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Abstract

In this paper, we present new, general constructions of lossy encryption schemes. Applying the
results of [Hof08] and [BHY09], we obtain general cryptosystems secure against a Selective Opening
Adversary (SOA). Although it was recognized almost twenty years ago that SOA security was impor-
tant, it was not until the recent breakthrough works of Hofheinz [Hof08] and Bellare, Hofheinz and
Yilek [BHY09] that any progress was made on this fundamental problem.

The Selective Opening problem is as follows: suppose an adversary receives n commitments (or
encryptions) of (possibly) correlated messages, and now the adversary can choose n/2 of the messages,
and receive decommitments (or decryptions and the randomness used to encrypt them). Do the
unopened commitments (encryptions) remain secure? A protocol which achieves this type of security
is called secure against a Selective Opening Adversary (SOA). This question arises naturally in the
context of Byzantine Agreement and Secure Multiparty Computation, where an active adversary is
able to eavesdrop on all the wires, and then choose a subset of players to corrupt. Unfortunately, the
traditional definitions of security (IND-CPA, IND-CCA) do not guarantee security in this setting. In
this paper:

• We formally define re-randomizable encryption and show that every re-randomizable encryption
scheme gives rise to efficient encryptions secure against a selective opening adversary. (Very
informally, an encryption is re-randomizable, if given any ciphertext, there is an efficient way to
map it to an almost uniform re-encryption of the same underlying message).

• We formally define re-randomizable one-way functions and show that every re-randomizable
one-way function family gives rise to efficient commitments secure against a Selective Opening
Adversary.

• Applying our constructions to the known cryptosystems of El-Gamal, Paillier, and Goldwasser
and Micali, we obtain selective opening secure commitments and encryptions from the Deci-
sional Diffie-Hellman (DDH), Decisional Composite Residuosity (DCR) and Quadratic Residu-
osity (QR) assumptions, that are either simpler or more efficient than existing constructions of
Bellare, Hofheinz and Yilek.

• We show that Statistically-Hiding 2-round Oblivious Transfer (OT) implies Lossy Encryption.
Combining this with known results immediately gives the following new results

– Private Information Retrieval implies Lossy Encryption, and hence selective opening secure
encryption.

– Homomorphic Encryption implies Lossy Encryption, and hence selective opening secure
encryption.

• Applying our general results to the Paillier Cryptosystem we demonstrate the first cryptosystem
to achieve Semantic Selective Opening security from the DCR assumption.

• We define the notion of indistinguishability-based adaptive chosen ciphertext security (CCA-2)
in the selective opening setting, and describe the first encryption scheme which is CCA-2 secure
and simultaneously SOA-secure, relative to this definition.

∗E-mail: bretth@math.ucla.edu
†E-mail: rafail@cs.ucla.edu
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• We define the notion of simulation-based adaptive chosen ciphertext security (CCA-2) in the
selective opening setting, and describe the first encryption scheme which is CCA-2 secure and
simultaneously SOA-secure, relative to this definition.

Keywords: Public Key Encryption, Commitment, Selective Opening, Homomorphic En-
cryption, Chosen Ciphertext Security, Lossy Encryption

1 Introduction

In Byzantine agreement, and more generally in secure multiparty computation, it is often assumed that
all parties are connected to each other via private channels. In practice, these private channels are
implemented using a public-key cryptosystem. An adaptive adversary in an MPC setting, however, has
very different powers than an adversary in an IND-CPA or IND-CCA game. In particular, an adaptive
MPC adversary may view all the encryptions sent in a given round, and then choose to corrupt a certain
fraction of the players, thus revealing the decryptions of those players’ messages and the randomness used
to encrypt them. A natural question is whether the messages sent from the uncorrupted players remain
secure. If the messages (and randomness) of all the players are chosen independently, then security in this
setting follows immediately from the IND-CPA security of the underlying encryption. If, however, the
messages are not chosen independently, the security does not immediately follow from the IND-CPA (or
even IND-CCA) security of the underlying scheme. In fact, although this problem was first investigated
over twenty years ago, it remains an open question whether IND-CPA (or IND-CCA) security implies
this Selective Opening security.

A similar question may be asked regarded in terms of commitments as well. Suppose an adversary is
allowed to see commitments to a number of related messages, the adversary may then choose a subset of
the commitments for the challenger to decommit. Does this reveal any information about the unopened
commitments? This question has applications to concurrent zero-knowledge proofs.

2 Previous Work

There have been many attempts to design encryption protocols that can be used to implement secure
multiparty computation against an adaptive adversary. The first protocols by Beaver and Haber [BH92]
required interaction between the sender and receiver, required erasure and were fairly inefficient. The
first non-interactive protocol was given by Canetti, Feige, Goldreich and Naor in [CFGN96]. In [CFGN96]
the authors defined a new primitive called Non-Committing Encryption, and gave an example of such a
scheme based on the RSA assumption. In [Bea97], Beaver extended the work of [CFGN96], and created
adaptively secure key exchange under the Diffie-Hellman assumption. In subsequent work Damg̊ard and
Nielsen improved the efficiency of the schemes of Canetti et al. and Beaver, they were also able to obtain
Non-Committing Encryption based on one-way trapdoor functions with invertible sampling. In [CHK05],
Canetti, Halevi and Katz presented a Non-Committing encryption protocols with evolving keys.

In [CDNO97], Canetti, Dwork, Naor and Ostrovsky extended the notion of Non-Committing Encryp-
tion to a new protocol which they called Deniable Encryption. In Non-Committing Encryption schemes
there is a simulator, which can generate non-committing ciphertexts, and later open them to any desired
message, while in Deniable Encryption, valid encryptions generated by the sender and receiver can later
be opened to any desired message. The power of this primitive made it relatively difficult to realize, and
Canetti et al. were only able to obtain modest examples of Deniable Encryption and left it as an open
question whether fully deniable schemes could be created.

The notions of security against an adaptive adversary can also be applied to commitments. In fact,
according to [DNRS03] the necessity of adaptively-secure commitments was realized by 1985. Despite
its utility, until recently there have been relatively few papers that directly address the question of
commitments secure against a Selective Opening Adversary (SOA). The work of Dwork, Naor, Reingold
and Stockmeyer [DNRS03] was the first to explicitly address the problem. In [DNRS03], Dwork et al.
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showed that non-interactive SOA-secure commitments can be used to create a 3-round zero-knowledge
proof system for NP with negligible soundness error, and they gave constructions of a weak form of
SOA-secure commitments, but leave open the question of whether general SOA-secure commitments
exist.

The question of SOA-secure commitments was put on firm foundations by Hofheinz [Hof08] and Bel-
lare, Hofheinz and Yilek in [BHY09]. In [BHY09], Bellare et al. distinguished between simulation-based
and indistinguishability-based definitions of security, and gave a number of constructions and black-box
separations. In particular, Hofheinz showed that in the simulation-based setting, non-interactive SOA-
secure commitments cannot be realized in a black-box manner from standard cryptographic assumptions,
but if interaction is allowed, they can be created from one-way permutations in a non-black-box manner.
In the indistinguishability-based setting, they showed that any statistically-hiding scheme achieves this
level of security, but that there is a black-box separation between perfectly-binding SOA-secure commit-
ments and most standard cryptographic assumptions. Our results in the Selective Opening setting build
on the breakthrough results of [BHY09].

3 Our Contributions

In this paper, we primarily consider encryptions secure against a selective opening adversary. In par-
ticular, we formalize the notion of Re-Randomizable Public-Key Encryption and we show that re-
randomizable encryption implies Lossy Encryption as defined in [PVW08], and expanded in [BHY09].
Combining this with the recent result of Bellare, Hofheinz and Yilek [BHY09] showing that Lossy Encryp-
tion is IND-SO-ENC secure, we have an efficient construction of IND-SO-ENC secure encryption from
any re-randomizable encryption (which generalizes and extends previous results). Furthermore, these
constructions retain the efficiency of the underlying re-randomizable encryption protocol.

Applying our results to the Paillier Cryptosystem, we obtain a cryptosystem which attains a strong,
simulation-based form of semantic security under selective openings (SEM-SO-ENC security). This is the
first construction of this type from the Decisional Composite Residuosity (DCR) assumption, and the
most efficient known construction of SEM-SO-ENC secure encryption.

We go on to show that statistically-hiding
(
2
1

)
-OT implies lossy encryption. Combining this with the

results of [PVW08], we recognize that this “new” primitive, lossy encryption, is essentially just a different
way to view the well known primitive statistically-hiding

(
2
1

)
-OT. Applying the reductions in [BHY09] to

this result, yields constructions of SOA secure encryption from both PIR and Homomorphic Encryption.
These results show that the primitives Lossy Encryption and Selective Opening Secure Encryption,

which are fairly new and not very well-studied primitives are in fact implied by many well-known primi-
tives i.e. Re-randomizable encryption, PIR, Homomorphic Encryption and statistically-hiding

(
2
1

)
-OT.

Prior to this work the only known general1 constructions of lossy encryption were from Lossy Trapdoor
Functions. Our results show that they are implied by many seemingly weaker primitives. The full
relationship can be seen below.

Homomorphic Encryption PIR OT Lossy Encryption IND-SO-ENC

Re-randomizable Encryption

Solid arrows represent implications shown in this paper

1i.e. not based on specific number-theoretic assumptions
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Finally, we present a definition of security against a chosen ciphertext (CCA-2) attack in the selective
opening setting (in both the indistinguishability and simulation-based models) and create the first public-
key cryptosystems that satisfy these strengthened forms of security. We note that our constructions are
completely orthogonal to the recent work of Prabhakaran and Rosulek [PR07] creating RCCA Encryption.
In their work, they create encryptions which satisfy a version of security against a chosen-ciphertext
attack, while remaining re-randomizable. In this work, we use re-randomizable (CPA secure) encryption
to create Selective Opening secure encryption, and then use Selective Opening secure encryption (and
other tools) to create a cryptosystem that retains its Selective Opening security against an adaptive
chosen ciphertext attack.

4 Notation

If f : X → Y is a function, for any Z ⊂ X, we let f(Z) = {f(x) : x ∈ Z}.
If A is a PPT machine, then we use a ← A to denote running the machine A and obtaining an

output, where a is distributed according to the internal randomness of A. For a PPT machine A, we use
coins(A) to denote the distribution of the internal randomness of A. So the distributions {a ← A} and
{r ← coins(A) : a = A(r)} are identical. If R is a set, we use r ← R to denote sampling uniformly from
R.

If X and Y are families of distributions indexed by a security parameter λ, we use X ≈s Y to mean
the distributions X and Y are statistically close, i.e. for all polynomials p and sufficiently large λ we have∑

x

|Pr[X = x]− Pr[Y = x]| < 1
p(λ)

,

We use X ≈c Y to mean X and Y are computationally close, i.e. for all PPT adversaries A, for all
polynomials p, then for all sufficiently large λ,∣∣Pr[AX = 1]− Pr[AY = 1]

∣∣ < 1
p(λ)

.

5 Re-randomizable Encryption

In many cryptosystems, given a ciphertext c, and a public-key it is possible to re-randomize the ciphertext
to a new ciphertext c′, such that c and c′ are valid encryptions of the same plaintext, but they are
statistically independent. Formally, we call a Public Key Cryptosystem given by algorithms (G,E,D)
re-randomizable (RRPKC) if

• (G,E,D) is semantically-secure in the standard sense (IND-CPA).

• There is an efficient function ReRand such that if r′ is chosen uniformly from coins(ReRand), and
r0 are chosen uniformly from coins(E), then the distributions

{r0 ← coins(E) : E(pk,m, r0)} ≈s {r′ ← coins(ReRand) : ReRand(E(pk,m, r1), r′)}

for all public keys pk and messages m, and randomness r1.

We note that this definition of re-randomizable encryption provides a statistical re-randomization.
It is possible to define re-randomizable encryption which satisfies perfect re-randomization (stronger) or
computational re-randomization (weaker). Such definitions already exist in the literature (see for example
[PR07],[Gro04],[JJS04],[CKN03]). Our constructions require statistical re-randomization, and do not go
through under a computational re-randomization assumption.
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There are many known examples of re-randomizable encryption. For example, if (G,E,D) is ho-
momorphic, i.e. E(pk,m0, r0) · E(pk,m1, r1) = E(pk,m0 + m1, r

∗), we can re-randomize by taking
ReRand(pk, c, r′) = c · E(pk, 0, r′). For all known homomorphic cryptosystems, (e.g. El-Gamal, Paillier,
Damg̊ard-Jurik, Goldwasser-Micali) we obtain re-randomizable encryption with this definition of ReRand.

We note that since re-randomization does not require any kind of group structure on the plaintext
space, or any method for combining ciphertexts, it appears to be a weaker primitive than homomorphic
encryption. It is not, however, implied by homomorphic encryption. See Appendix B for a more thorough
discussion of the relationship between these primitives.

6 Selective Opening Secure Encryption

6.1 Preliminaries

Here we present a definition of encryption secure against a Selective Opening Adversary (this was origi-
nally formalized in [BHY09]).

We define two games, a real and an ideal game which should be indistinguishable to any efficient
adversary. The key point to notice is that the adversary receives both the messages and the randomness
for his selection. This mirrors the fact that an adaptive MPC adversary learns the entire history of the
corrupted players (i.e. there are no secure erasures). If the adversary receives only the messages this
would reduce to standard CPA security.

Definition 1. (Indistinguishability under selective openings/IND-SO-ENC).
Let (G,E,D) be a Public Key Cryptosystem (PKC), we say that (G,E,D) is indistinguishable un-

der selective openings (IND-SO-ENC secure) if for every PPT message distribution M and every PPT
adversary A, we have that∣∣∣Pr

[
Aind-so-real = 1

]
− Pr

[
Aind-so-ideal = 1

]∣∣∣ < ν

for some negligible function ν, and where the games ind-so-real and ind-so-ideal are defined as follows

IND-SO-ENC (Real)

• (m1, . . . ,mn)←M

• r1, . . . , rn ← coins(E)

• I ← A((E(m1, ri), . . . , E(mn, rn))

• b← A(((mi, ri))i∈I , (m1, . . . ,mn))

IND-SO-ENC (Ideal)

• (m1, . . . ,mn)←M

• r1, . . . , rn ← coins(E)

• I ← A((E(m1, ri), . . . , E(mn, rn))

• (m′1, . . . ,m
′
n)←M |MI

• b← A((mi, ri))i∈I , (m′1, . . . ,m
′
n))

More explicitly, in the real game,

• The challenger samples messages (m1, . . . ,mn)←M , from the joint message distribution.

• The challenger generates randomness r1, . . . , rn ← coins(E).

• The challenger sends (E(m1, r1), . . . , E(mn, rn) to A.

• The adversary A responds with a subset I ⊂ {1, . . . , n}, with |I| = n/2.

• The challenger reveals both mi and ri for i ∈ I.
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• The challenger sends (m1, . . . ,mn) to the adversary.

• The adversary outputs a bit b.

In the ideal game,

• The challenger samples messages (m1, . . . ,mn)←M , from the joint message distribution.

• The challenger generates randomness r1, . . . , rn ← coins(E).

• The challenger sends (E(m1, r1), . . . , E(mn, rn)) to A.

• The adversary A responds with a subset I ⊂ {1, . . . , n}, with |I| = n/2.

• The challenger reveals both mi and ri for i ∈ I.

• The challenger samples a new vector m′ ← M |MI , from M conditioned on the fact that mi = m′i
for i ∈ I, and sends M ′ to A.

• The adversary outputs a bit b.

We emphasize that the challenger reveals both the messages mi and the randomness ri for the selected
messages. If the challenger only revealed the messages mi, this type of security would follow immediately
from IND-CPA security.

7 Lossy Encryption

In [PVW08], Peikert, Vaikuntanathan and Waters defined Dual-Mode Encryption, a type of cryptosystem
with two types public-keys, injective keys on which the cryptosystem behaves normally and “lossy” or
“messy” keys on which the system loses information about the plaintext. In particular they require that
the encryptions of any two plaintexts under a lossy key yield distributions that are statistically close, yet
injective and lossy keys remain computationally indistinguishable.

In [BHY09] Bellare, Hofheinz and Yilek define Lossy Encryption, expanding on the definitions of
Dual-Mode Encryption in [PVW08], and Meaningful/Meaningless Encryption in [KN08]. At a high level,
a ‘lossy’ (or ‘messy’ in the terminology of [PVW08]) cryptosystem is one which has two types of public
keys which specify two different modes of operation. In the normal mode, encryption is injective, while
in the lossy (or ‘messy’) mode, the ciphertexts generated by the encryption algorithm are independent
of the plaintext. We also require that no efficient adversary can distinguish normal keys from lossy keys.
In [BHY09], they also require openability, which basically allows the decryptor to decrypt a ciphertext
generated from a lossy key to any plaintext.

Definition 2. Formally, an lossy public-key encryption scheme is a tuple (Ginj, Glossy, E,D) of polynomial-
time algorithms such that

• Ginj(1λ) outputs keys (pk, sk), keys generated by Ginj are called injective keys.

• Glossy(1λ) outputs keys (pklossy, sklossy), keys generated by Glossy are called lossy keys.

Additionally, the algorithms must satisfy the following properties:

1. Correctness on injective keys. For all x ∈ X,

Pr
[
(pk, sk)← Ginj(1λ); r ← coins(E) : D(sk,E(pk, x, r)) = x

]
= 1.
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2. Indistinguishability of keys. This basically says that the the pk in lossy mode and injective mode
are computationally indistinguishable. Specifically, if proj : (pk, sk) 7→ pk is the projection map,
then the two distributions

{proj(Ginj(1λ))} ≈c {proj(Glossy(1λ))}

3. Lossiness of lossy keys. If (pklossy, sklossy) ← Glossy, then for all x0, x1 ∈ X, the two distributions
E(pklossy, x0, R) and E(pklossy, x1, R) are statistically close, i.e. the statistical distance is negligible
in λ.

4. Openability. If (pklossy, sklossy) ← Glossy, and r ← coins(E), then for all x0, x1 ∈ X with all but
negligible probability, there exists an r′ ∈ coins(E), such that E(pklossy, x0, r) = E(pklossy, x1, r

′).
While this is a statistical property that follows immediately from property (3), it is convenient,
to state it explicitly, and to rephrase it in terms of an algorithm. We require that with all but
negligible probability there is an (unbounded) algorithm opener that can open a lossy ciphertext to
any plaintext.

Although the Openability property is implied by property (3), it is useful to include it explicitly
because it simplifies the exposition somewhat. It also generalizes nicely, and in [BHY09] they show that
if the algorithm opener is efficient, then the encryption scheme is actually SEM-SO-ENC secure (instead
of only IND-SO-ENC).

We do not explicitly assume, that the scheme is IND-CPA secure, and in fact, the semantic security
of the scheme follows from the indistinguishability of keys and the lossiness of the lossy keys, since for
any x0, x1 ∈ X,

E(π(Ginj(1λ)), x0, R) ≈c E(π(Glossy(1λ)), x0, R)) ≈s E(π(Glossy(1λ)), x1, R) ≈c E(π(Ginj(1λ)), x1, R).

In [BHY09] it was shown that Lossy Encryption can be constructed in a straightforward manner from
Lossy-Trapdoor Functions, in fact, they simply observe that the CPA-secure system given in [PW08] is
a Lossy Encryption.

Next, they showed

Theorem 1. Lossy Encryption is IND-SO-ENC secure.

Proof. This is proven in [BHY09].
For a review of the proof, see the proof of Theorem 5 in Appendix A.2.

Thus to create IND-SO-ENC secure encryptions, it suffices to construct Lossy Encryption.

7.1 Re-randomizable Encryption Implies Lossy Encryption

Our first result gives a simple and efficient method for creating Lossy Encryption from Re-randomizable
encryption.
Let (G,E,D) be a re-randomizable public-key cryptosystem, and we create Lossy Encryption (Ḡinj, Ḡlossy, Ē, D̄)
as follows:

• Ḡinj(1λ) runs Ḡ(1λ), generating a pair (pk, sk). Then Ginj picks r0, r1 ← coins(E), and generates
e0 = E(pk, 0, r0), e1 = E(pk, 1, r1). Ḡinj returns (p̄k, s̄k) = ((pk, e0, e1), sk).

• Ḡlossy(1λ) runs Ḡ(1λ), generating a pair (pk, sk). Then Glossy picks r0, r1 ← coins(E), and generates
e0 = E(pk, 0, r0), e1 = E(pk, 0, r1). Ḡlossy returns (p̄k, s̄k) = ((pk, e0, e1), sk).

• Ē(p̄k, b, r′) = ReRand(pk, eb, r′) for b ∈ {0, 1}.

• D̄(s̄k, c), simply outputs D(sk, c).
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To see that this is a lossy encryption we notice that under an injective key it is clearly injective by
the correctness of the decryption algorithm D, while in lossy mode, it will be statistically lossy by the
properties of the ReRand function. The proof that this Lossy Encryption is straightforward and we check
the details here.

1. Correctness on injective keys. This follows immediately from the correctness of E.

2. Indistinguishability of keys. This follows immediately from the IND-CPA security of (G,E,D).

3. Lossiness of lossy keys. Notice that under a lossy public-key p̄k, e0 and e1 are both encryptions of
zero, so Ē(p̄k, b, r) will also be an encryption of zero for b ∈ {0, 1}. By the properties of ReRand, we
have that the distributions {Ē(p̄k, 0, r)} and {Ē(p̄k, 1, r)} are statistically close, which is exactly
what is required for a key to be “lossy”.

4. Openability. Under a lossy public-key, Ē(p̄k, b, r′) = ReRand(E(pk, 0, rb), r′). Since r′ is chosen uni-
formly from coins(ReRand), the properties of ReRand guarantee that the distributions ReRand(E(pk, 0, rb), r′)
and ReRand(E(pk, 0, r1−b, r′′)) are statistically close. That there exists an r′′ such that ReRand(E(pk, 0, rb), r′) =
ReRand(E(pk, 0, r1−b), r′′) then follows from lemma 1.

Lemma 1. If R is a random variable, and f : R→ X, g : R→ Y and∑
z∈X∪Y

Pr [r ← R : f(r) = z]− Pr [r ← R : g(r) = z] = ν,

then
Pr
[
r ← R :6 ∃r′ ∈ R such that f(r) = g(r′)

]
< ν.

Proof. It suffices to notice that

ν =
∑

z∈X∪Y
Pr [r ← R : f(r) = z]− Pr [r ← R : g(r) = z]

≥
∑

z∈X\Y

Pr [r ← R : f(r) = z]− Pr [r ← R : g(r) = z]

= Pr
[
r ← R :6 ∃r′ ∈ R such that f(r) = g(r′)

]

It is clear that the same construction also gives a perfectly-binding SOA secure commitment scheme
(with trusted setup). If our goal is only to construct SOA secure commitments, we do not need Re-
randomizable encryption, and a weaker primitive suffices. In Appendix A, we define Re-randomizable
One-Way Functions and show that these imply SOA secure commitments. While both these constructions
require trusted setup, in a sense that is inevitable since it was shown in [BHY09] that perfectly-binding
SOA secure commitments without trusted setup cannot be created in a black-box manner from any
primitive with a game-based definition of security.

8 Oblivious Transfer

We briefly recall the definition of honest-receiver two round statistically-hiding
(
2
1

)
-OT.

oblivious transfer is a protocol between two parties, a sender Sen and a receiver Rec = (Recq,Recr).
the sender Sen has two two strings s1, s2, and the receiver has a bit b. the receiver generates a query q
and sends q to the sender. the sender evaluates q(s1, s2, r), and sends the result to the receiver.
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• Correctness:
For all s1, s2 ∈ {0, 1}k, for all b ∈ {0, 1},

Pr[(q, sk)← Recq(1λ, b); r ← Sen(q, s1, s2) : Recr(sk, r) = sb] ≥ 1− ν(λ).

For some negligible function ν.

• Receiver Privacy:
The distributions

{(q, sk)← Recq(1λ, 0) : q} ≈c {(q, sk)← Recq(1λ, 1) : q}

are computationally indistinguishable, where the probability is taken over the internal randomness
of Recq.

• Sender Privacy:
The distributions

{(q, sk)← Recq(1λ, b); r← Sen(q, s1, s2) : r} ≈s {(q, sk)← Recq(, 1λ, b); r← Sen(q, s′1, s
′
2) : r}

for all s′1, s
′
2 with sb = s′b, where the randomness is taken over the internal randomness of Recq and

Sen.

9 Statistically-Hiding
(2

1

)
-OT Implies Lossy Encryption

Let (Sen,Rec) be a two round honest-receiver statistically-hiding
(
2
1

)
-OT.

We construct a lossy encryption as follows:

• Key Generation:
Define g(1λ, inj) = Rec(1λ, 0), define g(1λ, lossy) = Rec(1λ, 1), so pk = q, and sk = sk.

• Encryption:
Define e(pk,m, (r, r∗)) = Sen(q,m, r; r∗), where r∗ is the randomness used in Sen(q,m, r).

• Decryption:
If we are in injective mode, then we may define d(sk, r) = Recr(sk, r).

Now, we must show that g, e, d forms a lossy encryption.

• Correctness on Injective Keys:
This follows immediately from the correctness of the oblivious transfer.

• Indistinguishability of Keys:
This follows immediately from the receiver privacy of the oblivious transfer.

• Lossiness of Lossy Keys:
This will follow from the statistical sender privacy of the oblivious transfer.

If the cryptosystem is in lossy mode, the sender privacy of the OT says that for all m0,m1

{Sen(q,m0, r)} ≈s {Sen(q,m1, r)},

where the distribution is taken over the internal randomness of Sen.

Now, if we view the randomness of Sen as an explicit input to Sen (as we do in encryption), then
we have that for all m0,m1 and r,

∆(Sen(q,m0, r; ·), Sen(q,m1, r); ·) < ν,
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where we view the distribution as over the internal randomness of Sen. Applying lemma 2, we have

∆(Sen(q,m0, ·); ·),Sen(q,m1, ·); ·) ≤ ν.

where the distribution ranges over the uniform choice of r, and the internal randomness of Sen. But
this is exactly what we require.

Lemma 2. Let X,Y, Z be random variables, and suppose

∆(X,Y |Z = z) < ε,

for all z, then ∆(X,Y ) < ε.

Proof.

∆(X,Y ) =
∑
a

|Pr(X = a)− Pr(Y = a)|

=
∑
a

∑
z

|Pr(X = a, Z = z)− Pr(Y = a, Z = z)|

=
∑
a

∑
z

|Pr(X = a|Z = z)− Pr(Y = a|Z = z)|Pr(z = z)

=
∑
z

Pr(Z = z)
∑
a

|Pr(X = a|Z = z)− Pr(Y = a|Z = z)|

=
∑
z

Pr(Z = z)∆(X,Y |Z = z)

≤ ε
∑
z

Pr(Z = z)

= ε.

Applying the results of [CMO00] which show that Single-Server Private Information Retrieval (PIR)
implies Statistically-Hiding OT, we have

Corollary 1. Single-Server PIR implies Lossy-Encryption.

Since Homomorphic Encryption is known to imply PIR [KO97],[Man98],[IKO05] we have

Corollary 2. Homomorphic Encryption implies Lossy-Encryption.

Applying Theorem 1, we have

Corollary 3. Statistically-Hiding 2-round honest-player
(
2
1

)
-OT implies IND-SO-ENC secure encryption.

Single-Server PIR implies IND-SO-ENC secure encryption.
Homomorphic Encryption implies IND-SO-ENC secure encryption.

10 A Simulation-Based Definition of Security

While we have focused on an indistinguishability-based definition of security for commitments and en-
cryptions, it is also possible to give a simulation-based definition. Roughly, this says that anything an
adversary can learn by playing the Selective Opening game with the challenger can be efficiently simulated
by a simulator that sees only I and (mi)i∈I , and never sees the ciphertexts at all. This is called SEM-
SO-ENC security. While it appears that the simulation-based definition offers a stronger form of security
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than the indistinguishability-based definition, in fact, this remains unknown. It does seem, however, that
protocols satisfying SEM-SO-ENC security are harder to construct.

In [BHY09] it was shown that if a lossy encryption scheme has an efficient algorithm opener that can
“open” a lossy ciphertext to a desired plaintext, then the scheme is already SEM-SO-ENC secure. Since
our constructions of Re-randomizable encryptions give rise to lossy encryptions, to create SEM-SO-ENC
security from known assumptions, it suffices to check which re-randomizable encryptions have an efficient
opener algorithm.

When we instantiate our encryption scheme with the Paillier Cryptosystem, or the Goldwasser-Micali
cryptosystem, the factorization of the modulus N allows us to devise an efficient opening algorithm.
That the Goldwasser-Micali scheme is SEM-SO-ENC secure was already recognized in [BHY09], however
instantiating our re-randomizable encryption with the Paillier Cryptosystem gives rise to the first SEM-
SO-ENC secure cryptosystem under the Decisional Composite Residuosity (DCR) assumption.

10.1 Simulation-Based Security

While we have mostly focused on an indistinguishability-based notion of security under selecting openings,
in [BHY09], Hofheinz et al. also formalized a simulation-based notion of security under selective openings.
Their simulation-based definition of security intuitively seems stronger than the indistinguishability-based
definition, however, it remains unknown whether SEM-SO-ENC implies IND-SO-ENC.

Definition 3. (Semantic Security under selective openings/SEM-SO-ENC).
Let Enc be a Public Key Cryptosystem (PKC), we say that Enc is simulatable under selective openings

(SEM-SO-ENC secure) if for every PPT message distribution M , every PPT adversary A, and every PPT
relation R, there exists an efficient simulator S = (S1, S2) such that we have that∣∣∣Pr

[
Asem-so-real = 1

]
− Pr

[
Asem-so-ideal = 1

]∣∣∣ < ν

for some negligible function ν, and where the games sem-so-real and sem-so-ideal are defined as follows

SEM-SO-ENC (Real)

• (m1, . . . ,mn)←M

• r1, . . . , rn ← coins(E)

• I ← A((E(m1, ri), . . . , E(mn, rn))

• w ← A(((mi, ri))i∈I)

• Output R(m,w).

SEM-SO-ENC (Ideal)

• (m1, . . . ,mn)←M .

• (I, st)← S1(1λ).

• w ← S2(st, {mi}i∈I).

• Output R(m,w).

More explicitly, in the real game,

• The challenger samples messages (m1, . . . ,mn)←M , from the joint message distribution.

• The challenger generates randomness r1, . . . , rn ← coins(E).

• The challenger sends (E(m1, r1), . . . , E(mn, rn) to A.

• The adversary A responds with a subset I ⊂ {1, . . . , n}, with |I| = n/2.

• The challenger reveals both mi and ri for i ∈ I.

11



• The adversary outputs a string w.

• The value of the game is R(m,w).

In the ideal game,

• The challenger samples messages (m1, . . . ,mn)←M , from the joint message distribution.

• Without seeing any encryptions, the simulator chooses a subset I, and some state information st.

• Without seeing any randomness, after seeing the messages {mi}i∈I , and the state information, the
simulator outputs a string w.

• The value of the game is R(m,w).

In [BHY09], Hofheinz, Bellare and Yilek, proved that a lossy encryption scheme, with an efficient
opener procedure are SEM-SO-ENC secure.

Definition 4. A lossy public-key encryption scheme with efficient opening is a tuple (Ginj, Glossy, E,D)
satisfying Definition 2, with the additional property that the algorithm opener is efficient, i.e.

• Openability. There is an efficient algorithm opener, such that if (pklossy, sklossy) ← Glossy, and r ←
coins(E), then for all x0, x1 ∈ X with all but negligible probability, r′ ← opener(pklossy, E(pklossy, x0, r)),
and E(pklossy, x1, r

′).

Theorem 2. Lossy Encryption with efficient opening is SEM-SO-ENC secure.

Proof. This is Theorem 2 in [BHY09]. The proof is straightforward, and we only sketch it here.
We proceed in a series of games.

• G0 is the real SEM-SO-ENC experiment.

• G1 is the same as G0, except the adversary is given a lossy public key, instead of a real public key.

• G2 instead of giving the adversary the real randomness {ri}i∈I , the Challenger uses the efficient
opener procedure to generate valid randomness.

• G3 instead of giving the adversary encryptions of mi, the adversary is given encryptions of a dummy
message δ, but the adversary is still given openings to actual messages {mi}i∈I obtained from the
opener procedure.

Now, the simulator can simulate G3 with the adversary. The simulator generates a lossy key pair, and
encrypts a sequence of dummy messages and forwards the encryptions to A. The adversary, A, replies
with a set I, which S forwards to the challenger. Then S uses the efficient opener procedure to open the
selected messages for A. At which point A outputs a string w, and S outputs the same string. Since
the outputs of A in G0 and G3 are computationally close, the outputs of S, and A in the real and ideal
experiments will also be computationally close.

10.2 Selective Opening Security From the Decisional Composite Residuosity As-
sumption

Here we give an overview of our construction when applied to the Paillier Cryptosystem (a review of the
details of the Paillier Cryptosystem can be found in Appendix C).

By defining ReRand(c, r) = c · E(pk, 0, r) mod N2, we obtain IND-SO-ENC secure encryptions
through our general construction in 7.1.

It was already known how to build IND-SO-ENC from DCR, since Peikert and Waters [PW08], and
Boldyreva, Fehr and O’Neill showed how to build Lossy-Trapdoor Functions from DCR, and Bellare,
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Hofheinz and Yilek showed that Lossy-Trapdoor Functions imply IND-SO secure encryptions. We note,
however, that our constructions are significantly more efficient than those that follow from [PW08], and
somewhat more efficient than those that follow from [BFO08].

While the results of [BHY09] imply that IND-SO-ENC secure encryptions follow from DCR, the
question of SEM-SO-ENC secure encryptions was left open, indeed, the only previous construction of
SEM-SO-ENC secure encryptions were given in [BHY09] and based on the Quadratic Residuosity As-
sumption (QR). By instantiating our scheme in 7.1 with the Paillier (or Damg̊ard-Jurik) cryptosystem,
we observe that the function opener is efficient, and hence the results of [BHY09] show that the resulting
encryption scheme achieves SEM-SO-ENC security.

To see this, recall that E(pk,m, r) = cmrN mod N2, where, in lossy mode, c is an Nth power. Thus,
the algorithm opener, on input e = rN1 and some target message m must find r′ ∈ Z/NZ such that
cm(r′)N = e. If we write c = rN0 , then opener must find a solution to

(r′)N =
(
r1
rm0

)N
.

So the efficiency of opener reduces to the efficiency of taking Nth roots modulo N2. But this is easily
done if the factorization of N is known, since we can set d = N−1 mod φ(N), and then taking Nth
roots, is equivalent to exponentiating modulo N , i.e.

(rN )d = rNd = r mod N.

Thus we immediately get a SEM-SO-COM secure encryption protocol from the DCR assumption.
Thus we arrive at

Corollary 4. Under the Decisional Composite Residuosity assumption (DCR), the system described in
§7.1 is SEM-SO-ENC secure.

Since the Paillier cryptosystem (and the Damg̊ard-Jurik extension), have smaller ciphertext expansion
than the Goldwasser-Micali cryptosystem (which only encrypts bits), we arrive at a more efficient system
than the only known SEM-SO-ENC secure cryptosystem.

11 Chosen Ciphertext Security

11.1 Definitions

It has long been recognized that if an adversary is given access to a decryption oracle, many cryptosystems
may become insecure. The notion of Chosen-Ciphertext Security ([NY90],[RS91],[DDN91]) was created
to address this issue, and since then there have been many schemes that achieve this level of security.
The attacks of Bleichenbacher on RSA PKCS#1 [Ble98] emphasized the practical importance of security
against Chosen-Ciphertext Attacks (CCA).

The need for Selective Opening Security was first recognized in the setting of Multi-Party Computation
(MPC), where an active MPC adversary can view all the ciphertexts sent in a current round, and then
choose a subset of senders to corrupt. It is natural to imagine an MPC adversary, who, in addition to
corrupting a subset of senders, can also mount a Chosen-Ciphertext Attack against the receiver. It is
easy to see that the schemes proposed (based on re-randomizable, or homomorphic encryption) become
trivially insecure in this setting.

In this section, we show how to extend the notion of a Chosen Ciphertext Attack to the selective
opening setting. As in the standard Selective-Opening setting, we can define security in two different
ways, either by indistinguishability, or by simulatability. We will give definitions of security as well as
constructions for both settings.
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11.2 Chosen Ciphertext Security: Indistinguishability

We begin with the indistinguishability-based definition. We define two games, a real game (ind-cca2-real)
and an ideal game (ind-cca2-ideal). In both games, the challenger runs the key-generation algorithm to
generate a public-key secret-key pair, and sends the public-key to the adversary. The adversary is then
allowed to adaptively make two types of queries.

• Selective Opening Query: The adversary A chooses a message distribution M , and sends a
description of M to the challenger. The challenger samples (m1, . . . ,mn)←M , and generates

(c1, . . . , cn) = (E(pk,m1, r1), . . . , E(pk,mn, rn)).

The challenger sends (c1, . . . , cn) to the adversary, and the adversary chooses a subset I ⊂ [n], with
|I| = n/2, and sends I to the challenger. The challenger then sends {(mi, ri)}i∈I to the Adversary.
We call the ciphertexts c1, . . . , cn target ciphertexts.

– In the real game, the challenger then sends {mj}j 6∈I to the adversary.

– In the ideal game, the challenger resamples (m′1, . . . ,m
′
n)←M |MI

, and sends {m′j}j 6∈I to the
adversary.

• Decryption Queries: The adversary A chooses a ciphertext c that has never appeared as a target
ciphertext, and sends c to the challenger. If c is a valid ciphertext (i.e. D(c) 6= ⊥) then the
challenger responds with m = D(c).

After adaptively making polynomially many queries, with at most one of them being a Selective
Opening Query, the adversary outputs a bit b.

Definition 5. (IND-SO-CCA2) A public key encryption scheme E is called IND-SO-CCA2 secure, if,
for all PPT adversaries A, A’s output in the real game is negligibly different from its output in the ideal
game, i.e. ∣∣∣Pr[Aind-cca2-real = 1]− Pr[Aind-cca2-ideal = 1]

∣∣∣ < ν.

For some negligible function ν.

We remark that if the adversary is not allowed to make decryption queries, this reduces to IND-SO-
ENC security.

Our construction of an IND-SO-CCA2 secure cryptosystem requires some basic tools, outlined below.

11.3 Strongly Unforgeable Signatures

A signature scheme is a triple of PPT algorithms (G, Sign,Ver) such that

• The algorithm G takes a security parameter λ, and returns a verification key and a signing key.

(vk, sk)← G(1λ).

• The algorithm Sign takes a message m and the signing key, and produces a signature sig.

sig← Sign(m, sk).

• The algorithm Ver takes a verification key, a message, and a signature, and returns a bit b.

b← Ver(vk,m, sig).

We require
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• Completeness: For all m

Pr [(vk, sk)← G; sig← Sign(m, sk); Ver(vk,m, sig) = 1] = 1.

• Strongly Unforgeable: For all PPT adversaries A,

Pr [(vk, sk)← G; (m, sig′)← ASign(·,sk)(vk) :
Ver(vk,m, sig′) = 1 and sig′ was never the output of Sign(·, sk)

]
If we restrict A to make at most one oracle query to Sign(·, sk) we say that (G,Sign,Ver) is a
one-time strongly unforgeable signature scheme.

11.4 Unduplicatable Set Selection

Unduplicatable set selection was used implicitly in [NY90] and [CIO98], and formalized in [Sah99]. The
description below is essentially that of [Sah99].

The goal of unduplicatable set selection is to create a mapping from g : {0, 1}k → B such that for all
distinct a1, . . . , an, an+1 ∈ {0, 1}k,

g(an+1) 6⊂
n⋃
i=1

g(ai).

In [Sah99], Sahai gives a simple general construction based on polynomials which we recall here. Let
` = 2dlog2 2nke, so ` > 2nk, and let Y = F` × F`, and B ⊂ P(Y ). To each a ∈ {0, 1}k we may associate a
polynomial

fa(x) = a0 + a1x+ · · · ak−1x
k−1 ∈ F`[x].

Then if we set
g(a) = {(t, fa(t)) : t ∈ F`} ⊂ Y.

Now, |g(a)| = `, and if a 6= a′, we have |g(a) ∩ g(a′)| ≤ k − 1. Thus∣∣∣∣∣g(an+1) \
n⋃
i=1

g(ai)

∣∣∣∣∣ =

∣∣∣∣∣g(an+1) \
n⋃
i=1

g(an+1) ∩ g(ai)

∣∣∣∣∣
≥
∣∣g(an+1)

∣∣− n∑
i=1

∣∣g(an+1) ∩ g(ai)
∣∣

≥ `− n(k − 1)

≥ `

2
.

We call g an (n, k, `) unduplicatable set selector.

11.5 Lossy Trapdoor Functions

Lossy Trapdoor Functions were first defined in [PW08], and we review the definition here.
A tuple (SLTDF, F, F

−1) of PPT algorithms is called a family of (d, k)-Lossy Trapdoor Functions if
the following properties hold:

• Sampling Injective Functions: SLTDF(1λ, 1) outputs s, t where s is a function index, and
t its trapdoor. We require that F (s, ·) is an injective deterministic function on {0, 1}d, and
F−1(t, F (s, x)) = x for all x.

• Sampling Lossy Functions: SLTDF(1λ, 0) outputs (s,⊥) where s is a function index and F (s, ·)
is a function on {0, 1}d, where the image of F (s, ·) has size at most 2d−k.
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• Indistinguishability: The first outputs of SLTDF(1λ, 0) and SLTDF(1λ, 1) are computationally
indistinguishable.

Along with Lossy Trapdoor Functions, we can define All But One (ABO) Functions. Essentially,
these are lossy trapdoor functions, except instead of having two branches (a lossy branch and an injective
branch) they have many branches, all but one of which are injective. A tuple (SABO, G,G

−1) of PPT
algorithms is called a family of (d, k)-ABO Functions if the following properties hold:

• Sampling with a given Lossy Branch: For b∗ ∈ B, SABO(1λ, b∗) outputs s, t where s is a func-
tion index, and t its trapdoor. We require that for any b 6= b∗, G(s, b, ·) is an injective deterministic
function on {0, 1}d, and G−1(t, b,G(s, b, x)) = x for all x.

Additionally, the image G(s, b∗, ·) has size at most 2d−k.

• Hidden Lossy Branch: For any b∗0, b
∗
1 ∈ B, the first outputs of SABO(1λ, b∗0) and SABO(1λ, b∗1) are

computationally indistinguishable.

11.6 All-But-n Functions

In the original Peikert Waters construction, they require an All-But-One family of functions, so that the
single challenge ciphertext in the CCA2 game can be evaluated on the lossy branch. Since the IND-SO-
CCA security game has n challenge ciphertexts, and we generalize the Peikert-Waters construction to an
All-But-n (ABN) Functions, where all the branches except the specified ones are injective.

• Sampling with a given Lossy Set: For I ⊂ B, SABN(1λ, I) outputs s, t where s is a function
index, and t its trapdoor. We require that for any b ∈ B \ I, G(s, b, ·) is an injective deterministic
function on {0, 1}d, and G−1(t, b,G(s, b, x)) = x for all x.

Additionally, for b ∈ I, the image G(s, b, ·) has size at most 2d−k.

• Hidden Lossy Branches: For any b∗0, b
∗
1 ∈ B, the first outputs of SABN(1λ, b∗0) and SABN(1λ, b∗1)

are computationally indistinguishable.

We can construct a family of ABM Functions given any sufficiently lossy family of LTDFs as follows.
Given a set I ⊂ B, we create an unduplicatable set selector g : B → B̂. For each b̂ ∈ B̂, we will associate
a Lossy Trapdoor Function. Let Î =

⋃
i∈I g(i). For each ı̂ ∈ Î, we will set create a LTDF in lossy mode,

and for each b̂ ∈ B̂ \ Î, we will associate a LTDF in injective mode.

• Sampling with a given Lossy Set: Create an (n, dlog |B|e) unduplicatable set selector g. Suppose
B ⊂ {0, 1}v, then the construction outlined above produces g which maps {0, 1}v to subsets of
F` × F`, where ` = 2dlog2 2nve. For each element in F` × F`, we will associate a Lossy Trapdoor
Function. Let Î =

⋃
i∈I g(i) ⊂ F` × F`. For each y ∈ Î let Fy be an LTDF in lossy mode, and for

each y ∈ F` × F` \ Î, let Fy be an LTDF in injective mode.

Now, define G(b, x) = (Fy1(x), . . . , Fy`
(x))yi∈g(b).

Notice that if any of the functions Fy are injective, then G is also injective, and if the image size of F
in lossy mode is 2r, then the images size of G on a lossy branch is 2r`. Finally, we notice that the lossy
set is hidden by the indistinguishability of modes of the LTDF.
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11.7 IND-SO-CCA Construction

We now give a method for constructing IND-SO-CCA secure encryption from LTDFs. The construction
(and proof) mimics that of [PW08].

Let (SLTDF, F, F
−1) be a family of (d, k) Lossy-Trapdoor Functions, and let (SABN, G,G

−1) be a
family of (d, k′) all-but-n functions with branch set {0, 1}v where v is the length of a verification key for
our one-time signature scheme. We require that 2d− k − k′ ≤ t− κ, for κ = κ(t) = ω(log t). Let H be a
pairwise independent hash family from {0, 1}d → {0, 1}`, with 0 < ` < κ− 2 log(1/ν), for some negligible
ν = ν(λ). The message space will {0, 1}`.

• KeyGen:
Generate a hash function h← H, and

(s, t)← SLTDF(1λ, inj), (s′, t′)← SABN(1λ, {0, 1, . . . , n− 1}).

The public key will be (s, s′, h) and the secret key will be (t, t′).

• Encryption:
Generate r ← {0, 1}t, and rsig ← coins(G), and generate keys for a one-time signature using
randomness rsig

(vk, sk) = G(rsig).

For a message m, output the ciphertext

c = (vk, F (s, x), G(s, vk, x), h(x)⊕m, sig),

where sig = Sign(sk, F (s, x), G(s, vk, x), h(x)⊕m).

• Decryption:
Given a ciphertext c = (vk, c1, c2, c3, sig), first check that Ver(vk, (c1, c2, c3), sig) = 1, otherwise
output ⊥.
Then let x = F−1(t, c1), and check whether G(s, vk, x) = c2, if not, output ⊥.

Finally, output m = c3 ⊕ h(x).

Theorem 3. The algorithms described above form an IND-SO-CCA2 secure cryptosystem.

Proof. The correctness of the scheme is clear, so we focus on the security.

We prove security through a sequence of games.
Let Game0 be the real IND-SO-CCA2 game.
Let Game1 be identical to Game0 except that we generate {(vki, ski)}ni=1, to be used in the challenge

query during key-generation.
Let Game2 be identical to Game1 except we modify the decryption algorithm to output ⊥ on cipher-

texts of the form c = (vk, c1, c2, c3, sig), if vk ∈ {vki}ni=1.
Let Game3 be identical to Game2 except that we set the lossy branches of the All-But-n function G

to be {vk1, . . . , vkn}.
Let Game4 be identical to Game3 except that in the decryption algorithm we use G−1 to decrypt

instead of F−1, i.e. we set x = G−1(t′, vk, c2) instead of x = F−1(t, c1).
Let Game5 be identical to Game4 except that we replace the injective function with a lossy one, i.e.

during key-generation we generate (s,⊥)← SLTDF(1λ, lossy), instead of (s, t)← SLTDF(1λ, inj).

• Clearly the adversary’s view in Game0 and Game1 are identical.
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• The only way the adversary’s view can be different in Game2 than in Game1 is if the adversary
successfully generates a signature using one of keys in the set {vki}. But this can only happen with
negligible probability by the strong unforgeability of the signature scheme.

• The indistinguishability of Game2 and Game3 follows from the indistinguishability of All-But-n
functions with different lossy branches.

• The adversary’s views in Game3 and Game4 are identical, because the adversary can never make a
decryption query on a lossy-branch of G.

• The indistinguishability of Game4 and Game5 follows from the indistinguishability of modes of
Lossy-Trapdoor Functions.

Now, if we can show that an adversary’s probability of success in Game5 is negligible we will be done.
To do this, we follow the the proof that Lossy Encryption is Selective Opening secure. See [BHY09] or
Theorem 5. The key observation is that in Game5 the challenge ciphertexts are statistically independent
of the underlying messages. We begin by showing that this is, in fact, the case.

Now, F (s, ·) and G(s′, vki, ·) are lossy functions with image sizes at most 2d−k and 2d−k
′

respectively
for each i ∈ [n]. Thus the function x 7→ (F (s, x), G(s′, vki, x)) takes on at most 22d−k−k′ ≤ 2d−κ values.
Now by Lemma 2.1 of [PW08], the average min-entropy is bounded below

H̃∞(x|c1, c2, s, s′) ≥ H∞(x|s, s′)− (d− κ) = t− (d− κ) = κ.

Since ` ≤ κ− 2 log(1/ν), by Lemma 2.2 of [PW08], we have

∆((c1, c2, h, h(x)), (c1, c2, h, r′)) ≤ ν.

Now, we can incorporate the ideas of Theorem 5. Since the challenge ciphertexts are statistically
independent of the underlying plaintexts, there is a (possibly inefficient)2 algorithm opener, which, given
(vk, c1, c2, c3,m) outputs x such that F (s, x) = c1, G(s, vk, x) = c2, and h(x) ⊕ m = c3. If no such x
exists, opener outputs ⊥ (the statistical closeness guarantees that this happens with probability at most
ν).

Now, let us imagine a new series of games.
Let Game50 be identical to Game5, except that the challenge ciphertexts are opened using the output

of opener, instead of the actual randomness used by the challenger.
Now, for j ∈ [n], let Game5j be identical to Game50 except that for i ≤ j, the challenge ciphertexts

will be
(E(pk, δ, r1), . . . , E(pk, δ, rj), E(pk,mj+1, rj+1), . . . , E(pk,mn, rn))

So, the only difference between the Game5j and Game5j−1 is whether the jth encryption in the challenger
ciphertext is an encryption of δ or mj . Since these two distributions are statistically close, even an
unbounded adversary has a negligible chance of distinguishing them. Thus by the triangle inequality, an
unbounded adversary has a negligible probability of distinguishing Game50 from Game5n .

But Game5n is identical in both the ind-cca2-real and ind-cca2-ideal games, so an adversary has at
most a negligible probability of distinguishing the two worlds.

12 Chosen Ciphertext Security: Simulatability

• Selective Opening Query: The adversary A chooses a message distribution M , and sends a
description of M to the challenger. The challenger samples (m1, . . . ,mn)←M , and generates

(c1, . . . , cn) = (E(pk,m1, r1), . . . , E(pk,mn, rn)).
2The algorithm opener is inefficient for the DDH construction in [PW08], but is efficient for the DCR construction in

[BFO08]. When the algorithme opener is efficient this construction will achieve SEM-SO-CCA2 security.
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The challenger sends (c1, . . . , cn) to the adversary, and the adversary chooses a subset I ⊂ [n], with
|I| = n/2, and sends I to the challenger. The challenger then sends {(mi, ri)}i∈I to the Adversary.
We call the ciphertexts c1, . . . , cn target ciphertexts.

The challenger then sends {mj}j 6∈I to the adversary.

• Decryption Queries: The adversary A chooses a ciphertext c that has never appeared as a target
ciphertext, and sends c to the challenger. If c is a valid ciphertext (i.e. D(c) 6= ⊥) then the
challenger responds with m = D(c).

After adaptively making polynomially many queries, with at most one of them being a Selective
Opening Query, the adversary outputs w, and the value of the game is R(m,w).

In the ideal game, the challenger samples (m1, . . . ,mn)←M .

• The simulator chooses a subset, I ← S1.

• The simulator views the chosen messages and outputs a w, w ← S2({mi}i∈I).

The value of the game is R(m,w).

Definition 6. (SEM-SO-CCA2) A public key encryption scheme E is called SEM-SO-CCA2 secure, if,
for all PPT adversaries A, and all PPT relations R, there exists a simulator S = (S1, S2) such that the
values of the real and ideal games are identical with all but negligible probability, i.e.

Pr[sem-cca2-real 6= sem-cca2-ideal] ≤ ν.

For some negligible function ν.

We remark that if the adversary is not allowed to make decryption queries, this reduces to SEM-SO-
ENC security.

12.1 Non-Interactive Zero Knowledge

The most successful technique in constructing systems secure against an adaptive chosen ciphertext attack
has been the Naor-Yung paradigm [NY90]. Roughly, the idea is to encrypt the message twice and include
a Non-Interactive Zero Knowledge (NIZK) proof that both encryptions encrypt the same plaintext. The
proof of security then uses the simulator for the NIZK to simulate the proof for the challenge ciphertext.
This method has since been refined in [DDN91],[Sah99],[SCO+01], and [Lin06] (among others).

Our constructions of IND-SO-CCA2 encryption follow the general structure of the Naor-Yung paradigm
[NY90], however, the selective opening of the encryption query poses new challenges. In particular, if we
näıvely try to follow the Naor-Yung paradigm, we immediately encounter difficulties because our chal-
lenger must reveal the messages and randomness for half of the ciphertexts in the challenge. This will
immediately reveal to the adversary that the proofs were simulated. It requires new ideas to overcome
this difficulty.

We now give a brief definition of the properties of a Non-Interactive Zero Knowledge Proof of Knowl-
edge with Honest Prover State-Reconstruction (originally defined and constructed in [GOS06]).

Let R be an efficiently computable binary relation and let L = {x : ∃w such that (x,w) ∈ R}. We
refer to L as a language, x as a statement, and w as a witness.

A Non-Interactive Proof System for L is a triple of PPT algorithms (CRSgen,Prover,Verifier) such
that

• σ ← CRSgen(1λ).
Generates a Common Reference String.

• π ← Prover(CRS, x,w).
On inputs x, and a witness w for x, such that R(x,w) = 1, the Prover outputs a proof π.
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• b← Verifier(CRS, x, p).
On inputs x and a purported proof π, Verifier outputs a bit b.

Definition 7. A triple of algorithms is called a Non-Interactive Zero Knowledge Proof of Knowledge if

• Completeness: For all adversaries A,

Pr
[
σ ← CRSgen(1λ); (x,w)← A(σ);π ← Prover(σ, x, w) : Verifier(σ, x, π) = 1 if (x,w) ∈ R

]
> 1−ν,

For some negligible function ν.

• Soundness: For all adversaries A,

Pr
[
σ ← CRSgen(1λ); (x, π)← A(σ) : Verifier(σ, x, π) = 0 if x 6∈ L

]
> 1− ν.

• Knowledge Extraction: There exists an extractor Ext = (Ext1,Ext2) such that for all adversaries
A ∣∣∣Pr

[
σ ← CRSgen(1λ) : A(σ) = 1

]
− Pr

[
(σ, τ)← Ext1(1λ) : A(σ) = 1

]∣∣∣ < ν

and

Pr
[
(σ, τ)← Ext1(1λ); (x, π)← A(σ);w ← Ext2(σ, τ, x, π) : Verifier(σ, x, π) = 0 or (x,w) ∈ R

]
> 1−ν

For some negligible function ν.

• Zero-Knowledge: There exists a simulator S = (S1, S2), such that for all adversaries A,∣∣∣Pr
[
σ ← CRSgen(1λ) : AP (σ,·,·)(σ) = 1

]
− Pr

[
(σ, τ)← S1(1λ) : AS

′(σ,τ,·,·)(σ) = 1
]∣∣∣ < ν,

where S′ is defined

S′ =
{
S2(σ, τ, x) if (x,w) ∈ R,
⊥ otherwise.

• Honest-Prover State Reconstruction: There exists a simulator S = (S1, S2, S2) such that for
all adversaries A∣∣∣Pr

[
σ ← CRSgen(1λ);APR(σ,·,·)(σ) = 1

]
− Pr

[
(σ, τ)← S1(1λ) : ASR(σ,τ,·,·)(σ) = 1

]∣∣∣ < ν,

where PR(σ, x, w) samples r ← coins(Prover), and sets π = Prover(σ, x, w, r), and returns (π, r), and
where SR samples r∗ ← coins(S2), and sets π′ = S2(σ, τ, x, r∗), finally PR sets r′ ← S3(σ, τ, x, w, r∗)
and returns (π′, r′). Both oracles output ⊥ if (x,w) 6∈ R.

12.2 A SEM-SO-CCA2 Construction

Along with the NIZK Proofs of Knowledge with Honest Prover State Reconstruction, our construction
relies on a number of common cryptographic tools. We will also require a strongly unforgeable one-time
signature scheme. In our game, a single encryption query is actually n separate encryptions, so we will
require an unduplicatable set selector g for sets of size n. Finally, we will require an IND-SO-ENC secure
cryptosystem.

Let (Gso, E,D) be an efficiently openable lossy cryptosystem (by Theorem 2 it will also be SEM-SO-
ENC secure). Let (G,Sign,Ver) be a strongly unforgeable one-time signature scheme. Let g be an (n, λ)
unduplicatable set selector, and let ` = |g(0λ)|, and L = g({0, 1}λ).

Let (CRSgen,Prover,Verifier) be a Noninteractive Zero Knowledge Proof of Knowledge with Honest
Prover State Reconstruction for the language given by the relation ((e0, e1), (m, r0, r1)) ∈ R if e0 =
E(m, r0) and e1 = E(m, r1).

Our scheme works as follows
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• KeyGen:

(pk0, sk0)← Gso(1λ), (pk1, sk1)← Gso(1λ), and (σi, τi)← Ext1(1λ) for i ∈ L

Set

pk = (pk0, pk1, {σi}i∈L) and sk = (sk0, sk1, {τi}i∈L).

• Encryption: Pick

rsig ← coins(Sign), r0 ← coins(E), r1 ← coins(E), rnizki ← coins(Prover) for i = 1, . . . , `.

Generate keys for a one-time signature using randomness rsig.

(vk, sk) = G(rsig).

For a message m, calculate

e0 = E(pk0,m, r0), e1 = E(pk1,m, r1)

set w = (m, r0, r1).
π = (π1, . . . , π`) = (Prover(σi, (e0, e1), w))i∈g(vk)

using randomness rnizki in the ith iteration of Prover. Set

sig = Sign(e0, e1, π),

output the ciphertext
c = (vk, e0, e1, π, sig)

• Decryption: Given a ciphertext
c = (vk, e0, e1, π, sig)

Check that
Ver(vk, (e0, e1, π)) = 1,

otherwise return ⊥. For i ∈ g(vk), check that

Verifier(σi, (e0, e1), πi) = 1,

otherwise return ⊥.

Pick a random i ∈ g(vk) and use the Extractor Ext2 to recover the witness (m, r0, r1), i.e.

(m, r0, r1)← Ext2(σi, τi, (e0, e1), πi)

return m.

Theorem 4. This scheme is SEM-SO-CCA2 secure.

Proof. We will show how to use an adversary in the sem-cca2-real game to construct a simulator for the
sem-cca2-ideal game.

To do this, we begin by considering a series of games

• Game0: This is the sem-cca2-real game.
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• Game1: Pick the verification key ((vkchal,1, skchal,1), . . . , (vkchal,n, skchal,n)) to be used in the chal-
lenge ciphertexts during parameter generation.

• Game2: Generate the Common Reference Strings by

σi =
{
S1(1λ) if i ∈ g(vkchal,j) for some j ∈ [n]
Ext1(1λ) otherwise.

In decryption, we now use i 6∈ g(vk) to recover (m, r0, r1).

• Game3: When generating the target ciphertexts, ignore the witness and generate the “proof”

π = {πi}i∈g(vk) = {S2(σi, τi(e0, e1), r∗i )}i∈g(vk)

when the adversary asks for the decryption and randomness of a subset of the target ciphertexts,
use the State Reconstructor to generate

ri ← S3(σi, τi, (e0, e1), (m, r0, r1, r∗i )),

and return these ri instead of the r∗i that were actually used.

• Game4: When generating the target ciphertexts, generate them all as the encryption of a dummy
message δ and when the adversary asks for the decryption and randomness of a subset of the target
ciphertexts, use the efficient openability of (Gso, E,D) to generate {ri}i∈I . Then proceed as in
Game3.

Let Wi be the distribution of the adversary’s output in game i. Clearly W0 = W1, since from the
adversary’s point of view they are identical. To show that W1 and W2 are only negligibly different, notice
that by the strong unforgeability of (G, Sign,Ver), the adversary can never ask for the decryption of a
ciphertext signed with vk, so by the unduplicatability of g, there will always be at least one valid proof
generated with an extractable CRS. Now, it’s easy to see that any PPT adversary that can distinguish
between Game 2 and Game 1 can be used to distinguish the CRS generated by the extraction simulator
Ext1, and Honest Prover Reconstruction simulator S1 (really n` such simulators), but if∣∣∣Pr

[
(σ, τ)← S1(1λ) : ASR(σ,τ,·,·)(σ) = 1

]
− Pr

[
(σ, τ)← S1(1λ) : AS

′(σ,τ,·,·)(σ) = 1
]∣∣∣ > ε,

the either∣∣∣Pr
[
σ ← CRSgen(1λ) : AP (σ,·,·)(σ) = 1

]
− Pr

[
(σ, τ)← S1(1λ) : AS

′(σ,τ,·,·)(σ) = 1
]∣∣∣ > ε

2
,

or ∣∣∣Pr
[
σ ← CRSgen(1λ);APR(σ,·,·)(σ) = 1

]
− Pr

[
(σ, τ)← S1(1λ) : ASR(σ,τ,·,·)(σ) = 1

]∣∣∣ > ε

2
.

Since these are both negligible by the definition of our NIZK, the difference between W1 and W2 is
negligible.

To see that the difference between W2 and W3 is negligible, we notice that we can immediately
transform an adversary that distinguishes Game2 from Game3 into an adversary that breaks the indis-
tinguishability of the Honest Prover State Reconstruction simulator, losing a factor of n` (because we are
making n` comparisons).

Thus we have shown that the value of the Game0 run against an efficient adversary A, will be
computationally indistinguishable from the value of Game3 when run against A. Now, we show how to
use Game3 to build a simulator for the sem-cca2-ideal game.

Specifically the simulator, will run Game4 with A. When A asks for a subset I, the simulator will
ask for openings of the same subset I. Using the received messages {mi}i∈I , the simulator will run the
efficient opening procedure of (Gso, E,D), to generate {ri}i∈I . The simulator then proceeds as in Game4,
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i.e. the simulator uses the State Reconstructor to generate randomness for the proofs using the witnesses
{(mi, ri)}i∈I , and answering further decryption queries as in Game3. Finally, when A outputs w, the
simulator will output the same w. Since the output of A in Game4 is indistinguishable from the output
of A in the sem-cca2-real game, the output of the simulator will be indistinguishable from the output of
A in the sem-cca2-real game.

A similar argument shows that this construction will be IND-SO-CCA2 if the underlying encryption
scheme is IND-SO-ENC instead of SEM-SO-ENC secure.

13 Conclusion

We have shown that re-randomizable encryption implies IND-SO-ENC secure encryptions. In the process
we have shown that re-randomizable encryption implies Lossy Encryption, which is interesting in its own
right. These constructions are relatively simple and retain the efficiency of the underlying re-randomizable
encryption protocol. Our constructions can be applied to known cryptosystems, and immediately yields
simple and efficient IND-SO-COM secure commitments and IND-SO-ENC secure encryptions from the
Decisional Diffie-Hellman (DDH), Decisional-Composite Residuosity (DCR) and Quadratic Residuosity
(QR) assumptions.

Applying our general construction to the Paillier Cryptosystem yields the first construction of SEM-
SO-ENC secure encryptions from the DCR assumption, and this construction is the most efficient that
is currently known.

We have shown that Statistically-Hiding
(
2
1

)
-OT implies lossy encryption, which, when combined

with known results, implies that both PIR and Homomorphic Encryption imply IND-SO-ENC secure
encryptions.

We formalized Chosen Ciphertext security in the selective opening setting in both the indistinguisha-
bility and simulation-based settings, and gave a general construction based existing primitives.

We note, however, that both the indistinguishability and simulation-based CCA secure constructions
suffer from the drawback that an upper bound on the the number of ciphertexts in the challenge query
(n) must be known in advance. Although the standard (not CCA) SOA-secure constructions don’t suffer
from this restriction, it seems very difficult to construct a CCA secure construction whose parameters
are independent of n. We note, however, that it is very simple to do in the Random Oracle model.3
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Appendix

A Selective Opening Secure Commitments

A.1 Re-randomizable One-Way Functions

A family of functions F , indexed by a security parameter λ is called a re-randomizable one-way function
family if the following conditions are satisfied

• Efficiently Computable: For all f ∈ F , the function

f : M ×R→ Y

is efficiently computable.

• One-Way: For all PPT adversaries A = (A1, A2),

Pr
[
f ← F ; (m0,m1, st)← A1(f); b← {0, 1}; r ← R; b′ ← A2(f(mb, r), st) : b = b′

]
<

1
2

+ ν

for some negligible function ν (of λ).

• Injective on the first input: For all m 6= m′ ∈M , and r, r′ ∈ R,

f(m, r) 6= f(m′, r′).

This is equivalent to the statement

f(m,R) ∩ f(m′, R) = ∅

for all m 6= m′.

• Re-randomizable: For each f , there exists and efficient function ReRand such that for all m ∈M
and r0 ∈ R, we have

{r ← R; f(m, r)} ≈s {r ← coins(ReRand); ReRand(f(m, r0), r)}.

It is easy to see that the encryption algorithm from a re-randomizable encryption scheme is imme-
diately a re-randomizable one-way function. We note, however, that re-randomizable one-way functions
are a significantly weaker primitive since we do not require any kind of trapdoor.

A.2 Commitments from Re-randomizable One-Way Functions

We begin by describing a construction of a simple bit commitment scheme that arises from any re-
randomizable one-way function. Let F be a re-randomizable one-way function family. Then we define

Parameter Generation:

• (f,ReRand)← F(1λ),

• r0, r1 ← R,

• c0 = f(b0, r0),
c1 = f(b1, r1).

The public parameters are (f,ReRand, c0, c1).

Commitment:

• r′ ← coins(ReRand),

• Com(b, r′) = ReRand(cb, r′).

Decommitment:
To decommit, simply reveal the randomness r′.
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This scheme has a number of nice properties. If b0 = b1 then the scheme is statistically hiding by the
properties of ReRand. Alternatively, if b0 6= b1 then the scheme is perfectly binding by the injectivity of
f on its first input. Now, the two modes are indistinguishable by the one-wayness of the f , combining
this with the preceding observations, we obtain the following consequences. If b0 = b1 then the scheme is
computationally binding, and if b0 6= b1 the scheme is computationally hiding.

The security analysis is very straightforward, but as this will be the foundation of all our constructions
we include it.

Lemma 3. If b0 = b1, the scheme described in Appendix A.2 is statistically hiding and if b0 6= b1, this
scheme is perfectly binding.

Proof. If b0 = b1, the distributions

{r′ ← coins(Com) : Com(0, r′)} ≈s {s′ ← coins(Com) : Com(1, s′)},

by the definition of ReRand. On the other hand, if b0 6= b1, Com(0, r) ∈ f(b0, R), and Com(1, s) ∈ f(b1, R),
but by the injectivity on the first input, these sets are disjoint .

Lemma 4. The schemes when b0 = b1 and when b0 6= b1 are computationally indistinguishable.

Proof. This is exactly the one-way property of f .

Corollary 5. If b0 = b1, this scheme is computationally binding, and if b0 6= b1, this scheme is compu-
tationally hiding.

Proof. Since the scheme is perfectly binding when b0 6= b1, breaking the binding property amounts to
a proof that b0 = b1. Since the two modes are computationally indistinguishable, no computationally
bounded adversary can create such a “proof.” Similarly, since the scheme is perfectly hiding when b0 = b1,
breaking the hiding property amounts to showing that b0 6= b1, since the two modes are computationally
indistinguishable, no probabilistic polynomial-time adversary can break the hiding property.

The ability to choose whether the commitment scheme is statistically hiding or perfectly binding is a
valuable property, but it is the fact that this choice can be hidden from the committer that makes this
construction truly useful.

A.3 Selective Opening Secure Commitments

A.4 Definitions

Definition 8. (Indistinguishability under selective openings/IND-SO-COM).
Let Com be a commitment scheme, we say that Com is indistinguishable under selective openings

(IND-SO-COM secure) if for every PPT message distribution M and every PPT adversary A, we have
that ∣∣∣Pr

[
Aind-so-real = 1

]
− Pr

[
Aind-so-ideal = 1

]∣∣∣ < ν

for some negligible function ν, and where the games ind-so-real and ind-so-ideal are defined as follows
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IND-SO-COM (Real)

• (m1, . . . ,mn)←M

• r1, . . . , rn ← coins(Com)

• I ← A((Com(m1, r1), . . . ,Com(mn, rn))

• b← A(Dec(Com(mi, r1))i∈I , (m1, . . . ,mn))

IND-SO-COM (Ideal)

• (m1, . . . ,mn)←M

• r1, . . . , rn ← coins(Com)

• I ← A((Com(m1, r1), . . . ,Com(mn, rn))

• (m′1, . . . ,m
′
n)←M |MI

• b← A(Dec(Com(mi, ri))i∈I , (m′1, . . . ,m
′
n))

More explicitly, in the real game,

• The challenger samples messages (m1, . . . ,mn)←M , from the joint message distribution.

• The challenger generates randomness r1, . . . , rn ← coins(Com).

• The challenger sends (Com(m1, r1), . . . ,Com(mn, rn)) to A.

• The adversary A responds with a subset I ⊂ {1, . . . , n}, with |I| = n/2.

• The challenger decommits (Com(mi, ri))i∈I .

• The challenger sends (m1, . . . ,mn) to the adversary.

• The adversary outputs a bit b.

In the ideal game,

• The challenger samples messages (m1, . . . ,mn)←M , from the joint message distribution.

• The challenger generates randomness r1, . . . , rn ← coins(Com).

• The challenger sends (Com(m1, r1), . . . ,Com(mn, rn)) to A.

• The adversary A responds with a subset I ⊂ {1, . . . , n}, with |I| = n/2.

• The challenger decommits (Com(mi, ri))i∈I .

• The challenger samples a new vector m′ ← M |MI , from M conditioned on the fact that mi = m′i
for i ∈ I, and sends M ′ to A.

• The adversary outputs a bit b.

A.5 IND-SO-COM Constructions from Re-randomizable One-Way Functions

To construct an IND-SO-COM secure commitment scheme, it is enough to create a statistically hiding
commitment scheme, since Bellare, Hofheinz and Yilek showed

Theorem 5. (Theorem 6 From [BHY09]).
Statistically-hiding commitment schemes are IND-SO-COM secure.
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Proof. We follow the general form of the proof from [BHY09], but by restricting ourselves to non-
interactive commitments we can slightly simplify the exposition. We begin by defining an (inefficient)
algorithm called opener, which tries to open a commitment c to a specified message m. In particular

opener(c,m) =
{
r s.t. Com(m, r) = c,
⊥ if no such r exists .

Now, we proceed in a sequence of games. Let Game−1 be the real IND-SO-COM game. Let Game0

be the game, where the challenger uses opener to decommit the commitments (Com(mi, ri))i∈I . Notice
that the views of the adversary in Game−1 and Game0 are identical (but Game0 is no longer efficiently
implementable). In particular

Pr[AGame−1 = 1] = Pr[AGame0 = 1].

Next we describe Game j for j ∈ [n]. The only difference between Gamej and Game0 is that in Gamej
for i ≤ j, the challenger sends the vector

(Com(δ, r1), . . . ,Com(δ, rj),Com(mj+1, rj+1), . . . ,Com(mn, rn)),

for some fixed dummy message δ. For concreteness, we may set δ = 0λ. Now, the only difference
between Gamej and Gamej−1 is whether the jth commitment is a commitment to δ or mj . Since Com is
statistically-hiding, even an unbounded adversary has only a negligible probability of distinguishing the
two cases. Thus by the triangle inequality

|Pr[AGame0 = 1]− Pr[AGamen = 1]| < n · ν = negligible,

where ν is the probability that an unbounded adversary breaks the hiding property of Com. Thus we
obtain

|Pr[AIND−SO−COMreal = 1]− Pr[AGamen = 1] = negligible.

Finally, we notice that in Gamen, all the commitments are independent of the message (m1, . . . ,mn), so
we can repeat the above argument, starting with the ideal IND-SO-COM game, instead of the real game.
Thus we obtain

|Pr[AIND−SO−COMideal = 1]− Pr[AGamen = 1] = negligible.

Thus
|Pr[AIND−SO−COMideal = 1]− Pr[AIND−SO−COMreal = 1]| = negligible.

The commitment scheme constructed in Appendix A.2 is statistically hiding when b0 = b1, so we
obtain the following corollary

Corollary 6. Re-randomizable one-way functions imply non-interactive IND-SO-COM secure commit-
ments.

Since Re-randomizable encryptions imply re-randomizable one-way functions, we have

Corollary 7. Re-randomizable encryption implies non-interactive IND-SO-COM secure commitments.

Perhaps more interesting is the case when b0 6= b1. The commitment scheme constructed in Appendix
A.2 is no longer perfectly hiding, so Theorem 5 doesn’t apply. In this case, we can still achieve IND-
SO-COM security, by using the indistinguishability of the two modes. Roughly, this follows because an
IND-SO-COM adversary must have similar probabilities of success against both modes, otherwise it could
be used to distinguish the modes. Thus we arrive at the following Corollary.

Corollary 8. Re-randomizable one-way functions imply perfectly-binding IND-SO-COM secure commit-
ments.
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Since Re-randomizable encryptions imply re-randomizable one-way functions, we have

Corollary 9. Re-randomizable encryption implies perfectly binding non-interactive IND-SO-COM secure
commitments.

Proof. We proceed via contradiction. Suppose there exists an IND-SO-COM adversary A that succeeds
against the protocol with probability 1

2 +ε when b0 = b1. We will use A to construct a distinguisher D for
the one-way game against the underlying re-randomizable one-way function f . In the one-wayness game
against f , the challenger samples a function f and sends it to D. D will respond by sending {0, 1} to
the one-wayness challenger, and the one-wayness challenger samples r ← R and sends e = f(b, r) to D.
Now, D samples r′ ← R, and generates e′ = f(0, r′). Now, D creates an instantiation of the commitment
protocol setting c0 = e, c1 = e′, and plays the IND-SO-COM game with the adversary A. If A wins, D
guesses b = 1, and if A loses, D guesses b = 0. From Theorem 5 we know that if b = 0 then A succeeds
with probability ν for some negligible function ν. On the other hand, by hypothesis, if b = 1, then A
wins the IND-SO-COM game with probability ε. Now

Pr[D wins ] = Pr[b = 1 ∩ A wins ] + Pr[b = 0 ∩ A loses ]
= Pr[A wins|b = 1] Pr[b = 1] + Pr[A loses|b = 0] Pr[b = 0]

=
1
2

(
1
2

+ ε+
1
2
− ν
)

=
1
2

+
ε− ν

2
.

Since ε is non-negligible, and ν is negligible, D breaks the one-way property of f .

This result is perhaps surprising, since [BHY09] showed a black-box separation between most known
cryptographic primitives and Perfectly Binding IND-SO-COM secure commitments.

B Homomorphic Encryption

A Public Key Cryptosystem given by algorithms (G,E,D) is called homomorphic if

• The plaintext space forms a group X, with group operation +.

• The ciphertexts are members of a group Y .

• For all x0, x1 ∈ X, and for all r0, r1 ∈ coins(E), there exists an r∗ ∈ coins(E) such that

E(pk, x0 + x1, r
∗) = E(pk, x0, r0)E(pk, x1, r1).

Notice that we do not assume that the encryption is also homomorphic over the randomness, as is
the case in most homomorphic encryption schemes, e.g. El-Gamal, Paillier, and Goldwasser-Micali. We
also do not assume that the image E(pk,X,R) is all of the group Y , only that E(pk,X,R) ⊂ Y . Since
the homomorphic property implies closure, we have that E(pk,X,R) is a semi-group. Notice also, that
while it is common to use the word “homomorphic” to describe the cryptosystem, encryption is not a
homomorphism in the mathematical sense.

We now show some basic properties from all homomorphic encryption schemes, these facts are com-
monly used, but since our definition is weaker than the (implicit) definitions of homomorphic encryption
that appear in the literature, it is important to note that they hold under this definition as well.

• E(pk,X,R) is a group.

• E(pk, 0, R) is a subgroup of E(pk,X,R).
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• For all x ∈ X, E(pk, x,R) is the coset E(pk, x, r)E(pk, 0, R).

• For all x0, x1 ∈ X, |E(pk, x0, R)| = |E(pk, x1, R)|.

• If y is chosen uniformly from E(pk, 0, R), then yE(pk, x, r) is uniform in E(pk, x,R).

• The group E(pk,X,R) ' X × E(pk, 0, R), and decryption is simply the homomorphism

E(pk,X,R)→ E(pk,X,R)/E(pk, 0, R) ' X.

We call a cryptosystem a Homomorphic Public Key Cryptosystem (HPKC), if the cryptosystem is
IND-CPA secure, and homomorphic.

If we make the additional assumption that we can sample in a manner statistically close to uniform
on the subgroup E(pk, 0, R), then the cryptosystem (G,E,D) will be re-randomizable.

Definition 9. We call a Homomorphic Public Key Cryptosystem Uniformly Sampleable if there exists a
PPT algorithm sample such that the output of sample(pk) is statistically close to uniform on the group
E(pk, 0, R).

We note, that for all known homomorphic cryptosystems we may define

sample(pk) = {r ← coins(E) : E(pk, 0, r)}.

It is not too hard to see that this property does not follow from the definition of Homomorphic
Encryption.

B.1 Efficient Re-randomizable Encryption from Uniformly Sampleable Homomor-
phic Encryption

The scheme described above only allows commitment to single bits. If the underlying cryptosystem
(G,E,D), can encrypt more than one bit at a time, we can increase the efficiency of this system, by
simply putting c0, c1, . . . , cn into the public key, and a commitment to i will be ReRand(pk, ci, r). In most
cases, however, we can increase the size of the committed messages without increasing the public-key.

In particular, if (G,E,D, sample) is a Uniformly Sampleable Homomorphic Encryption scheme and
Z/NZ ↪→ X. Then, we can commit to elements in {0, 1, . . . , N − 1} instead of {0, 1} by simply taking

Parameter Generation:

• (pk, sk)← G(1λ),

• r ← coins(E),

• c = E(pk, b, r),

The public parameters are (pk, c).

Encryption:

• r′ ← coins(sample).

• c′ ← sample(pk, r′).

• return ca · c′.

Decryption:
To decrypt a ciphertext c, simply return D(c).

Now, if c = E(pk, 0, r) the scheme is lossy, since all encryptions will be uniformly distributed in the
subgroup E(pk, 0, R), while if c = E(pk, 1, r) the scheme is injective by the correctness of the decryption
algorithm. This is the natural construction when working with the Paillier or Damg̊ard-Jurik cryptosys-
tems. We must use caution when applying this to El-Gamal, since the inverse map Z/NZ ↪→ X is not
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efficiently computable (it’s the discrete log). In this context, it will not be a problem, since we never
have to compute the inverse to decommit. If, on the other hand, we wanted to view this as an encryption
scheme instead of a commitment scheme, then this lack of inverse would be an issue. Fortunately, there
is a well known scheme to create a re-randomizable encryption from the DDH assumption that is only a
slight modification of the original El-Gamal scheme. See [NP01], [PVW08] or [BHY09] for a description
of this scheme. We stress, however, that “plain” El-Gamal is re-randomizable, however, it is slightly less
efficient than this modification.

C The Paillier Cryptosystem

We briefly review the Paillier Cryptosystem proposed by Pascal Paillier in [Pai99], and extended by
Damg̊ard and Jurik in [DJ01].

The cryptosystem works in (Z/N2Z)∗. From the Binomial Theorem, we have

(1 +N)a = 1 + aN mod N2,

so (1 + N) generates a cyclic subgroup of order N . In this group, we can take Discrete Logs efficiently
by L(x) = x−1

N , since
L((1 +N)a) = L(1 + aN) = a.

Now, if g generates 〈1 +N〉, and c = ga, then as with traditional logs

a =
L(c)
L(g)

.

Now, we are ready to describe Paillier’s Cryptosystem

• Parameter Generation:

– Generates primes p, q of length λ/2 and sets N = pq.

– Generate g ∈ Z/N2Z such that N divides the order of g.
This condition is easy to verify if you have the factorization of N .

The public parameters are pk = (N, g)
The secret key is sk = lcm(p− 1, q − 1).

• Encryption:

– r ← Z/NZ,
(really you want to generate r ∈ (Z/NZ)∗, but the distributions are statistically close).

– For m ∈ Z/NZ,
E(pk,m, r) = gmrN mod N2.

• Decryption:
Given a ciphertext c ∈ (Z/N2Z)∗,

m =
L(csk) mod N

L(gsk)
mod N.

This cryptosystem is IND-CPA secure under the Decisional Composite Residuosity Assumption
(DCR), which (informally) says
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Assumption 1. Decisional Composite Residuosity/(DCR): If N is an λ-bit RSA modulus, (i.e.
N = pq), then

{g ← Z/N2Z; g} ≈c {g ← Z/N2Z; gN}.
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