The Brezing-Weng-Freeman method for certain genus two hyperelliptic curves

Takakazu Satoh

Department of Mathematics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan e-mail: satohcgn@mathpc-satoh.math.titech.ac.jp

Abstract

We construct paring friendly curves of the form $Y^2 = X^5 + uX^3 + vX$ over large finite prime fields. The ϱ -value of our family is always less than 4. Our method is based on the fact that, under a certain condition, the Jacobian Jof the curve splits to a square of an elliptic curve over the quadratic extension of the base field. However, the generated curves by our method are \mathbf{F}_p -simple. A key ingredient is the construction of a pairing non-friendly elliptic curve by the modified Brezing-Weng-Freeman method so that J is pairing-friendly.

1. Introduction

Nowadays, importance of pairing based cryptographic systems does not need explanation. However, generating pairing-friendly curves is still a challenging problem. Let A be an Abelian variety of dimension d, defined over the finite field \mathbf{F}_q with q elements. Assume that we use a cyclic subgroup of $A(\mathbf{F}_q)$ of order l for pairing based cryptosystems. The efficiency of such a system is measured by the ϱ -value defined by $\frac{d \log q}{\log l}$. In Brezing-Weng algorithm[1] and its generalization, we actually generate polynomials whose specialization gives curve parameters. More specifically, we introduce the following notion formulated in Freeman[3, Def. 3.7] with slight modification.

Definition 1.1. Let K be a CM field of degree 2d. We call a pair of polynomials $(p(x), l(x)) \in \mathbf{Q}[x] \times \mathbf{Q}[x]$ a polynomial parameter for family of d dimensional Abelian variety with embedding degree k if the following conditions hold:

- (1.1) There exists $w(x) \in K[x]$ such that $w(x)\overline{w}(x) = p(x)$. (Here \overline{w} is the coefficient-wise complex conjugation of w.)
- (1.2) p(x) represents primes in the sense of Freeman[3, Def. 3.6].
- (1.3) l(x) is an irreducible, non-constant, integer-valued polynomial.

¹The work was supported by the Grant-in-Aid for the Scientific Research (B) 18340005.

(1.4) $l(x) \mid N_{K/\mathbf{Q}}(w(x)-1).$

(1.5) $l(x) \mid \Phi_k(p(x))$ where $\Phi_k(x)$ is the *k*-th cyclotomic polynomial. The ρ -value of the polynomial parameter is defined to be

$$\frac{d \deg p(x)}{\deg l(x)}.$$

An excellent survey article for paring friendly elliptic curve (that is, the case d=1) generation is Freeman, Scott and Teske[4]. As to genus two curves, Freeman[2] constructed absolutely simple ordinary curves over large prime fields whose ρ -value is approximately 8. Later, Freeman[3] constructed the Freeman, Stevenhagen, Streng method[5] analogue of the Brezing-Weng algorithm[1] He gave several polynomial parameters, one of which has ρ -value 4. Hitt O'Connor et al.[7] gave a construction for curves with *p*-rank 1 (where *p* is a characteristic of the definition field), whose ρ -value is approximately 16. Kawazoe and Takahashi[8] proposed use of the special curve $Y^2 = X^5 + aX$ to produce curves with ρ -values (as an individual curve) approximately 4 in general, but one curve attained ρ =2.975. On the other hand, curves defined over binary fields, Hitt[6] gave families with ρ -values not more than 2 (often close to 1). This motivates us to look for better construction of genus two hyperelliptic curves defined over large prime fields with a smaller ρ -value.

Our method is as follows. We consider hyperelliptic curves of the form $Y^2 = X^5 + uX^3 + vX$ defined over \mathbf{F}_p . Let J be the Jacobian of the curve. Under some assumptions, J splits as E^2 over \mathbf{F}_{p^2} where E is an elliptic curve defined over \mathbf{F}_p . This gives rise to an explicit relation between order of $J(\mathbf{F}_p)$ and $E(\mathbf{F}_p)$. We modify the Brezing-Weng method[1] so that we can construct E which makes J pairing-friendly. We can regard our method as the degree four imprimitive CM field version of Freeman[3, Algorithm 3.8]. However, the ϱ -value of our polynomial parameter is always less than 4 and resulting Jacobians are always \mathbf{F}_p -simple and ordinary. We also note that E/\mathbf{F}_p is **not** pairing-friendly. (If we regard E as a curve over \mathbf{F}_{p^4} , it become a pairing-friendly curve with ϱ -value 8, which is not really pairing-friendly.) As to the difficulty of the discrete log problem on such a Jacobian, we refer to [12, Sect. 8].

We notice that although the Kawazoe-Takahashi method can generate only curves given by binomial polynomials of X, their method can be applicable to the case that the splitting field of J is not \mathbf{F}_{p^2} .

The rest of paper is organized as follows. In Section 2, we give a explicit relation between the zeta function of J and the zeta function of E. In Section 3, we present our algorithm. In Section 4, we give a polynomial parameter with embedding degree 20 whose ϱ -value is 7/2.

Acknowledgments

The author also would like to thank Gaetan Bisson and Steven Galbraith for their helpful comments on the earlier versions of the paper.

Notation: Throughout the paper, ζ_k stands for $\exp\left(\frac{2\pi i}{k}\right)$. Let p be a prime. In general, we denote the p^2 -th power Frobenius endomorphism on an Abelian variety A/\mathbf{F}_{p^2} by Π_A and the p-th power Frobenius endomorphism on an Abelian variety A/\mathbf{F}_p by π_A . The (1-dimensional part) of the zeta function of A/\mathbf{F}_q is denoted as $Z_A(T, \mathbf{F}_q)$ where T is an indeterminate.

2. The Zeta Functions

We reformulate some formulae in Leprévost and Morain[10], or Satoh[12] in our setting to obtain an explicit formula for the zeta function of our curve. Let $p \ge 7$ be a prime. Let $C: Y^2 = X^5 + uX^3 + vX$ be a hyperelliptic curve defined over \mathbf{F}_p . Let J be the Jacobian variety of C. We further assume the following conditions:

(2.1) v is a square element of \mathbf{F}_{p}^{\times} .

(2.2) v is not a fourth power element of \mathbf{F}_{p}^{\times} .

They impose the condition $p \equiv 1 \mod 4$. Under the condition (2.1), the Jacobian J splits over \mathbf{F}_{p^2} . Then the condition (2.2) is necessary for J to be \mathbf{F}_p -simple. There exist α , $\beta \in \mathbf{F}_{p^4}$ such that $X^4 + uX^2 + v = (X^2 - \alpha^2)(X^2 - \beta^2)$. The assumption on v implies that $\alpha\beta$ is a non square element of \mathbf{F}_p^{\times} .

Theorem 2.1. Let J be as above. Let E/\mathbf{F}_p be the elliptic curve defined by

$$Y^{2} = (X - 1)(X^{2} - \gamma X + 1)$$
(2.3)

where

$$\gamma := 2(\alpha^2 + 6\alpha\beta + \beta^2)/(\alpha - \beta)^2. \tag{2.4}$$

Assume that E is ordinary and that $\operatorname{End}(E) \otimes \mathbb{Q} \neq \mathbb{Q}(\sqrt{-1})$. Then J is \mathbf{F}_p -simple and

$$Z_J(T, \mathbf{F}_p) = (T^2 - p)^2 + (\mathrm{Tr}\pi_E)^2 T^2.$$
(2.5)

Proof. Let s be one of square roots of $\alpha\beta$. The condition (2.1) ensures that $s \in \mathbf{F}_{p^2}^{\times}$. Define E_1/\mathbf{F}_{p^2} and E_2/\mathbf{F}_{p^2} by

$$E_1: Y^2 = \delta(X - 1)(X^2 - \gamma X + 1)$$
$$E_2: Y^2 = -\delta(X - 1)(X^2 - \gamma X + 1)$$

with

$$\delta := -\frac{(\alpha - \beta)^2}{64s^3}.$$
 (2.6)

Version: 2009 Mar 15

First we prove that E_1 and E_2 are quadratic twists of E over \mathbf{F}_{p^2} . Assume that $s = s_0^2$ with $s_0 \in \mathbf{F}_{p^2}$. Since $s^2 = \alpha \beta \in \mathbf{F}_p$, we see

$$v = s^4 = N_{\mathbf{F}_{p^2}/\mathbf{F}_p}(s^2) = N_{\mathbf{F}_{p^2}/\mathbf{F}_p}(s^4_0) = N_{\mathbf{F}_{p^2}/\mathbf{F}_p}(s_0)^4,$$

which contradicts to (2.2) Therefore s is not a square element in \mathbf{F}_{p^2} . Hence δ and $-\delta$ are not square elements in \mathbf{F}_{p^2} , which proves the assertion. Put $c := \operatorname{Tr} \Pi_{E_1}$ which is equal to $\operatorname{Tr} \Pi_{E_2}$ because E_1 and E_2 are isomorphic over \mathbf{F}_{p^2} . As a consequence, we have

$$c = -\operatorname{Tr} \Pi_E = -((\operatorname{Tr} \pi_E)^2 - 2p).$$
 (2.7)

Next we determine $Z_J(T, {f F}_p)$. There exist two covering maps $\varphi_m : C o E_m$ defined over ${f F}_{p^2}$ by

$$\begin{split} \varphi_1(x,y) &:= \left(\left(\frac{x+s}{x-s}\right)^2, \frac{y}{(x-s)^3} \right), \\ \varphi_2(x,y) &:= \left(\left(\frac{x-s}{x+s}\right)^2, \frac{y}{(x+s)^3} \right). \end{split}$$

(For details, see [12, Sect. 3].) Then φ_m induces a group homomorphism $\varphi_{m*}: J \to E_m$ for m = 1, 2 and $(\varphi_{1*}, \varphi_{2*}): J \to E_1 \times E_2$ is an isogeny defined over \mathbf{F}_{p^2} . As is well known, $\Pi_{E_m}^2 - c \Pi_{E_m} + p^2 = 0$ in $\operatorname{End}(E_m)$. Observe that

$$(\varphi_{1*},\varphi_{2*})^{\circ}(\Pi_J^2 - c\Pi_J + p^2) = ((\Pi_{E_1}^2 - c\Pi_{E_1} + p^2)^{\circ}\varphi_{1*}, (\Pi_{E_2}^2 - c\Pi_{E_2} + p^2)^{\circ}\varphi_{2*}) = 0.$$

Since an isogeny is of finite type, $\Pi_J^2 - c \Pi_J + p^2 = 0$. On the other hand, J is already defined over \mathbf{F}_p and $\Pi_J = \pi_J^2$. Thus

$$\pi_J^4 - c \pi_J^2 + p^2 = 0.$$

Put $f(T) := T^4 - cT^2 + p^2 = T^4 + (t^2 - 2p)T^2 + p^2$. Because E is ordinary, $t \neq 0$. Moreover, $\pi_E \in \operatorname{End}(\mathbf{Q}) \otimes \mathbf{Q} \neq \mathbf{Q}(\sqrt{-1})$ implies that $4p - t^2$ is not a square. Thus f(T) is irreducible over \mathbf{Q} by Rück[11, Lemma 3.1]. Assume that J splits to $\mathscr{E}_1 \times \mathscr{E}_2$ over \mathbf{F}_p where \mathscr{E}_1 and \mathscr{E}_2 are elliptic curves defined over \mathbf{F}_p . Let $\psi: J \to \mathscr{E}_1 \times \mathscr{E}_2$ be an isogeny over \mathbf{F}_p and let $\operatorname{pr}_m: \mathscr{E}_1 \times \mathscr{E}_2 \to \mathscr{E}_m$ be a projection for m = 1, 2. Since $\operatorname{pr}_m \circ \psi$ is defined over \mathbf{F}_p , we have

$$f(\pi_{\mathscr{E}_{m}}) \circ \mathbf{pr}_{m} \circ \psi = \mathbf{pr}_{m} \circ \psi \circ f(\pi_{J}) = 0.$$

However, $\operatorname{pr}_m \circ \psi$ is an epimorphism and $\operatorname{End}(\mathscr{E}_m)$ is an integral domain. Hence f(T) is divisible by the minimal polynomial of $\pi_{\mathscr{E}_m}$ which is $Z_{\mathscr{E}_m}(T, \mathbf{F}_p)$. This contradicts to the irreducibility of f(T). Thus J is \mathbf{F}_p -simple. By Waterhouse and Milne[13, Theorem 8], $Z_J(T, \mathbf{F}_p)$ is either an irreducible polynomial of degree four or a square of an irreducible polynomial of degree two. Using the irreducibility of f(T) again, we see $Z_J(T, \mathbf{F}_p) = f(T)$. \Box

Remark 2.2. We can paraphrase (2.5) as $Z_J(T, \mathbf{F}_p) = Z_E(iT, \mathbf{F}_p)Z_E(-iT, \mathbf{F}_p)$ (where $i = \sqrt{-1}$).

Remark 2.3. Under the condition $\gamma \in \mathbf{F}_p$, not every elliptic curve is isomorphic (over the algebraic closure of \mathbf{F}_p) to the elliptic curve of the form (2.3). Indeed, we see

$$j(E) = 2^8 \frac{(\gamma+1)^3}{\gamma+2}.$$
 (2.8)

Thus only an elliptic curve whose j-invariant is represented as the right hand side of (2.8) is isomorphic to the elliptic curve of the form (2.3).

Corollary 2.4. Let $t_0 + y_0 \sqrt{-D}$ with t_0 , $y_0 \in \frac{1}{2}\mathbb{Z}$, $D \in \mathbb{N}$ be one of the roots of $Z_E(T, \mathbf{F}_p) = 0$. Put $y := 2y_0$. Then,

$$Z_J(T, \mathbf{F}_p) = (p + T^2)^2 - y^2 D T^2.$$
(2.9)

Proof. This is an immediate consequence of (2.5), $\text{Tr}\pi_E = 2t_0$ and $t_0^2 + y_0^2 D = p$.

Lemma 2.5. For any $v_0 \in \mathbf{F}_p^{\times}$ and $\gamma \in \mathbf{F}_p$ with $\gamma \neq 2$, There exists α , $\beta \in \mathbf{F}_{p^4}$ satisfying the relation (2.4) among α , β , γ , and $\alpha^2 + \beta^2 \in \mathbf{F}_p$ and $\alpha\beta = v_0$.

Proof. By the change of variable $w := \alpha/\beta$, Eq. (2.4) becomes

$$(\gamma - 2)w^2 - (2\gamma + 12)w + (\gamma - 2) = 0.$$

By the assumption $\gamma \neq 2$, this is a reciprocal quadratic equation on w. Hence its solution satisfies $w + \frac{1}{w} = \frac{2\gamma + 12}{\gamma - 2} \in \mathbf{F}_p$. Therefore,

$$\alpha^{2} + \beta^{2} = v_{0}w + \frac{v_{0}}{w} = v_{0}\left(w + \frac{1}{w}\right) \in \mathbf{F}_{p}.$$

3. The algorithm

In this section, we present our modification to Brezing-Weng-Freeman algorithm and prove its correctness. We keep notations in Section 2. We denote $\text{Tr}\pi_E$ by t for simplicity. In order to specify an embedding $\mathbf{Q}(\sqrt{-D}) \rightarrow \mathbf{C}$ explicitly, we use $i\sqrt{D}$ rather than $\sqrt{-D}$.

Let $k \in \mathbf{N}$ be a given embedding degree. Let D be a positive integer such that -D is a discriminant of an order of an imaginary quadratic field and that $\sqrt{D} \notin \mathbf{Q}$ and that $D \neq 3$. We are going to construct a pairing-friendly hyperelliptic curve with help of E satisfying $\operatorname{End}(E) \otimes \mathbf{Q} = \mathbf{Q}(\sqrt{-D})$. Note that if $\frac{t}{2} + \frac{y}{2}i\sqrt{D}$ with $y \in \mathbf{Z}$ is a root of $Z_E(T, \mathbf{F}_p)$, it holds that

$$t^2 + y^2 D = 4p. (3.1)$$

Version: 2009 Mar 15

By (2.9),

$${}^{\#}J(\mathbf{F}_{p}) = Z_{J}(1, \mathbf{F}_{p}) = (1 - y\sqrt{D} + p)(1 + y\sqrt{D} + p).$$

Now assume that ${}^{\#}J(\mathbf{F}_{p})$ is divisible by a prime l which satisfies the following conditions:

(3.2) The prime *l* splits to principal prime ideals generated by λ_1 and λ_2 in $\mathbf{Q}(\sqrt{D})$.

(3.3) $\lambda_1 \mid 1-y\sqrt{D}+p$ and $\lambda_2 \mid 1+y\sqrt{D}+p$. (Changing the sign of y if necessary, we see that these conditions always hold in case of $l > \sqrt{{}^{\#}J(\mathbf{F}_p)}$. Indeed, if $l \mid 1-y\sqrt{D}+p$, then $l^2 \leq \left|N_{\mathbf{Q}(\sqrt{D})/\mathbf{Q}}(1-y\sqrt{D}+p)\right| = {}^{\#}J(\mathbf{F}_p)$.)

By Freeman[2, Prop. 2.3], the embedding degree for the group $J(\mathbf{F}_p)[l]$ is k if and only if $l \mid \Phi_k(p)$, which is equivalent to

$$\lambda_1 \mid \Phi_k(p) \text{ and } \lambda_2 \mid \Phi_k(p)$$

under the condition (3.2). Using (3.3), we see that the embedding degree is k if and only if

$$\lambda_1 \mid \Phi_k(y\sqrt{D}-1) \text{ and } \lambda_2 \mid \Phi_k(-y\sqrt{D}-1).$$
 (3.4)

Our task is to find rational integers t, y and l for given k and D which satisfy (3.1), (3.3) and (3.4).

In order to find such integers, we modify the Brezing-Weng method[1] so that it works with prime elements of the quadratic field $\mathbf{Q}(\sqrt{D})$. Let K be a finite Galois extension of \mathbf{Q} containing i, \sqrt{D} , $\zeta_k \in K$. Let θ be an algebraic integer which generates K over \mathbf{Q} . Let $F(x) \in \mathbf{Z}[x]$ be the monic minimal polynomial of θ over \mathbf{Q} . Further, assume that the polynomial F(x) factors as $F(x) = u_1(x)u_2(x)$ over $\mathbf{Q}(\sqrt{D})$. Replacing θ with its suitable conjugate, we may assume that $u_1(x)$ is the minimal polynomial of θ over $\mathbf{Q}(\sqrt{D})$. We look for polynomials satisfying

$$(3.5) \quad 4p(x) = t(x)^2 + Dy(x)^2$$

(3.6) $u_1(x) \mid 1 - \sqrt{D}y(x) + p(x)$ and $u_2(x) \mid 1 + \sqrt{D}y(x) + p(x)$.

(3.7) $u_1(x) \mid \Phi_k(\sqrt{D}y(x)-1)$ and $u_2(x) \mid \Phi_k(-\sqrt{D}y(x)-1)$.

Here we consider divisibility in $\mathbf{Q}(\sqrt{D})[x]$. Note that (3.6) and (3.5) imply $F(x) \mid (p(x)-1)^2 + t(x)^2$. Then we search $n \in \mathbf{N}$ satisfying the following conditions:

(3.8)
$$p(n)$$
 is prime and $p(n) \equiv 1 \mod 4$.

(3.9)
$$\frac{t(n)}{2} + \frac{y(n)}{2}i\sqrt{D} \in \mathbf{Z}\left[\frac{-D+i\sqrt{D}}{2}\right].$$

(3.10) F(n) has a large prime factor.

Then, we use the CM-method to compute the *j*-invariant of an ordinary elliptic curve whose endomorphism ring is isomorphic to $\mathbf{Z}\left[\frac{-D+i\sqrt{D}}{2}\right]$. By the definition (2.3) of *E*, we extract γ from (2.8). Note that $(\operatorname{Tr}\pi_E)^2 = t^2$ since $D \neq 1$, 3. Since what we really need is t^2 , the choice of a correct twist class does not matter to us. If $\gamma \notin \mathbf{F}_p$ or $\gamma = 2$, we try another value of n. Otherwise, we choose a non-square element $v_0 \in \mathbf{F}_p^{\times}$ and use Lemma 2.5 to obtain u (and set $v := v_0^2$).

Our modified Brezing-Weng-Freeman algorithm is as follows.

Algorithm 3.1.

Input: $D \in \mathbf{N}$ such that $\sqrt{D} \notin \mathbf{N}$ and that $D \neq 3$,

$k \in \mathbf{N},$

K: the finite Galois extension of **Q** containing ζ_k , \sqrt{D} and *i*,

 θ : a primitive element of K which is an algebraic integer,

 $F(x) \in \mathbf{Z}[x]$: the monic minimal polynomial of θ over \mathbf{Q} .

Output: Polynomials y(x), t(x) and $p(x) \in \mathbf{Q}[x]$ satisfying (3.5), (3.6) and (3.7).

Procedure:

- 1: factorize F(x) over $\mathbf{Q}(\sqrt{D})$ to obtain $u_1(x)$ and $u_2(x)$.
- 2: determine $z(x) \in \mathbf{Q}[x]$ by $z(\theta) = \zeta_k$ and $\deg z < \deg F$.
- 3: find $v_1(x)$ and $v_2(x)$ s.t. $u_1(x)v_1(x) + u_2(x)v_2(x) = 1$ and $\deg v_1 < \deg F$, $\deg v_2 < \deg F$.
- 4: $y(x) := \frac{1}{\sqrt{D}} (1 + z(x)) (u_2(x)v_2(x) u_1(x)v_1(x)) \mod F(x).$
- 5: determine $t(x) \in \mathbf{Q}[x]$ by $t(\theta) = i(\sqrt{D}y(\theta) 2)$ and $\deg t < \deg F$.
- 6: $p(x) := \frac{1}{4}(t(x)^2 + Dy(x)^2).$
- 7: return y(x), t(x), p(x).

Remark 3.2. Our algorithm does not involve choosing polynomials as in Freeman[3, Algorithm 3.8, Step 4]. This is because we use the algorithm to generate curve parameters for the elliptic curve CM method.

Provided p(x) represents primes, (p(x), F(x)) is a polynomial parameter for 2 dimensional Abelian varieties with embedding degree k. (For (1.1), take $w(x) := it(x) + \sqrt{D}y(x)$.) The ϱ -value of our polynomial parameter (p(x), F(x)) is clearly not greater than $\frac{4(\deg F - 1)}{\deg F}$.

A proof of correctness of Algorithm 3.1 is quite similar to those of Freeman, Stevenhagen and Streng[5, Algorithm 2.12] and Freeman[3, Algorithm 3.8]. However we include our proof here for completeness. We need some more notation. Put $G := \operatorname{Gal}(K/\mathbb{Q}), \quad G_r := \operatorname{Gal}(K/\mathbb{Q}(\sqrt{D})), \quad G_i := \operatorname{Gal}(K/\mathbb{Q}(i)), \quad \text{and} \quad G_0 := \operatorname{Gal}(K/\mathbb{Q}(\sqrt{D}, i)) = G_r \cap G_i.$ We choose (and fix) $g_r \in G_i - G_r, \quad g_i \in G_r - G_i$ (but usually g_i is the complex conjugation). Then $G = G_r \sqcup g_r G_r = G_i \sqcup g_i G_i, \quad G_r = G_0 \sqcup g_i G_0, \quad G_i = G_0 \sqcup g_r G_0.$ Put

$$\begin{split} u_{1+}(x) &:= \prod_{\sigma \in G_0} (x - \sigma(\theta)), \qquad u_{2+}(x) &:= \prod_{\sigma \in G_0} (x - g_r \sigma(\theta)), \\ u_{1-}(x) &:= \prod_{\sigma \in G_0} (x - g_i \sigma(\theta)), \qquad u_{2-}(x) &:= \prod_{\sigma \in G_0} (x - g_i g_r \sigma(\theta)). \end{split}$$

Since G_0 is a normal subgroup of G, they are irreducible polynomials of degree $\deg(F)/4$ belonging to $\mathbf{Q}(\sqrt{D}, i)$. We see that

$$u_{1}(x) = \prod_{\sigma \in G_{r}} (x - \sigma(\theta)) = u_{1+}(x)u_{1-}(x),$$

$$u_{2}(x) = (g_{r}(u_{1}))(x) = \prod_{\sigma \in G_{r}} (x - g_{r}(\sigma(\theta))) = u_{2+}(x)u_{2-}(x).$$

Note that $u_{1+}(x)$ is the minimal polynomial of θ over $\mathbf{Q}(\sqrt{D}, i)$. We define two embeddings $\iota_1: \mathbf{Q}(\sqrt{D})[x]/\langle u_1(x) \rangle \to K$ and $\iota_2: \mathbf{Q}(\sqrt{D})[x]/\langle u_2(x) \rangle \to K$ by $\iota_1(x) = \theta$ and $\iota_2(x) = g_r(\theta)$, respectively.

Lemma 3.3. The polynomial y(x) obtained in Step 4 satisfies $y(x) \in \mathbf{Q}[x]$ and (3.7). *Proof.* Note that the conditions $\deg u_1 < \deg F$ and $\deg u_2 < \deg F$ and

$$u_1 v_1 + u_2 v_2 = 1 \tag{3.11}$$

uniquely determine $v_1(x)$, $v_2(x) \in \mathbf{Q}(\sqrt{D})[x]$. On the other hand, letting g_r act on (3.11), we obtain

$$u_1 g_r(v_2) + u_2 g_r(v_1) = 1.$$

(Recall that $u_2 = g_r(u_1)$.) Since the action of G does not change a degree of a polynomial, the above uniqueness implies $g_r(v_1) = v_2$ and therefore

$$g_r(u_1v_1) = u_2v_2. (3.12)$$

It is obvious that $y(x) \in \mathbf{Q}(\sqrt{D})[x]$. However,

$$g_r(y) = -\frac{1}{\sqrt{D}}g_r(z+1)g_r(u_2v_2 - u_1v_1) = y$$

by (3.12). This proves that in fact $y(x) \in \mathbf{Q}[x]$. By construction, $\iota_1(\sqrt{D}y(x)-1) = \zeta_k$ and $\iota_2(-\sqrt{D}y(x)-1) = g_r(\zeta_k)$. Since ι_1 and ι_2 are field embeddings over $\mathbf{Q}(\sqrt{D})$, we obtain

$$l_1(\Phi_k(\sqrt{D}y(x) - 1)) = l_2(\Phi_k(\sqrt{D}y(x) - 1)) = 0.$$

This proves (3.7) since $u_1(x)$ and $u_2(x)$ are the minimal polynomials of θ and $g_r(\theta)$) over $\mathbf{Q}(\sqrt{D})$, respectively. \Box

Lemma 3.4. The polynomials t(x) and p(x) belong to $\mathbf{Q}(x)$ and they satisfy (3.6) and (3.5).

Proof. It is obvious that $t(x) \in \mathbf{Q}[x]$ and that (3.5) holds. Since $y(x) \in \mathbf{Q}[x]$, Step 6 ensures $p(x) \in \mathbf{Q}[x]$. Recall that u_{1+} is the minimal polynomial of θ over $\mathbf{Q}(\sqrt{D}, i)$. Since $t(\theta) - i(\sqrt{D}y(\theta) - 2) = 0$ and $t(x) - i(\sqrt{D}y(x) - 2) \in \mathbf{Q}(\sqrt{D}, i)[x]$,

$$u_{1+}(x) \mid t(x) - i(\sqrt{D}y(x) - 2).$$

Letting g_i act on the formula, we obtain $u_{1-}(x) \mid t(x) + i(\sqrt{D}y(x) - 2)$. Therefore

$$u_{1+}(x)u_{1-}(x) + t(x)^{2} + (\sqrt{D}y(x) - 2))^{2} = t(x)^{2} + Dy(x)^{2} - 4\sqrt{D}y(x) + 4$$
$$u_{1}(x) + 4(p(x) - \sqrt{D}y(x) + 1).$$

Letting g_r act on the formula, we obtain $u_2(x) \mid p(x) + \sqrt{D}y(x) + 1$. \Box

Remark 3.5. This explains why our method gives a better ρ -value, or in other words, smaller degree p(x). Note that the Galois group of the degree four primitive CM fields over **Q** is **Z**/4**Z** while the Galois group of the degree four imprimitive CM fields is $(\mathbf{Z}/2\mathbf{Z})^2$. In Freeman[3, Algorithm 3.8], p(x) is represented by a norm between a degree four extension while in our method p(x) is represented by a norm between quadratic extensions in three ways.

4. Examples

We give an illustrative example here. The ρ -value as a polynomial parameter of the example is 7/2.

Example 4.1. We take k := 20, $K := \mathbf{Q}(\zeta_{20}) \cong \mathbf{Q}[x]/\langle F(x) \rangle$ with

$$F(x) := \Phi_{20}(x) = x^8 - x^6 + x^4 - x^2 + 1.$$

In this case, $\theta = \zeta_{20}$ and $i = \zeta_{20}^5$. Using the Gauss sum (see e.g. Lang[9, Sect. IV.3]), we see

$$\begin{split} \sqrt{5} &= \zeta_5 - \zeta_5^2 - \zeta_5^3 + \zeta_5^4 \\ &= -2\zeta_{20}^6 + 2\zeta_{20}^4 + 1. \end{split}$$

We have $u_1(x) = x^4 - \frac{1 + \sqrt{5}}{2}x^2 + 1$, $u_2(x) = x^4 - \frac{1 - \sqrt{5}}{2}x^2 + 1$, $v_1(x) = \frac{\sqrt{5}}{5}x^2 - \frac{5 - \sqrt{5}}{10}$, $v_2(x) = -\frac{\sqrt{5}}{5}x^2 - \frac{5 + \sqrt{5}}{10}$. Then we obtain

$$y(x) = \frac{1}{5}(-2x^7-2x^6+2x^5+2x^4+x+1).$$

The value $t(\theta)$ should be

$$\zeta_{20}^5(\sqrt{5}y(\zeta_{20})-2) = \zeta_{20}^6 - \zeta_{20}^5.$$

Thus, $t(x) = x^6 - x^5$ and

$$p(x) = \frac{1}{20}(4x^{14} + 8x^{13} + x^{12} - 26x^{11} + x^{10} + 8x^9 - 8x^7 + 8x^5 + 4x^4 + x^2 + 2x + 1).$$

Hence, the ρ -value for the polynomials is $2 \cdot 14/8 = 7/2$. We can verify that p := p(197) = 26788377863233717984813886667001 is a 105 bit prime. Since t(197) = 58155019028372, the resulting Jacobian has the order

717617188543390298150201207626932772782700088353029767829970384

Version: 2009 Mar 15

which is divisible by l := 11065339871837941 which is a 54 bit prime. The class polynomial for the discriminant -20 is $j^2 - 1264000j - 681472000 = 0$. In \mathbf{F}_p , it has two solutions. We take a solution j = 15822175166840368949758056216811. Then, (2.8) has one \mathbf{F}_p solution $\gamma = 19681564606374977560729487102594$. The resulting curve is

$$Y^2 = X^5 + 18177693347944665301994736059631X^3 + 4X$$

The ρ -value for the curve is approximately 3.88.

As to cryptographic size examples, we give two values of x here. In the case x=1053959, we see $\Phi_{20}(x)$ is a 161 bit prime and p(x) is a 278 bit pime, hence the ρ -value is 3.45. In the case x=20005259, we see $\Phi_{20}(x)$ is a 195 bit prime and p(x) is a 338 bit pime, hence the ρ -value is 3.47.

Remark 4.2. Freeman[3, Table 1] reports the ρ -value 6 for the embedding degree 20, a primitive CM filed $\mathbf{Q}(\zeta_5)$ and $F(x) = \Phi_{20}(x)$.

Remark 4.3. Unlike the original Brezing-Weng algorithm, the parameters k=4, $K=\mathbf{Q}(\zeta_8)$, D=2 do not seem to work. In this case, we obtain

$$p(x) = \frac{1}{8}(3x^6 - 6x^5 + x^4 + 3x^2 + 2x + 1)$$

which does not take an integral value at any integer.

References

- 1. Brezing, F. and Weng, A.: Elliptic curves suitable for pairing based cryptography. Des. Codes Crypt., **37**, 133-141 (2005). doi: 10.1007/s10623-004-3808-4
- Freeman, D.: Constructing pairing-friendly genus 2 curves with ordinary Jacobians, Pairing-Based Cryptography Pairing 2007, Lect. Notes in Comput. Sci., 4575, 152-176, ed. Takagi, T., Okamoto, T., Okamoto, E. and Okamoto, T., Berlin, Heidelberg: Springer, 2007. doi: 10.1007/978-3-540-73489-5_9
- Freeman, D.: A generalized Brezing-Weng algorithm for constructing pairing-friendly ordinary Abelian varieties, Pairing-Based Cryptography - Pairing 2008, Lect. Notes in Comput. Sci., 5209, 146-163, ed. Galbraith, S.D. and Paterson, K.G., Berlin, Heidelberg: Springer, 2008. doi: 10.1007/978-3-540-85538-5_11
- 4. Freeman, D., Scott, M. and Teske, E.: A taxonomy of pairing-friendly elliptic curves, (2006) IACR e-print 2006/372.
- Freeman, D., Stevenhagen, P. and Streng, M.: Abelian varieties with prescribed embedding degree, Algorithmic number theory, ANTS-VIII, Lect. Notes in Comput. Sci., 5011, 60-73, Berlin, Heidelberg: Springer, 2008. doi: 10.1007/978-3-540-79456-1_3
- 6. Hitt, L.: Families of genus 2 curves with small embedding degree, (2007) IACR e-print 2007/001.
- 7. Hitt O'Connor, L., McGuire, G., Naehrig, M. and Streng, M.: CM construction of genus 2 curves with *p*-rank 1, (2008) IACR e-print 2008/491.
- 8. Kawazoe, M. and Takahashi, T.: Pairing-friendly hyperelliptic curves with ordinary Jacobians of type $y^2 = x^5 + ax$, Pairing-based cryptgraphy Pairing 2008, Lect. Notes in Comput. Sci., **5209**, 164-177, Berlin, Heidelberg: Springer, 2008. doi: 10.1007/978-3-540-85538-5_12

- 9. Lang, S.: Algebraic number theory. Reading, Mass.: Addison-Wesley Pub. 1970.
- Leprévost, F. and Morain, F.: Revêtements de courbes elliptiques à multiplication complexe par des courbes hyperelliptiques et sommes de caractères. J. Number Theory, 64, 165-182 (1997). doi: 10.1006/jnth.1997.2070
- Rück, H.G.: Abelian surfaces and Jacobian varieties over finite fields. Compositio Math., 76, 351-366 (1990).
- 12. Satoh, T.: Generating genus two hyperelliptic curves over large characteristic finite fields, Advances in Cryptology - Eurocrypt 2009, Lect. Notes in Comput. Sci, **5479**, 536-553(provisional), ed. Joux, A., Heidelberg: Springer, 2009.
- 13. Waterhouse, W.C. and Milne, J.S.: Abelian varieties over finite fields, 1969 Number Theory Institute (State Univ. New York, Stony Brook, N.Y.), Proc. Sympos. Pure Math., **20**, 53-64, Providence, RI: AMS, 1971.