v¢ ands; = s, for all i.

We havef) = f§ = @ andy), = 1§ is the root node, so
the invariant is satisfied far= 0. Assume that the invariant
holds for some. If v is a non-deterministic node;, ; =
v, is determined by,, = e,c. Since a non-deterministic

enode does not modify ‘and the adversary is not activated,

7o fl,1 = S, ands; = s}. Hence the invariant holds for
i+ 1if v/} is a non-deterministic node.

If v/ is a constructor node with constructaf,
we have thatf! (v)) Ac(fi(m1), ..., [{(n))
Ac(B(fE (7)), ..., B(fE (7)) for some nodes, depend-
ing on the label ofy,. And f5,(v)) = fS.(vF) =
C(fC(m),...,f¢@w,)). From Claim[2 it follows that
B(f5.1 () = fi;1(v) and henced o f, = f/,,. The
successor node of a constructor node is unique, henge=
v{, 1, and the adversawy is notinvoked, hence/, , = s%, ;.
Hence the invariant holds far- 1 if v is a constructor node.

If v/ is a constructor node with destructdp, 5 o
. = fl ands),, = s¢, are shown like in the
case of constructor nodes.
it also follows thatAc(f/(71),. ..
C(fE (), ...
is taken in both executions, so the invariant holdsifer1 if
v, is a destructor node.

, f1(7,)) is defined iff

u = garbageE(u1, N™). SinceS + N™ andS ¥ u, we
have S ¥ wu;. Hence by the induction hypothesis, there

Furthermore, from Clalm 2 exists a subternt,,; of u; and a contexD satisfying the

conclusion of the lemma fot;. Thenty,q and D’

, f€ (7)) is. Hence the same successor node garbageE (D, N™) satisfy the conclusion of the lemma for

Uu.

Case 4 = sk(up)”: By protocol condition[}, anysk-

In the case of a communication node, the adversaryconstructor node occurs only as the first argument éf-a

E in the computational execution gets a tuplé
{4, fl(?), ..., fl(7n)) wherel is the out-metadata of the
nodev, and the nodes; depend on the label af,. In the
hybrid execution, the simulator gets € (1), . . ., f£ (7))
andsends“ := (1, B(f& (7)), ..., B(fF (7,))) to the sim-
ulated adversarg. By Claim2 we then have)’ = m®, so

destructor node. The output of the destrudboonly contains
a subtermsk(u,) if its second argument already contained
such a subterm. Hence a terh(u;) cannot be honestly
generated. But terms of the forsh(-) are not in the range of
7. Henceu cannot be a subterm of.

Case . = pk(uy) with u; ¢ Np”: By protocol con-

the adversary gets the same input in both executions. Thudlition [, the argument of ak-constructor node is av-

st = s%, and the adversary sends the same fiaib,)
in both executions. The successor nodgs andvS,, are
determined by the in-metadata hencev/,, = v . Fi-
nally, we havef/,,(v}) = band fS,(v]) = 7(b) (because
the simulator translates the bitstrihgisingr before passing
it to II¢). Thus the invariant holds far+ 1 in the case of a
communication node.

From the invariant it follows, that the node trace is the
same in both executions.

Since random choices with ally, pk(ry), andsk(ry)
being pairwise distinct folV € N* occur with overwhelm-
ing probability, the node traces of the real and the hybrid ex
ecution are indistinguishable. O

Lemma 8 In a given step of the hybrid execution witim ¢,
let S be the set of messages sent fidfito Sim . Letu’ €
T(C) be the message sent frofamn ¢ to in that step. Le€
be a context and € T'(C) such that,’ = C[u] andS ¥ w.

Then there exists a tert,, and a contexD such thatD
obeys the following grammar

D := 0| pair(D,t) | pair(t,D) | E(pk(N),D, M)
| E(D,t, M) | garbageE (D, M)
with N € Np, M € Ng,t € T(C)

and such thatu = Dltp.q] and such thatS ¥ tp,4 and
such that one of the following holds;,; € Np, Or tpeq =
E(p,m,N)with N € Np, 0r tpoq = pk(N) with N € Np.

Proof. We prove the lemma by structural induction &h.
We distinguish the following cases:

Case = garbage(uy)™ By protocol condition[¥ the
protocol does not contaigurbage-constructor nodes. Thus

constructor node withV. € Np. Henceu is not honestly
generated. Hence it was produced by an invocatien for
somee € {0,1}*, and hence: = pk(N¢). HenceS F w in
contradiction to the premise of the lemma.

Case i = pk(N) with N € Np": The conclusion of the
lemma is fulfilled withD := O andtp,q := .

Case = pair(uy,us)”: SinceS ¥ u, we haveS ¥ u;
for somei € {1,2}. Hence by induction hypothesis, there
exists a subtern,, 4 of u; and a contexD satisfying the con-
clusion of the lemma fot;. Thent,,q andD’ = pair (D, us)
or D’ = pair(uy, D) satisfy the conclusion of the lemma for
Uu.

Case ‘. € Np": The conclusion of the lemma is fulfilled
with D := 0O andtpgq := u.

Case t € Ng". Then S ¥ w in contradiction to the
premise of the lemma.

Case s = E(u1,us, N) with N € Np": The conclusion
of the lemma is fulfilled withD := O andt;qq = .

Case . = E(u1,u2,uz) with S ¥ us andus ¢ Np”: By
protocol conditiorill, the third argument of &xconstructor
node is aN-constructor node withV € Np. Henceu
is not honestly generated. Hence it was produced by an
invocation 7(c) for somec € {0,1}*, and henceu
E(pk(N),uqe, N¢) for someN € Np. SinceS ¥ uq, by
induction hypothesis, there exists a subteggy of pk(N)
and a contexD satisfying the conclusion of the lemma for
pk(N). Thenty,q andD’ = E(D, uz, N°) satisfy the con-
clusion of the lemma fou.

Case 4 = E(u1,us,us) with S + uy andus ¢ Np™
Analogous to the previous case= E(pk(N),uq, N¢) for
someN € Np. FromS + wuo, S F N¢ andS ¥ u
we haveS ¥ wus. Hence by induction hyposthesis, there
exists a subterna,,q of us and a contex® satisfying the

u is not a honestly generated term. Hence it was producedconclusion of the lemma fai;. Then Then,,; andD’ =

by an invocationr(m) for somem € {0,1}*, and hence
u = garbage(N™). HenceS + w in contradiction to the
premise of the lemma.

Case . = garbageE (u1,us2)": By protocol conditiorly
the protocol does not contaigurbageE-constructor nodes.

Thusw is not a honestly generated term. Hence it was pro-

duced by an invocation(c) for somec € {0,1}*, and hence

21

E(pk(N), D, N°) satisfy the conclusion of the lemma for
O

Lemma 9 Sim; is DY for M andIL.

Proof. Letay, ..., a, be terms sent by the protocol $om ;.
Let uq,...,u, be the terms sent byim, to the protocol.

LetS; := {a1,...,a;}. If Simy is not DY, then with non- [Definifion T7 can be efficiently verified (sinéeis efficiently
negligible probability there exists arsuch thatS; ¥ u;. Fix decidable). HencETemma 6 implies théim is DY for
the smallest suchy and setS := S;, andu := u;,. By encryption-safe protocol, too. By TemmaSim is consis-
[Cemma® (withu’ := v andC :=), we have that there is tent and abort-free. By Lemma ;m is indistinguishable.
a termt,,q and a contexD obeying the grammar given in HenceSim is a good simulator foM, encryption-safél, A,
CemmaB and such that = D[ty,.q] and such thab ¥ tpeq and polynomialg. By[Theoremll, the computational sound-

and such that one of the following holds;,; € Np, or ness ofA for encryption-safe protocols follows. O
thad = E(p,m,N) with N € Np, ortpq = pk(N) with
N € Np.

By construction of the simulator, if the simulator outputs E Encryption in the applied r-calculus
u, we know that the simulated adversdfyhas produced a
bitstring m such thatr(m) = u = Dltpeq]. By definition
of 7, during the computation of (m), some recursive invo-
cation ofr has returned,,,;. Hence the simulator has com-
puted a bitstringny,q With 7(mped) = thad-

We are left to show that such a bitstring,, 4, can be found

Consider an instantiation of our process calculus
with constructors E/3, pk/1, sk/1, pair/2, garbage/1,
garbageF /2 and destructorsispk /1, isenc/1,D/2, fst/1,
snd /1, pkof /1, equals /2.

only with negligible probability. The semantics of the destructors is given by
SinceS ¥ ty.q, we have that,.q occurs inS only asa D(sk(t1), E(pk(t1),m,t2)) = m. ispk(pk(t)) =

part of a subternt’ of a termt” € S whereS F t andS ¥ Pk(t). isenc(E(pk(t1),t2,t3)) = E(pk(t1),t2,ts)

&[tpaq) for some context andt’ = E(ty, E[tvaal, ts) OFt' = isenc(garbageE (pk(t1),t2)) = garbageE(pk(t1),t2).

E(t1,t2, Eltyaa]) Ot = pk(E[tsaa)) OFt' = sk(E[tyeq]) or fot(pair(z,y)) =z snd(pair(z,y)) = v

t'" = garbage(E[tpaa]) Ort’ = garbageE (t1, E[tpad))- pkof (E(pk(t1), m,t2)) = pk(t1). In all other cases,
For alli < 49, we have thasS; - u;. With S ¥ E[tpaal, the destructors return.

we have that’ is a subterm ofu; only if ¥ was a subterm Assume an implementation of the constructors or de-

of a; with j < i. Hencet’ must be honestly generated. structors satisfying the implementation conditions given
Because of protocol conditioi$ [, [@, 7, this leaves only theEeciion .

possibilitiest’ = E(t1,&[tpeq), N) With N € Np, ort’ = We call a proces® encryption-safe if it has the following
E(t1,t, E[tpaq]) With E[tpea] € Np, ort’ = pk(E[tpad]) grammar: Letr ands stand for two different sets of vari-
with E[tpad] € Np. ables (general purpose and secret key variables): hadr

Note that in all three cases, the computatigti) in Sim s stand for two sets of names (general purpose and random-
has been defined not to iNVOK&E[ty.q4]). (This was the ness names). Then the allowed terms &feN := z |
modification of Sim ; with respect taSim.) HencepB(tsaa) a | pair(M,N), the allowed destructor terms afe ::

is never invoked. I,y = N € Np_,_thenmbad = ry and M | z§pk(f)) | isenc(f)) | D(s,f)) | fst(f)) | snd(f)) |
ry IS never used._ So the_ probability that,,; = rx oc- pkof (D). The allowed processes are

curs as output of is negligible. Ifty,q = E(p, m, N) with
N € Np, thent(mpqq) returnstyqq only if my.q was the —

output of an invocation oB(E(p,m,N)) = B(tyeq). But P,Q = M(N).P | M(z).P [0 (P]Q)|'P|va.P|
sincef(tyqq) is never invoked, this case does not occur. Fi- let x =D in P else Q | event(e).P |

nally, if tyeq = pk(N) with N € Np, thenfS(tp.q) is never ‘ s
computed angk ,, is never used. Furthermorg y is only vr.let © = pk(r) in let s = sk(r) in P |
accessed byim s when evaluating (c) wherec is a cipher- vr.let x = E(ispk(Dy), Da,r) in P else Q

text tagged wittpk ;. Hence the probability thatk 5, occurs

as output ofr is negligible. (The IND-CCA property implies (\ote that in the last production rules for key generatiod an
that guessing an unknown public key has negligible proba-for encryption, all occurrences ofdenote the same name.)

bility.) Then from[Theoreml? and Theorein 3, we immediately

Summarizing, we have show that if the simulasém ; is : —
not DY, then with non-negligible probabilitgim ; performs get the following soundness result in this process calculus

the computationr (mpaq), butmseq can only occur with neg-

ligible probability as an argument of. Hence we have a . .

contradiction to the assumption thgm isnotDY. O Theorem5 If a closed encryption-safe processsymboli-
cally satisfies ar-trace propertyp, then P computationally

Theorem 4 A is a computationally sound implementation of satisfiesp.

M for encryption-safe protocols.

Proof. Byl[Cemma®,Sim is DY for encryption-safe pro- Analysis of Needham-Schroeder-Lowe The Needham-
tocols. Whether a full trace satisfies the conditions from Schroeder-Lowe protocol can be written as follows in our

22

fun E/3. fun pk/1. fun sk/1.
fun pair/2. fun garbage/1. fun garbageEnc/ 2.
reduc D(sk(tl), E(pk(tl),mt2)) = m
reduc ispk(pk(t)) = pk(t).
reduc isenc(E(pk(tl),t2,t3)) = E(pk(tl),t2,t3);
i senc(garbageEnc(pk(tl),t2)) = garbageEnc(pk(tl),t2).
reduc fst(pair(x,y)) = x.
reduc snd(pair(x,y)) =y.
reduc pkof (E(pk(tl), mt2)) = pk(tl);
pkof (gar bageEnc(pk(t1l),t2)) = pk(t1l).
reduc equal s(x, x) = X.

query evinj:endAB() ==> evinj: begi nAB().

let A =1lin(net,pkX); if pkX=pkB then event begi nAB(); A else A.
let A = new nA; out(net,nA); newr2; in(net,c); let neD(skA,c) in
if nA=fst(n) then if pkX=snd(snd(m) then
let ¢’ =E(ispk(pkX),fst(snd(m),r2) in out(net,c’).
let B =1lin(net,pkX); in(net,nA); new nB;
new rl; let c=E(ispk(pkX), pair(nA pair(nB,pkB)), rl) in
out(net,c); in(net,c’); if nB=D(skB,c’) then if pkX=pkA then event endAB().
process new rA; |let pkA=pk(rA) in let skA=sk(rA) in out(net, pkA);
new rB; let pkB=pk(rB) in let skB=sk(rB) in out(net,pkB); A B

Figure 5. Needham-Schroeder-Lowe in ProVerif syntax

calculus (we use syntactic sudar, y) for pair(z,y)): cessP describing the whole protocol is an encryption-safe
process (ifr1,r2, 74,7 are declared as randomness names
A = Inet(pkx). andsk 4, sk as secret key variables).
if pky = pkp then event(beginAB).A’ else A’ We can encode the processes and the equational theory in
A’ = vy net(na).net(c).let m = D(sk 4, c) in ProVerif as show iff Figurgl5. Note that we moved in

. - . - A’ up in front of the inputret(c). Obviously, this leads to
if na _/fSt(m),then if pkx = snd(snd(m))‘ then an equivalent process (in terms of event traces), but itshelp
vry.let ¢ = E(ispk(pkx), fst(snd(m)),r2) in ProVerif to terminat@J ProVerif verifies the entity authenti-
net{c).0 cation property with no noticeable delay.

B :=Inet(pk y).net(na).vnp.
vry.let ¢ = E(ispk(pk), (na, (ng, pkg)),r1) in
net{c).net(m).if ng = D(skg, m) then
if pkyx = pk 4 then event(endAB)

P :=vrg.let pky = sk(ra) in let ska = sk(ra) in net(pk 4).
vrg.let pkg = sk(rg) in let skp = sk(rg) in net{pkpg).
(A | B).

We model the participantel and B as processes with an

unbounded number of sessions that perform authentications

with arbitrary participants (the adversary may controlhwit

which communication partner an authentication is perfarme

by sending a public keyk . over the public channetet).

If A believes to perform an authentication with(pk y =

pk), itraises the everiiegin A B. If B believes to have com-

pleted an authentication witH, it raises the evenindAB.

Entity authentication can be expressed by requiring that ev 101y general, when Proverif does not terminate, it is helpturtove all
ery endAB event is preceded bylgginAB event. The pro- restrictions upwards as far as possible.

23

	Introduction
	Our contribution
	Outline of the paper

	A general framework for computational soundness proofs
	Preliminaries
	Symbolic protocols
	Computational model
	Computational Soundness

	On simulators that entail computational soundness proofs
	Case study: computational soundness of public-key encryption
	Computational soundness of the applied π-calculus
	Overview of this section
	Review of the calculus' syntax and semantics
	Defining a computational execution
	Computational soundness of the calculus

	Conclusion and future work
	Semantics of the applied -calculus (with events)
	Postponed definitions
	Symbolic execution of a -process

	Postponed proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Encryption (postponed details)
	Encryption in the applied -calculus

