
A Provably Secure And Efficient Countermeasure
Against Timing Attacks

Boris Köpf
MPI-SWS

bkoepf@mpi-sws.mpg.de

Markus D̈urmuth
Saarland University

duermuth@cs.uni-sb.de

Abstract

We show that the expected number of key bits
that an unknown-message attacker can extract
from a deterministic side-channel is bounded
from above by|O| log2(n + 1), wheren is the
number of side-channel measurements andO
is the set of possible observations. We use this
bound to derive a novel countermeasure against
timing attacks, where the strength of the security
guarantee can be freely traded for the resulting
performance penalty. We give algorithms that
efficiently and optimally adjust this trade-off for
given constraints on the side-channel leakage or
on the efficiency of the cryptosystem. Finally, we
perform a case-study that shows that applying
our countermeasure leads to implementations
with minor performance overhead and strong
security guarantees.

1. Introduction

Side-channel attacks threaten the security of
cryptographic algorithms by exploiting informa-
tion that is revealed by the algorithm’s physical
execution. Characteristics such as running time
[14], cache behavior [23], power consumption
[15], and electromagnetic radiation [11], [24]
have all been exploited to recover secret keys
from implementations of different cryptographic
algorithms. In distributed environments such as
the internet, timing attacks are maybe the most
daunting kind of side-channel attack: Timing
can be measured and exploited remotely [4],

opening the door for a potentially large number
of attackers.

A number of countermeasures against timing
attacks have been proposed [14], [4], most no-
tably input blinding and constant-time imple-
mentations.

To describeinput-blinding, we use RSA as
an example. Input blinding relies on the fact
that all known timing attacks against RSA de-
cryption require that the attacker is able to
obtain a large number of pairs of ciphertexts
and corresponding execution times. Blinding
randomizes each ciphertext before decryption.
In this way, the attacker’s timing measurements
are decorrelated from the ciphertexts, rendering
all known timing attacks ineffective. Blinding
has become the state-of-the-art countermeasure
against timing attacks and is implemented in a
wide range of crypto-libraries. However, it is
still unclear whether blinding offers any kind
of completeness in the sense that it defeats all
possible timing attacks [14]. A recent result
even shows that a blinded implementation may
leak the entire key information if the number of
measurements is sufficiently large [2].

By contrast, constant-timeimplementations
defeat all timing attacks. However, this secu-
rity guarantee comes at the price of a strong
performance penalty, as the system assumes its
worst-case execution time on all inputs. For
many resource-critical application domains, such
a performance penalty is not acceptable. More-
over, for many platforms, constant-time software
is hard to write and maintain. As a consequence,
constant-time software is not widely used in

practical implementations of cryptosystems.
In general (see also Section 6), existing coun-

termeasures against timing attacks are either
not fully practical (e.g., in terms of the re-
sulting performance penalty) or not known to
be sound (i.e., they are not backed up by any
formal security guarantee). It has been an open
problem to devise countermeasures that satisfy
both requirements. In this paper, we propose a
solution to this open problem for systems with
deterministic timing behavior.

The key to our solution is the insight that if
a system with deterministic timing behavior is
run on inputs that have been previously blinded,
the expected number of secret bits leaked by the
system’s timing behavior is bounded from above
by

|O| log2(n + 1) ,

whereO is the set of possible execution times,
and n is the number of side-channel measure-
ments made.

Motivated by this insight, we propose the
combination of blinding and bucketing as a
novel countermeasure against timing attacks.
Bucketing is the discretization of a system’s
execution times such that the results of the
computation are only returned at a small number
of fixed points in time. More precisely, bucketing
partitions a system’s possible execution times
into intervals (buckets) of variable length, where,
for each execution time, one waits until the
enclosing bucket’s upper bound before returning
the result of the computation.

Bucketing reduces the number of possible
timing observations (and hence improves the
bound on the leaked information) at the cost of
the system’s performance. The resulting trade-
off between security and performance can be
adjusted by choosing the number of buckets
and their bounds. To this end, we give an
algorithm that, for a given number of buckets
(i.e., a desired security guarantee), computes
a bucketing such that the system’s resulting
performance penalty is minimal. Moreover, we
give an algorithm that computes the minimal
number of buckets (i.e., the best possible se-
curity guarantee) under the constraint that the
resulting performance penalty does not exceed a
given bound.

We have implemented our algorithms and
have applied them to evaluate the effect of
combining bucketing and blinding on the per-
formance and security of a realistic example.
As a case study, we analyze an implementation
of an algorithm for 1024 bit RSA decryption.
Our results show that strong security guarantees
can be obtained with only a minor performance
overhead: If a bucketing of5 buckets is applied
to the implementation, more than240 timing
measurements are necessary for recovering an
expected number of200 key bits (alternatively:
240 side-channel measurements reduce the ex-
pected effort for determining the key by ex-
haustive search by a factor of at most2200),
and the resulting performance overhead amounts
to less than0.67% with respect to the blinded
implementation without bucketing.

In summary, our contributions are both the-
oretical and practical. On the theoretical side,
we prove a bound on the amount of information
that a side-channel attacker can extract from
a blinded implementation in a given number
of measurements. This bound leads to a coun-
termeasure against timing attacks, where the
strength of the security guarantee can be freely
traded for the resulting performance penalty.
On the practical side, we give algorithms that
efficiently and optimally adjust this trade-off for
given constraints on the side-channel leakage or
on the efficiency of the cryptosystem. Finally,
we perform a case-study that shows that the
combination of blinding and bucketing leads to
implementations with minor performance over-
head and strong security guarantees.

The remainder of this paper is structured as
follows. In Section, 2, we present a measure for
the amount of information that is leaked by a
blinded implementation. In Section 3, we prove
a bound on this quantity and give an interpre-
tation of this bound in terms of guessing. In
Section 4, we present algorithms for computing
optimal bucketings. In Section 5, we present
experimental results. We present related work
and conclude in Sections 6 and 7, respectively.

2

2. Preliminaries

In this section, we introduce our model of
side-channels and an information-theoretic mea-
sure that captures the side-channel leakage of
blinded implementations. To begin with, we re-
call some basic information theory. See [8] for
a textbook on the subject.

2.1. Information Theory Basics

Let A be a finite set andp : A → R a
probability distribution. For a random variable
X : A → X, we define pX : X → R as
pX (x) =

∑

a∈X−1(x) p(a), which is often de-
noted byp(X = x) in the literature.

The (Shannon) entropyof a random variable
X : A→ X is defined as

H(X) = −
∑

x∈X

pX (x) log2 pX (x) .

The entropy is a lower bound on the average
number of bits required to represent the results
of independent repetitions of the experiment
associated withX . Thus, in terms of guessing,
the entropyH(X) is a lower bound on the
average number of binary questions that need to
be asked to determineX ’s value [5]. The entropy
is nonnegative, and reaches its maximal value
of H(X) = log2(|X|) when X is uniformly
distributed.

If Y : A → Y is another random variable,
H(X|Y = y) denotes the entropy ofX given
Y = y, i.e., with respect to the distribution
pX|Y=y. The conditional entropyH(X|Y) is
defined as the expected value ofH(X|Y = y)
over all y ∈ Y , namely,

H(X|Y) =
∑

y∈Y

pY(y)H(X|Y = y) .

Entropy and conditional entropy are related by
the equationH(XY) = H(Y)+H(X|Y), where
XY is the random variable defined asXY(k) =
(X (k),Y(k)). The mutual information

I(X ;Y) = H(X)−H(X|Y)

captures the expected reduction in uncertainty
aboutX when one learns the value ofY. The
mutual information is measured in bits.

2.2. Side-Channels

Let K be a finite set of keys,M be a finite
set of messages, andD be an arbitrary set. We
consider systems that compute functions of type
F : K × M → D, and we assume that the
attacker can make physical observations about
F ’s implementationIF that are associated with
the computation ofF (k,m). We assume that
the attacker can make one observation ofIF

per call to F and that no measurement errors
occur. Formally, aside-channelis a function
fIF

: K × M → O, where O denotes the set
of possible observations. We assume that the
attacker has full knowledge about the implemen-
tation IF ; in particular we assume thatfIF

is
known to the attacker. We will usually leaveIF

implicit and abbreviatefIF
by f .

Example 1. Suppose thatF is implemented in
synchronous (clocked) hardware and that the
attacker is able to determineIF ’s running times
up to single clock ticks. Then the timing side-
channel ofIF can be modeled as a function
f : K × M → N that represents the number
of clock ticks consumed by an invocation of
IF . This modeling also applies to software im-
plementations ofF on simple microprocessors
without caches and pipelines.

Example 2. For implementations on micro-
processors with performance-enhancing features
such as pipelines and caches, the timing be-
havior of IF is not necessarily a function of
the inputs toF . However, if the processor is
forced into a fixed initial state before each call
to F (e.g., by filling up the pipeline and the
cache), and if there are no interferences such as
interrupts and preemptions, the execution time
becomes a function of the inputs toF .

Our modeling of side-channels also encom-
passes simple models of power consumption,
e.g. the Hamming weight model [18]. However,
these models abstract away certain electrical
effects, and formal bounds derived on their basis
do not imply security with respect to attackers
that exploit the omitted effects. The practical
implications of applying our model to power
analysis requires further investigation. In this
paper, we focus on timing side-channels.

3

2.3. Unknown-Message Attacks

In a side-channel attack, a malicious
agent gathers side-channel observations
f(k,m1), . . . , f(k,mn) for deducing k or
narrowing down its possible values. Depending
on the attack scenario, the attacker might
additionally be able to see or choose the
messagesmi ∈ M : An attack is chosen-
messageif the attacker can choosemi ∈ M ;
an attack isknown-messageif the attacker can
observe but cannot influence the choice of
mi ∈ M ; an attack isunknown-messageif the
attacker cannot observemi ∈M .

As previously mentioned, all known timing
attacks against RSA decryption require that the
attacker is able to obtain a large number of
pairs of ciphertexts and corresponding execution
times. Input blinding randomizes each cipher-
text before decryption, thus turning chosen- and
known-message attacks into unknown-message
attacks.

Example 3. Consider an RSA decryptionx =
mk mod N , wherem is a ciphertext chosen by
the attacker,x is the plaintext,N = p · q is the
modulus, andk with k ·e = 1 mod ϕ(N) is the
secret key. In theblindingphase, one picks a ran-
domr that is relatively prime toN and computes
m · re mod N . The result of the decryption
is (m · re)k = x · r mod N , which yieldsx
after unblinding, i.e., after multiplication with
r−1 mod N .

Input blinding techniques are available for
many common cryptographic algorithms, includ-
ing ElGamal and Diffie-Hellman. While the
mathematical details of these techniques de-
pend on the algebraic properties of the individ-
ual cryptosystems, the notion of an unknown-
message attack provides a common abstraction
for attacks against blinded implementations.

2.4. Side-Channel Leakage in Unknown-
Message Attacks

We review the information measure from [2]
that captures the side-channel leakage in
unknown-message attacks. For this, let
pK : K → R and pM : M → R be probability

distributions and let the random variables
K = idK , M = idM model the choice of keys
and messages, respectively; we assume thatpM

andpK are known to the attacker.
For n ∈ N , we define the random variable

On : K ×Mn → On by On(k,m1, . . . ,mn) =
(f(k,m1), . . . , f(k,mn)), where

pK×Mn(k,m1, . . . ,mn) = pK(k)

n
∏

i=1

pM (mi)

is the probability distribution onK ×Mn. The
definition of the random variableOn captures
that k remains fixed over all invocations of
f , while the messagesm1, . . . ,mn are chosen
independently.

Example 4. Consider again the blinded RSA
ciphertextm · re mod N from Example 3. If
m is relatively prime toN , the multiplication
with m and the exponentiation withe are per-
mutations onZ

×
N . Hence, for independent and

uniformly distributed values ofr, the blinded
inputs to the decryption are also independent
and uniformly distributed. Note that choosing
a ciphertextm that is not relatively prime to
N corresponds to guessing one of the prime
factors ofN = p·q. We can hence safely capture
the effect of RSA input blinding by assuming a
uniform distributionpM .

An unknown-message attacker makingn side-
channel observationsOn may learn information
about the value ofK, i.e., about the secret
key. This information can be expressed as the
reduction in uncertainty about the value ofK,
i.e., I(K;On) = H(K)−H(K|On).

Note thatI(K;On) captures only the informa-
tion leaked by the time required for computing
F , but does not capture the timing behavior of
the blinding and unblinding steps. We assume
that these steps do not introduce additional tim-
ing leaks.

3. Bounds on the Side-Channel Leak-
age

In this section, we prove our main result,
which is an upper bound on the amount of in-
formation that an unknown-message attacker can
extract from a side-channel in a given number of

4

measurements. We give the proof idea in Section
3.1 and formalize it in Section 3.2. In Section
3.3, we give an interpretation of this bound
in terms of the remaining effort for correctly
guessing a key.

3.1. Proof Idea

The number of possible observations that
can be made inn measurements is bounded
from above by |O|n. Hence, log2(|O|

n) =
n log2(|O|) is an upper bound for the informa-
tion that is contained inn side-channel measure-
ments. Note that this crude bound does not yet
imply any useful security guarantees.

For a fixed key, however, the individual
observations are independent and identically
distributed. As a consequence, their ordering
is irrelevant: only the relative frequency with
which each observation occurs carries informa-
tion about the key. The number of relative fre-
quencies of observations, however, is bounded
from above by(n + 1)|O|, which leads to our
|O| log2(n + 1) upper bound on the leaked
information.

3.2. Formal Proof

Formally, the type to of a sequenceo =
(o1, . . . , on) ∈ On is the relative frequency
with which each element ofO occurs ino. Let
Tn = {to | o ∈ On} be the set of types of
sequences of lengthn of elements ofO. The
function Tn : On → Tn defined byo 7→ to is
a random variable wherepTn

(t) = pOn
({o ∈

On | to = t}). We denote by|to| the number of
observation vectors of typeto, i.e., |to| = |{o′ ∈
On | to′ = to}|.

The following bound on the size ofTn is fun-
damental to the (information-theoretic) method
of types. Its proof relies on a simple counting
argument, where one represents each type inTn

as an element of{0, . . . , n}|O| (see, e.g. [9]).

Lemma 1. |Tn| ≤ (n + 1)|O|

Lemma 2 shows that a vector of observa-
tionso contains as much information (i.e., leads
to the same reduction in uncertainty) about the
key as the typeto.

Lemma 2. H(K|On = o) = H(K|Tn = to)

Proof: H(K|On = o) is defined by
−

∑

k∈K pK|On=o(k) log2 pK|On=o(k), hence it
suffices to show thatpK|On=o = pK|Tn=to

.
For a fixed k, the individual observations in
o = (o1, . . . , on) are independent, hence

pOn|K=k(o) =
n

∏

i=1

pO1|K=k(oi) .

In particular, this implies thatpOn|K=k(o) =
pOn|K=k(o′) wheneverto = to′ . Hence

pTn|K=k(to) =
∑

o′:to=to′

pOn|K=k(o′)

= |to| pOn|K=k(o) .

We further have

pK|T =to
(k) =

pT |K=k(to)pK(k)

pT (to)

=
pT |K=k(to)pK(k)

∑

k′∈K pT |K=k′(to)pK(k′)

=
|to|pOn|K=k(o)pK(k)

∑

k′∈K |to|pOn|K=k′(o)pK(k′)

=
pOn|K=k(o)pK(k)

pOn
(o)

= pK|On=o(k) ,

from which the statement follows.
Lemma 3 shows that the random variableOn

contains as much information about the key as
the random variableTn.

Lemma 3. H(K|On) = H(K|Tn)

Proof:

H(K|On) =
∑

o∈On

pOn
(o)H(K|On = o)

=
∑

t∈Tn

∑

o:to=t

pOn
(o)H(K|On = o)

(∗)
=

∑

t∈Tn

pT (t)H(K|Tn = t)

= H(K|Tn)

where step(∗) follows from Lemma 2.
We are now ready to give the proof of

our main result, which is an upper bound on

5

the amount of information that an unknown-
message side-channel attacker can extract in a
given number of measurements.

Theorem 1. Let f : K × M → O be a side-
channel and letK andOn be defined as above.
Then we have

I(K;On) ≤ |O| log2(n + 1) .

Proof:

I(K;On) = H(K)−H(K|On) (1)

= H(K)−H(K|Tn) (2)

= H(Tn)−H(Tn|K) (3)

≤ H(Tn) (4)

≤ log2 |Tn| (5)

≤ |O| log2(n + 1) , (6)

where (1) follows from the definition of the mu-
tual information, (2) follows from Lemma 3, (3)
follows from the chain rule for the conditional
entropy, (4) follows from the non-negativity of
the entropy, (5) is basic information theory, and
(6) follows from Lemma 1.

Theorem 1 characterizes the available side-
channel information in terms of a bound on the
expected number of leaked bits. Below, we give
a characterization of this information in terms
of the remaining effort for correctly guessing a
key.

3.3. The Effort for Guessing Keys after
a Side-channel Attack

In this section, we show that the informa-
tion that is contained inn side-channel mea-
surements reduces the attacker’s expected effort
for guessing the correct key by a factor of at
most (n + 1)|O|.

The basis for our proof is a result by
Massey [19] that shows that the average number
of questions of the form “DoesX = x hold” that
must be asked to guess the value of a random
variableX with H(X) ≥ 2 is bounded from
below by 2H(X)−2 + 1. We extend this bound
to a bound in terms of the conditional Shannon
entropy and apply the result to Theorem 1.

To this end, observe that the optimal guessing
strategy is to try each of the possible values

of X : A → X in order of their decreasing
probabilities. Without loss of generality, letX be
indexed such thatpX (xi) ≥ pX (xj), whenever
i ≤ j. Then theguessing entropyG(X) of
X is defined asG(X) =

∑

1≤i≤|X| i pX (xi).
One defines theconditional guessing entropy
G(X|Y) as

G(X|Y) =
∑

y∈Y

pY(y)G(X|Y = y) .

This represents the expected number of guesses
needed to determineX when the value ofY is
already known [5].

The following lemma generalizes Massey’s
entropic lower bound on the guessing entropy
to a lower bound on the conditional guessing
entropy.

Lemma 4. LetX ,Y be random variables. Then

G(X|Y) = 2H(X|Y)−2 .

Proof: We have G(X) ≥ 2H(X)−2 + 1
wheneverH(X) ≥ 2. Note thatG(X) ≥ 1 al-
ways holds, hence we haveG(X) ≥ 2H(X|Y)−2

without any restrictions onH(X). We conclude

G(X|Y) = E(G(X|Y = y)

≥ E(2H(X|Y=y)−2)

(∗)

≥ 2E(H(X|Y=y))−2

= 2H(X|Y)−2 ,

whereE denotes the expected value overy ∈ Y
and where(∗) follows from Jensen’s inequality.

The following corollary of Theorem 1 shows
that the information contained inn side-channel
measurements reduces the expected effort for
guessing the correct key by a factor of(n+1)|O|.

Corollary 1. LetK andOn be defined as above.
Then

G(K|On) ≥
2H(K)

4 (n + 1)|O|
.

Proof: We have

G(K|On)
(∗)

≥ 2H(K|On)−2

(∗∗)

≥ 2H(K)−|O| log
2
(n+1)−2 ,

where (∗) follows from Lemma 4 and(∗∗)
follows from Theorem 1.

6

4. An Adjustable Countermeasure
Against Timing Attacks

4.1. Bucketing

Theorem 1 implies that reducing the size of
O leads to better security guarantees. In the case
of timing, such a reduction can be achieved
by a discretization of the possible execution
times, which we callbucketing. Bucketing par-
titions a system’s possible execution times into
intervals (which we callbuckets) of variable
length, where, for each execution time, one waits
until the enclosing bucket’s upper bound before
returning the result of the computation.

Clearly, bucketing leads to a performance
penalty. In this section we show how, for a
given r ∈ N, one can compute a bucketing into
r buckets such that the resulting performance
penalty is minimal. Moreover, we show how, for
a givenǫ > 0, one can compute a bucketing with
a minimal number of buckets, such that the per-
formance penalty when applying this bucketing
is below ǫ.

Our algorithms take as input a sampleS of
execution times ofIF and do not require precise
knowledge aboutfIF

. The accuracy of the es-
timated performance penalty, however, depends
on the accuracy with whichS approximates the
average execution time ofIF (in Section 5.3,
we show how to estimate this accuracy). By
contrast, the validity of the obtained security
guarantee depends only on the correct number
of buckets and does not rely on the accuracy
of S. For the number of buckets to be correct,
it suffices thatS contains an upper bound for
the worst-case execution time ofIF . For many
embedded processors, such upper bounds can
be obtained by automated worst-case execution
time analysis [26].

4.2. Trading Security for Performance

In the remainder of this section, we assume
that O = {o1, . . . , om} is a set of positive reals
that is indexed in ascending order, i.e.oi ≤ oj

wheneveri < j. We denote the set{o1, . . . , ot}
by Ot.

A sample S is a multiset of observations.
Formally, S : O → N, where S(o) represents
the number of occurrences ofo in S. We denote
the relative frequency with whicho ∈ O occurs
in S by pS(o), i.e.,

pS(o) =
S(o)

∑

o∈O S(o)
.

We extendpS to sets of observations in the
natural way.

An (r-)bucketingB of Ot is a vectorB =
(ô1, . . . , ôr) of observations, witĥor = ot and
ôi ≤ ôj wheneveri < j. Note that it would
suffice to require that̂or ≥ ot and later prove
that equality holds for optimal bucketings. We
avoid this detour by definition.

For i ∈ {1, . . . , r}, we define thebucketbi by

bi = {o ∈ O | ôi−1 < o ≤ ôi} ,

where we set̂o0 = −1. For a bucketingB of Ot

and a sampleS, we define theaverage ofS with
respect toB by

avg(S,B) =

r
∑

i=1

ôi pS(bi). (7)

An r-bucketing B of Ot is S-optimal if
avg(S,B) ≤ avg(S,B′) for every r-
bucketingB′ of Ot.

In our application,S models a sample of
execution times of the target system andB
represents a sequence of time boundaries. If
a computation takes timeo, we wait for the
minimal time boundaryôi with ôi ≥ o until
we return the result of the computation. This
modified system has an average running time of
avg(S,B). Theperformance penaltypen(S,B)
resulting from applying a bucketingB of O to
S is given by

pen(S,B) = avg(S,B)−
∑

o∈S

o pS(o) .

Example 5. The sequence(o1, . . . , om) is a
bucketing ofO with

avg(S, (o1, . . . , om)) =
∑

o∈O

o pS(o) .

This value is the average value of the sample
S, which leads to a performance penalty of0
and illustrates that the execution time does not

7

increase if the bucketing is as fine-grained as the
set of possible observations.

Example 6. The singleton sequence(om) is a
1-bucketing ofO with

avg(S, (om)) = om .

This reflects that a system with bucketing(om)
requires timeom for all inputs, and hence the
average and the worst-case execution times co-
incide.

We consider the following two optimization
problems related to bucketings.

Definition 1 (Minimal Performance Penalty
Problem). Given a sampleS of observations
and r ∈ N, the Minimal Performance Penalty
Problem is to find an r-bucketing ofO with
minimal performance penalty with respect toS.
Formally, the goal is to find anr-bucketingB
of O, such that

avg(S,B) ≤ avg(S,B′)

for all r-bucketingsB′ of O.

Definition 2 (Minimal Information Loss Prob-
lem). Given a sampleS of observations and
ǫ > 0, theMinimal Information Loss Problemis
to find a bucketing that minimizes the system’s
information loss though timing behavior under
the constraint that the resulting performance
penalty does not exceedǫ . Formally, the goal
is to find anr-bucketingB of O with minimalr
and

pen(S,B) ≤ ǫ . (8)

Below, we present efficient algorithms for
both problems.

4.3. Computing Optimal Bucketings

In this section, we propose efficient algo-
rithms for the Minimal Performance Penalty
Problem and for the Minimal Information Loss
Problem stated above. For this, we leverage
ideas from computing optimal histograms [13].

4.3.1. An Algorithm for the Minimal Perfor-
mance Penalty Problem.The following obser-
vation is fundamental for our algorithm: Every
S-optimal bucketing ofOi contains aS-optimal
bucketing for someOj with j < i. Formally,
if the bucketing B = (ô1, . . . , ôr) is opti-
mal for Oi, then the bucketing(ô1, . . . , ôr−1)
is optimal for Oj , where oj = ôr−1. As-
sume to the contrary that(ô1, . . . , ôr−1) is
not optimal for Oj . Then one can pick the
S-optimal (r − 1)-bucketing of Oj and add
one bucket for the observationsoj+1, . . . , oi.
The result is ar-bucketing B′ of Oi, with
avg(S,B′) < avg(S,B), which contradicts the
optimality of B for S. A consequence of this so-
called optimal substructure propertyis that we
can use dynamic programming (see, e.g., [8]) to
construct optimal bucketings of a setOi from
optimal bucketings of subsetsOj ⊆ Oi.

To this end, we define the functiona, where
the intuition is thata(i, r) captures the value
avg(S,B) for an S-optimal r-bucketing B
of Oi.

a(i, 1) = oi

∑

o≤oi

pS(o)

a(i, r) = min
1≤j≤i

a(j, r − 1) + oi

∑

oj<o≤oi

pS(o)

The following lemma formalizes our intuition
abouta.

Lemma 5. Let S be a sample andB =
(ô1, . . . , ôr) be a bucketing ofOi. Then

a(i, r) ≤ avg(S,B). (9)

Moreover, there exists anr-bucketing ofOi for
which equality holds in (9).

Proof: We prove the assertion by induc-
tion on r. For r = 1, there is only oner-
bucketing ofOi, namely(oi). We havea(i, 1) =
oi

∑

o≤oi
pS(o), which proves the assertion. For

r > 1, it follows by induction thata(j, r− 1) =
avg(S,B), whereB is an S-optimal (r − 1)-
bucketing of Oj . By adding one bucket with
boundaryoi and weight

∑

oj<o≤oi
pS(o), one

can extendB to anr-bucketingB′ of Oi with

avg(S,B′) = avg(S,B) + oi

∑

oj<o≤oi

pS(o) .

8

Note thatB′ is not necessarilyS-optimal for
Oi. However, as previously observed, anS-
optimal r-bucketingB∗ of Oi contains an opti-
mal (r−1)-bucketing of someOj∗ with j∗ < i.
By definition of a(i, r), this j∗ is found and,
hence,a(i, r) = avg(S,B∗).

Lemma 5 implies thata(|O|, r) = avg(S,B)
for an optimalr-bucketingB of O. For comput-
ing a, one can build up a table of size|O| × r.
For computing each entry, at most|O| lookups
are necessary (the values

∑

o≤oi
pS(o) can be

precomputed fori ∈ {1, . . . , |O|}). A concrete
bucketing can then be obtained from this table
by backtracking, which yields the following
proposition.

Proposition 1. For a sampleS and a num-
ber of bucketsr, the Minimal Performance
Penalty Problem can be optimally solved in time
O(r |O|2).

As we will show next, a similar approach can
be taken for solving the Minimal Information
Loss Problem.

4.3.2. An Algorithm for the Minimal Infor-
mation Loss Problem.We present an algorithm
for the Minimal Information Loss Problem. For
this, we re-use the functiona defined in Section
4.3.1. As before, we use dynamic program-
ming to build a value-table representation ofa,
where the difference to the algorithm for the
Minimal Performance Penalty Problem is that
the minimal lengthr of a bucketingB with
pen(S,B) ≤ ǫ is not a priori known. However,
as Example 5 shows, there is a bucketing of
length |O| with a performance penalty of0.
Hencer is bounded from above by|O|, which
leads to anO(|O|3)-algorithm.

Proposition 2. For a sampleS and ǫ > 0,
the Minimal Information Loss Problem can be
optimally solved in timeO(|O|3).

This direct approach to the Minimal Infor-
mation Loss Problem is efficient enough for
our experiments, however, it is likely that the
complexity bounds can be further improved, e.g.,
along the lines of [13].

1 procedure Exp(x, k,N)
2 input x, k,N ∈ N

3 output xk mod N
4 begin
5 p← MontMul (1, 1)
6 x← MontMul (x, 1)
7 for i = n− 1 downto 0 do
8 p← MontMul (p, p)
9 if k[i] = 1 then
10 p← MontMul (p, x)
11 od
12 p← MontMul (p,R2)
13 return p
14 end.

Figure 1. Pseudo-code of the exponentia-
tion algorithm, where MontMul stands for
Montgomery Multiplication. The operations
in lines 5, 6, and 12 transform the operands
to Montgomery form and back, respectively,
and the loop in lines 7-11 performs the actual
exponentiation.

5. Experimental Results

In this section, we perform a case study
where we evaluate the influence of bucketing on
the performance and the security of a realistic
example. To this end, we apply the algorithms
presented in Section 4 to compute optimal buck-
etings for an implementation of 1024 bit RSA
decryption.

5.1. RSA Implementation and Timing
Model

We consider the RSA implementation in Fig-
ure 1, in which the modular exponentiation is
performed by square-and-multiply, and where
each modular multiplication is carried out using
Montgomery’s algorithm [22], which is a com-
mon choice in practice. It is important to note
that Montgomery multiplication is not constant-
time, because of so-calledextra reductionsthat
must be performed for some operands.

Our analysis is based on a timing model
that captures a simple 32-bit microprocessor
that can perform word-level additions and mul-

9

 0

 200

 400

 600

 800

 1000

... 2150000 2200000 1500000 1550000 1600000 1650000
 0

 40000

 80000

 120000

 160000

 200000

sa

m
pl

es

sa

m
pl

es
 p

er
 b

uc
ke

t

execution time in ticks

buckets
worst-case execution time

measurement

Figure 2. Execution time in clock cycles of 1024-bit RSA exponentiation for 219 samples. The
mean for the original distribution is 1 586 211, the mean for the bucketized distribution is 1 596 726.

tiplications within single clock cycles. Using
standard algorithms for multi-precision arith-
metic [20], a Montgomery multiplication of two
1024-bit integers can then be performed within
(roughly) (1024/32)2 = 1024 clock cycles, and
an extra reduction step can be performed within
(roughly)1024/32 = 32 clock cycles. We hence
assume thattmul = 1024 and tred = 32, where
tmul and tred are the numbers of clock cycles
consumed by a multi-precision multiplication
and an extra reduction step, respectively.

An upper boundtmax on the worst-case exe-
cution time of our implementation is given by

tmax = (2 ·1024+3)(tmul + tred) = 2 165 856 ,

which corresponds to an execution in which all
possible multiplications and extra reductions are
carried out.

5.2. The Effect of Bucketing on Security
and Performance

The black curve in Figure 2 shows the dis-
tribution of the execution times of our RSA
implementation, based on219 randomly sampled
inputs. The average execution time of this im-
plementation is1 586 211 clock ticks.

The (centers of the) gray bars and the dashed
vertical line depict the boundaries of an optimal
5-bucketing computed with our algorithm, i.e,
a solution to the Minimal Performance Penalty
Problem. The average execution time for the

system with this bucketing is1 596 726 clock
ticks, which corresponds to an overhead of only
0.67% with respect to the implementation with-
out bucketing.

Theorem 1 shows that a5-bucketing is coarse
enough for obtaining strong security guarantees:
At least2150/5 timing measurements are neces-
sary for learning an expected number of150 key
bits. Alternatively, Corollary 1 shows that2150/5

timing measurements reduce the attacker’s ex-
pected effort for correctly guessing the key by a
factor of at most2150. Under the assumption
that the system under attack can perform10
decryptions per second, the time for performing
these230 measurements amounts to3.5 years.

We conclude that adding bucketing to a
blinded implementation implies only a minor
performance overhead and yields strong security
guarantees.

Figure 3 depicts how the average execution
time decreases as the number of buckets grows.
This decrease is most notable between bucket-
ings of 1 and 2 buckets, which illustrates the
performance gain of a2-bucketing with respect
to a constant-time implementation. Observe that
this strong performance gain does not give the
whole picture, because our analysis does not
consider the overhead introduced by the blinding
and unblinding steps. If the maskre can be
precomputed, however, this overhead will be
small.

10

 1400000

 1600000

 1800000

 2000000

 2200000

 1 2 3 4 5 6 7 8

av
g.

 e
xe

cu
tio

n
tim

e

n

without buckets
with n buckets

Figure 3. Expected execution time vs. num-
ber of buckets for 1024-bit RSA exponentia-
tion for 219 samples.

5.3. Error Estimations

When computing bucketings, we approximate
the distribution of side-channel observations by a
sampleS of timing measurements. As discussed
in Section 4, the quality of this approximation
does not affect the obtained security guarantees.
However, the quality of the approximation af-
fects the precision of the estimated performance
penalty. We next show how this precision can be
determined. Formally, we derive a bound on

| pen(S,B)− pen(SO, B)| ,

whereSO denotes an “idealized sample” ofO1,
i.e. a sample withpSO

= pO1
. To this end, let

B = (ô1, . . . , ôr), let

∆(pO1
, pS) =

1

2

∑

x∈O

|pO1
(x)− pS(x)|

denote the statistical distance ofpO1
andpS , and

let E denote the expected value. We have

| pen(S,B)− pen(SO, B)|

=

∣

∣

∣

∣

∣

∣

r
∑

i=1

ôi

∑

ôi−1<x≤ôi

pS(x)− E(pS)

−

r
∑

i=1

ôi

∑

ôi−1<x≤ôi

pO1
(x)− E(pO1

)

∣

∣

∣

∣

∣

∣

≤
r

∑

i=1

ôi

∑

ôi−1<x≤ôi

|pS(x)− pO1
(x)|

+ |E(pS)− E(pO1
)|

≤ 4 · ôr ·∆(pS , pO1
) .

For our example, we instantiatêor with the
worst-case execution time of2 165 856 clock
cycles. We have computed upper bounds on
∆(pS , pO1

) in terms of the size ofO, which we
estimate as follows: All variations in the execu-
tion time are multiples of32 clock cycles, hence
it suffices to count the number of variations.
Only the multiplication in line 10 and the extra
reductions in lines 5, 6, 8, 10, and 12 account for
potential variations. Summing up, we see that

|O| ≤ 1024 · (32 + 1 + 1) + 3 = 34 819 .

Our computation of bounds on the statistical
distance ofpO1

and pS in terms of |O| uses
Chernoff bounds and the McDiarmid Inequality.
The actual computation is tedious and we omit it
for better readability. The result is that a sample
of 219 execution times is sufficient to guarantee
an approximation error of less than0.01 with
a confidence of more than0.99. With this, we
obtain

| pen(S,B)− pen(SO, B)| < 64 976

clock cycles, which amounts to less than4.1%
of the expected execution time. Note that these
error bounds depend only on|O| andôr and hold
for arbitrary systems with these parameters. We
expect that the regularity of the timing behavior
of our case-study can be used for deriving much
tighter error bounds.

6. Related Work

Our results are based on the model of
side-channels from [16] and the measure for
information-flow in unknown-message attacks
from [2]. The exact computation of this measure
for a given system requires the enumeration of
all possible inputs and does not scale. Our new
result implies that, by combining bucketing and
blinding, such a costly analysis can be entirely
avoided.

A number of different information-flow mea-
sures have been proposed in the literature, e.g.
[17], [7], [6]. The measure proposed by Clark et
al. [6] is closely related to the measure used in
this paper, however, it does not capture multiple
computations with the same key and is hence

11

not applicable to the analysis of side-channel
attacks.

Several approaches in language-based security
use security type systems to detect timing side-
channels [1], [3], [12]. If a program success-
fully type checks, then an attacker cannot gain
any information about the secret, even if he
exhaustively runs the program on all possible
public inputs. Obtaining such strong guarantees
requires restrictive programming and precise
knowledge about the time consumption of the
individual instructions on the underlying ma-
chine. By contrast, our approach only requires
that the system’s execution time is a function of
the inputs to the system.

Standaert et al. propose a framework for the
evaluation of side-channel attacks [25], where
they use two largely independent metrics for
the evaluation of systems. Theinformation-
theoretic metric captures non-adaptive chosen-
message adversaries and is not given a direct
interpretation in terms of security. Thesecurity
metric characterizes the security of a system in
terms of the success rate of applying a given key
recovery strategy (e.g., Bayesian classification)
to the measurement data. In this way, an analysis
with the model of [25] yields assertions about
the effectiveness of the chosen recovery strategy,
but not necessarily worst-case bounds.

Micali and Reyzin [21] proposephysically
observable cryptography, a mathematical model
that aims at providing provably secure cryptog-
raphy on hardware that is only partially shielded.
Using a similar approach, Dziembowski and
Pietrzak [10] recently obtained the first positive
results, where they construct a stream cipher that
is provably secure in the presence of arbitrary
leakage functions with output of logarithmic
length (assuming ordinary PRFs) or of a constant
fraction of state-bits (assuming the existence of
exponentially hard PRFs). It will be interesting
to see how efficient their constructions work in
practice, and whether they extend to public-key
cryptography. Our approach is more concrete
than that of [10] in that we prove the security of
a specific countermeasure against timing attacks.
This countermeasure, however, can readily be
applied to existing cryptosystems.

The termbucketingand the idea of computing

optimal bucketings by dynamic programming is
inspired by work on computing optimal his-
tograms of probability distributions [13]. In [13],
the buckets partition a set of values (which
corresponds to the observations in our model),
where each value has a given frequency (which
corresponds to the number of occurences in
a sample). However, there is no direct corre-
spondence between the notions of optimality of
bucketings in [13] and in our approach, which
requires our development in Section 4.3.

The discretization of the execution time into
multiples of a fixed time quantum has been pro-
posed in [4]. However, it was observed that, for
obtaining security guarantees, the execution time
for all all decryption operations must lie within
a single time quantum. This use of discretiza-
tion corresponds to the requirement that the
decryption operation is constant-time. Bucketing
weakens this requirement and hence improves
the performance of the system. Our results show
that this improvement can be achieved while
retaining formal security guarantees.

7. Conclusions

We have presented a provably secure and
efficient countermeasure against timing attacks,
where the strength of the obtained security guar-
antee can be freely traded for the resulting per-
formance overhead. We have given algorithms
that efficiently and optimally adjust this trade-off
for given constraints on the side-channel leakage
or on the efficiency of the cryptosystem. Finally,
we have performed a case-study that shows that
our countermeasure leads to implementations
with minor performance overhead and strong
security guarantees.

Our results can be directly applied to im-
plementations of cryptographic algorithms on
systems with deterministic timing behavior, such
as simple embedded systems and cryptographic
coprocessors, and we believe that our work can
have practical impact on this important applica-
tion domain.

As future work, we will investigate whether
our results extend to systems with nondeter-
ministic timing behavior. In particular, we plan
to investigate the impact of concurrency and

12

uncertain initial cache state on the informa-
tion leakage of blinded implementations. Finally,
any improvement on the information-theoretic
bounds will have direct impact on the efficiency
of our countermeasure.

References

[1] Johan Agat. Transforming out timing leaks. In
Proc. POPL ’00, pages 40–53. ACM, 2000.

[2] Michael Backes and Boris K̈opf. Formally
bounding the side-channel leakage in unknown-
message attacks. InProc. ESORICS ’08, volume
5283 ofLNCS, pages 517–532. Springer, 2008.

[3] Gilles Barthe, Tamara Rezk, and Martijn
Warnier. Preventing timing leaks through trans-
actional branching instructions. InProc. QAPL
’05, ENTCS, pages 33–55. Elsevier, 2005.

[4] Dan Boneh and David Brumley. Remote timing
attacks are practical. InProc. USENIX Security
’03, 2003.

[5] Christian Cachin. Entropy measures and uncon-
ditional security in cryptography. PhD thesis,
ETH Zürich, 1997.

[6] David Clark, Sebastian Hunt, and Pasquale
Malacaria. Quantitative information flow, rela-
tions and polymorphic types.J. Log. Comput.,
18(2):181–199, 2005.

[7] M.R. Clarkson, A.C. Myers, and F.B. Schneider.
Belief in information flow. InProc. CSFW ’05,
pages 31– 45. IEEE, 2005.

[8] Thomas H. Cormen, Clifford Stein, Ronald L.
Rivest, and Charles E. Leiserson.Introduction
to Algorithms. McGraw-Hill Higher Education,
second edition, 2001.

[9] Thomas M. Cover and Joy A. Thomas.Elements
of Information Theory. Wiley, second edition,
2006.

[10] Stefan Dziembowski and Krzysztof Pietrzak.
Leakage-resilient cryptography. InProc. FOCS
’08, 2008.

[11] Karine Gandolfi, Christophe Mourtel, and Fran-
cis Olivier. Electromagnetic analysis: Concrete
results. InProc. CHES ’01, volume 2162 of
LNCS, pages 251–261. Springer, 2001.

[12] Daniel Hedin and David Sands. Timing aware
information flow security for a JavaCard-like
Bytecode. InBYTECODE ’05, ENTCS. Else-
vier, 2005.

[13] H. V. Jagadish, Viswanath Poosala, Nick
Koudas, Ken Sevcik, S. Muthukrishnan, and
Torsten Suel. Optimal histograms with quality
guarantees. InProc. VLDB, pages 275–286,
1998.

[14] Paul Kocher. Timing attacks on implementa-
tions of Diffie-Hellman, RSA, DSS, and other
systems. InProc. CRYPTO ’96, volume 1109
of LNCS, pages 104–113. Springer, 1996.

[15] Paul Kocher, Joshua Jaffe, and Benjamin Jun.
Differential power analysis. InProc. CRYPTO
’99, volume 1666 ofLNCS, pages 388–397.
Springer, 1999.

[16] Boris Köpf and David Basin. An information-
theoretic model for adaptive side-channel at-
tacks. InProc. CCS ’07, pages 286–296. ACM,
2007.

[17] Gavin Lowe. Quantifying information flow. In
Proc. CSFW ’02, pages 18–31. IEEE, 2002.

[18] Stefan Mangard, Elisabeth Oswald, and Thomas
Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

[19] James L. Massey. Guessing and Entropy. In
Proc. IEEE Int. Symp. on Info. Th. ’94, page
204. IEEE, 1994.

[20] Alfred J. Menezes, Paul C. Van Oorschot, and
Scott A. Vanstone.Handbook of Applied Cryp-
tography. CRC Press, 1997.

[21] Silvio Micali and Leonid Reyzin. Physically
observable cryptography (Extended Abstract). In
Proc. TCC ’04, volume 2951 ofLNCS, pages
278–296. Springer, 2004.

[22] Peter Montgomery. Multiplication without trial
division. Math. Computation, 44:519–521,
1985.

[23] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: the case of
AES. In Proc. CT-RSA ’06, volume 3860 of
LNCS, pages 1–20. Springer, 2006.

[24] Jean-Jacques Quisquater and David Samyde.
Electromagnetic analysis (EMA): Measures and
couter-measures for smard cards. InProc. E-
smart ’01, volume 2140 ofLNCS, pages 200–
210. Springer, 2001.

13

[25] Francois-Xavier Standaert, Tal G. Malkin, and
Moti Yung. A Unified Framework for the Anal-
ysis of Side-Channel Key Recovery Attacks.
Cryptology ePrint Archive, Report 2006/139,
2006.

[26] Reinhard Wilhelm, Jakob Engblom, Andreas
Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdi-
nand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan
Staschulat, and Per Stenström. The worst-case
execution-time problem—overview of methods
and survey of tools.Trans. on Embedded Com-
puting Sys., 7(3):1–53, 2008.

14

