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Abstract

Secure multiparty computation (MPC) allows a set of n parties to securely compute an agreed
function, even if up to t parties are under the control of an adversary. In this paper, we propose a new
Asynchronous secure multiparty computation (AMPC) protocol that provides information theoretic
security with n = 4t + 1, where t out of n parties can be under the influence of a Byzantine (active)
adversary At having unbounded computing power. Our protocol communicates O(n2 log |F|) bits per
multiplication gate and involves a negligible error probability of 2−Ω(κ), where κ is the error parameter
and F is the field over which the computation is carried out. The best known information theoretically
secure AMPC with n = 4t+1 communicates O(n3 log |F|) bits per multiplication and does not involve
any error probability in computation. Though a negligible error probability is involved, our AMPC
protocol provides the best communication complexity among all the known AMPC protocols providing
information theoretic security. Moreover, the communication complexity of our AMPC is same as the
communication complexity of the best known AMPC protocol with cryptographic assumptions.

As a tool for our AMPC protocol, we propose a new method of efficiently generating d-sharing
of multiple secrets concurrently in asynchronous setting, where t ≤ d ≤ 2t. In the literature, though
there are protocols for generating t-sharing and 2t-sharing separately, there is no generic protocol for
generating d-sharing for the range t ≤ d ≤ 2t. Comparing our protocol with the existing protocols for
generating t-sharing and 2t-sharing, we find that: (i) our protocol requires no extra cost in communi-
cation complexity in comparison to the best known method for generating t-sharing; (ii) it provides
better communication complexity than the existing methods for generating 2t-sharing.

Keywords: Multiparty Computation, Byzantine Adversary, Asynchronous Networks.

1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation (MPC) [38] allows a set
of n parties to securely compute an agreed function f , even if some of the parties are under the control
of a centralized adversary. More specifically, assume that the agreed function f can be expressed as
f : Fn → Fn and party Pi has input xi ∈ F, where F is a finite field. At the end of the computation of f ,
each honest Pi gets yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior of the corrupted
parties (correctness). Moreover, the adversary should not get any information about the input and output
of the honest parties, other than what can be inferred from the input and output of the corrupted parties
(secrecy). MPC is one of the most important and fundamental problems in secure distributed computing.
The problem has been studied extensively in different settings, depending upon whether the network is
synchronous [38, 20, 7, 13, 34, 1, 22, 19, 21, 24, 3, 17, 26, 5, 25] or asynchronous [6, 8, 37, 33, 10, 27, 4, 30],
the adversary is threshold [38, 20, 7, 13, 34, 1, 19, 21, 3, 17, 5, 22] or non-threshold [22, 16, 27, 2, 23],
the adversary behavior is static [38, 20, 7, 13, 34, 1, 22, 19] or mobile [29], the security is cryptographic
[20, 24, 25] or information theoretic [38, 7, 13, 34], whether the protocol is perfect (i.e., without any
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error) [7, 21, 5] or allows a negligible error probability [35, 34, 14, 15, 17, 3, 31] etc. In any general
MPC protocol, the function f is specified by an arithmetic circuit over F, consisting of input, linear (e.g.
addition), multiplication, random and output gates. Among all the different types of gate, the evaluation
of a multiplication gate requires the most communication complexity. So the communication complexity
of any general MPC is usually given in terms of the communication complexity per multiplication gate.

The MPC problem has been studied extensively over synchronous networks which assumes that there
is a global clock and the delay of any message in the network channels is bounded. However, though
theoretically impressive, such networks do not model adequately real life networks like Internet. So in
this paper, we study MPC in asynchronous networks, tolerating a threshold adversary, having unbounded
computing power, who can corrupt t out of the n parties in Byzantine fashion.

Asynchronous Networks: Asynchronous networks model real life networks like Internet much better
than their synchronous counterpart. Here the communication channels between the parties have arbi-
trary, yet finite delay (i.e the messages are guaranteed to reach eventually). To model this, the adversary
is given the power to schedule the delivery of messages in the network. The inherent difficulty in designing
a protocol in asynchronous network, comes from the fact that when a party does not receive an expected
message then he cannot decide whether the sender is corrupted (and did not send the message at all)
or the message is just delayed in the network. Therefore it is impossible to consider the inputs of all
uncorrupted parties. So input of up to t (potentially honest) parties may get ignored because waiting for
them could turn out to be endless. Moreover the tools used in synchronous settings, cannot be deployed
in asynchronous settings in a straight forward manner. Hence, designing asynchronous protocols requires
completely new set of primitives. For an excellent introduction to asynchronous protocols, see [11].

Asynchronous Multiparty Computation (AMPC): Unlike MPC in synchronous networks, design-
ing AMPC protocols has received very less attention due to their inherent difficulty. It is known that
AMPC under cryptographic assumptions [24, 25] is possible iff n ≥ 3t + 1. In information theoretic
settings, AMPC with zero error (i.e., perfectly secure AMPC) is possible iff n ≥ 4t + 1 [6], whereas
AMPC with negligible error probability is possible iff n ≥ 3t + 1 [8]. The communication complexities
per multiplication (denoted as ”CC in bits/ Multiplication Gate” in the table given below) of the best
known AMPC protocols are given in the following table, where IT denotes Information Theoretic secu-
rity. Furthermore, for cryptographic AMPC, κ is the security parameter, while for information theoretic
AMPC with negligible error probability, κ is the error parameter. Finally, cM denotes the number of
multiplication gates in the circuit representing the function f .

Reference Type of Security Resilience CC in bits/ Multiplication Gate

[24] Cryptographic t < n/3 (optimal) O(cMn3κ)

[25] Cryptographic t < n/3 (optimal) O(cMn2κ)

[37] IT (no error) t < n/4 (optimal) Ω(cMn5 log(|F|))
[4] IT (no error) t < n/4 (optimal) O(cMn3 log(|F|))
[8] IT (negligible error) t < n/3 (optimal) Ω(cMn11κ4)

[30] IT (negligible error) t < n/3 (optimal) O(cMn5κ)

[33] IT (negligible error) t < n/4 (non-optimal) O(cMn4κ)

Recently in [39], the authors have designed communication efficient MPC protocols over networks that
exhibit partial asynchrony (where the network is synchronous up to certain point and becomes completely
asynchronous after that). In another work, Damgaard et. al [18] have reported efficient MPC protocol
over a network that assumes the concept of synchronization point; i.e,. the network is asynchronous
before and after the synchronization point.

Our Contribution: We design an efficient information theoretic secure AMPC protocol with n =
4t + 1 satisfying : (a) Termination: Every honest party terminates the protocol except with negligible
probability of 2−Ω(κ), where κ is the error parameter, (b) Correctness: Every honest party receives the
correct output at the end, except with negligible error probability of 2−Ω(κ), (c) Secrecy: The adversary
gets no information about the inputs and outputs of honest parties apart from what can be computed
from the inputs and outputs of the corrupted parties. Our protocol communicates O(n2 log |F|) bits per
multiplication and involves a negligible error probability of 2−Ω(κ) in correctness and termination,
where F is the field over which the computation is carried out. Our AMPC is to be compared with
the best known AMPC with n = 4t + 1 that communicates O(n3 log |F|) bits per multiplication [4] and
satisfies all the three properties, namely termination, secrecy and correctness perfectly (i.e without
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any error probability). Moreover, the communication complexity of our AMPC protocol is same as the
communication complexity of the best known AMPC protocol with cryptographic assumptions [25].

As a tool for our AMPC protocol, we propose an efficient and generic method of generating d-
sharing of secrets in asynchronous settings, for any d in the range t ≤ d ≤ 2t. Even though there are
asynchronous protocols to generate t-sharing as well as 2t-sharing separately, there is no generic protocol
to generate d-sharing, for t ≤ d ≤ 2t, in asynchronous settings. Comparing our protocol with the existing
protocols for generating t-sharing and 2t-sharing, we find that: (i) our protocol requires no extra cost
in communication complexity in comparison to the best known method for generating t-sharing; (ii) it
provides better communication complexity than the existing methods [4] for generating 2t-sharing.

2 Preliminaries

Model: We follow the network model of [6], where there is a set of n parties denoted by P =
{P1, . . . , Pn}, who are pairwise connected by secure asynchronous channels. An adversary At with un-
bounded computing power can control at most t < n

4 parties in Byzantine fashion and can force the
corrupted parties to deviate from the protocol in any arbitrary manner. Moreover, the adversary is given
the power to schedule messages over each channel. But he will have no access to the messages sent
by honest parties. The function to be computed is specified by an arithmetic circuit over a finite field
F, consisting of input, linear (e.g. addition), multiplication, random and output gates. We denote the
number of gates of each type by cI , cL, cM , cR and cO respectively.

The Ground Field and The Extension Field: For the rest of the paper, we fix a finite field F with
|F| ≥ n over which most of our computations will be performed. We call F as the Ground Field. Any
element from F can be represented by log |F| bits. We also fix an extension field E ⊃ F to be the smallest
extension for which |E| ≥ 2κ. Each element of E can be written down using O(κ) bits. We call E as
Extension Field. Moreover, without loss of generality, we assume that n = poly(κ).

A-cast, Agreement on a Core Set (ACS)

A-Cast[12]: It is an asynchronous broadcast primitive, introduced and elegantly implemented by Bracha
[9] with n ≥ 3t + 1. A-Cast of b bits incurs a private communication of O(n2b) bits [9]. Let Π be an
asynchronous protocol initiated by a special party (called the sender), having input m (the message to
be broadcast). We say that Π is a t-resilient A-cast protocol if the following hold:

• Termination: (1) If the sender is honest and all the honest parties participate in the protocol, then each honest party

will eventually terminate the protocol. (2) Irrespective of the behavior of the sender, if any honest party terminates the

protocol then each honest party will eventually terminate the protocol.

• Correctness: If the honest parties terminate the protocol then they have a common output m∗. Furthermore, if the

sender is honest then m∗ = m.

Agreement on Core Set (ACS)[4, 8]: It is a primitive presented in [6, 8]. It is used to determine a set of
n − t parties that correctly shared their values. More concretely, every party Pi starts the ACS protocol
with an accumulative set of parties who from Pi’s view point correctly shared their values. The output
of the protocol is a set of at least n − t parties, who correctly shared their values. The communication
cost of ACS protocol is Ω(n4 log n) bits [4].

Definition 1 (d-Sharing [3]) : A value s ∈ F is said to be d-shared among a set of parties P ⊆ P
with |P| ≥ d + 1 if every honest Pi ∈ P is holding a share si of s, such that there exists a degree-d
polynomial f(x) over F with f(0) = s and f(i) = si for every honest Pi ∈ P. The vector of shares is
called a d-sharing of s and is denoted by [s]d.

Definition 2 ((t, 2t)-Sharing [5]:) A value s is said to be (t, 2t)-shared among the parties in P, denoted
as [s](t,2t), if s is both t-shared and 2t-shared among the parties in P.

3 AMPC Protocol Overview
Our AMPC protocol proceeds in three phases: preparation phase, input phase and computation phase.
Every honest party will eventually complete each phase with very high probability. In the preparation
phase, (t, 2t)-sharing of cM + cR random values will be generated. For this, we use our proposed efficient
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protocol for d-sharing. Each multiplication gate and random gate of the circuit will be associated with
a (t, 2t)-sharing. In the input phase the parties t-share (commit) their inputs and agree on a core set
of n − t parties who correctly t-shared their inputs (every honest party will eventually get a share of
the inputs of the parties in the core set). In the computation phase, based on the inputs of the parties
in core set, the actual circuit will be computed gate by gate, such that the outputs of the intermediate
gates are always kept as secret and are properly t-shared among the parties. Due to the linearity of
the used t-sharing, the linear gates can be computed locally without requiring any communication. Each
multiplication gate will be evaluated with the help of the (t, 2t)-sharing associated with it. For evaluating
multiplication gate, we adapt a technique from [17] used in synchronous settings. The same technique is
also adapted in the AMPC protocol of [4].

4 Reconstruction of d-Sharing
Assume that a secret s ∈ F is d-shared among the parties in P by a degree-d polynomial f(x), such
that f(0) = s and d < n − 2t. Let Pα ∈ P be a receiver. We now give a protocol Rec-Private, which
allows Pα to privately reconstruct f(x) and hence s = f(0) in asynchronous settings. Moreover, if Pα is
honest then s remains secure. The high level idea of the protocol is as follows: Every party Pi sends his
share si of s to Pα. The shares may reach Pα in any arbitrary order. Moreover, up to t of the shares
may be incorrect or missing. To reconstruct f(x), Pα applies OEC (Online Error Correcting) technique
[6] on the received si’s to get the polynomial f(x) and reconstructs s = f(0). Roughly speaking, the
online error correcting method enables Pα to recognize when the received shares define a unique degree-d
interpolation polynomial. We call the reconstruction of s by Pα as the Pα-Private-Reconstruction of s.

Protocol Rec-Private(P, d, s, Pα): Pα-Private-Reconstruction of s by Receiver Pα

Code for Pi: Send si to Pα.

Code for Pα: Apply On-line Error Correcting (OEC) technique on the received si’s to interpolate a unique degree-d
polynomial f(x) and output s = f(0).

Theorem 1 ([11]) For any secret s which is correctly d-shared among a set of n parties, with d < n−2t,
protocol Rec-Private achieves the following properties tolerating any At:

– Termination: If Pα is honest, then Pα will eventually terminate Rec-Private.

– Correctness: An honest Pα will always output s correctly at the end of the protocol.

– Secrecy: If Pα is honest then At obtains no information about s.

– Communication Complexity: Protocol Rec-Private privately communicates O(n log |F|) bits.

Theorem 2 (i) Protocol Rec-Private can be used to reconstruct 2t-sharing of some secret s which is
shared among the parties in P, where |P| = 4t + 1.

(ii) If P is any 3t + 1 sized subset of P, such that s is t-shared among the parties in P, then Rec-
Private(P , t, s, Pα) ensures successful Pα-Private-Reconstruction of s.

(iii) Let s be correctly d-shared among a set of n parties, except with probability 2−Ω(κ), where d < n−2t.
Then Rec-Private satisfies the Termination and Correctness properties mentioned in Theorem 1,
except with probability 2−Ω(κ).

For the description of OEC and proof of Theorem 2, see APPENDIX A.

5 Generating d-Sharing with d < n − 2t

We now present a novel protocol, called d-Share-MS, that allows a dealer D ∈ P (dealer can be any
party from P) to concurrently d-share ℓ ≥ 1 secrets from F, among the parties in P, except with error
probability of 2−Ω(κ), where t ≤ d ≤ 2t. Protocol d-Share-MS achieves the following properties:

Property 1 1. Termination: (a) If D is honest, then every honest party will eventually terminate the protocol.
(b) If D is corrupted and some honest party has terminated the protocol, then all the honest parties will eventually
terminate the protocol, except with probability 2−Ω(κ).

2. Correctness: (a) If D is honest, then all the ℓ secrets will be correctly d-shared among the honest parties in P. (b)
If D is corrupted and the honest parties in P terminate the protocol, then there are ℓ secrets that are properly d-shared
among the honest parties in P, except with probability 2−Ω(κ).
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3. Secrecy: If D is honest, then At obtains no information about the secrets of D.

Comparison with Existing Protocols for t-sharing and 2t-sharing in Asynchronous Settings: In [4], the au-
thors have presented a protocol for generating t-sharing of ℓ secrets concurrently (the protocol is a simple
extension of Canetti’s [11] protocol for generating t-sharing of a single secret). The protocol of [4] requires
private communication of O(ℓn2 log |F|) bits and A-cast of O(n2 log |F|) bits. But protocol of [4] is not
extendible to generate d-sharing for d > t. In order to generate 2t-sharing of a single secret, [4] have
used another protocol, which uses t-sharing of 2t + 1 random secrets to generate 2t-sharing of a single
secret. This incurs a private communication of O(n3 log |F|) bits and A-cast of O(n2 log |F|) bits, for a
single secret. Our protocol for generating d-sharing with t ≤ d ≤ 2t is generic and can generate d-sharing
of ℓ secrets concurrently, with a private communication of O((ℓn2 +n3) log |F|) bits and A-cast of O(n3κ)
bits. If ℓ is significantly large, then instead of generating 2t-sharing of the individual secrets by executing
ℓ instances of the protocol of [4], we can generate the 2t-sharing of all the secrets concurrently by exe-
cuting a single instance of our protocol, which will result in less communication overhead. Specifically,
if ℓ = Ω(n), then our protocol gains a factor of Ω(n), in generating 2t-sharing of ℓ secrets, in comparison
to the protocol of [4].

For the ease of understanding, we first present a protocol, called d-Share-SS, that allows D to d-share a
single secret among the parties in P except with error probability of 2−Ω(κ). Later we present protocol
d-Share-MS which is simple extension of d-Share-SS. Our discussion will clearly show, that executing a
single instance of d-Share-MS dealing with multiple secrets concurrently, is advantageous over executing
multiple instances of d-Share-SS, dealing with single secret, in terms communication complexity (see Re-
mark 1 at the end of this section). Thus protocol d-Share-MS harnesses the advantages offered by dealing
with multiple secrets concurrently. The sole purpose of presenting d-Share-SS is to simplify the overall
presentation of d-Share-MS. We divide the structure of d-Share-SS into three main phases:

1. Distribution by D: As the name suggests, in this phase, D on having a secret s, distributes
information to the parties in P in order to generate d-sharing of s.

2. Verification & Agreement on CORE: Here the parties in P jointly perform some computation
and communication in order to verify consistency of the information distributed by D in Distri-
bution by D phase. In case of successful verification, all the honest parties agree on a set of at
least 3t + 1 parties, called CORE, satisfying certain properties.

3. Generation of d-sharing of Secret: In this phase, only the parties in CORE communicate to
every party in P and every party performs local computation (on the data received from the parties
in CORE) to finally generate the d-sharing of secret s.

We now focus on the details of each of these phases.

5.1 Distribution by D

In this phase, D on having a secret s, selects a random bivariate polynomial F (x, y) of degree d in x
and t in y, such that F (0, 0) = s. Let fi(x) = F (x, i), pi(y) = F (i, y). While all fi(x) polynomials are
of degree-d, all pi(y) polynomials are of degree-t. We will call the fi(x) polynomials as row polynomials
and pi(y) polynomials as column polynomials. Now D sends fi(x) to party Pi. In this phase, D also
distributes some more information which will be used to keep his secret secure during Verification &
Agreement on CORE phase. Precisely, D distributes the shares of (t + 1)n random polynomials of
degree-t which will be used for blinding purpose in Verification & Agreement on CORE phase. We
refer these polynomials as blinding polynomials, so that its purpose and role is clear to the reader. The
reason for taking (t + 1)n blinding polynomials will be clear in the next section.

Protocol Distr-SS(D,P, s, d)
Code for D:

1. Select a random bivariate polynomial F (x, y) of degree-d in x and degree-t in y, such that F (0, 0) = s. Let
fi(x) = F (x, i), pi(y) = F (i, y) for 0 ≤ i ≤ n.

2. Select (t + 1)n degree-t, random, distinct blinding polynomials, over F, denoted by b(Pi,1)(y), . . . , b(Pi,t+1)(y) for
i = 1, . . . , n.

3. Send the following to party Pi: (i) fi(x); (ii) b(Pj ,1)(i), . . . , b(Pj ,t+1)(i) for j = 1, . . . , n.
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Before proceeding further, we would like to mention few interesting points about the above protocol. The
bivariate polynomial F (x, y), selected by D, has degree d in x and degree t in y. This results in each
row polynomial to be of degree-d and each column polynomial to be of degree-t. On the other hand, all
the existing protocols for generating t-sharing, based on the approach of bivariate polynomial, selects the
degree of both x and y to be t [11, 4]. In subsequent phases, we create a situation, where the parties
have to only reconstruct the column polynomials, to complete the d-sharing. So even though, the row
polynomials are of degree more than t, the parties need not have to bother about reconstructing them.

In the sequel, we describe Verification & Agreement on CORE phase. If Verification &
Agreement on CORE phase is successful, then at the end of Generation of d-sharing of Secret
phase, the secret s will be d-shared using polynomial f0(x).

5.2 Verification & Agreement on CORE

As it is clear from the description of Distribution by D phase, if D behaves honestly in protocol Distr-
SS, then jth points on all row polynomial fi(x), corresponding to honest Pi’s (i.e fi(j)’s), should define
degree-t column polynomial pj(y). For an honest D, this is obviously true. But for a corrupted D, we
must ensure the above condition by enforcing some verification mechanism. While it may be difficult
to ensure that the jth points on all honest Pi’s row polynomial fi(x) define a degree-t polynomial pj(y)
(due to asynchrony of the network), it is easier to ensure the same for the honest parties in a set of at
least 3t + 1 parties, say CORE (CORE ⊆ P). In fact, this is what our protocol attempts to achieve.
Specifically, the protocol tries to identify a set of parties, called CORE, having the following property:

Desired Properties of CORE: CORE ⊆ P, such that |CORE| ≥ 3t + 1. Moreover, for j = 1, . . . , n,

the jth points on all honest Pi’s row polynomial fi(x) of degree-d, where Pi ∈ CORE, should define a
degree-t column polynomial pj(y).

Hence, we do not care about fi(x) possessed by Pi, for Pi 6∈ CORE. The verification mechanism and the
construction of CORE is the crux of protocol d-Share-SS.

An Informal Description: In our verification mechanism, every party has dual responsibility: (a) it
acts as a verifier to verify certain consistency of the information distributed by D to the parties; (b) it
also co-operates as a party, with other verifiers, in order to make the verification mechanism initiated
by them, finishes successfully. So, we first concentrate on the part of communications and computations
that is to be carried out with respect to a single verifier, say V (here V can be any party from P). The
goal of this part of communications and computations is to decide on a set of at least 3t + 1 parties,
say AgreeSetV , such that if V is honest, then AgreeSetV should satisfy all the desirable properties of
CORE. That is AgreeSetV could be a eligible candidate for CORE, when V is honest. To implement
this, we use the following protocol. In the protocol, we use the following notation:

Notation 1 Given ρ polynomials, C = {c1(x), . . . , cρ(x)} and a vector R = (ζ1, . . . , ζρ) of length ρ, we
define c(x) as the polynomial obtained by the linear combination of the polynomials in C with respect to
R. That is, c(x) =

∑ρ
i=1 ζi.ci(x). We capture this by: c(x) = LinCombPoly(C,R). Similarly, we define

c = LinCombValue(C,R), where C = {c1, . . . , cρ} and c is the linear combination of C, with respect to R.
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Protocol Single-Verifier-SS(V,P, s, d)
i. Code for Pi:

1. Wait to receive fi(x) and b(Pj ,1)(i), . . . , b(Pj,t+1)(i) for j = 1, . . . , n from D.

2. After receiving, check whether fi(x) is a degree-d polynomial. If yes, then send a Received-From-D signal to V .

ii. Code for V :

1. Wait to obtain Received-From-D signal from at least 3t + 1 parties. Put the identities of the 3t + 1 parties in a set
ReceivedSet(V,1). Select a random r(V,1) from extension field E and A-cast (r(V,1), ReceivedSet(V,1)).

2. For βth (β > 1) receipt of Received-From-D from Pα 6∈ ReceivedSet(V,β−1), construct ReceivedSet(V,β) =
ReceivedSet(V,β−1) ∪ {Pα}, select a random r(V,β) ∈ E \ {r(V,1), . . . , r(V,β−1)} and A-cast (r(V,β), ReceivedSet(V,β)).

iii. Code for D:

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V , then A-cast the polynomial E(V,β)(y), where E(V,β)(y) =

LinCombPoly(E ,R). Here E = {b(V,β)(y), p1(y), . . . , pn(y)} and R = (1, r(V,β),
“
r(V,β)

”2

, . . . ,
“
r(V,β)

”n

).

iv. Code for Pi:

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V , then check if Pi ∈ ReceivedSet(V,β). If yes, then A-cast

e
(V,β)
i = LinCombValue(∆i, R), where ∆i = {b(V,β)(i), fi(1), . . . , fi(n)} and R = (1, r(V,β),

“
r(V,β)

”2

, . . . ,
“
r(V,β)

”n

).

2. Say that party Pj agrees with D with respect to (r(V,β), ReceivedSet(V,β)) if all the following hold:

(a) E(V,β)(y) is a degree-t polynomial, (b) Pj ∈ ReceivedSet(V,β) and (c) e
(V,β)
j = E(V,β)(j)

where e
(V,β)
j , E(V,β)(y) and (r(V,β), ReceivedSet(V,β)) are received from the A-casts of Pj , D and V respectively.

3. With respect to (r(V,β), ReceivedSet(V,β)), when there are 3t + 1 Pj ’s who agree with D, add them in a set
AgreeSet(V,β).

Lemma 1 In protocol Single-Verifier-SS, if V is honest, then for all j = 1, . . . , n, the jth points on the row
polynomials, held by the honest parties in AgreeSet(V,β) (with |AgreeSet(V,β)| ≥ 3t + 1), define degree-t
column polynomial, with very high probability. Moreover, the points on blinding polynomial b(V,β)(y) held
by the honest parties in AgreeSet(V,β) will lie on a degree-t polynomial with very high probability.

Proof: If D is honest, then the condition in the lemma will be true, without any error. Hence we
consider the case when D is corrupted. Let H(V,β) denote the set of honest parties in AgreeSet(V,β).
First of all, since V is honest, he A-casts random r(V,β) only after listening Received-From-D signal from
all the parties in ReceivedSet(V,β). Thus D has no knowledge of r(V,β), when he distributes the row
polynomials and points on blinding polynomial b(V,β)(y) to the (honest) parties in ReceivedSet(V,β). Let

b(V,β)(y) denote the minimum degree polynomial, defined by the points on b(V,β)(y), held by the honest
parties in H(V,β). Similarly, let p1(y), . . . , pn(y) denote the minimum degree polynomials, defined by the
points on the row polynomials, held by the parties in H(V,β). For convenience, we use an uniform notation

for these n + 1 polynomials. We denote them by h0(y), . . . , hn(y), respectively. Then the value e
(V,β)
i ,

A-casted by Pi ∈ ReceivedSet(V,β) is defined as e
(V,β)
i =

∑n
j=0

(
r(V,β)

)j
hj(i).

We now claim that with very high probability, h0(y), . . . , hn(y) have degree-t. On the contrary, if we
assume that at least one of the polynomials has degree more than t, then we can show that the minimum

degree polynomial, say hmin(y), defined by e
(V,β)
i ’s for Pi ∈ H(V,β) will be of degree more than t, with

very high probability. This will clearly imply E(V,β)(y) 6= hmin(y) and hence e
(V,β)
i 6= E(V,β)(i) for at

least one Pi ∈ H(V,β). This is a contradiction as e
(V,β)
i = E(V,β)(i) holds for every Pi ∈ Agree(V,β) and

H(V,β) ⊆ Agree(V,β). This shows that our claim is true.
So we proceed to prove that hmin(y) will be of degree more than t with very high probability, when

one of h0(y), . . . , hn(y) has degree more than t. For this, we show the following:

1. We first show that hdef (y) = Σn
j=0

(
r(V,β)

)j
hj(y) will of degree more than t with very high proba-

bility, if one of h0(y), . . . , hn(y) has degree more than t.

2. We then show that hmin(y) = hdef (y), implying that hmin(y) will be of degree more than t with
very high probability

The first claim is easy to prove. If at least one of h0(y), . . . , hn(y), has degree more than t, then the linear

combination of these polynomials, namely hdef (y), can be written as hdef (y) = hdef
1 (y) + hdef

2 (y). Here
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hdef
1 (y) contains all the coefficients of hdef (y), having exponent more than t, while hdef

2 (y) contains all

the remaining coefficients of hdef (y). Now hdef (y) will be of degree-t, if hdef
1 (y) = 0, which can happen

for at most n possible values of r(V,β) (for details see APPENDIX C). Since r(V,β) is selected randomly

from E\{r(V,1), . . . , r(V,β−1)}, independent of h0(y), . . . , hn(y), the probability that hdef
1 (y) = 0 is at most

n
|E|−(β−1) ≈ 2−Ω(κ) (which is negligible), where β ≤ t + 1 (see Lemma 2).

For the second point, consider the polynomial dp(y) = hdef (y) − hmin(y). Clearly, dp(y) = 0, for all
y = i, where Pi ∈ H(V,β). Thus dp(y) will have at least |H(V,β)| roots. On the other hand, maximum
degree of dp(y) could be |H(V,β)| − 1. These two facts together imply that dp(y) is the zero polynomial,
implying hdef (y) = hmin(y). The complete formal proof of the lemma is given in APPENDIX C. 2

Lemma 2 In Single-Verifier-SS, V will A-Cast (r(V,β), ReceivedSet(V,β)) at most t + 1 times. Hence the
maximum value of β is t + 1. Moreover, each ReceivedSet(V,β) will be unique.

Proof: Easy. For complete proof, see APPENDIX C. 2

Lemma 3 In protocol Single-Verifier-SS, if both V and D are honest, then for some β (1 ≤ β ≤ t + 1)
AgreeSet(V,β) with |AgreeSet(V,β)| ≥ 3t + 1 will be generated.

Proof: When D is honest, every honest party in P will eventually send Received-From-D signal to
V . From the protocol step, |ReceivedSet(V,1)| = 3t + 1. Moreover, from Lemma 2, V will A-Cast
ReceivedSet(V,β) at most t + 1 times. These facts together imply that eventually there will be a β ∈
{1, . . . , t + 1}, such that ReceivedSet(V,β) is bound to contain all the 3t + 1 honest parties. Moreover,
each honest party from ReceivedSet(V,β) containing 3t + 1 honest parties, will eventually enter into
AgreeSet(V,β). Hence |AgreeSet(V,β)| will be at least 3t + 1 eventually. 2

Lemma 4 In protocol Single-Verifier-SS, if D is honest, then At will have no information about s.

Proof: Without loss of generality, let At controls P1, . . . , Pt. So At will know f1(x), . . . , ft(x). Since
F (x, y) is of degree d and t in x and y respectively, its constant term F (0, 0) will remain information
theoretically secure. At may learn E(V,β)(y) for β = 1, . . . , t + 1. But each E(V,β)(y) is the linear
combination of polynomials b(V,β)(y), p1(y), . . . , pn(y). As b(V,β)(y) is completely random and independent
of p1(y), . . . , pn(y), E(V,β)(y) will be completely random for At. Moreover for every β ∈ {1, . . . , t + 1},
distinct b(V,β)(y) is used. Hence At obtains no information about s in Single-Verifier-SS. 2

So far, we have concentrated on the part of the communications that is to be carried out with respect to
a single V . We proved that if V is honest then Single-Verifier-SS can provide with a candidate solution
for CORE. But as we do not know the exact identities of the honest parties in P, we can not pick a
AgreeSet(V,∗) for an honest V as CORE. Thus CORE construction requires a special trick. Informally,
we execute Single-Verifier-SS for every V ∈ P and compute CORE based on AgreeSet(∗,∗)’s.

Need for n(t + 1) Blinding Polynomials: Recall that in Distr-SS, D has selected n(t + 1) blinding
polynomials. The reason for this is as follows: From Lemma 2, a single verifier V will A-Cast at most
t + 1 (r(V,β), ReceivedSet(V,β))’s. Hence β will be at most t + 1 for V . Now, from Lemma 4, in order
to maintain the secrecy of s for every β ∈ {1, . . . , t + 1}, distinct b(V,β)(y) should be used for computing
E(V,β)(y). Now in Verification and Agreement on CORE phase, each of the n parties will act as a
verifier and execute protocol Single-Verifier-SS. Hence D should select n(t + 1) blinding polynomials. 2

Before presenting our protocol for Verification & Agreement on CORE phase, we prove the following
lemmas which will help to grasp the part of code used for constructing CORE.

Lemma 5 For an honest V , the row polynomials held by honest parties in AgreeSet(V,β) and AgreeSet(V,γ)

with β 6= γ, define the same degree-t column polynomials, say p1(y), . . . , pn(y), with very high probability.

Proof: By Lemma 1, for an honest V , the row polynomials held by the honest parties in AgreeSet(V,β),
define degree-t column polynomials, say p1(y), . . . , pn(y), with very high probability. Similarly, by Lemma
1, the row polynomials held by the honest parties in AgreeSet(V,γ), define degree-t column polynomials,

say p̂1(y), . . . , p̂n(y), with very high probability. We claim that these two sets of polynomials are identical.
Since AgreeSet(V,β) and AgreeSet(V,γ) are of size at least 3t+1, there are at least 2t+1 common parties
between them out of which at least t + 1 are honest. Since all the polynomials are of degree t, any t + 1
points completely and uniquely define them and hence these two set of polynomials can not be different
while having t + 1 common values. 2
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Lemma 6 For any two honest verifiers Vα and Vδ, with α 6= δ, the column polynomials, defined by the
points on the row polynomials of the honest parties in any two sets AgreeSet(Vα ,β) and AgreeSet(Vδ ,γ)

are same, with very high probability.

Proof: Follows using similar argument as in Lemma 5. 2

The protocol for Verification & Agreement on CORE phase is as follows:

Protocol Ver-Agree-on-CORE-SS(D,P, s, d)
Verification and CORE Construction:

i. Code for Pi:

1. Start executing Protocol Single-Verifier-SS(Pα,P , s, d) for every verifier Pα ∈ P parallely.

2. Add a verifier Pα to a set V alidV erifier if at least one AgreeSet(Pα,β) has been generated.

3. Check whether |V alidV erifier| ≥ t + 1 and in case of ’yes’ perform the following computation:

(a) For every Pα ∈ V alidV erifier, compute AgreeSetPα = ∪βAgreeSet(Pα,β).

(b) Compute COREi = {Pj | Pj belongs to AgreeSetPα for at least t+1 P ′
αs in V alidV erifier}.

(c) Wait for new updates (such as generation of new set AgreeSet(Pα,β), expansion of AgreeSet(Pα,β) etc.)
and repeat the same computation (i.e steps 2-3((a),(b)) to update COREi for every new update.

ii. Code for D:

1. A-cast CORE = CORED as soon as |CORED| = 3t + 1.

Agreement on CORE: Code for Pi:

1. Wait to receive CORE from the A-cast of D. Wait until CORE ⊆ COREi. Once this holds, agree on the
CORE and terminate.

Lemma 7 If D is honest, then the points on the row polynomials held by honest parties in CORE
define degree-t column polynomials. If D is corrupted, then the same holds except with negligible error
probability. Moreover there can not be another set CORE containing 3t + 1 parties such that the row
polynomials held by honest parties in CORE define a different set of degree-t column polynomials.

Proof: The complete proof is moved to APPENDIX C, due to space constraints. 2

Once the parties agree on a CORE set, generation of d-sharing requires n private reconstructions. We
do that in Generation of d-sharing of Secret phase which is discussed in the sequel.

5.3 Generation of d-sharing of Secret

Assuming that the honest parties in P have agreed upon a CORE, our protocol achieves d-sharing of s in
the following way: Since |CORE| ≥ 3t + 1 and each pi(0) is t-shared among the parties in CORE, from
the property (ii) of Theorem 2, each pi(0) can be Pi-Private-Reconstructed for i = 1, . . . , n. Every Pi

can then output pi(0) as the shares of D’s secret s and this will complete the d-sharing. As f0(i) = pi(0),
D’s secret s (which is equal to F (0, 0)) is d-shared using degree-d polynomial f0(x) = F (x, 0).

Protocol Gen-d-Share-SS(D,P, s, d)
For j = 1, . . . , n, Pj-Private-Reconstruction of pj(0): Code for Pi:

1. If Pi ∈ CORE, participate in Rec-Private(CORE, t, pj(0), Pj) for Pj-Private-Reconstruction of pj(0), for j =
1, . . . , n.

2. As a receiver, participate in Rec-Private(CORE, t, pi(0), Pi) for Pi-Private-Reconstruction of pi(0).

3. Output f0(i) = pi(0) as the ith share of secret s and terminate. s is now d-shared using polynomial f0(x).

5.4 Final Protocol for Generating d-sharing: Protocol d-Share-SS

Protocol d-Share-SS(D,P, s, d)
i. Code for D:

1. Execute Distr-SS(D,P , s, d).

ii. Code for Pi:

1. Participate in Ver-Agree-on-CORE-SS(D,P , s, d).

2. Upon termination of Ver-Agree-on-CORE-SS(D,P , s, d), participate in Gen-d-Share-SS(D,P , s, d).
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Lemma 8 In protocol d-Share-SS, if D is honest, then every honest party will eventually terminate Ver-
Agree-on-CORE-SS and Gen-d-Share-SS.

Proof: When D is honest, then eventually for every honest verifiers Pα, the set AgreeSetPα will contain
all the honest parties in P. Since there are at least 3t + 1 honest verifiers, CORE will eventually contain
all the honest parties in P. Thus when D is honest, every honest party will eventually terminate Ver-
Agree-on-CORE-SS. Moreover, each honest party in CORE will hold correct points on degree-t column
polynomials. The rest now follows from property (ii) of Theorem 2. 2

Lemma 9 In protocol d-Share-SS, if D is corrupted and some honest party has terminated Ver-Agree-on-
CORE-SS, then all the honest parties will eventually terminate Ver-Agree-on-CORE-SS. Furthermore, if
some honest party terminates Ver-Agree-on-CORE-SS, then every honest party will eventually terminate
Gen-d-Share-SS, with very high probability.

Proof: If D is corrupted and some honest Pi has terminated Ver-Agree-on-CORE-SS, then he must have
checked the validity of CORE received from the A-cast of D. In the same way, every other honest Pj will
check the validity of CORE and terminate Ver-Agree-on-CORE-SS. This proves the first part. Once all
the honest parties terminate Ver-Agree-on-CORE-SS, they will agree on CORE of size 3t + 1. Moreover,
with very high probability, the honest parties in CORE will hold correct points on degree-t column
polynomials. The rest now follows from property (iii) of Theorem 2. 2

Theorem 3 The protocol d-Share-SS satisfies Termination, Correctness and Secrecy conditions
of Property 1, with respect to a single secret. The protocol privately communicates O(n3 log(|F|)) bits and
A-Cast O(n3κ) bits, where κ = log(|E|).

Proof: Termination: The proof follows from Lemma 8 and Lemma 9.

Correctness: Part (a) follows from the proof of Lemma 8 and Lemma 7. For part(b), if D is
corrupted and the honest parties in P terminates d-Share-SS, then from Lemma 7, the row polynomials
held by honest parties in CORE define degree-t column polynomials, say p1(y), . . . , pn(y) with very high
probability. Now by Theorem 2-(iii), Pi-Private-Reconstruction of pi(0) is possible for all i = 1, . . . , n
with very high probability. This implies every Pi ∈ P will compute f0(i) = pi(0). So s will be d-shared
among the parties in P using f0(x) with very high probability.

Secrecy: We have to consider the case when D is honest. By Lemma 4, the polynomials E(Pα,β) A-casted
in Ver-Agree-on-CORE are completely random to At and hence can be ignored. Without loss of generality,
let At controls P1, . . . , Pt. So at the end of d-Share-SS, At will know f1(x), . . . , ft(x), p1(y), . . . , pt(y).
The bivariate polynomial F (x, y) can be interpolated using t + 1 fi(x)’s or d + 1 pi(y)’s. At knows
f1(x), . . . , ft(x) and t more points on each of fi(x) for t + 1 ≤ i ≤ n from p1(y), . . . , pt(y). But the t
points on ft+2(x), . . . , fn(x) are linearly dependent on the t points on f1(x), . . . , ft+1(x). As ft+1(x) is a
degree-d polynomial, At requires d + 1− t more points to completely interpolate ft+1(x). Thus d + 1− t
coefficients of F (x, y) (and hence f0(x)) remain secure. Therefore F (0, 0) = f0(0) is secure.

Communication Complexity: In Distr-SS, D privately communicates O((nd + n3) log(F)) bits. Since
t ≤ d ≤ 2t, d = O(n). In Ver-Agree-on-CORE-SS, the parties A-Cast O(n3 log(|F|) + n2κ) bits. In Gen-
d-Share-SS, the parties privately communicates O(n2 log |F|) bits. As log(|F|) ≤ κ, overall the protocol
involves a private communication of O(n3 log(F) bits and A-Cast of O(n3κ) bits. 2

We now give the details of protocol d-Share-MS, that allows a dealer D ∈ P to concurrently generate
d-sharing of ℓ ≥ 1 secrets from F, denoted as S = (s1, . . . , sℓ). We need to extend protocol Distr-SS,
Single-Verifier-SS, Ver-Agree-on-CORE-SS, and Gen-d-Share-SS for multiple (ℓ) secrets. We refer them as
Distr-MS, Single-Verifier-MS, Ver-Agree-on-CORE-MS and Gen-d-Share-MS. We present the protocols in
APPENDIX D. The proofs for the properties of the protocols dealing with multiple secrets will be
similar to the proofs of the protocols dealing with single secret. We now have the following theorem,
whose proof is given in APPENDIX D, due to space constraints.

Theorem 4 Protocol d-Share-MS satisfies Termination, Correctness and Secrecy condition of
Property 1. The protocol privately communicates O((ℓn2 + n3) log |F|) bits and A-cast O(n3κ) bits.

10



Remark 1 (Advantage of Concurrently Sharing Multiple Secrets) Note that, had we executed
ℓ times the protocol d-Share-SS for single secret, the communication complexity would turn out to be
O(ℓn3 log |F|) bits of private communication plus O(ℓn3κ) bits of A-cast. However, the communication
complexity of d-Share-MS treating all the ℓ secrets simultaneously is O((ℓn2 + n3) log |F|) bits of private
communication and O(n3κ) bits of A-cast. This shows that executing a single instance of d-Share-MS
dealing with multiple secrets concurrently is advantageous over executing multiple instances of d-Share-SS
dealing with single secret. The same principle holds for other primitives described in the sequel.

Remark 2 (Relation between Protocol d-Share-MS and AVSS) Notice that the Termination, Cor-

rectness and Secrecy properties satisfied by protocol d-Share-MS are same as the Termination,
Correctness and Secrecy properties satisfied by any asynchronous verifiable secret sharing (AVSS)
scheme [11]. In fact, as protocol d-Share-MS involves a negligible error probability in correctness and have
a negligible probability of non-termination, we may view it as a protocol for statistical AVSS.

Remark 3 (Comparison of Protocol d-Share-MS with Existing Statistical AVSS) Statistical AVSS
tolerating a computationally unbounded At is possible only if n = 3t+1 [12]. The existing statistical AVSS
with n = 3t + 1 [12, 8, 32] generates only t-sharing of secrets. Moreover, it is not known whether these
protocols can be extended for generating d-sharing for any t ≤ d ≤ 2t. Furthermore, even if these proto-
cols can be extended for generating d-sharing, the resultant protocol will have much higher communication
complexity than protocol d-Share-MS reported here.

6 Generating (t, 2t)-Sharing

We now present a novel protocol, called (t,2t)-Share-MS that allows a dealer D ∈ P (dealer can be any
party from P) to concurrently generate (t, 2t)-sharing of ℓ ≥ 1 secrets from F. The idea is as follows:
D, on having ℓ secrets S = (s1, . . . , sℓ), invokes two instances of d-Share-MS, to t-share and 2t-share S
respectively. For an honest D, this is enough to generate (t, 2t)-sharing of S. But a corrupted D may

t-share Ŝ = (ŝ1, . . . , ŝℓ) and 2t-share S = (s1, . . . , sℓ) where Ŝ 6= S. To verify whether Ŝ = S, each

dl = ŝl − sl, for l = 1, . . . , ℓ, is Pi-Private-Reconstructed for every Pi. Pi then check whether dl = 0 for
l = 1, . . . , ℓ and in case if all the dl values are 0, every Pi knows that S is correctly (t, 2t)-shared. We
now prove the properties of (t,2t)-Share-MS.

Theorem 5 Protocol (t,2t)-Share-MS achieves the following properties:

1. Termination: (a) If D is honest, then every honest party will eventually terminate (t,2t)-Share-MS. (b) If D is corrupted

and some honest party terminates (t,2t)-Share-MS, then all the honest parties will also terminate the protocol, except with

probability 2−Ω(κ).

2. Correctness: (a) If D is honest, then all the ℓ secrets are correctly (t, 2t)-shared among the parties in P. (b) If D is

corrupted and the honest parties terminate (t,2t)-Share-MS, then there are ℓ secrets, that are correctly (t, 2t)-shared among

the parties in P, except with probability 2−Ω(κ).

3. Secrecy: At will have no information about the secrets of an honest D.

4. Communication Complexity: The protocol privately communicates O((ℓn2 + n3) log |F|) bits and A-cast O(n3κ) bits.

Proof: Follows from the properties of d-Share-MS. The complete proof is given in APPENDIX E. 2

Protocol (t,2t)-Share-MS(D,P, S = (s1, . . . , sℓ))
Code for D:

1. Invoke d-Share-MS(D,P , bS = ( bs1, . . . , bsℓ), t) and d-Share-MS(D,P , S = (s1, . . . , sℓ), 2t), such that bS = S.

Code for Pi:

1. Participate in d-Share-MS(D,P , bS, t) and d-Share-MS(D,P , S, 2t).

2. Wait until both d-Share-MS(D,P , bS, t) and d-Share-MS(D,P , S, 2t) terminate. Participate in Rec-Private(P , 2t, bsl −

sl, Pj) for Pj-Private-Reconstruction of bsl − sl for j = 1, . . . , n and l = 1, . . . , ℓ.

3. As a receiver participate in Rec-Private(P , 2t, bsl − sl, Pi) for Pi-Private-Reconstruction of bsl − sl, for l = 1, . . . , ℓ.

4. If bsl − sl = 0 for all l = 1, . . . , ℓ, then output ϕl
i and χl

i, where ϕl
i and χl

i are the ith shares of secret sl, obtained
during d-Share-MS(D,P , bS, t) and d-Share-MS(D,P , S, 2t) respectively and terminate.
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Protocol (t,2t)-Share-MS is to be compared with the best known asynchronous protocol of [4] that requires
a private communication of O(n3 log |F|) bits and A-Cast of O(n2 log(|F|)) bits to generate (t, 2t)-sharing
of a single secret. This shows that (t,2t)-Share-MS provides better complexity than the protocol of [4]
(though, the protocol of [4] does not involve any error probability in correctness and termination).
A brief account on the existing protocols for generating (t, 2t)-sharing is presented in APPENDIX B.

7 Preparation Phase

The goal of the preparation phase is to generate correct (t, 2t)-sharing of cM + cR secret random values.
We now present a protocol called PreparationPhase which achieves the same.

Protocol PreparationPhase(P)

Secret Sharing: Code for Pi:

1. Select L = cM +cR

n−2t
random secret elements (s(i,1), . . . , s(i,L)) from F. As a dealer, invoke (t, 2t)-Share-

MS(Pi,P , Si) to generate (t, 2t)-sharing of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in (t, 2t)-Share-MS(Pj ,P , Sj).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon terminating (t,2t)-Share-MS(Pj ,P , Sj), include Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of Random (t, 2t)-sharing: Code for Pi:

1. Wait until ACS completes with output C containing n − t parties. Obtain the ith shares ϕ
(j,1)
i , . . . , ϕ

(j,L)
i

corresponding to t-sharing of Sj and ith shares φ
(j,1)
i , . . . , φ

(j,L)
i corresponding to 2t-sharing of Sj for every

Pj ∈ C. Without loss of generality, let C = {P1, . . . , Pn−t}.

2. Let V denote a (n − t) × (n − 2t) publicly known Vandermonde Matrix.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) = (s(1,k), . . . , s(n−t,k))V .

(b) Locally compute ith shares corresponding to t-sharing of r(1,k), . . . , r(n−2t,k) as (ς
(1,k)
i , . . . , ς

(n−2t,k)
i ) =

(ϕ
(1,k)
i , . . . , ϕ

(n−t,k)
i )V .

(c) Locally compute ith shares corresponding to 2t-sharing of r(1,k), . . . , r(n−2t,k) as (σ
(1,k)
i , . . . , σ

(n−2t,k)
i ) =

(φ
(1,k)
i , . . . , φ

(n−t,k)
i )V and terminate.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denotes the cM + cR random secrets which are (t, 2t)-shared.

PreparationPhase asks individual party to act as a dealer and (t, 2t)-share cM+cR

n−2t
random secrets. Then an

instance of ACS protocol is executed to agree on a core set of n−t parties who have correctly (t, 2t)-shared
cM+cR

n−2t
random secrets. Now out of these n − t parties, at least n − 2t are honest. Hence the random

secrets that are (t, 2t)-shared by these n − 2t honest parties are truly random and unknown to At. So if
we consider the (t, 2t)-sharing done by the honest parties (each of them has done cM+cR

n−2t
(t, 2t)-sharing) in

core set, then we will get cM+cR

n−2t
∗(n−2t) = cM +cR random (t, 2t)-sharing. For this, we use Vandermonde

Matrix [17] and its ability to extract randomness which has been exploited in [36, 17, 4].

Vandermonde Matrix and Randomness Extraction [17]: Let β1, . . . , βc be distinct and publicly

known elements from F. We denote an (r × c) Vandermonde matrix by V (r,c), where for 1 ≤ i ≤ c, the
ith column of V (r,c) is (β0

i , . . . , βr−1
i )T . The idea behind extracting randomness using V (r,c) is as follows:

without loss of generality, assume that r > c. Moreover, let (x1, . . . , xr) be such that (a) any c elements
of it are chosen uniformly at random from F and are unknown to adversary At, (b) the remaining r − c
elements are chosen with an arbitrary distribution from F, independent of the c elements, and are also
known to At . Now if we compute (y1, . . . , yc) = (x1, . . . , xr)V , then (y1, . . . , yc) is an random vector of
length c unknown to At, extracted from (x1, . . . , xr) [36, 17, 4].

Lemma 10 Each honest party will eventually terminate PreparationPhase, except with probability 2−Ω(κ).
The protocol correctly generates (t, 2t)-sharing of cM + cR secret random values, except with error proba-
bility of 2−Ω(κ) by privately communicating O(((cM + cR)n2 + n4) log |F|) bits, A-Casting O(n4κ) bits and
executing one invocation to ACS. Moreover, At will have no information about the random values.

Proof: Easy. For complete proof, see APPENDIX F. 2
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8 Input Phase

In protocol InputPhase, each Pi ∈ P acts as a dealer to t-share his input Xi containing ci elements from
F. So total number of inputs cI =

∑n
i=1 ci. To achieve this, party Pi t-share his input Xi by acting as

a dealer and executing d-Share-MS. The asynchrony of the network does not allow the parties to wait
for more than n − t = 3t + 1 parties to complete their instance of d-Share-MS. In order to agree on a
core set of parties whose instance of d-Share-MS have terminated and whose inputs will be taken into
consideration for computation (of the circuit), one instance of ACS is invoked. At the end, everyone
considers the t-sharing of all the inputs shared by parties, only in the core set. As the protocol is very
straight forward, we present it in APPENDIX F.

Lemma 11 Each honest party will eventually terminate InputPhase and will correctly output t-sharing
of the inputs of the parties in core set C with high probability. The protocol privately communicates
O((cIn

2 +n4) log |F|) bits, A-Casts O(n4κ) bits and requires one invocation to ACS. Furthermore, At will
have no information about the inputs of the honest parties in C.

9 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated gate by gate, where all
inputs and intermediate values are t-shared among the parties. As soon as a party holds his shares of
the input values of a gate, he joins the computation of the gate.

Due to the linearity of the t-sharing, linear gates can be computed locally, simply by applying the
linear function to the shares, i.e. for any linear function c = f(a, b), the sharing [c]t is computed by letting
every party Pi to compute ci = f(ai, bi), where ai, bi and ci are the ith shares of a, b and c respectively.
With every random gate, one random (t, 2t)-sharing (from the preparation phase) is associated, whose
t-sharing is directly used as outcome of the random gate. With every multiplication gate, one random
(t, 2t)-sharing (from the preparation phase) is associated, which is then used to compute t-sharing of the
product, following the technique of Damgard et. al. [17] in synchronous settings, which is as follows:
Let z = xy, where x, y are the inputs of the multiplication gate, where x, y are t-shared, i.e. [x]t, [y]t.
Moreover, let [r](t,2t) be the (t, 2t)-sharing associated with the multiplication gate, where r is a secret
random value. Now for computing [z]t, the t-sharing of z, the parties compute [Λ]2t = [x]t.[y]t + [r]2t.
Then Λ is Pi-Private-Reconstructed for every Pi ∈ P. Now every party defines [Λ]t as the default sharing
of Λ, e.g., the constant degree-0 polynomial Λ and computes [z]t = [Λ]t − [r]t. The secrecy of z follows
from the fact that r is random and independent of x and y [17, 4]. As the protocol for Computation
Phase is very straight forward, we present it in APPENDIX F.

Lemma 12 Each honest party will eventually terminate ComputationPhase with very high probability.
Given (t, 2t)-sharing of cM + cR secret random values, the protocol computes the outputs of the circuit
securely by privately communicating O(n2(cM + cO) log |F|) bits. The outputs of the circuit will be correct
except with probability 2−Ω(κ)

10 The AMPC Protocol

Now our new AMPC protocol AMPC for evaluating function f is: (1). Invoke PreparationPhase (2).
Invoke InputPhase (3). Invoke ComputationPhase.

Theorem 6 For every coalition of up to t < n/4 corrupted parties, the protocol AMPC securely computes
the circuit representing function f , satisfying (i) Termination: Except with probability 2−Ω(κ), each
honest party will terminate the protocol; (ii) Correctness: The protocol correctly computes the circuit
except with error probability of 2−Ω(κ). The protocol privately communicates O(((cI + cM + cR + cO)n2 +
n4) log |F|) bits, A-Casts O(n4κ) bits and requires 2 invocations to ACS.

11 Open Problems

It would be interesting to see whether it is possible to further reduce the communication complexity of
AMPC protocol with n = 4t+1 by using techniques such as player elimination [21]. Our AMPC protocol
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have a negligible probability of non-termination and negligible probability of error in correctness. It is an
interesting and challenging problem to design an AMPC protocol with n = 4t+1 that is perfect (errorless)
in all respects, namely termination, secrecy and correctness while maintaining quadratic communication
complexity per multiplication gate.
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APPENDIX A: Online Error Correction and Properties of Protocol

Rec-Private

The current description of OEC is taken from [11]. Consider the following scenario: Let s be a secret,
which is d-shared among the n parties in P, by a degree-d polynomial f(x), where d < n − 2t. Thus,
each honest party Pi has the share si = f(i). Let Pα ∈ P be a specific party in P, which we call as
receiver. Pα wants to reconstruct the polynomial f(x) and get s = F (0). For this, he expects the honest
parties, to send their shares of s to him. Due to asynchronity of the network, the shares may arrive in
any arbitrary order. Moreover, t of the shares may be wrong or missing. In such a scenario, online error
correction (OEC) [11] allows Pα to recover f(x) from the received shares in an online fashion. Informally,
the procedure allows Pα to identify, when the received shares define a unique degree-d polynomial.

Before describing OEC, we recall the definition of generalized Reed-Solomon (GRS) code [28]. Consider
the following code over F: A word W = {(i1, a1), . . . , (il, al)} over F is a codeword iff there exists a degree-
d polynomial F (x) over F, such that F (ij) = aj , for j = 1, . . . , l. This code is called GRS code. GRS codes
have an efficient error correcting procedure, which can correct r errors in an input word W , provided
that |W | ≥ d + 2r + 1 (see [28]). Let EC be such a procedure.

We now describe the procedure for OEC, using the above notions of GRS codes. Informally, the
procedure will run for at most t + 1 iterations. In rth iteration, Pα will wait to receive shares of s from
d + t + r + 1 parties. Pα will now assume that at most r shares are corrupted in the received shares and
try to correct them using procedure EC. Now there are two possible cases:

1. There are at most r corrupted shares in the received set of shares. So in this case, EC will
correctly output the original degree-d polynomial f(x) and hence s by correcting at most r corrupted
shares present in the received set of shares. Pα can check the validity of output polynomial f(x) by
verifying that at least d + t + 1 received shares (other than the wrong shares that are corrected by EC)
lie on f(x). Finally, in this case, Pα terminates the OEC procedure.

2. There are more than r corrupted shares in the received shares. In this case, EC may either
fail to output any degree-d polynomial or may output an incorrect degree-d polynomial, say f ′(x). In the
former case, Pα can easily identify that more than r shares are corrupted in the received set of shares.
However, even in the later case, Pα will identify that more than r shares are corrupted in the received
set of shares. This is because d + t + 1 received shares (other than the ones which are corrected by EC)
will not lie on f ′(x). Thus Pα will know that more honest shares will eventually come from the honest
parties and hence proceed to the next iteration.

The protocol is formally given in the following table:

Protocol OEC

For 0 ≤ r ≤ t, in iteration r, Pα does the following:

1. Let W denote the set of shares received by Pα and Ir denote the received shares in W, when W contains d+ t+r+1
shares.

2. Wait until |W| ≥ d + t + r + 1. Then apply EC to Ir to get the polynomial f(x) of degree d. If no polynomial is
output, then skip the next step and proceed to next iteration.

3. If at least d + t + 1 shares in Ir (other than the ones which are corrected by EC) lie on f(x), then output s = f(0)
as the secret and terminate. Otherwise, proceed to the next iteration.

Theorem 7 ([11]) In protocol OEC, if s is correctly d-shared among a set of n parties, where d < n−2t,
then Pα will eventually output s without any error.

Proof: Suppose At corrupts r̂ ≤ t shares of s, during their transmission to Pα. Since d < n− 2t, during
r̂th iteration, Pα will receive d + t + r̂ + 1 shares of s, of which at most r̂ are corrupted. So from the
properties of GRS codes [28] (as mentioned above), EC will correct r̂ errors in the received set of shares
and will output f(x) of degree d. Moreover, d+ t+1 shares in Ir (other than the ones which are corrected
by EC) will lie on f(x). Since out of these d + t + 1 shares, at least d + 1 are honest and uniquely define
the original polynomial f(x) (d + 1 honest shares are d + 1 correct points on a degree-d polynomial and
hence uniquely define a degree-d polynomial), the output polynomial f(x) is same as f(x). Thus f(x)
will be the output in r̂th iteration. 2
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Theorem 8 In protocol OEC, if s is not d-shared among the parties in P, then any of the following
events may happen:

1. Pα may output an incorrect degree-d polynomial.

2. Pα may be waiting indefinitely and may not terminate.

Proof: The first case may occur if s is d′-shared among the parties in P, where d′ > d. On the other
hand, second case may occur if the shares of the honest parties in P do not lie on a degree-d polynomial
and t corrupted parties do not send their shares to Pα. 2

Theorem 2: (i) Protocol Rec-Private can be used to reconstruct 2t-sharing of s which is shared among
the parties in P, where |P| = 4t + 1.

(ii) If P is any 3t + 1 sized subset of P, such that s is t-shared among the parties in P , then Rec-
Private(P , t, s, Pα) ensures successful Pα-Private-Reconstruction of s.

(iii) Let s be correctly d-shared among a set of n parties, except with probability 2−Ω(κ), where d < n−2t.
Then Rec-Private satisfies the Termination and Correctness properties mentioned in Theorem 1,
except with probability 2−Ω(κ).

Proof: Part (i) and (ii) follows from Theorem 7. Part (iii) follows from Theorem 8 and Theorem 7. 2.

APPENDIX B: Existing Protocols for Generating (t, 2t)-sharing

In [17], Damgard et. al. have proposed a protocol that generates (t, 2t)-sharing of ℓ secrets concurrently
in synchronous settings with n = 3t + 1 parties, conditioned on the event that all the parties correctly
follow the protocol steps; i.e., behave honestly. If at least one party behaves in a corrupted manner, then
the protocol of [17] fails to generate the (t, 2t)-sharing and terminates with a pair of parties, in which
at least one is corrupted. By allowing such susceptibility to the bad behavior of the corrupted parties,
their protocol involves a communication complexity of O(ℓn log |F|+poly(n, κ)) bits, where κ is the error
probability of the protocol. The protocol of [17] cannot be directly adapted to asynchronous settings.

Later in [4], the authors have generated (t, 2t)-sharing of a single secret in asynchronous settings from
t-sharing of 3t + 1 random values in asynchronous settings. Briefly, the authors have done the following:
Let [r0]t, . . . , [r

3t]t be the t-sharing of 3t + 1 random values. Let p(x) be the t-degree polynomial defined
by the t + 1 coefficients r0, . . . , rt. Let q(x) be the 2t-degree polynomial defined by the 2t + 1 coefficients
r0, rt+1 . . . , r3t. It is to be noted that both p(x) and q(x) have common constant term (which is r0). Now
the parties jointly perform some computation such that every party Pi receives p(i) and q(i) at the end.
This ensures that r0 is (t, 2t)-shared among the parties. To generate t-sharing of 3t + 1 random values,
the authors in [4] have used a protocol, which involves a private communication of O(n3 log |F|) bits and
A-Cast of O(n2 log(|F|)) bits. Thus the protocol of [4] requires a private communication of O(n3 log |F|)
bits and A-Cast of O(n2 log(|F|)) bits to generate (t, 2t) sharing of a single secret. The protocol of [4]
does not involve any error probability in correctness and termination.

APPENDIX C: Properties of Protocol d-Share-SS

Lemma 1: In protocol Single-Verifier-SS, if V is honest, then for all j = 1, . . . , n, the jth points on the row
polynomials, held by the honest parties in AgreeSet(V,β) (with |AgreeSet(V,β)| ≥ 3t + 1), define degree-t
column polynomial, with very high probability. Moreover, the points on blinding polynomial b(V,β)(y)
held by the honest parties in AgreeSet(V,β) will lie on a degree-t polynomial with very high probability.

Proof: The condition in the lemma will be true, without any error, when D is honest. Hence we consider
the case when D is corrupted. Let H(V,β) denote the set of honest parties in AgreeSet(V,β). First of all,
since V is honest, he A-casts random r(V,β) only after listening Received-From-D signal from all the
parties in ReceivedSet(V,β). Thus D has no knowledge of r(V,β), when he distributes the row polynomials
and points on blinding polynomial b(V,β)(y) to the (honest) parties in ReceivedSet(V,β). Let b(V,β)(y)
denote the minimum degree polynomial, defined by the points on b(V,β)(y), held by the honest parties in
H(V,β). Similarly, let p1(y), . . . , pn(y) denote the minimum degree polynomials, defined by the points on
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row polynomials, held by the parties in H(V,β). For convenience, we use an uniform notation for these

n + 1 polynomials. We denote them by h0(y), . . . , hn(y), respectively. Then the value e
(V,β)
i A-casted by

Pi is defined as e
(V,β)
i =

∑n
j=0

(
r(V,β)

)j
hj(i).

We now claim that with very high probability, h0(y), . . . , hn(y) have degree-t. On the contrary, if we
assume that at least one of the polynomials has degree more than t, then we can show that the minimum

degree polynomial, say hmin(y), defined by e
(V,β)
i ’s for Pi ∈ H(V,β) will be of degree more than t, with

very high probability. This will clearly imply E(V,β)(y) 6= hmin(y) and hence e
(V,β)
i 6= E(V,β)(i) for at

least one Pi ∈ H(V,β). This is a contradiction as e
(V,β)
i = E(V,β)(i) holds for every Pi ∈ Agree(V,β) and

H(V,β) ⊆ Agree(V,β). This shows that our claim is true.
So we proceed to prove that hmin(y) will be of degree more than t with very high probability, when

one of h0(y), . . . , hn(y) has degree more than t. For this, we show the following:

1. We first show that hdef (y) = Σn
j=0

(
r(V,β)

)j
hj(y) will of degree more than t with very high proba-

bility, if one of h0(y), . . . , hn(y) has degree more than t.

2. We then show that hmin(y) = hdef (y), implying that hmin(y) will be of degree more than t with
very high probability

To prove the first point, assume that at least one of h0(y), . . . , hn(y), has degree more than t. Let m
be such that hm(y) has maximal degree among h0(y), . . . , hn(y), and let tm be the degree of hm(y).
Then according to the condition, tm > t. Note that tm < |H(V,β)|. This is because given |H(V,β)| values
(recall that h0(y), . . . , hn(y) are defined by the points on the row polynomials, held by the honest parties
in H(V,β)), the maximum degree polynomial that can be defined using them is |H(V,β)| − 1. Now each

polynomial hi(y) can be written as hi(y) = ci
tm

ytm + ĥi(y) where ĥi(y) has degree lower than tm. Thus
the polynomial hdef (y) can be written as:

hdef (y) = [c0
tmytm + ĥ0(y)] + r(V,β)[c1

tmytm + ĥ1(y)] + . . . +
(
r(V,β)

)n

[cn
tmytm + ĥn(y)]

= ytm(c0
tm

+ . . . +
(
r(V,β)

)n

cn
tm

) + Σn
j=0

(
r(V,β)

)j

ĥj(y)

= ytmctm + Σn
j=0

(
r(V,β)

)j

ĥj(y)

By assumption cm
tm 6= 0. It implies that the vector (c0

tm , . . . , cn
tm) is not a complete 0 vector. Hence

ctm = c0
tm + . . .+

(
r(V,β)

)n
cn
tm will be zero with probability n

|E|−(β−1) ≈ 2−Ω(κ) (which is negligible), where

β ≤ t + 1 (see Lemma 2). This is because the vector (c0
tm

, . . . , cn
tm

) may be considered as the set of
coefficients of a n degree polynomial, say µ(x), and hence the value ctm is the value of µ(x) evaluated at
r(V,β). Now ctm will be zero if r(V,β) happens to be one of the n roots of µ(x) (since degree of µ(x) is
at most n). Now since r(V,β) is chosen randomly from E \ {r(V,1), . . . , r(V,β−1)} by V , independent of the
polynomials h0(y), . . . , hn(y), the probability that it is a root of µ(x) is n

|E|−(β−1) ≈ 2−Ω(κ). So with very

high probability ctm , which is the tthm coefficient of hdef (y) is non-zero. This implies that hdef (y) will be

of degree at least tm > t. Notice that each e
(V,β)
i (A-casted by Pi), corresponding to every Pi ∈ H(V,β)

will lie on hdef (y).
Now we will show that hmin(y) = hdef (y) and thus hmin(y) has degree at least tm which is greater

than t. So consider the difference polynomial dp(y) = hdef (y)−hmin(y). Clearly, dp(y) = 0, for all y = i,
where Pi ∈ H(V,β). Thus dp(y) will have at least |H(V,β)| roots. On the other hand, maximum degree of
dp(y) could be tm, which is at most |H(V,β)| − 1. These two facts together imply that dp(y) is the zero
polynomial, implying that hdef (y) = hmin(y) and thus hmin(y) has degree tm > t. 2

Lemma 2: In Single-Verifier-SS, V will A-Cast (r(V,β), ReceivedSet(V,β)) at most t + 1 times. Hence the
maximum value of β is t + 1. Moreover, each ReceivedSet(V,β) will be unique. .

Proof: First note that ReceivedSet(V,1) ≥ 3t + 1. In the worst case ReceivedSet(V,1) may be exactly
equal to 3t + 1 and potentially t honest parties may not be present in it. But for every βth (β >
1) receipt of Received-From-D signal, from a new party Pα 6∈ ReceivedSet(V,β−1), V will construct
ReceivedSet(V,β) = ReceivedSet(V,β−1) ∪ {Pα}. Since n = 4t + 1, V will A-Cast (r(V,β), ReceivedSet(V,β))
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at most t + 1 times. Hence the maximum value of β can be t + 1. The uniqueness of ReceivedSet(V,β)’s
follows from the fact that ReceivedSet(V,β−1) ⊂ ReceivedSet(V,β). 2

Lemma 7: If D is honest, then the row polynomials held by honest parties in CORE define degree-
t column polynomials. If D is corrupted, then the same holds except with negligible error probability.
Moreover there can not be another set CORE containing 3t + 1 parties such that the row polynomials
held by honest parties in CORE define a different set of degree-t column polynomials..

Proof: If D is honest then the lemma is trivially true. We now prove the lemma for the case of a
corrupted D. By the construction of CORE, every party in CORE is guaranteed to be present in
AgreeSet of at least one honest verifier. By Lemma 5, corresponding to an honest verifier Pα, the
row polynomials held by the honest parties in AgreeSetPα define t-degree column polynomials, say
p1(y), . . . , pn(y), with very high probability. Moreover, by Lemma 6, the row polynomials held by the
honest parties in the union of AgreeSetPα ’s, corresponding to all honest Pα’s, also define p1(y), . . . , pn(y)
with very high probability. This implies that the values held by the honest parties in CORE, define
p1(y), . . . , pn(y).

Now we prove the second part of the lemma. Assume that there is another set, CORE containing
3t + 1 parties such that the row polynomials held by honest parties in CORE define a different set of
degree-t column polynomials, say p1(y), . . . , pn(y). Now since both CORE and CORE are of size at least
3t + 1, they have 2t + 1 parties in common of which t + 1 are honest. This implies that for i = 1, . . . , n
polynomial pi(y) and pi(y) has t+1 points in common. As both pi(y) and pi(y) are of degree t, the above
fact implies that pi(y) = pi(y). Hence pi(y) = pi(y) for i = 1, . . . , n. Hence the lemma. 2

APPENDIX D: Protocol d-Share-MS

Protocol Distr-MS(D,P, S = (s1, . . . , sℓ), d)
Code for D:

1. Select ℓ random bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) of degree d and t in x and y respectively, such that
F l(0, 0) = sl for l = 1, . . . , ℓ. Let f l

i (x) = F l(x, i), pl
i(y) = F l(i, y) for 0 ≤ i ≤ n and l = 1, . . . , ℓ.

2. Select (t + 1)n degree-t, random, distinct blinding polynomials over F, denoted by b(Pj ,1)(y), . . . , b(Pj,t+1)(y) for
j = 1, . . . , n.

3. Send the following to party Pi: (i) f l
i (x) for l = 1, . . . , ℓ; (ii) b(Pj ,1)(i), . . . , b(Pj ,t+1)(i) for j = 1, . . . , n.
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Protocol Single-Verifier-MS(V,P, S, d)
i. Code for Pi:

1. Wait to receive (a) f l
i (x) for l = 1, . . . , ℓ and (b) b(Pj ,1)(i), . . . , b(Pj ,t+1)(i) for j = 1, . . . , n from D.

2. After receiving, check whether f l
i (x) is a degree-d polynomial for all l = 1, . . . , ℓ. If yes, then send a Received-From-D

signal to V .

ii. Code for V :

1. Wait to obtain Received-From-D signal from at least 3t + 1 parties. Put the identities of the 3t + 1 parties in a set
ReceivedSet(V,1). Select a random r(V,1) ∈ E and A-cast (r(V,1), ReceivedSet(V,1)).

2. For βth (β > 1) receipt of Received-From-D signal from a new party Pα 6∈ ReceivedSet(V,β−1), construct
ReceivedSet(V,β) = ReceivedSet(V,β−1) ∪ {Pα}, select a random r(V,β) ∈ E \ {r(V,1), . . . , r(V,β−1)} and A-cast
(r(V,β), ReceivedSet(V,β)).

iii. Code for D:

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V , then A-cast the polynomial
E(V,β)(y) = LinCombPoly(E ,R). Here E = {b(V,β)(y), p1

1(y), . . . , p1
n(y), . . . , pℓ

1(y), . . . , pℓ
n(y)} and

R = (1, r(V,β),
“
r(V,β)

”2

, . . . ,
“
r(V,β)

”ℓn

).

iv. Code for Pi:

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V , then do the following:

(a) Check if Pi ∈ ReceivedSet(V,β). If yes, then A-cast e
(V,β)
i = LinCombValue(∆i, R), where ∆i =

{b(V,β)(i), f1
i (1), . . . , f1

i (n), . . . , f ℓ
i (1), . . . , f ℓ

i (n)} and R = (1, r(V,β),
“
r(V,β)

”2

, . . . ,
“
r(V,β)

”ℓn

).

2. Say that party Pj agrees with D with respect to (r(V,β), ReceivedSet(V,β)) if all the following holds:

(a) E(V,β)(y) is a degree-t polynomial, (b) Pj ∈ ReceivedSet(V,β) and (c) e
(V,β)
j = E(V,β)(j)

where e
(V,β)
j , E(V,β)(y) and (r(V,β), ReceivedSet(V,β)) are received from the A-casts of Pj , D and V respectively.

3. With respect to (r(V,β), ReceivedSet(V,β)), when there are 3t + 1 Pj ’s who agree with D, add all of them in a set
AgreeSet(V,β).

Protocol Ver-Agree-on-CORE-MS(D,P, S, d)
Here, in step i(1), Pi invokes Single-Verifier-MS(Pα,P , S, d) instead of Single-Verifier-SS. The rest of the protocol is same
as in Protocol Ver-Agree-on-CORE-SS.

Protocol Gen-d-Share-MS(D,P, S = (s1, . . . , sℓ), d)

For j = 1, . . . , n, Pj-Private-Reconstruction of p1
j(0), . . . , p

ℓ
j(0): Code for Pi:

1. If Pi ∈ CORE, participate in Rec-Private(CORE, t, pl
j(0), Pj) for Pj-Private-Reconstruction of pl

j(0) for l = 1, . . . , ℓ
and j = 1, . . . , n.

2. As a receiver participate in Rec-Private(CORE, t, pl
i(0), Pi) for Pi-Private-Reconstruction of pl

i(0) for l = 1, . . . , ℓ.

3. Output f l
0(i) = pl

i(0) as the ith share of secret sl and terminate. For l = 1, . . . , ℓ, sl is now d-shared using polynomial
f l
0(x).

Protocol d-Share-MS(D,P, S = {s1, . . . , sℓ}, d)
i. Code for D:

1. Execute Distr-MS(D,P , S, d).

ii. Code for Pi:

1. Participate in Ver-Agree-on-CORE-MS(D,P , S, d).

2. Upon termination of Ver-Agree-on-CORE-MS(D,P , S, d), participate in Gen-d-Share-MS(D,P , S, d).

Theorem 4: Protocol d-Share-MS satisfies Termination, Correctness and Secrecy conditions of
Property 1. The protocol privately communicates O((ℓn2 + n3) log |F|) bits and A-cast O(n3κ) bits.

Proof: The proof of termination, correctness and secrecy follows using similar arguments as in
Theorem 3. We now do the communication complexity analysis of d-Share-MS.

In Distr-MS, D privately communicates O((ℓnd+n3) log(F)) bits. Since t ≤ d ≤ 2t, d = O(n). In Ver-
Agree-on-CORE-MS, the parties A-Cast O(n3 log(|F|)+n2κ) bits. In Gen-d-Share-MS, the parties privately
communicates O(ℓn2 log |F|) bits. As log(|F|) ≤ κ, overall the protocol involves a private communication
of O((ℓn2 + n3) log |F|) bits and A-cast O(n3κ) bits. 2
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APPENDIX E: Properties of Protocol (t,2t)-Share-MS

Theorem 5: Protocol (t,2t)-Share-MS achieves the following properties:

1. Termination: (a) If D is honest, then every honest party will eventually terminate (t,2t)-Share-
MS. (b) If D is corrupted and some honest party terminates (t,2t)-Share-MS, then all the honest
parties will also terminate the protocol, except with probability 2−Ω(κ).

2. Correctness: (a) If D is honest, then all the ℓ secrets are correctly (t, 2t)-shared among the
parties in P. (b) If D is corrupted and the honest parties terminate (t,2t)-Share-MS, then there are
ℓ secrets, that are correctly (t, 2t)-shared among the parties in P, except with probability 2−Ω(κ).

3. Secrecy: At will have no information about the secrets of an honest D.

4. Communication Complexity: The protocol privately communicates O((ℓn2+n3) log |F|) bits and
A-cast O(n3κ) bits.

Proof: The termination, correctness and communication complexity follows from Theorem
4. We now prove the secrecy property. We have to consider the case when D is honest. We show that the
secrets s1, . . . , sℓ are information theoretically secure. The argument for the security of sl is as follows.
Let sl be t-shared and 2t-shared using polynomial f l

0(x) and gl
0(x) of degree t and 2t respectively. Then

from the secrecy proof of Theorem 4 and Theorem 3, At will have no information about one and t + 1
coefficients of f l

0(x) and gl
0(x) respectively. This is because At knows t distinct points on gl

0(x) and
f1
0 (x) during the execution of d-Share-MS. But, in (t,2t)-Share-MS, γl(x) = gl

0(x) − f l
0(x) is privately

reconstructed towards each party. By this At will know the higher order t coefficients of gl
0(x) as the

higher order t coefficients of γl(x) are same as the higher order t coefficients of gl
0(x). So, now At has no

information about one coefficient of both f l
0(x) and gl

0(x), namely their constant terms. But notice that
γl(0) = gl(0)− f l(0) = 0 for honest D. The remaining information that is obtained from γl(x) is linearly
dependent on the information that At possesses already. So sl remains information theoretically secure.
2

APPENDIX F: Preparation Phase, Input Phase and Computation Phase

lemma 10: Each honest party will eventually terminate PreparationPhase, except with probability 2−Ω(κ).
The protocol correctly generates (t, 2t)-sharing of cM + cR secret random values, except with error proba-
bility of 2−Ω(κ) by privately communicating O(((cM + cR)n2 + n4) log |F|) bits, A-Casting O(n4κ) bits and
executing one invocation to ACS. Moreover, At will have no information about the random values.

Proof: The termination and correctness property follow from the termination and correctness property
of (t,2t)-Share-MS. The secrecy follows from the secrecy of (t,2t)-Share-MS and randomness ex-
traction property of Vandermonde matrix [36, 17, 4]. We now prove the communication complexity. In
the protocol, each party executes an instance of (t,2t)-Share-MS, by acting as a dealer, to (t, 2t) share
L = cM+cR

n−2t
secrets. So substituting ℓ = L in Theorem 5, the total private communication of the protocol

is O
((

Ln3 + n4
)
log(|F|)

)
bits. Since L = cM+cR

n−2t
and n− 2t = Θ(n), the total private communication of

the protocol will be O(((cM + cR)n2 + n4) log |F|) bits. Moreover, the protocol will A-Cast O(n4κ) bits.
2
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Protocol InputPhase(P)

Secret Sharing: Code for Pi

1. Having input Xi, invoke d-Share-MS(Pi,P ,Xi, t), as a dealer, to generate t-sharing of Xi.

2. For every j = 1, . . . , n, participate in d-Share-MS(Pj ,P , Xj , t).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon terminating d-Share-MS(Pj ,P , Xj , t) with dealer Pj , add Pj in Ci.

2. Participate in ACS with the accumulative set Ci as input.

Output Generation: Code for Pi:

1. Waits until ACS completes with output C containing n− t parties. Output the the shares corresponding to t-sharing
of the inputs of the parties in C and terminate.

Protocol ComputationPhase(P)

For every gate in the circuit: Code for Pi

Wait until the ith share of each of the inputs of the gate is available. Now depending on the type of the gate, proceed as
follows:

1. Input Gate: [s]t = IGate([s]t): There is nothing to be done here.

2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute zi = LGate(xi, yi, . . .), the ith share of z = LGate(x, y, . . .),
where xi, yi, . . . denotes ith share of x, y, . . ..

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, [r](t,2t)):

(a) Let [r](t,2t) be the random (t, 2t)-sharing associated with the multiplication gate. Also let (ϕ1, . . . , ϕn) and
(φ1, . . . , φn) denote the t-sharing and 2t-sharing of r, respectively.

(b) Compute Λi = xi.yi − φi the ith share of Λ which is now 2t-shared.

(c) Participate in Rec-Private(P , 2t, Λ, Pj) for Pj-Private-Reconstruction of Λ for all j = 1, . . . , n.

(d) Participate in Rec-Private(P , 2t, Λ, Pi) as a receiver to reconstruct Λ. Compute zi = Λ − ϕi, the ith share of
z.

4. Random Gate: [R]t = RGate([r](t,2t)): Let [r](t,2t) be the random (t, 2t)-sharing associated with the random gate.
Also let (ϕ1, . . . , ϕn) denote the t-sharing of r. Assign Ri = ϕi as the ith share of R(= r).

5. Output Gate: x = OGate([x]t): Participate in Rec-Private(P , t, x, Pj) for every Pj ∈ P . Participate in Rec-
Private(P , t, x, Pi) as a receiver to reconstruct x. Output x.
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