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Abstract

Secure multiparty computation (MPC) allows a set of n parties to securely compute an agreed
function, even if up to t parties are under the control of an adversary. In this paper, we propose a new
Asynchronous secure multiparty computation (AMPC) protocol that provides information theoretic
security with n = 4t + 1, where t out of n parties can be under the influence of a Byzantine (active)
adversary At having unbounded computing power. Our protocol communicates O(n2 log |F|) bits per
multiplication and involves a negligible error probability of 2−Ω(κ), where κ is the error parameter and
F is the field over which the computation is carried out. The best known information theoretically
secure AMPC with n = 4t+1 communicates O(n3 log |F|) bits per multiplication and does not involve
any error probability in computation. Though a negligible error probability is involved, our AMPC
protocol provides the best communication complexity among all the known AMPC protocols providing
information theoretic security. Moreover, the communication complexity of our AMPC is same as the
communication complexity of the best known AMPC protocol with cryptographic assumptions. As
a tool for our AMPC protocol, we propose a new method of efficiently generating (t, 2t)-sharing of
multiple secrets concurrently in asynchronous setting, which is of independent interest.
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1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation (MPC) [36] allows a set
of n parties to securely compute an agreed function f , even if some of the parties are under the control
of a centralized adversary. More specifically, assume that the agreed function f can be expressed as
f : ({0, 1}∗)n → ({0, 1}∗)n and party Pi has input xi ∈ {0, 1}∗. At the end of the computation of f , Pi gets
yi ∈ {0, 1}∗, where (y1, . . . , yn) = f(x1, . . . , xn). Moreover, the adversary should not get any information
about the input and output of the honest parties, other than what can be inferred from the input and
output of the corrupted parties. Notice that the problem becomes very easy if there exists a trusted third
party (TTP), to whom each party can privately give his input xi, who then computes the function f and
then privately distribute the output yi to individual parties. However, in reality, there does not exist any
TTP. So the goal of any general MPC is to simulate the functionality of TTP, by executing a protocol
among the n parties, such that at the end of the protocol, all (honest) parties receive correct outputs
and the messages seen by the adversary during the protocol contain no additional information about the
inputs and outputs of the honest parties, other than what can be computed from the inputs and outputs
of the corrupted parties. MPC is one of the most important and fundamental problems in distributed
computing. Over the past three decades, the problem has been studied extensively in different settings,
depending upon whether the network is synchronous [36, 21, 7, 13, 33, 1, 23, 20, 22, 25, 3, 17, 27, 5, 26] or
asynchronous [6, 8, 35, 32, 10, 28, 4, 30], the adversary is threshold [36, 21, 7, 13, 33, 1, 20, 22, 3, 17, 5, 23]
or non-threshold [23, 16, 28, 2, 24], the adversary behavior is static [36, 21, 7, 13, 33, 1, 23, 20] or
mobile [29], the security is cryptographic [21, 25, 26] or information theoretic [36, 7, 13, 33] and finally
whether the protocol is perfect (i.e., without any error) [7, 22, 5] or allows a negligible error probability
[34, 33, 14, 15, 17, 3, 31].

Any general MPC protocol computes the function f as follows: without loss of generality, the function
f is specified by an arithmetic circuit over a finite field F, consisting of input, linear (e.g. addition), mul-
tiplication, random and output gates. We may denote the number of gates of each type by cI , cL, cM , cR

and cO respectively. The parties then share their respective inputs among all the parties using some (lin-
ear) secret sharing technique. Roughly speaking, a secret sharing scheme allows a specific party called
dealer D to share a secret s ∈ F among the n parties, such that if D is honest then adversary does not
get any information about s by pooling the shares of the corrupted parties. Once input sharing is done,
the circuit is computed gate by gate such that the output of the intermediate gates are always kept as
secret and are properly shared/ distributed among the parties. Due to the linearity of used secret sharing
scheme, the parties can locally compute their shares of linear gates without doing any communication.
However, to evaluate a multiplication gate, the parties need to execute a protocol among themselves so
as to generate the proper sharing of the output of the multiplication gate. Among all the different types
of gates, evaluation of a multiplication gate requires the most communication complexity. So the commu-
nication complexity of any general MPC is usually given in terms of the communication complexity per
multiplication gate. Once the sharing of outputs (of the function) are computed, they are reconstructed
towards appropriate parties.

The MPC problem has been studied extensively over synchronous networks which assumes that there
is a global clock and the delay of any message in the network channels is bounded. However, though
theoretically impressive, such networks do not model adequately real life networks like Internet. So in
this paper, we study MPC in asynchronous networks, tolerating a threshold adversary, having unbounded
computing power, who can corrupt t out of the n parties in Byzantine fashion.

Asynchronous Networks: Asynchronous networks model real life networks like the Internet much
better than their synchronous counterpart. Here the communication channels between the parties have
arbitrary, yet finite delay (i.e the messages are guaranteed to reach eventually). To model this, the ad-
versary is given the power to schedule the delivery of messages in the network. The inherent difficulty in
designing a protocol in asynchronous network, comes from the fact that when a party does not receive an
expected message then he cannot decide whether the sender is corrupted (and did not send the message
at all) or the message is just delayed in the network. Therefore it is impossible to consider the inputs of
all uncorrupted parties. So input of up to t (potentially honest) parties may get ignored because waiting
for them could turn out to be endless. Moreover the tools that are applicable in synchronous settings
cannot be deployed in asynchronous settings. Hence, designing asynchronous protocols require complete
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new set of primitives. For an excellent introduction to asynchronous protocols, see [11].

Asynchronous Multiparty Computation (AMPC): Unlike MPC in synchronous networks, design-
ing AMPC protocols has received very less attention due to their inherent difficulty. It is known that
AMPC under cryptographic assumptions [25, 26] is possible iff n ≥ 3t + 1. In information theoretic
settings, AMPC with zero error (i.e., perfectly secure AMPC) is possible iff n ≥ 4t + 1 [6], whereas
AMPC with negligible error probability is possible iff n ≥ 3t + 1 [8]. The communication complexities per
multiplication of the best known AMPC protocols are given in the following table, where cM denotes the
number of multiplication gates in arithmetic circuit corresponding to the function f and IT denotes In-
formation Theoretic security. Furthermore, for cryptographic AMPC, κ is the security parameter, while
for information theoretic AMPC (with negligible error probability), κ is the error parameter.

Reference Type of Security Resilience Communication Complexity in bits

[25] Cryptographic t < n/3 (optimal) O(cMn3κ)

[26] Cryptographic t < n/3 (optimal) O(cMn2κ)

[35] IT (no error) t < n/4 (optimal) Ω(cMn5 log(|F|))
[4] IT (no error) t < n/4 (optimal) O(cMn3 log(|F|))
[8] IT (negligible error) t < n/3 (optimal) Ω(cMn11κ4)

[30] IT (negligible error) t < n/3 (optimal) O(cMn5κ)

[32] IT (negligible error) t < n/4 (non-optimal) O(cMn4κ)

Recently in [19], the authors have designed communication efficient MPC protocols over networks that
exhibit partial asynchrony (where the network is synchronous up to certain point and becomes completely
asynchronous after that) and hence we do not compare it with our MPC protocol, which is designed in
completely asynchronous settings.

Our Contribution: We design an efficient information theoretic secure AMPC protocol with n = 4t+1
satisfying : (a) Termination: Every honest party terminates the protocol eventually, (b) Correctness:
Every honest party receives the correct output at the end except with negligible error probability of
2−Ω(κ), where κ is the error parameter, (c) Secrecy: The adversary gets no information about the inputs
and outputs of honest parties apart from what can be computed from the inputs and outputs of the cor-
rupted parties. Our protocol communicates O(n2 log |F|) bits per multiplication and involves a negligible
error probability of 2−Ω(κ) only in correctness, where F is the field over which the computation is carried
out. The best known AMPC with n = 4t + 1 communicates O(n3 log |F|) bits per multiplication [4] and
satisfies all the three properties, namely termination, secrecy and correctness perfectly (i.e with-
out any error probability). Though a negligible error probability is involved in correctness, our AMPC
protocol provides the best communication complexity among all the known AMPC protocols providing
information theoretic security. Finally, the communication complexity of our AMPC protocol is same as
the communication complexity of the best known AMPC protocol with cryptographic assumptions [26].
As a tool for our AMPC protocol, we propose a new and efficient method of generating (t, 2t)-sharing of
multiple secrets concurrently in asynchronous settings, which is of independent interest.

2 Preliminaries

Model: We follow the network model of [6], where there is a set of n parties denoted by P =
{P1, . . . , Pn}, who are pairwise connected by secure asynchronous channels. An adversary At with un-
bounded computing power can control at most t < n

4 parties in Byzantine fashion and can make the
corrupted parties to deviate from the protocol in any arbitrary manner. Moreover, the adversary is given
the power to schedule messages over each channel. But he will have no access to the messages sent
by honest parties. The function to be computed is specified by an arithmetic circuit over a finite field
F, consisting of input, linear (e.g. addition), multiplication, random and output gates. We denote the
number of gates of each type by cI , cL, cM , cR and cO respectively.

The Ground Field and The Extension Field: For the rest of the paper, we fix a finite field F with
|F| ≥ n over which most of our computations will be performed. We call F as the Ground Field. Any
element from F can be represented by log |F| bits. We also fix an extension field E ⊃ F to be the smallest
extension for which |E| ≥ 2κ. Each element of E can be written down using O(κ) bits. We call E as
Extension Field. Moreover, without loss of generality, we assume that n = poly(κ). An AMPC protocol
is called efficient if the computations and communication of the honest parties in the protocol is poly(κ).
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In our AMPC protocol, each honest party performs computations and communication which is poly(n, κ).

A-cast, Agreement on a Core Set (ACS)

A-Cast[12]: It is an asynchronous broadcast primitive, introduced and elegantly implemented by Bracha
[9] with n ≥ 3t + 1. From [9], A-Cast of b bits incurs a private communication of O(n2b) bits. Let Π be
an asynchronous protocol initiated by a special party (called the sender), having input m (the message
to be broadcast). We say that Π is a t-resilient A-cast protocol if the following holds:

• Termination: 1. If the sender is honest and all the honest parties participate in the protocol, then each honest party

will eventually terminate the protocol.

2. Irrespective of the behavior of the sender, if any honest party terminates the protocol then each honest party will

eventually terminate the protocol.

• Correctness: If the honest parties terminate the protocol then they have a common output m∗. Furthermore, if the

sender is honest then m∗ = m.

Agreement on Core Set (ACS)[4, 8]: It is a primitive presented in [6, 8]. It is used to determine a set of
n − t parties that correctly shared their values. More concretely, every party Pi starts the ACS protocol
with an accumulative set of parties who from Pi’s view point correctly shared their values. The output
of the protocol is a set of at least n − t parties, who correctly shared their values. The communication
cost of ACS protocol is Ω(n4 log n) bits.

Definition 1 (d-Sharing [3]:) A value s ∈ F is said to be d-shared among a set of parties P ⊆ P with
|P| ≥ d+1 if every honest Pi ∈ P is holding a share si of s, such that there exists a degree d polynomial
f(x) over F with f(0) = s and f(j) = sj for every Pj ∈ P. The vector of shares is called a d-sharing of
s and is denoted by [s]d. A set of shares (at least d + 1) is called d-consistent if these shares lie on a d
degree polynomial.

Definition 2 ((t, 2t)-Sharing [5]:) A value s is said to be (t, 2t)-shared among the parties in P, denoted
as [s](t,2t), if s is both t-shared and 2t-shared among the parties in P.

3 AMPC Protocol Overview

Our AMPC protocol proceeds in three phases: preparation phase, input phase and computation phase.
Every honest party will eventually complete each phase. In the preparation phase, (t, 2t)-sharing of
cM + cR random values will be generated. Each multiplication gate and random gate of the circuit will
be associated with a (t, 2t)-sharing. In the input phase the parties t-share (commit) their inputs and
agree on a core set of n− t parties who correctly t-shared their inputs (every honest party will eventually
get a share of the inputs of the parties in the core set). In the computation phase, based on the inputs
of the parties in core set, the actual circuit will be computed gate by gate, such that the output of the
intermediate gates are always kept as secret and are properly t-shared among the parties. Due to the
linearity of the used t-sharing, the linear gates can be computed locally without communication. Each
multiplication gate will be evaluated with the help of the (t, 2t)-sharing associated with it. For this, we
adapt a technique from [17] used in synchronous settings.

4 Reconstruction of d-Sharing

Let s ∈ F be a secret which is d-shared among the parties in P by a degree-d polynomial f(x), such
that f(0) = s and d < n − 2t. Let Pα ∈ P. We now give a protocol d-Rec-Private, which allows Pα

to privately reconstruct f(x) and hence s = f(0) in asynchronous settings. Moreover, if Pα is honest
then s remains secure. The high level idea of the protocol is as follows: every party Pi sends his share
si of s to Pα. The shares may reach Pα in any arbitrary order. Moreover, up to t of the shares may be
incorrect or missing. To reconstruct f(x), Pα applies OEC (Online Error Correcting) [6] on the obtained
si’s to get the interpolation polynomial f(x) and reconstructs the secret s = f(0). Roughly speaking, the
online error correction method enables Pα to recognize when the received shares define a unique degree-d
interpolation polynomial. We call the reconstruction of s by Pα as the Pα-Private-Reconstruction of s.

Lemma 1 For any secret s which is d-shared among the parties in P, with d < n − 2t, protocol d-Rec-
Private achieves the following properties tolerating any At:
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– Termination: If Pα is honest, then Pα will eventually terminate d-Rec-Private.

– Correctness: An honest Pα will always output s correctly at the end of the protocol.

– Secrecy: If Pα is honest then At obtains no information about s.

Protocol d-Rec-Private privately communicates O(n|F|) bits.

Protocol d-Rec-Private(P, d, s, Pα): Pα-Private-Reconstruction of s

Code for Pi: Send si to Pα.

Code for Pα: Apply On-line Error Correcting (OEC) on the received si’s to interpolate a unique degree-d polynomial
f(x) and output s = f(0).

The following observations on d-Rec-Private will be required in the sequel:

(i) Protocol d-Rec-Private can be used to reconstruct t-sharing as well as 2t-sharing of s which is shared
among the parties in P (since d < n − 2t holds good when n = 4t + 1 and d = 2t as well as d = t).

(ii) Protocol d-Rec-Private can be used to reconstruct t-sharing of s which is t-shared among the parties
in P ⊆ P with |P| ≥ 3t + 1. That is if P is any 3t + 1 sized subset of P, then d-Rec-Private(P , t, s, Pα)
ensures successful Pα-Private-Reconstruction of s.

5 Generating (t, 2t)-Sharing

We now present a novel protocol, called (t,2t)-Share-Multiple that allows a dealer D ∈ P (dealer can be
any party from P) to (t, 2t)-share ℓ ≥ 1 secrets from F concurrently among the parties in P with error
probability of 2−Ω(κ). For the ease of understanding, we first present a protocol, called (t,2t)-Share-Single
that allows D to (t, 2t)-share a single secret among the parties in P with error probability of 2−Ω(κ).
Protocol (t,2t)-Share-Single and (t,2t)-Share-Multiple may not terminate when D is corrupted. But if an
honest party terminates these protocols, then eventually all the honest parties will also terminate the
protocols. Moreover, if D is honest then the secret(s) remains secure after the execution of the protocols.

We now provide a broad-level overview of (t,2t)-Share-Single. For this, we follow an evolutionary
approach, where we explain the problems faced at each step and the measures taken to tackle those
problems. To begin with, D on having a secret s, selects random polynomials F (x) and G(x) over F of
degree t and 2t respectively such that F (0) = G(0) = s. To (t, 2t)-share s among the parties in P, every
Pi ∈ P should hold F (i) and G(i) at the end of the protocol such that parties have verified that both
F (x) and G(x) share same secret s. It is clear that allowing D to directly send F (i) and G(i) to party
Pi can not be a solution. This is because, a corrupted D may send wrong values to parties i.e the values
given to the parties do not define t and 2t degree polynomial respectively. Moreover the polynomials may
not have common secret as their constant term. Also a corrupted D may choose not to deliver values to
t potential honest parties and since the protocol is to be executed over asynchronous network, we can
not wait for those t parties to receive their values (as this waiting may turn out to be endless).

To overcome the above problems, we follow a different strategy: D is asked to select a random degree-t
polynomial f0(x) and 2n degree-t polynomials f1(x), . . . , fn(x), g1(x), . . . , gn(x) over F such that:

(i) For i = 1, . . . , n, the points (0, f0(i))(1, f1(i)), . . . (n, fn(i)) define a unique t polynomial.

(ii) For i = 1, . . . , n, the points (0, f0(i))(1, g1(i)), . . . (n, gn(i)) define a unique 2t degree polynomial.

(iii) For i = 0, . . . , n, f i(0) = F (i) and for i = 1, . . . , n, gi(0) = G(i). Moreover, f0(0) = F (0) = G(0).

Given F (x) and G(x), D can always select the above polynomials in the following manner:

Generate(F (x), G(x))

1. D selects following degree-t random polynomials over F:

(a) a polynomial f0(x), such that f0(0) = F (0) = G(0) = s

(b) t polynomials f1(x), . . . , f t(x) such that for i = 1, . . . , t, f i(0) = F (i)

(c) 2t polynomials g1(x), . . . , g2t(x), such that for j = 1, . . . , 2t, gj(0) = G(j).

2. Using f0(x), f1(x), . . . , f t(x), D constructs additional 3t + 1 degree-t polynomials f t+1(x), . . . , fn(x), such that for
i = 0, . . . , n the points f0(i), f1(i), . . . , fn(i) lie on a unique t-degree polynomial. This also ensures that f i(0) = F (i).

3. Using f0(x), g1(x), . . . , g2t(x), D constructs additional 2t+1 degree-t polynomials g2t+1(x), . . . , gn(x), such that for
i = 0, . . . , n the points f0(i), g1(i), . . . , gn(i) lie on a unique 2t-degree polynomial. This ensures that for i = 1, . . . , n,
gi(0) = G(i).
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We call the polynomials f0(x), . . . , fn(x), g1(x), . . . , gn(x) as base polynomials. Now D delivers ith point
on the base polynomials to Pi. Upon receiving these points, Pi checks whether f0(i), f1(i), . . . , fn(i) lie
on a unique t-degree polynomial and f0(i), g1(i), . . . , gn(i) lie on a unique 2t-degree polynomial. Now if
the parties in P can agree on a set of at least 3t + 1 parties, say CORE, such that every honest party
in CORE has checked the above conditions and it is ensured that honest parties in CORE hold correct
points on degree-t polynomials f0(x), . . . , fn(x), g1(x), . . . , gn(x), then every party in P can conclude
that f0(0), f1(0), . . . , fn(0) defines a t degree polynomial, say F (x) and f0(0), g1(0), . . . , gn(0) defines
a 2t degree polynomial, say G(x) with F (0) = G(0) = f0(0). This claim follows from the following
argument: Let H be the set of honest parties in CORE. So |H| ≥ 2t+1. Assume that for every Pi ∈ H,
the points ((0, f0(i)), . . . , (n, fn(i))) define a unique t degree polynomial, say ri(x). This implies that
the points f0(0), . . . , fn(0) also define a unique t degree polynomial, say F (x) as every honest Pi ∈ H
holds correct points on degree-t polynomials f0(x), . . . , fn(x) and F (x) can be expressed as a linear
combination of ri(x)’s (corresponding to parties in H). Moreover F (0) is same as f0(0). Similarly,
assume that for every Pi ∈ H, the points ((0, f0(i)), (1, g1(i)), . . . , (n, gn(i))) define a unique 2t degree
polynomial, say qi(x). Then the points f0(0), g1(0), . . . , gn(0) also define a unique 2t degree polynomial,
say G(x) as every Pi ∈ H holds correct points on degree-t polynomials f0(x), g1(x), . . . , gn(x) and G(x)
can be expressed as a linear combination of qi(x)’s. Moreover G(0) = f0(0) = F (0). So F (x) and G(x)
will have common constant term.

Assuming that the honest parties in P have agreed upon such a CORE, our protocol achieves (t, 2t)-
sharing in the following way: Since CORE ≥ 3t + 1, from the properties of protocol d-Rec-Private, both
f i(0) = F (i) and gi(0) = G(i) can be Pi-Private-Reconstructed for i = 1, . . . , n. Once this is done, every
Pi can output f i(0) and gi(0) as the shares of D’s committed secret and this will complete the (t, 2t)-
sharing. Now the question that remains to answer is: how do the parties in P decide whether there exists
a CORE set of size 3t + 1 such that the parties in it hold proper shares of degree-t base polynomials?

To accomplish the above, every Pi ∈ P acts as a verifier and does the following: Pi waits to receive
signals from at least 3t + 1 parties (denoted as ReceivedSet(Pi,1)), saying that they have received their
respective values on the base polynomials from D and checked the t-consistency as well as 2t-consistency
of the received values. Pi then selects a random element r(Pi,1) from extension field E and A-cast the
tuple (r(Pi,1), ReceivedSet(Pi ,1)). On listening r(Pi,1), D computes and A-casts a linear combination of
the base polynomials where the scalars (of the linear combination) are function of r(Pi,1), while every
party in ReceivedSet(Pi ,1) computes and A-casts the same linear combination of the 2n + 1 values on
the base polynomials. Now everyone can check whether the linear combination of the values A-casted by
parties in ReceivedSet(Pi ,1) lie on the linear combination of the polynomial A-casted by D (ideally this
should hold). Let us denote the set of parties whose values are consistent with D’s A-casted polynomial
as AgreeSet(Pi,1). If verifier Pi is honest and |AgreeSet(Pi,1)| ≥ 2t + 1, then it contains at least t + 1
honest parties and with very high probability they hold correct points on degree-t base polynomials.
This is because of the random r(Pi,1), which is selected by Pi. But since |ReceivedSet(Pi ,1)| = 3t + 1,
|AgreeSet(Pi,1)| may contain only 2t + 1 parties even for an honest D, as t potentially corrupted parties
from ReceivedSet(Pi,1) may not purposefully take part in the verification. This may bar to construct
CORE of size 3t + 1 even for an honest D.

To deal with this, every verifier Pi on receiving signals from new parties, selects new random number
from E and A-cast the number along with updated set ReceivedSet(Pi ,∗). Thus for jth receipt of signal
from a new party Pα, Pi A-cast new r(Pi,j) ∈R E and ReceivedSet(Pi ,j) where ReceivedSet(Pi,j) =
ReceivedSet(Pi ,j−1) ∪ {Pα}. Thus every verifier Pi will A-cast a tuple ”(random number, index set)”
at most t + 1 times. For every such A-cast, D and the parties in P do the same computation and
communication as described earlier for (r(Pi,1), ReceivedSet(Pi ,1)). Now consider an honest verifier Pi

and its two A-casts (r(Pi,α), ReceivedSet(Pi ,α)) and (r(Pi,β), ReceivedSet(Pi ,β)) and corresponding Agree
Sets AgreeSet(Pi,α) and AgreeSet(Pi,β). We argue that if both AgreeSet(Pi,α) and AgreeSet(Pi,β) are of
size at least 3t+1 and are not totally same, then with very high probability the values held by the honest
parties in both the sets define the same set of degree-t base polynomials. In other words, honest parties
in AgreeSet(Pi,α)∪AgreeSet(Pi,β) hold proper values on a single set of degree-t base polynomials. This is
because by previous argument, for an honest verifier Pi, the set of honest parties in AgreeSet(Pi,α) hold
correct points on degree-t polynomials. The same holds for AgreeSet(Pi,β) as well. Now since both the
sets are of size 3t + 1, there are at least 2t + 1 parties common between them out of which at least
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Protocol (t,2t)-Share-Single(D,P, s)
D’s Distribution: Code for D:

1. Select random polynomials G(x) and F (x) over F of degree 2t and t respectively, with G(0) = F (0) = s.

2. Compute F = (f0(x), f1(x), . . . , fn(x), g1(x), . . . , gn(x)) = Generate(F (x),G(x)). We call the polynomials in
F as base polynomials.

3. Select (t + 1)n degree-t random distinct blinding polynomials over F, denoted by p(i,1)(x), . . . , p(i,t+1)(x) for
i = 1, . . . , n.

4. For i = 1, . . . , n, deliver the following to party Pi:

(a) ∆i = {f0(0), f1(i), . . . , fn(i), g1(i), . . . , gn(i)} and (b) p(j,1)(i), . . . , p(j,t+1)(i) for j = 1, . . . , n.

Verification of D’s Distribution: Code for Pi:

i. Code for Pi as a Party:

1. Wait to receive ∆i and p(j,1)(i), . . . , p(j,t+1)(i) for j = 1, . . . , n from D.

2. After receiving, check whether (a) ((0, f0(i)), (1, f1(i)), . . . , (n, fn(i))) defines a unique t degree polyno-
mial and (b) ((0, f0(i)), (1, g1(i)), . . . , (n, gn(i))) defines a unique 2t degree polynomial. If yes then send
a Received-From-D signal to every other party Pj .

ii. Code for Pi as a Verifier:

1. Wait to obtain Received-From-D signal from 3t + 1 parties. Put the identities of the 3t + 1 parties in a set
ReceivedSet(Pi,1). Select a random r(Pi,1) ∈R E and A-cast (r(Pi,1), ReceivedSet(Pi,1)).

2. For jth (j > 1) receipt of Received-From-D signal from a new party Pα 6∈ ReceivedSet(Pi,j−1),
construct ReceivedSet(Pi,j) = ReceivedSet(Pi,j−1) ∪ {Pα}, select a random r(Pi,j) ∈R E and A-cast
(r(Pi,j), ReceivedSet(Pi,j)).

iii. Code for Pi as a Party:

1. If (r(Pα,β), ReceivedSet(Pα,β)) is obtained from A-cast of some verifier Pα ∈ P , then do the following:

(a) Check if Pi ∈ ReceivedSet(Pα,β). If yes, then A-cast v
(Pα,β)
i = LinCombValue({p(α,β)(i) ∪ ∆i}, R), where

R = (1, r(Pα,β),
“

r(Pα,β)
”2

, . . . ,
“

r(Pα,β)
”2n+1

).

(b) If Pi is the dealer D, then A-cast polynomial F (Pα,β)(x) = LinCombPoly({p(α,β)(x) ∪ F}, R), where

R = (1, r(Pα,β),
“

r(Pα,β)
”2

, . . . ,
“

r(Pα,β)
”2n+1

).

CORE Construction & Agreement on CORE: Code for Pi:

1. Say that party Pj agrees with D with respect to (r(Pα,β), ReceivedSet(Pα,β)) if the following holds:

(a) F (Pα,β)(x) is t degree polynomial, (b) Pj ∈ ReceivedSet(Pα,β) and (c) v
(Pα,β)
j = F (Pα,β)(j)

where v
(Pα,β)
j , F (Pα,β)(x) and (r(Pα,β), ReceivedSet(Pα,β)) are obtained from the A-casts of Pj , D and Pα

respectively.

2. With respect to (r(Pα,β), ReceivedSet(Pα,β)), when there are 3t + 1 Pj ’s who agree with D, add all of them in
a set AgreeSet(Pα,β).

3. Add a verifier Pα to a set V alidV erifier if at least one AgreeSet(Pα,β) has been generated.

4. If Pi is the dealer D, then check whether |V alidV erifier| ≥ t +1 and in case of ’yes’ perform the following
computation:

(a) For every Pα ∈ V alidV erifier, compute AgreeSetPα = ∪βAgreeSet(Pα,β).

(b) Compute CORE = {Pi | Pi belongs to AgreeSetPα for at least t+1 P ′
αs in V alidV erifier}.

(c) If |CORE| ≥ 3t + 1, then A-cast CORE. Else delete AgreeSetPα’s, CORE and wait for more updates.

5. Wait to listen CORE from the A-cast of D. Upon listening, locally perform the same steps as specified for
D in previous step for obtaining CORE. If the computed CORE is a superset of the one received from the
A-cast of D, then agree on the CORE as received from D and proceed to the next step.

For j = 1, . . . , n, Pj-Private-Reconstruction of f j(0) and gj(0): Code for Pi:

1. If Pi ∈ CORE, participate in d-Rec-Private(CORE, t, f j(0), Pj) and d-Rec-Private(CORE, t, gj(0), Pj) for
Pj-Private-Reconstruction of f j(0) and gj(0), respectively for j = 1, . . . , n.

2. As a receiver participate in d-Rec-Private(CORE, t, f i(0), Pi) and d-Rec-Private(CORE, t, gi(0), Pi) for Pi-
Private-Reconstruction of f i(0) and gi(0).

3. Output F (i) = f i(0) and G(i) = gi(0) as the ith shares of secret s and terminate. s is now t-shared as well
as 2t-shared using polynomials F (x) and G(x), respectively
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t + 1 are honest. As all the polynomials are of degree t, it implies that the set of honest parties in
AgreeSet(Pi,α) ∪ AgreeSet(Pi,β) hold correct points on the same degree-t polynomials. Similarly, corre-
sponding to any two distinct honest verifiers Pi and Pj , if |AgreeSet(Pi,α)| ≥ 3t+1 and |AgreeSet(Pj ,β)| ≥
3t + 1, then with very high probability, the honest parties in AgreeSet(Pi,α) and AgreeSet(Pj ,β) hold cor-
rect values on the same set of degree-t base polynomials. Now let AgreeSetPi = ∪αAgreeSet(Pi,α). Then
CORE consists of 3t + 1 parties, where each party from CORE is a part of at least t + 1 AgreeSetPi ’s.
Among these t + 1 AgreeSetPi ’s, at least one is corresponding to some honest verifier Pi. This ensures
that the values held by the honest parties in CORE lie on degree-t base polynomials.

One last point regarding secrecy of the protocol: every time when D A-casts a linear combination of
base polynomials with respect to the A-cast of the verifiers, the secrecy of the base polynomials may be
breached. So to keep them secure, D chooses (t+1) blinding polynomials corresponding to each verifier Pi

and uses one of them without repetition, along with the base polynomials for taking linear combination,
for each A-cast of verifier Pi.

The formal description of the protocol incorporates all the above ideas. In the protocol, we use the
following notation: given ρ polynomials, Q = {q1(x), . . . , qρ(x)} and a vector R = (ζ1, . . . , ζρ) of length
ρ, we define q(x) as the polynomial obtained by the linear combination of the polynomials in Q with
respect to the vector R, where q(x) =

∑ρ
i=1 ζi.qi(x). We capture this by: q(x) = LinCombPoly(Q,R).

Similarly, we define q = LinCombValue(Q,R), where Q = {q1, . . . , qρ} is a set of ρ values and q is their
linear combination with respect to R.

Lemma 2 For every honest verifier Pα, the values held by the honest parties in any AgreeSet(Pα,β) ⊆
ReceivedSet(Pα ,β) indeed define degree-t base polynomials with very high probability.

Proof: The lemma is trivially true when D is honest. Hence we consider the case when D is corrupted.
First of all, since Pα is honest, he A-casts r(Pα,β) only after listening Received-From-D signal from all
the parties in ReceivedSet(Pα ,β). Thus D has no knowledge of r(Pα,β) when he distributes the values of
polynomials to the (honest) parties in ReceivedSet(Pα ,β). Let q0(x), q1(x), . . . , q2n+1(x) denote the the
blinding polynomial (corresponding to r(Pα,β)) and the 2n+1 base polynomials, defined by the values held
by the honest parties in AgreeSet(Pα,β). We will show that with very high probability, all these (2n + 2)
polynomials will have degree t. On the contrary, let us assume that at least one of the polynomials has
degree more than t.

Then we show that the polynomial q(x) =
∑2n+1

i=0 qi(x)
(

r(Pα,β)
)i

will be of degree t with negligible
probability. Let m be such that qm(x) has maximal degree among q0(x), . . . , q2n+1(x), and let tm be the
degree of qm(x). Then according to the condition, tm > t. Note that tm < |H|, where H is the set of
honest parties in AgreeSet(Pα,β). This is because given |H| values, the maximum degree polynomial that
we can define using them is |H|−1. Now each polynomial qi(x) can be written as qi(x) = ci

tmxtm + q′i(x)
where q′i(x) has degree lower than tm. By assumption cm

tm 6= 0. It implies that the vector (c0
tm , . . . , c2n+1

tm
)

is not a complete 0 vector. Hence ctm = LinCombValue({c0
tm

, . . . , c2n+1
tm

}, R) will be zero with probability
2n+1
|E| ≈ 2−Ω(κ) (which is negligible) where R = (1, r(Pα,β),

(

r(Pα,β)
)2

, . . . ,
(

r(Pα,β)
)2n+1

). This is because

the vector (c0
tm , . . . , c2n+1

tm
) may be considered as the set of coefficients of a 2n + 1 degree polynomial, say

µ(x), and hence the value ctm is the value of µ(x) evaluated at r(Pα,β). Now ctm will be zero if r(Pα,β)

happens to be one of the 2n + 1 roots of µ(x) (since degree of µ(x) is at most 2n + 1).
Now since r(Pα,β) is chosen randomly from E by Pα, independent of the polynomials q0(x), . . . , q2n+1(x),

the probability that it is a root of µ(x) is 2n+1
|E| ≈ 2−Ω(κ). So with very high probability ctm which is the

tthm coefficient of q(x) is non-zero. This implies q(x) will be of degree at least tm > t.

Note that the values v
(Pα,β)
i A-casted by the parties in H define the polynomial q(x) which is of degree

more than t. Moreover, the same values also lie on the t degree polynomial F (Pα,β)(x), A-casted by D.
Thus the difference polynomial dp(x) = q(x) − F (Pα,β)(x) will have zero at all i where Pi ∈ H. Since
dp(x) has |H| roots, it must have degree at least |H|. But since q(x) has degree tm, dp(x) will have degree
at most tm which is less than |H|. These two argument together implies that dp(x) is zero-polynomial.
Thus q(x) must be same as F (Pα,β)(x) which is of degree t. Hence with very high probability all the
qi(x)’s are of degree t. 2

Lemma 3 For every honest verifier Pα, the values held by honest parties in any two sets AgreeSet(Pα ,β)

and AgreeSet(Pα ,γ) with β 6= γ, define the same degree-t base polynomials with very high probability.
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Proof: By Lemma 2, the values held by the honest parties in AgreeSet(Pα,β) and AgreeSet(Pα ,γ)

define degree-t base polynomials f0(x), . . . , fn(x), g1(x), . . . , gn(x) and f̂0(x), . . . , f̂n(x), ĝ1(x), . . . , ĝn(x)
respectively with high probability. We claim that these two sets of polynomials are identical. Since
AgreeSet(Pα ,β) and AgreeSet(Pα ,γ) are of size at least 3t + 1, there are at least 2t + 1 common parties
between them out of which at least t + 1 are honest. Since all the polynomials are of degree t, any t + 1
points completely and uniquely define them and hence these two set of polynomials can not be different
while having t + 1 common values. 2

Lemma 4 For any two honest verifiers Pα and Pδ, the base polynomials defined by the values held by
honest parties in any two sets AgreeSet(Pα,β) and AgreeSet(Pδ ,γ) are same with very high probability.

Proof: Follows from the proof of Lemma 3.

Theorem 1 The protocol (t,2t)-Share-Single achieves the following properties:

–Termination: (a) If D is honest, then every honest party will eventually terminate (t,2t)-Share-Single.
(b) If D is corrupted and some honest party has terminated (t,2t)-Share-Single, then all the honest parties
will eventually terminate (t,2t)-Share-Single.

–Correctness: (a) If D is honest then each honest party will eventually hold proper (t, 2t) share of s.
(b) If D is corrupted and some honest party has terminated (t,2t)-Share-Single, then there exists a unique
value s ∈ F which is (t, 2t)-shared among the parties in P except with an error probability of 2−Ω(κ).

–Secrecy: If D is honest, then At obtains no information about the secret s

Proof: Termination: When D is honest, then eventually for every honest verifiers Pα, the set
AgreeSetPα will contain all the honest parties in P. Since there are at least 3t + 1 honest verifiers,
CORE will eventually contain all the honest parties in P. Thus when D is honest, every honest party
will eventually terminate (t,2t)-Share-Single. This proves part (a).

If some honest party Pi has terminated (t,2t)-Share-Single, then he must have checked the validity of
CORE obtained from the A-cast of D. Moreover, Pi would have privately reconstructed F (i) and G(i).
In the same way, every other honest party Pj will check the validity of CORE, privately reconstruct
F (j), G(j) and eventually terminate (t,2t)-Share-Single. This proves part (b).

Correctness: If D is honest then his secret s will be correctly (t, 2t)-shared among the parties. This
is because CORE contains at least 3t + 1 parties out of which t can be corrupted. Moreover, every
honest party in CORE holds proper values of the polynomials f0(x), . . . , fn(x), g1(x), . . . , gn(x). So
by the property of d-Rec-Private, Pi-Private-Reconstruction of both f i(0) and gi(0) is possible for all
i = 1, . . . , n. This implies every Pi ∈ P has F (i) = f i(0) and G(i) = gi(0) which are the shares of s. So
s is (t, 2t)-shared among the parties in P using F (x) and G(x).

We now prove the correctness when D is corrupted. By the computation of CORE, every party
in CORE is guaranteed to present in AgreeSet of at least one honest party. By Lemma 3, with high
probability, the values held by all the honest parties in AgreeSetPα define t-degree base polynomials,
say f0(x), . . . , fn(x), g1(x), . . . , gn(x). Moreover, by Lemma 4, the values held by the honest parties
in the union of AgreeSetPα ’s for all honest Pα also define the same set of t-degree base polynomials
with very high probability. This implies that the values held by all the honest parties in CORE, define
f0(x), . . . , fn(x), g1(x), . . . , gn(x). Now as in the case of honest D, every Pi ∈ P will hold f i(0) = F (i)
and gi(0) = G(i) after Pi-Private-Reconstruction of f i(0) and gi(0). So s = F (0) = G(0) is (t, 2t)-shared
among the parties in P using F (x) and G(x) with very high probability.

Secrecy: We have to consider the case when D is honest. Without loss of generality, let At controls
P1, . . . , Pt. So At will know f1(x), f t(x), g1(x), . . . , gt(x) and hence F (1), . . . , F (t) and G(1), . . . , G(t).
Moreover, At will also know t distinct points on f0(x), f t+1(x), . . . , fn(x), gt+1(x), . . . , gn(x). Since these
polynomials are of degree-t, At lacks one point on each of them to uniquely interpolate them. Notice that
each time D A-Casts a linear combination of f0(x), . . . , fn(x), g1(x), . . . , gn(x), he uses a random degree-t
blinding polynomial. Thus it holds that At lacks one point on f0(x), f t+1(x), . . . , fn(x), gt+1(x), . . . , gn(x)
to interpolate them and hence s = F (0) = G(0) will remain information theoretically secure. 2

We now present protocol (t,2t)-Share-Multiple that allows a dealer D ∈ P to concurrently generate
(t, 2t)-sharing of ℓ secrets from F, denoted as S = (s1, . . . , sℓ). Due to its similarity with (t,2t)-Share-
Single, we present the protocol in APPENDIX A. We now have the following theorem:
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Theorem 2 Protocol (t,2t)-Share-Multiple satisfies the same properties as given in Theorem 1. The
protocol privately communicates O(ℓn2 log |F|) bits and A-cast of O(n3κ) bits where κ = log |E|.

A Brief Discussion on Existing Protocols for Generating (t, 2t)-sharing: In [18], Damgard et.
al. have proposed a protocol that generates (t, 2t)-sharing of ℓ secrets concurrently in synchronous
settings with n = 3t+1 parties, conditioned on the event that all the parties correctly follow the protocol
steps; i.e., behave honestly. If at least one party behaves in a corrupted manner, then the protocol of
[18] fails to generate the (t, 2t)-sharing and terminates with a pair of parties in which at least one is
corrupted. By allowing such susceptibility to the bad behavior of the corrupted parties, their protocol
involves a communication complexity of O(ℓn log |F| + poly(n, κ)) bits, where κ is the error probability
of the protocol. The protocol of [17] cannot be directly adapted to asynchronous settings.

Later in [4], the authors have generated (t, 2t)-sharing of a single secret in asynchronous settings from
3t + 1 t-sharing of random values in asynchronous settings. Briefly, the authors have done the following:
Let [r0]t, . . . , [r

3t]t be the t-sharing of 3t + 1 random values. Let p(x) be the t-degree polynomial defined
by the t + 1 coefficients r0, . . . , rt. Let q(x) be the 2t-degree polynomial defined by the 2t + 1 coefficients
r0, rt+1 . . . , r3t. It is to be noted that both p(x) and q(x) have common constant term (which is r0). Now
the parties jointly perform some computation such that every party Pi receives p(i) and q(i) at the end.
This ensures that r0 is (t, 2t)-shared among the parties. To generate t-sharing of 3t + 1 random values,
the authors in [4] have used a protocol, which involves a private communication of O(n3 log |F|) bits and
A-Cast of O(n2 log(|F|)) bits. Thus the protocol of [4] requires a private communication of O(n3 log |F|)
bits and A-Cast of O(n2 log(|F|)) bits to generate (t, 2t) sharing of a single secret. Moreover, the protocol
of [4] does not involve any error probability.

From the above discussion, we conclude that our protocol offers the most efficient way of generating
(t, 2t) sharing of ℓ secrets concurrently in asynchronous settings.

6 Preparation Phase

The goal of the preparation phase is to generate correct (t, 2t)-sharing of cM + cR secret random values.
We now present a protocol called PreparationPhase which achieves the same.

Protocol PreparationPhase(P)

Secret Sharing: Code for Pi:

1. Select L = cM +cR

n−2t
random secret elements (s(i,1), . . . , s(i,L)) from F. As a dealer, invoke (t,2t)-Share-

Multiple(Pi,P , Si) to generate (t, 2t)-sharing of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in (t,2t)-Share-Multiple(Pj,P , Sj).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon terminating (t,2t)-Share-Multiple(Pj,P , Sj), include Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of Random (t, 2t)-sharing: Code for Pi:

1. Wait until ACS completes with output C containing n − t parties. Obtain the ith shares ϕ
(j,1)
i , . . . , ϕ

(j,L)
i

corresponding to t-sharing of Sj and ith shares φ
(j,1)
i , . . . , φ

(j,L)
i corresponding to 2t-sharing of Sj for every

Pj ∈ C. Without loss of generality, let C = {P1, . . . , Pn−t}.

2. Let V denotes a (n − t) × (n − 2t) publicly known Vandermonde Matrix.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) = (s(1,k), . . . , s(n−t,k))V .

(b) Locally compute ith shares corresponding to t-sharing of r(1,k), . . . , r(n−2t,k) as (ς
(1,k)
i , . . . , ς

(n−2t,k)
i ) =

(ϕ
(1,k)
i , . . . , ϕ

(n−t,k)
i )V .

(c) Locally compute ith shares corresponding to 2t-sharing of r(1,k), . . . , r(n−2t,k) as (σ
(1,k)
i , . . . , σ

(n−2t,k)
i ) =

(φ
(1,k)
i , . . . , φ

(n−t,k)
i )V and terminate.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denotes the cM + cR random secrets which are (t, 2t)-shared.

PreparationPhase asks individual party to act as a dealer and to (t, 2t)-share cM+cR

n−2t
random secrets.

Then an instance of ACS protocol is executed to agree on a core set of n − t parties who have correctly
(t, 2t)-shared cM+cR

n−2t
random secrets. Now out of these n − t parties, at least n − 2t are honest. Hence

the random secrets that are (t, 2t)-shared by these n − 2t honest parties are truly random and unknown
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to At. So if we consider the (t, 2t)-sharing done by the honest parties (each of them has done cM+cR

n−2t

(t, 2t)-sharing) in core set, then we will get cM+cR

n−2t
∗(n−2t) = cM +cR random (t, 2t)-sharing. For this, we

use Vandermonde Matrix [17] and it’s ability to extract randomness which has been exploited in [17, 4].

Vandermonde Matrix and Randomness Extraction [17]: Let β1, . . . , βc be distinct elements and
publicly known elements from F. We denote an (r×c) Vandermonde matrix by V (r,c), where for 1 ≤ i ≤ c,
the ith column of V (r,c) is (β0

i , . . . , βr−1
i )T . The idea behind extracting randomness using V (r,c) is as

follows: without loss of generality, assume that r > c. Moreover, let (x1, . . . , xr) be such that (a) any c
elements of it are chosen uniformly at random from F and are unknown to adversary At, (b) the remaining
r − c elements are chosen with an arbitrary distribution from F, independent of the c elements, and are
also known to At . Now if we compute (y1, . . . , yc) = (x1, . . . , xr)V , then (y1, . . . , yc) is an uniformly
random vector of length c unknown to At, extracted from (x1, . . . , xr) [17, 4].

Lemma 5 Each honest party will eventually terminate PreparationPhase. The protocol correctly gener-
ates (t, 2t)-sharing of cM + cR secret random values, except with error probability of 2−Ω(κ) by privately
communicating O((cM + cR)n2 log |F|) bits, A-Casting O(n4κ) bits and executing one invocation to ACS.
Moreover, At will have no information about the random values.

7 Input Phase

In protocol InputPhase, each Pi ∈ P acts as a dealer to t-share his input Xi containing ci elements from
F. So total number of inputs cI =

∑n
i=1 ci. To achieve this, party Pi (t, 2t)-share his input Xi by acting

as a dealer and executing (t,2t)-Share-Multiple. The asynchrony of the network does not allow the parties
to wait for more than n − t = 3t + 1 parties to complete their instance of (t,2t)-Share-Multiple. In order
to agree on a core set of parties whose instance of (t,2t)-Share-Multiple has terminated and whose inputs
will be taken into consideration for computation (of the circuit), one instance of ACS is invoked. At the
end, everyone ignores the 2t-sharing and considers only t-sharing from the (t, 2t)-sharing of all the inputs
shared by parties in core set.

Protocol InputPhase(P)

Secret Sharing: Code for Pi

1. Having input Xi, invoke (t,2t)-Share-Multiple(Pi,P , Xi), as a dealer to generate (t, 2t)-sharing of Xi.

2. For every j = 1, . . . , n, participate in (t,2t)-Share-Multiple(Pj,P , Xj).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon terminating (t,2t)-Share-Multiple(Pj,P , Xj) with dealer Pj , add Pj in Ci.

2. Participate in ACS with the accumulative set Ci as input.

Output Generation: Code for Pi:

1. Waits until ACS completes with output C containing n − t parties. Ignore the local shares corresponding to inputs
of the parties not in C. Ignore the shares corresponding to 2t-sharing of the inputs of the parties in C, output only
the the shares corresponding to t-sharing of the inputs of the parties in C and terminate.

Lemma 6 Each honest party will eventually terminate InputPhase. Moreover, each honest party will
correctly output t-sharing of the inputs of the parties in core set C with high probability. The protocol
privately communicates O(cIn

2 log |F|) bits, A-Casts O(n4κ) bits and requires one invocation to ACS.
Furthermore, At will have no information the inputs of the honest parties in C.

8 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated gate by gate, where all
inputs and intermediate values are t-shared among the parties. As soon as a party holds his shares of
the input values of a gate, he joins the computation of the gate.

Due to the linearity of the secret-sharing scheme, linear gates can be computed locally simply by
applying the linear function to the shares, i.e. for any linear function c = f(a, b), the sharing [c]t is
computed by letting every party Pi to compute ci = f(ai, bi), where ai, bi and ci are the ith shares of a, b
and c respectively. With every random gate, one random (t, 2t)-sharing (from the preparation phase) is
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associated, whose t-sharing is directly used as outcome of the random gate. With every multiplication
gate, one random (t, 2t)-sharing (from the preparation phase) is associated, which is then used to compute
t-sharing of the product, following the technique of Damgard et. al. [17] in synchronous settings. Given
a (t, 2t)-sharing of a secret random value r (i.e., [r](t,2t)), the technique of Damgard et. al. [17] allows to
evaluate a multiplication gate at the cost of one reconstruction. Let z = xy, where x, y are the inputs of
the multiplication gate which are t-shared, i.e. [x]t, [y]t. Now for computing [z]t, the t-sharing of z, the
parties compute [C]2t = [x]t.[y]t +[r]2t. Then C is Pi-Private-Reconstructed for every Pi ∈ P. Now every
party defines [C]t as the default sharing of C, e.g., the constant degree-0 polynomial C and computes
[z]t = [C]t − [r]t. The security follows from the fact that r is random and independent of x and y [17, 4].

Protocol ComputationPhase(P)

For every gate in the circuit: Code for Pi

Wait until the ith share of each of the inputs of the gate is available. Now depending on the type of the gate, proceed as
follows:

1. Input Gate: [s]t = IGate([s]t): There is nothing to be done here.

2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute zi = LGate(xi, yi, . . .), the ith share of z = LGate(x, y, . . .),
where xi, yi, . . . denotes ith share of x, y, . . ..

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, [r](t,2t)):

(a) Let [r](t,2t) be the random (t, 2t)-sharing associated with the multiplication gate. Also let (ϕ1, . . . , ϕn) and
(φ1, . . . , φn) denote the t-sharing and 2t-sharing of r, respectively.

(b) Compute Ci = xi.yi − φi the ith share of C which is now 2t-shared.

(c) Participate in d-Rec-Private(P , 2t, C, Pj) for Pj-Private-Reconstruction of C for all j = 1, . . . , n.

(d) Participate in d-Rec-Private(P , 2t, C, Pi) as a receiver to reconstruct C. Compute zi = C − ϕi, the ith share
of z.

4. Random Gate: [R]t = RGate([r](t,2t)): Let [r](t,2t) be the random (t, 2t)-sharing associated with the random gate.
Also let (ϕ1, . . . , ϕn) denote the t-sharing of r. Assign Ri = ϕi as the ith share of R(= r).

5. Output Gate: x = OGate([x]t): Participate in d-Rec-Private(P , t, x, Pi) for every Pj ∈ P . Participate in d-Rec-
Private(P , t, x, Pi) as a receiver to reconstruct x. Output x.

Lemma 7 Each honest party will eventually terminate ComputationPhase. Given (t, 2t)-sharing of cM +
cR secret random values, the protocol computes the outputs of the circuit secretly by privately communi-
cating O(n2(cM + cO) log |F|) bits. The outputs of the circuit will be correct except probability 2−Ω(κ)

9 The AMPC Protocol

Now our new AMPC protocol AMPC for evaluating function f is: (1). Invoke PreparationPhase (2).
Invoke InputPhase (3). Invoke ComputationPhase.

Theorem 3 For every coalition of up to t < n/4 bad players, the protocol AMPC securely computes the
circuit representing function f and terminates always. AMPC privately communicates O((cI + cM + cR +
cO)n2 log |F|) bits, A-Casts O(n4κ) bits and requires 2 invocations to ACS. The protocol correctly computes
the circuit except with error probability of 2−Ω(κ).

10 Conclusion

In this paper, we have designed an efficient information theoretic secure AMPC protocol with n = 4t + 1
that satisfies Termination and Secrecy perfectly (without any error) and achieves Correctness except
with negligible error probability of 2−Ω(κ), where κ is the error parameter. Our protocol attains quadratic
communication (O(n2 log |F|) bits) per multiplication. Our AMPC protocol provides the best communi-
cation complexity among all the known AMPC protocols providing information theoretic security. The
key factor behind the communication efficiency of our AMPC protocol is a new and efficient method of
generating (t, 2t)-sharing of multiple secrets concurrently in asynchronous settings.

It would be interesting to see whether it is possible to further reduce the communication complexity
of the AMPC protocol with n = 4t+1 by using techniques such as player elimination [22]. Moreover, one
can try to design an AMPC protocol with n = 4t + 1 that is perfect (errorless) in all respects, namely
termination, secrecy and correctness while maintaining quadratic communication.

11
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Protocol (t,2t)-Share-Multiple(D,P, S)

D’s Distribution: Code for D:

1. For l = 1, . . . , ℓ, corresponding to every sl, select random polynomials F l(x) and Gl(x) over F of degree t and
2t respectively, such that Gl(0) = F l(0) = sl.

2. For l = 1, . . . , ℓ, compute (f (l,0)(x), f (l,1)(x), . . . , f (l,n)(x), g(l,1)(x), . . . , g(l,n)(x)) = Generate(Gl(x), F l(x)).
Denote F = ∪l{f

(l,0)(x), f (l,1)(x), . . . , f (l,n)(x), g(l,1)(x), . . . , g(l,n)(x)}. We call the polynomials in F as base

polynomials.

3. Select (t+1)n degree-t random blinding polynomials over F, denoted by p(i,1)(x), . . . , p(i,t+1)(x) for i = 1, . . . , n.

4. For i = 1, . . . , n, deliver the following to party Pi:

(a) the ith point on the polynomials in F , namely ∆i =
∪l{f

(l,0)(i), f (l,1)(i), . . . , f (l,n)(i), g(l,1)(i), . . . , g(l,n)(i))} and

(b) the ith point on the polynomials p(j,1)(x), . . . , p(j,t+1)(x), namely p(j,1)(i), . . . , p(j,t+1)(i) for j = 1, . . . , n.

Verification of D’s Distribution: Code for Pi:

i. Code for Pi as a Party:

1. Wait to receive ∆i and p(j,1)(i), . . . , p(j,t+1)(i) for j = 1, . . . , n from D.

2. For every l = 1, . . . , ℓ, check whether (a) ((0, f (l,0)(i)), (1, f (l,1)(i)), . . . , (n, f (l,n)(i))) defines a unique t degree
polynomial and (b) ((0, f (l,0)(i)), (1, g(l,1)(i)), . . . , (n, g(l,n)(i))) defines a unique 2t degree polynomial. If yes
then send a Received-From-D signal to every other party Pj .

ii. Code for Pi as a Verifier:

1. Wait to obtain Received-From-D signal from 3t + 1 parties. Put the identities of the 3t + 1 parties in a set
ReceivedSet(Pi,1). Select a random r(Pi,1) ∈R E and A-cast (r(Pi,1), ReceivedSet(Pi,1)).

2. For jth (j > 1) receipt of Received-From-D signal from new party Pα 6∈ ReceivedSet(Pi,j−1), con-
struct ReceivedSet(Pi,j) = ReceivedSet(Pi,j−1) ∪ {Pα}, select a random r(Pi,j) ∈R E and A-cast
(r(Pi,j), ReceivedSet(Pi,j)).

iii. Code for Pi as a Party:

1. If (r(Pα,β), ReceivedSet(Pα,β)) is obtained from A-cast of some verifier Pα ∈ P , then do the following:

(a) Check if Pi ∈ ReceivedSet(Pα,β). If yes, then A-cast v
(Pα,β)
i = LinCombValue({p(α,β)(i) ∪ ∆i}, R), where

R = (1, r(Pα,β),
“

r(Pα,β)
”2

, . . . ,
“

r(Pα,β)
”2nℓ+ℓ

).

(b) If Pi is the dealer D, then A-cast polynomial F (α,β)(x) = LinCombPoly({p(α,β)(x) ∪ F}, R), where

R = (1, r(Pα,β),
“

r(Pα,β)
”2

, . . . ,
“

r(Pα,β)
”2nℓ+ℓ

).

CORE Construction & Agreement on CORE: Code for Pi: Same as in (t,2t)-Share-Single.

For j = 1, . . . , n, Pj-Private-Reconstruction of f (1,j)(0), . . . , f (ℓ,j)(0) and g(1,j)(0), . . . , g(ℓ,j)(0): Code for Pi:

1. If Pi ∈ CORE, then for l = 1, . . . , ℓ, participate in d-Rec-Private(CORE, t, f (l,j)(0), Pj) for Pj-Private-
Reconstruction of f (1,j)(0), . . . , f (ℓ,j)(0) for j = 1, . . . , n.

2. If Pi ∈ CORE, then for l = 1, . . . , ℓ, participate in d-Rec-Private(CORE, t, g(l,j)(0), Pj) for Pj-Private-
Reconstruction of g(1,j)(0), . . . , g(ℓ,j)(0) for j = 1, . . . , n.

3. As a receiver participate in d-Rec-Private(CORE, t, f (l,i)(0), Pi) for l = 1, . . . , ℓ for Pi-Private-Reconstruction
of f (1,i)(0), . . . , f (ℓ,i)(0).

4. As a receiver participate in d-Rec-Private(CORE, t, g(l,i)(x), Pi) for l = 1, . . . , ℓ for Pi-Private-Reconstruction
of g(1,i)(0), . . . , g(ℓ,i)(0).

5. For l = 1, . . . , ℓ, output F l(i) = f (l,i)(0) and Gl(i) = g(l,i)(0) as the ith share of secret sl and terminate. For
l = 1, . . . , ℓ, every sl is now t-shared as well as 2t shared using polynomials F l(x) and Gl(x), respectively.

Table 1: Generating (t, 2t)-sharing of secret S = {s1, . . . , sℓ} with n = 4t + 1
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