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Abstract. Elliptic curves over finite fields have applications in public key cryptography. A Koblitz curve is

an elliptic curve E over F2; the group E(F2n ) has convenient features for efficient implementation of elliptic

curve cryptography.
Wiener and Zuccherato and Gallant, Lambert and Vanstone showed that one can accelerate the Pollard

rho algorithm for the discrete logarithm problem on Koblitz curves. This implies that when using Koblitz
curves, one has a lower security per bit than when using general elliptic curves defined over the same field.

Hence for a fixed security level, systems using Koblitz curves require slightly more bandwidth.

We present a method to reduce this bandwidth. Our method is appropriate for applications such as
Diffie-Hellman key exchange or Elgamal encryption. We show that, with a low probability of failure, our

method gives the expected bandwidth for a given security level.

1. Introduction

Let E be an elliptic curve over Fq. The elliptic curve discrete logarithm problem (ECDLP) is: Given a
point P ∈ E(Fq) of large prime order ` and Q ∈ 〈P 〉, find a ∈ [0, `− 1] ⊆ Z such that Q = [a]P . Pollard [5]
gave algorithms to solve the DLP in a generic group of prime order ` using pseudorandom walks. Van
Oorschot and Wiener [8] showed how to use distinguished points so that the DLP can be solved in close to
the expected

√
π`/2 group operations.

A Koblitz curve is an ordinary elliptic curve E : y2 + xy = x3 + ax2 + 1 over F2. We consider the group
E(F2n) where n is prime. For certain values of n one obtains group orders of the form c · ` where c is a small
even cofactor and ` is a large prime. Koblitz in [4] demonstrated the performance benefits of using the group
E(F2n). The advantage is that point multiplication can be accelerated using the 2-power Frobenius map
ψ(x, y) = (x2, y2) (see Solinas [7] for more details). Throughout the paper we assume that `2 - #E(F2n) so
that if P ∈ E(F2n)[`] then ψ(P ) ∈ 〈P 〉.

Wiener and Zuccherato [9] and Gallant, Lambert and Vanstone [2] showed that one can accelerate the
Pollard rho method using equivalence classes. For general elliptic curves one can always use the equivalence
relation P ≡ −P (i.e., the equivalence classes {P,−P}) and therefore solve the ECDLP in a group of order
` in expected

√
π`/4 group operations. For Koblitz curves one can define the equivalence relation

P ≡ ±ψi(P )

for 0 ≤ i < n. The equivalence classes are of size 2n. It follows that one can solve the ECDLP in a subgroup
of E(F2n) of order ` in expected

√
π`/4n group operations.

Definition 1. An elliptic curve E over Fq has a k–bit security level if the expected running time required
by Pollard’s methods to solve the ECDLP is greater than 2k group operations1.

When working modulo a large prime q one can find elliptic curves E over Fq such that #E(Fq) = ` is
prime. It follows that one has k-bit security level when

√
πl/4 ≈ 0.886

√
q > 2k. This certainly holds if

q ≥ 22k+1. When working over F2n (this is the setting of our paper) the group order is always even so one
hopes for #E(F2n) = 2 · ` where ` is prime. It is not proven that there exist elliptic curves over every field
F2n whose number of points is twice a prime, but this conjecture is widely believed. For k-bit security, by
the argument above, one therefore has n ≥ 2k + 2.

For Koblitz curves over F2n , due to the equivalence classes, one needs n ≥ 2k + 2 + log2(n) ≥ 2k +
2 + log2(2k). It follows that when using Koblitz curves one needs more bits of storage and communication
compared with general elliptic curves. An alternative way to view this is that we have lower security per bit

1Some authors might define this to be 2k bit operations, or 2k operations of the AES function.
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than when using general curves over the same field. A natural problem is to achieve bandwidth for Koblitz
curves which matches the case of more general curves.

For a given security level k there may not be a prime n close to 2k+ 2 + log2(n) such that #E(F2n) = 2 · `
for a large prime `. If this is the case one would probably not use Koblitz curves and our methods give no
improvement (though one might be able to use subfield curves over a different field, e.g., F22).

Given a point P = (xP , yP ) ∈ E(Fq) one can transmit P by sending xP and a single bit to determine yP .
In many applications it is possible to ignore yP altogether and perform cryptography using the equivalence
classes {P,−P}. This often goes under the name of elliptic curve cryptography using x-coordinates only.
In other words, when using elliptic curves over prime fields one usually expects 2k + 1 bits or d(2k + 1)/8e
bytes bandwidth for k bits of security.

When using elliptic curves over F2n there is further potential for compression. Seroussi [6] gave a method
to save one bit of the x-coordinate (we recall the details in §4.1). It follows that one can transmit P ∈ E(F2n)
using n bits, or n − 1 bits if one ignores yP and works with the equivalence classes {P,−P}. The minimal
bandwidth for elliptic curve cryptography over F2n for security level k is therefore 2k+1 bits or d(2k+1)/8e
bytes. When using Koblitz curves this becomes n = 2k + 1 + log2(n) bits or d(2k + 1 + log2(n))/8e bytes.

The main result of this paper is to give a method to reduce the bandwidth when using Koblitz curves.
Our method is a generalisation of working with the equivalence class {P,−P}. Recall that the reason for the
overhead is that one can attack the system using the Pollard rho algorithm on a set of equivalence classes

[P ] = {±ψi(P ) : 0 ≤ i < n}.

Hence it is natural to do cryptography using these equivalence classes. We show with a low probability of
failure, one can obtain the desired bandwidth for certain applications. We deal with the ± by discarding
yP . The equivalence class is then determined by the n-bit string xP up to rotation (we represent F2n using
a normal basis). The idea is to rotate xP so that a certain pattern of bits appears at one end of the string
(our proposal looks for a pattern of the form 011 · · · 110). This pattern can then be deleted and just the
remaining string sent. An extra bit is saved by using the Seroussi trick.

The plan of the paper is as follows. Section 2 makes the notion of bandwidth overhead more precise and
gives some targets to achieve. Section 3 explains how to perform Diffie-Hellman key exchange on equivalence
classes. Section 4 gives a technical description and justification of the method. Section 5 analyses how well
the method is expected to work in practice.

2. Overhead in Koblitz Curve Cryptosystems

To make the problem precise we need to consider how elliptic curve points are transmitted. We consider
three communication models for transmitting binary data.

• (Fixed length bitstring) The receiver expects to get an m–bit string;
• (Fixed length bytestring) The receiver expects to get an m–byte string (this is a special case of the

previous one);
• (Variable length bitstring) The receiver expects to get a bit–string of variable length ≤ m where the

receiver knows that the string has ended by some end–of–transmission (EOT) symbol.
The additional bandwidth required to send a point using a Koblitz curve system, compared with using

general curves over F2n , for an equivalent security parameter k, is called the overhead. We denote by rbit

the number of additional bits required to be sent (this is the overhead in a bitstring communication model),
and rbyte the number of additional bytes (the overhead in a bytestring communication model). When it is
clear from the context we will simply refer to these as bit and byte redundancies.

Table 1 lists the values of n for which there is an elliptic curve over F2n such that #E(F2n) = c` where
` is a large prime and c ∈ {2, 4}. The security level is k = [log2(

√
π2n/4cn)] (where [x] means round to

the nearest integer). One expects to achieve this security level using a general elliptic curve over F2m with
m = 2k + 2 (ignoring the possibility of Weil descent attacks for this value of m [3]). We therefore have

rbit = n− (2k + 2)

(for example, with n = 163 we have k = 77 and so m = 2 · 77 + 2 = 156 and rbit = 7). Applying the Seroussi
trick in both situations gives rbit = (n− 1)− (2k + 1) which is the same overhead. Similarly, the number of
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Parameters n c Security level k rbit rbyte

sect163k1 163 2 77 7 1
sect233k1 233 4 111 9 1
sect239k1 239 4 114 9 1
sect283k1 283 4 136 9 1
sect409k1 409 4 199 9 1
sect571k1 571 4 280 9 1

Table 1. Bandwidth overhead when using Koblitz curves.

extra bytes to be transmitted (when using the Seroussi trick) is

rbyte = d(n− 1)/8e − d(2k + 1)/8e
(for example, with n = 163, we have d(n− 1)/8e = 21 while d(2 · 77 + 1)/8e = 20 so rbyte = 1).

The reason why 9 bits of redundancy can mean only one byte of redundancy is that 2k+1 is not necessarily
a multiple of 8 and so there are already some spare bits in the byte representation.

3. Cryptography using Equivalence Classes

It is already well-known that one can perform elliptic curve cryptography using x-coordinates only (i.e.,
using equivalence classes of the form {P,−P}). Our proposal is to extend this idea to equivalence classes of
the form {±ψi(P )} for 0 ≤ i < n. The goal of this section is to explain, using Diffie-Hellman key exchange
as an example, that one can do cryptography with these equivalence classes. The crucial fact is that one can
define point multiplication on equivalence classes: For a ∈ N, one defines [a][P ] = [[a]P ].

Lemma 1. The operation [a][P ] is well-defined.

Proof. Let P1 ∈ [P ] so that P1 = ±ψi(P ) for some i. Since ±ψi is a group homomorphism we have
[a]P1 = ±ψi([a]P ) and so [[a]P1] = [[a]P ]. �

Definition 2. Let S be the set of equivalence classes of points in E(F2n)[`]. Let r > 0 be an integer. Let
C : S → {0, 1}n−r and D : {0, 1}n−r → S be functions.

Let P ∈ E(F2n)[`] and write [P ] for the equivalence class of P . Let x′ ∈ {0, 1}n−r. If

D
(
C
(
[P ]
))

= [P ]

then we call C and D compression and decompression functions.

We now show that one can use compression and decompression functions to obtain a compressed Diffie-
Hellman key exchange protocol. We assume the system parameters include a Koblitz curve E(F2n) with
point P ∈ E(F2n) of prime order `.
Alice picks a random 1 ≤ a < `, computes QA = [a]P and sends x′A = C

(
[QA]

)
to Bob. Similarly, Bob picks

1 ≤ b < `, computes QB = [b]P and sends x′B = C
(
[QB ]

)
to Alice. Alice computes

kA = C
(
[a]D(x′B)

)
and Bob computes

kB = C
(
[b]D(x′A)

)
.

Lemma 2. Alice and Bob compute the same key.

Proof. Alice computes

kA = C
(
[a]D(x′B)

)
= C

(
[a]D

(
C
(
[[b]P ]

)))
= C

(
[a][[b]P ]

)
= C

(
[[ab]P ]

)
using the property D(C([P ])) = [P ]. It is easy to check that Bob computes the same value. �
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Obviously the same ideas can be used for any other cryptosystem which is fundamentally based on Diffie-
Hellman key exchange (for example, Elgamal encryption).

4. Short Representatives of Equivalence Classes

In the following subsections we explain the compression and decompression algorithms. Recall that a
normal basis for F2n over F2 is a vector space basis of the form {β, β2, β22

, . . . , β2n−1}. One represents
elements of F2n with respect to the normal basis as an n-bit string. The action of the 2-power Frobenius
map ψ is simply a rotation to the of the binary string, which is fast to compute.

4.1. Seroussi’s Point Compression for Curves E/F2n . We describe Seroussi’s method [6] for saving
one bit in the representation of points in E(F2n). Recall that for α ∈ F2n the trace map is defined to be
Tr(α) =

∑n−1
i=0 α

2i

. It is well known that Tr(α) ∈ F2, Tr(α+ β) = Tr(α) + Tr(β) and Tr(α2) = Tr(α) for all
α, β ∈ F2n . Seroussi’s main result is the following.

Lemma 3. Let E/F2n be defined by the Weierstrass equation

E : y2 + xy = x3 + ax2 + b

and P = (xP , yP ) ∈ E(F2n) be of odd prime order `. Then one has

Tr(xP ) = Tr(a).

The following result is standard.

Lemma 4. When using a normal basis representation of F2n/F2, for an x ∈ F2n represented by the vector
(xn−1, xn−2, . . . , x0) one has

Tr(x) =
n−1∑
i=0

xi.

It follows that given a point P = (xP , yP ) ∈ E(F2n) of odd order one can write xP in binary with respect
to a normal basis for F2n and remove the least significant bit before transmission. The receiver obtains a
bitstring of length n− 1 and can append the correct bit so that the sum of the bits is equal to Tr(a).

4.2. Compressing Abscissæ of Points on Koblitz Curves. As mentioned, to compress a point P =
(xP , yP ) we first throw away yP and then represent xP , with respect to a normal basis, as an n-bit string.
We consider all the rotations of this bitstring.

Definition 3. Let n ≥ 3 and let x = xn−1xn−2 · · · x1x0 represent a binary string with xi ∈ {0, 1}. We say x

contains a right padded run of length t if and only if

x = xn−1 · · · xt+2011 · · · 110.

In other words, bit 0 and the (t+ 1)–th bit are 0 and the intermediate t bits are 1.

Lemma 5. Up to rotation only three strings of length ≥ 3 do not have a right padded run. Namely

11 · · · 11 = (1)n
, 00 · · · 00 = (0)n and (1)n−1 ‖ 0.

The first two of these do not correspond to points on a Koblitz curve over F2 of odd order.

Proof. The first claim is obvious. The final claim follows since the all zero and all one strings correspond to
x = 0, 1 ∈ F2. Such values satisfy the equation y2 + xy = x3 + ax2 + 1 for y ∈ F2 or y ∈ F22 , and either way
correspond to points of even order. �

The compression algorithm can now be described. Given P = (xP , yP ) of odd order on a Koblitz curve
consider all n rotations of the binary string xP and determine which has the longest right padded run. In the
case there are two or more runs of the same length we choose the binary string with lowest lexicographical
ordering (i.e., smallest value when the bitstring is interpreted as an integer). Call the binary string x and let
t be the length of the run of ones. One has x = xn−1 . . . xt+2011 . . . 10. In Section 5 we discuss the expected
size of t.
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We now rotate x once to the left, to get

xn−2 . . . xt+2011 . . . 10xn−1

Applying the Seroussi trick one can delete xn−1.
We first consider the variable length bit string communication model. It is only necessary to send the

n − t − 3 bits xn−2...xt+2. When the reciever is given these n − t − 3 bits, knowing n, she can compute t
and thus append the length t+ 2 pattern 01 . . . 10. Finally, the receiver obtains the remaining bit using the
Seroussi method.

More realistically, we are in a fixed bit or byte communication model. The receiver expects to get a fixed
number m of bits (or a fixed number of bytes) and must determine the n −m missing bits. One subtlety
here is that the receiver cannot determine t by the data sent to them. Hence the receiver must assume that
the missing bits include only a substring of the run 011 · · · 110. If n − t − 3 ≥ m then the sender fails to
obtain the desired level of compression and the algorithm must terminate (the sender can perhaps repeat
the cryptographic protocol with different random choices). Hence the receiver assumes m ≤ n− t− 2. The
sender sends xn−2...xt+2 and an initial segment of the run 011 . . . to make up the m bits. The receiver then
adds n−m− 2 ones, followed by a zero, followed the the bit coming from the Seroussi trick.

One easily checks that the compression and decompression functions satisfy Definition 2. In particular,
D(C([P ])) = [P ] for any equivalence class [P ].

5. Expected Bandwidth Saving

We now analyse what values t can be expected in practice, and thus how effective our method is. Our
compression function acts by finding the longest run of ones in the binary expansion of the x-coordinate.
Hence, the question is to determine the probability of certain lengths of runs of ones. We assume in our
analysis that the x-coordinate of an elliptic curve point is essentially a random n-bit string (the Seroussi
trick shows that this is not true, but we do not believe this has much bearing on the issue of lengths of runs
of ones).

We first consider a related question: Given a fixed integer r and a fixed binary string x0 of length r,
what is the probability that a uniformly chosen binary string of length n has some rotation such that the
r least significant bits are equal to x0? Clearly, the probability that a randomly chosen n-bit string has r
least significant bits equal to x0 is 1/2r. Under the (plainly false) hypothesis that the n rotations of an n
bit string are independent random binary strings then, when n ≈ 2r, we expect at least one rotation to have
the desired property. Similarly, if n is significantly smaller than 2r then there is no reason to expect any
rotations to have the property. Hence, it is clear that r ≈ log2(n) is the best we can hope for, and that
r = blog2(n)c is unlikely to be achievable.

One feature of our method (in the variable length bitstring case at least) is that we don’t just look for a
run of ones, but use the fact that a run of ones has zeroes on each end. This allows us to get closer to the
desired saving of log2(n) bits.

We now present the results of some simulations. We estimate the probability that a random n–bit string
can be compressed by removing t+3 bits using our method (this probability is most relevant for the variable
bitstring communication model). For the given values of n our programme generated random n-bit strings
and determined the length t of the longest run of ones. This shows whether compression of a given size
r = t+ 3 can be achieved.

The results are given in Table 2. The black coloured cells indicate the value r = t+ 3 = [log2 n] and the
grey cells are r = blog2 nc when these values are different. The case n = 211 − 1 = 2047 has been included
purely for theoretical interest. One sees that, with high probability, 7 bits can be saved when n = 163, 8 bits
saved when 233 ≤ n ≤ 283 and 9 bits saved when n ≥ 409. Hence, we have a good solution to the original
problem.

6. Conclusions

We have given a compression method and have given experimental results that show it works well when
the communication model allows variable length bit strings.

We now consider the more standard setting of fixed length bit or byte communications. We use the results
of Table 2 to show how successfully the the byte overhead rbyte can be reduced to the expected minimal
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bit–size n
t r = t+ 3 163 233 239 283 409 571 2047
3 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 7 0.99 1.00 1.00 1.00 1.00 1.00 1.00
5 8 0.94 0.98 0.98 0.99 1.00 1.00 1.00
6 9 0.74 0.86 0.86 0.90 0.96 0.99 1.00
7 10 0.49 0.61 0.61 0.68 0.80 0.89 1.00
8 11 0.28 0.37 0.38 0.44 0.55 0.67 0.98
9 12 0.15 0.20 0.21 0.25 0.33 0.43 0.64

Table 2. Estimated probability that a randomly chosen binary string of length n has, up
to rotation, a run of t ones.

n rbyte Number bits to remove Success Probability
163 1 3 1.00
233 2 9 0.86
239 1 7 1.00
283 1 3 1.00
409 2 9 0.96
571 1 3 1.00

Table 3. Experimental estimates for the probability of successful compression in the fixed
byte length model.

value when using Koblitz curves (some values for rbyte were given in Table 1). The results depend on n
modulo 8, which is why the behaviour is not uniform as n grows. We give our results in Table 3.

It follows that one can achieve the expected number of bytes of communication with overwhelming prob-
ability for most values of n, and even for the less good n the method works with reasonably good reliability.

Our results can be extended to other subfield curves (i.e., curves over small fields other than F2) and
hyperelliptic curves. However, the original issue is less serious in these cases (as the equivalence classes are
smaller) so we do not give the details.
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