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Abstract

We construct paring friendly curves of the form Y
2 = X

5+uX
3+vX over large

finite prime fields. The ρ-value of our family is always less than 4. Our

method is based on the fact that, under a certain condition, the Jacobian J

of the curve splits to a square of an elliptic curve over the quadratic exten-

sion of the base field. However, the generated curves by our method are

Fp-simple. A key ingredient is the construction of a pairing non-friendly el-

liptic curve by the modified Brezing-Weng-Freeman method so that J is

pairing-friendly.

1. Introduction

Nowadays, importance of pairing based cryptographic systems does not need explanation.

However, generating pairing-friendly curves is still a challenging problem. Let A be

an Abelian variety of dimension d, defined over the finite field Fq with q elements.

Assume that we use a cyclic subgroup of A(Fq) of order l for pairing based

cryptosystems. The efficiency of such a system is measured by the ρ-value defined by

log l

d logq]]]]]]. In Brezing-Weng algorithm[1] and its generalization, we actually generate poly-

nomials whose specialization gives curve parameters. More specifically, we introduce

the following notion formulated in Freeman[3, Def. 3.7] with slight modification.

Definition 1.1. Let K be a CM field of degree 2d. We call a pair of polynomials

( p(x), l(x))ÎQ[x]×Q[x] a polynomial parameter for family of d dimensional Abelian va-

riety with embedding degree k if the following conditions hold:

(1.1) There exists w(x)Î K [x] such that w(x)w(x) = p(x). (Here w is the coefficient-wise

complex conjugation of w.)

(1.2) p(x) represents primes in the sense of Freeman[3, Def. 3.6].

(1.3) l(x) is an irreducible, non-constant, integer-valued polynomial.
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(1.4) l(x) | NK /Q(w(x),1).

(1.5) l(x) |Φk( p(x)) where Φk(x) is the k-th cyclotomic polynomial.

The ρ-value of the polynomial parameter is defined to be

deg l(x)

ddeg p(x)]]]]]]]]].

An excellent survey article for paring friendly elliptic curve (that is, the case

d = 1) generation is Freeman, Scott and Teske[4]. As to genus two curves, Freeman[2]

constructed absolutely simple ordinary curves over large prime fields whose ρ-value is

approximately 8. Later, Freeman[3] constructed the Freeman, Stevenhagen, Streng

method[5] analogue of the Brezing-Weng algorithm[1] He gave several polynomial

parameters, one of which has ρ-value 4. Hitt O’Connor et al.[7] gave a construction

for curves with p-rank 1 (where p is a characteristic of the definition field), whose

ρ-value is approximately 16. Kawazoe and Takahashi[8] proposed use of the special

curve Y
2 = X

5+aX to produce curves with ρ-values (as an individual curve) approxi-

mately 4 in general, but one curve attained ρ = 2.975. On the other hand, curves de-

fined over binary fields, Hitt[6] gave families with ρ-values not more than 2 (often

close to 1). This motivates us to look for better construction of genus two hyperel-

liptic curves defined over large prime fields with a smaller ρ-value.

Our method is as follows. We consider hyperelliptic curves of the form

Y
2 = X

5+uX
3+vX defined over Fp. Let J be the Jacobian of the curve. Under some

assumptions, J splits as E
2

over Fp2 where E is an elliptic curve defined over Fp.

This gives rise to an explicit relation between order of J(Fp) and E(Fp). We modify

the Brezing-Weng method[1] so that we can construct E which makes J

pairing-friendly. We can regard our method as the degree four imprimitive CM field

version of Freeman[3, Algorithm 3.8]. However, the ρ-value of our polynomial param-

eter is always less than 4 and resulting Jacobians are always Fp-simple and ordinary.

We also note that E/Fp is not pairing-friendly. (If we regard E as a curve over Fp4,

it become a pairing-friendly curve with ρ-value 8, which is not really pairing-friendly.)

As to the difficulty of the discrete log problem on such a Jacobian, we refer to [12,

Sect. 8].

We notice that although the Kawazoe-Takahashi method can generate only curves

given by binomial polynomials of X , their method can be applicable to the case that

the splitting field of J is not Fp2.

The rest of paper is organized as follows. In Section 2, we give a explicit rela-

tion between the zeta function of J and the zeta function of E. In Section 3, we

present our algorithm. In Section 4, we give a polynomial parameter with embedding

degree 20 whose ρ-value is 7/2.
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Notation: Throughout the paper, ζk stands for exp
èç
çæ

k

2πi]]]
øç
çö. Let p be a prime. In

general, we denote the p2-th power Frobenius endomorphism on an Abelian variety

A/Fp2 by ΠA and the p-th power Frobenius endomorphism on an Abelian variety A/Fp

by π
A
. The (1-dimensional part) of the zeta function of A/Fq is denoted as ZA(T, Fq)

where T is an indeterminate.

2. The Zeta Functions

We reformulate some formulae in Leprévost and Morain[10], or Satoh[12] in our setting

to obtain an explicit formula for the zeta function of our curve. Let p ≥ 7 be a prime.

Let C : Y
2 = X

5+uX
3+vX be a hyperelliptic curve defined over Fp. Let J be the Jaco-

bian variety of C. We further assume the following conditions:

(2.1) v is a square element of Fp
×
.

(2.2) v is not a fourth power element of Fp
×
.

They impose the condition p ≡ 1 mod 4. Under the condition (2.1), the Jacobian J splits

over Fp2. Then the condition (2.2) is necessary for J to be Fp-simple. There exist α,

βÎFp4 such that X
4+uX

2+v = (X
2,α2)(X

2,β2
). The assumption on v implies that αβ is

a non square element of Fp
×
.

Theorem 2.1. Let J be as above. Let E/Fp be the elliptic curve defined by

Y
2 = (X , 1)(X

2 , γX + 1) (2.3)

where

γ := 2(α2+6αβ+β2
)/(α,β)2

. (2.4)

Assume that E is ordinary and that End(E)⊗Q ≠Q(Ö
]]]
,1). Then J is Fp-simple and

ZJ(T, Fp) = (T
2 , p)

2 + (Trπ
E
)
2
T

2
. (2.5)

Proof. Let s be one of square roots of αβ. The condition (2.1) ensures that sÎFp2

×
.

Define E1/Fp2 and E2/Fp2 by

E1 : Y
2 = δ(X , 1)(X

2 , γX + 1)

E2 : Y
2 = , δ(X , 1)(X

2 , γX + 1)

with

δ := ,
64s3

(α,β)2

]]]]]]. (2.6)
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First we prove that E1 and E2 are quadratic twists of E over Fp2. Assume that

s = s0
2 with s0 ÎFp2. Since s2 = αβÎFp, we see

v = s4 = NF
p2/Fp

(s2) = NF
p2/Fp

(s0
4) = NF

p2/Fp
(s0)

4
,

which contradicts to (2.2) Therefore s is not a square element in Fp2. Hence δ and

,δ are not square elements in Fp2, which proves the assertion. Put c :=TrΠE1
which is

equal to TrΠE2
because E1 and E2 are isomorphic over Fp2. As a consequence, we have

c = ,TrΠE = , ((Trπ
E
)
2 , 2 p). (2.7)

Next we determine ZJ(T, Fp). There exist two covering maps ϕm : C → Em defined

over Fp2 by

ϕ1(x, y) :=
èç
çç
æ
èç
æ
x,s
x+s]]]]

øç
ö2

,
(x,s)

3

y]]]]]]
øç
çç
ö
,

ϕ2(x, y) :=
èç
çç
æ
èç
æ
x+s
x,s]]]]

øç
ö2

,
(x+s)

3

y]]]]]]
øç
çç
ö
.

(For details, see [12, Sect. 3].) Then ϕm induces a group homomorphism ϕm∗ : J → Em

for m = 1, 2 and (ϕ1∗, ϕ2∗) : J → E1×E2 is an isogeny defined over Fp2. As is well known,

ΠEm

2 ,cΠEm
+ p2 = 0 in End(Em). Observe that

(ϕ1∗, ϕ2∗)◦(ΠJ
2 , cΠJ + p2) = ((ΠE1

2 , cΠE1
+ p2)◦ϕ1∗, (ΠE2

2 , cΠE2
+ p2)◦ϕ2∗) = 0.

Since an isogeny is of finite type, ΠJ
2,cΠJ+ p2 = 0. On the other hand, J is already

defined over Fp and ΠJ = πJ
2 . Thus

π
J
4 , cπ

J
2 + p2 = 0.

Put f (T ) :=T
4,cT

2+ p2 =T
4+(t2,2 p)T

2+ p2. Because E is ordinary, t ≠ 0. Moreover,

π
E
ÎEnd(Q)⊗Q ≠Q(Ö

]]]
,1) implies that 4 p,t2 is not a square. Thus f (T ) is irreducible

over Q by Rück[11, Lemma 3.1]. Assume that J splits to E1×E2 over Fp where E1 and

E2 are elliptic curves defined over Fp. Let ψ : J → E1×E2 be an isogeny over Fp and let

prm : E1×E2 → Em be a projection for m = 1, 2. Since prm◦ψ is defined over Fp, we have

f (π
Em

)◦prm◦ψ = prm◦ψ◦f (π
J
) = 0.

However, prm◦ψ is an epimorphism and End(Em) is an integral domain. Hence f (T ) is

divisible by the minimal polynomial of π
Em

which is ZEm
(T, Fp). This contradicts to the

irreducibility of f (T ). Thus J is Fp-simple. By Waterhouse and Milne[13, Theorem

8], ZJ(T, Fp) is either an irreducible polynomial of degree four or a square of an irre-

ducible polynomial of degree two. Using the irreducibility of f (T ) again, we see

ZJ(T, Fp) = f (T ). ÷

Version: 2009 Mar 15



− 5 −

Remark 2.2. We can paraphrase (2.5) as ZJ(T, Fp) = ZE(iT, Fp)ZE(,iT, Fp) (where

i = Ö
]]]
,1).

Remark 2.3. Under the condition γÎFp, not every elliptic curve is isomorphic (over

the algebraic closure of Fp) to the elliptic curve of the form (2.3). Indeed, we see

j(E) = 2
8

γ+2

(γ+1)
3

]]]]]]. (2.8)

Thus only an elliptic curve whose j-invariant is represented as the right hand side of

(2.8) is isomorphic to the elliptic curve of the form (2.3).

Corollary 2.4. Let t0+ y0Ö
]]]
,D with t0, y0 Î 2

1]]Z, DÎN be one of the roots of

ZE(T, Fp) = 0. Put y := 2y0. Then,

ZJ(T, Fp) = ( p+T
2
)
2 , y2DT

2
. (2.9)

Proof. This is an immediate consequence of (2.5), Trπ
E
= 2t0 and t0

2+ y0
2D = p. ÷

Lemma 2.5. For any v0 ÎFp
×

and γÎFp with γ ≠ 2, There exists α, βÎFp4 satisfying the

relation (2.4) among α, β, γ, and α2+β2 ÎFp and αβ = v0.

Proof. By the change of variable w := α/β, Eq. (2.4) becomes

(γ , 2)w2 , (2γ + 12)w + (γ , 2) = 0.

By the assumption γ ≠ 2, this is a reciprocal quadratic equation on w. Hence its solu-

tion satisfies w+w
1]] = γ,2

2γ+12]]]]]] ÎFp. Therefore,

α2 + β2 = v0w + w

v0]] = v0èç
çæw + w

1]]
øç
çö Î Fp.

÷

3. The algorithm

In this section, we present our modification to Brezing-Weng-Freeman algorithm and

prove its correctness. We keep notations in Section 2. We denote Trπ
E

by t for

simplicity. In order to specify an embedding Q(Ö
]]]
,D)→C explicitly, we use iÖ

]]
D

rather than Ö
]]]
,D.

Let kÎN be a given embedding degree. Let D be a positive integer such that

,D is a discriminant of an order of an imaginary quadratic field and that Ö
]]
DÎ/ Q

and that D ≠ 3. We are going to construct a pairing-friendly hyperelliptic curve with

help of E satisfying End(E)⊗Q =Q(Ö
]]]
,D). Note that if

2
t]]+

2

y]]iÖ
]]
D with y ÎZ is a root

of ZE(T, Fp), it holds that

t2 + y2D = 4 p. (3.1)
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By (2.9),

#
J(Fp) = ZJ(1, Fp) = (1, yÖ

]]
D + p)(1+ yÖ

]]
D + p).

Now assume that
#
J(Fp) is divisible by a prime l which satisfies the following

conditions:

(3.2) The prime l splits to principal prime ideals generated by λ1 and λ2 in Q(Ö
]]
D).

(3.3) λ1 | 1, yÖ
]]
D+ p and λ2 | 1+ yÖ

]]
D+ p. (Changing the sign of y if necessary, we see

that these conditions always hold in case of l > Ö
]]]]]]
#
J(Fp). Indeed, if l | 1, yÖ

]]
D+ p,

then l
2 ≤ N

Q(Ö
]]
D)/Q

(1, yÖ
]]
D+ p) = #

J(Fp).)

By Freeman[2, Prop. 2.3], the embedding degree for the group J(Fp)[l] is k if and only

if l |Φk( p), which is equivalent to

λ1 | Φk( p) and λ2 | Φk( p)

under the condition (3.2). Using (3.3), we see that the embedding degree is k if and

only if

λ1 | Φk(yÖ
]]
D , 1) and λ2 | Φk(, yÖ

]]
D , 1). (3.4)

Our task is to find rational integers t, y and l for given k and D which satisfy (3.1),

(3.3) and (3.4).

In order to find such integers, we modify the Brezing-Weng method[1] so that it

works with prime elements of the quadratic field Q(Ö
]]
D). Let K be a finite Galois

extension of Q containing i, Ö
]]
D, ζk Î K . Let θ be an algebraic integer which gener-

ates K over Q. Let F(x)ÎZ[x] be the monic minimal polynomial of θ over Q.

Further, assume that the polynomial F(x) factors as F(x) =u1(x)u2(x) over Q(Ö
]]
D). Re-

placing θ with its suitable conjugate, we may assume that u1(x) is the minimal polyno-

mial of θ over Q(Ö
]]
D). We look for polynomials satisfying

(3.5) 4 p(x) = t(x)
2+Dy(x)

2

(3.6) u1(x) | 1,Ö
]]
Dy(x)+ p(x) and u2(x) | 1+Ö

]]
Dy(x)+ p(x).

(3.7) u1(x) |Φk(Ö
]]
Dy(x),1) and u2(x) |Φk(,Ö

]]
Dy(x),1).

Here we consider divisibility in Q(Ö
]]
D)[x]. Note that (3.6) and (3.5) imply

F(x) | ( p(x),1)
2+t(x)

2
. Then we search nÎN satisfying the following conditions:

(3.8) p(n) is prime and p(n) ≡ 1 mod 4.

(3.9)
2

t(n)]]]]+
2

y(n)]]]]iÖ
]]
DÎZ

ëç
çç
é

2
,D+iÖ

]]
D]]]]]]]]]
ûç
çç
ù
.

(3.10) F(n) has a large prime factor.

Then, we use the CM-method to compute the j-invariant of an ordinary elliptic curve

whose endomorphism ring is isomorphic to Z
ëç
çç
é

2
,D+iÖ

]]
D]]]]]]]]]
ûç
çç
ù
. By the definition (2.3) of E,

we extract γ from (2.8). Note that (Trπ
E
)
2 = t2 since D ≠ 1, 3. Since what we really

need is t2, the choice of a correct twist class does not matter to us. If γ Î/ Fp or γ = 2,
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we try another value of n. Otherwise, we choose a non-square element v0 ÎFp
×

and

use Lemma 2.5 to obtain u (and set v := v0
2).

Our modified Brezing-Weng-Freeman algorithm is as follows.

Algorithm 3.1.

Input: DÎN such that Ö
]]
DÎ/ N and that D ≠ 3,

kÎN,

K : the finite Galois extension of Q containing ζk, Ö
]]
D and i,

θ: a primitive element of K which is an algebraic integer,

F(x)ÎZ[x]: the monic minimal polynomial of θ over Q.

Output: Polynomials y(x), t(x) and p(x)ÎQ[x] satisfying (3.5), (3.6) and (3.7).

Procedure:

1: factorize F(x) over Q(Ö
]]
D) to obtain u1(x) and u2(x).

2: determine z(x)ÎQ[x] by z(θ) = ζk and deg z < deg F.

3: find v1(x) and v2(x) s.t. u1(x)v1(x)+u2(x)v2(x) = 1 and degv1 < deg F, degv2 < deg F.

4: y(x) :=
Ö
]]
D

1]]]](1+z(x))(u2(x)v2(x),u1(x)v1(x)) mod F(x).

5: determine t(x)ÎQ[x] by t(θ) = i(Ö
]]
Dy(θ),2) and degt < deg F.

6: p(x) :=
4
1]](t(x)

2+Dy(x)
2
).

7: return y(x), t(x), p(x).

Remark 3.2. Our algorithm does not involve choosing polynomials as in Freeman[3, Al-

gorithm 3.8, Step 4]. This is because we use the algorithm to generate curve parame-

ters for the elliptic curve CM method.

Provided p(x) represents primes, ( p(x), F(x)) is a polynomial parameter for 2 di-

mensional Abelian varieties with embedding degree k. (For (1.1), take

w(x) := it(x)+Ö
]]
Dy(x).) The ρ-value of our polynomial parameter ( p(x), F(x)) is clearly

not greater than
deg F

4(deg F,1)]]]]]]]]]]].

A proof of correctness of Algorithm 3.1 is quite similar to those of Freeman,

Stevenhagen and Streng[5, Algorithm 2.12] and Freeman[3, Algorithm 3.8]. However

we include our proof here for completeness. We need some more notation. Put

G :=Gal(K /Q), Gr :=Gal(K /Q(Ö
]]
D)), Gi :=Gal(K /Q(i)), and G0 :=Gal(K /Q(Ö

]]
D, i)) =GrÇGi.

We choose (and fix) gr ÎGi,Gr, gi ÎGr,Gi (but usually gi is the complex conjugation).

Then G =Gr§grGr =Gi§giGi, Gr =G0§giG0, Gi =G0§grG0. Put

u1+(x) := Õ
σÎG0

(x , σ(θ)),

u1,(x) := Õ
σÎG0

(x , giσ(θ)),

u2+(x) := Õ
σÎG0

(x , grσ(θ)),

u2,(x) := Õ
σÎG0

(x , gigrσ(θ)).

Since G0 is a normal subgroup of G, they are irreducible polynomials of degree

deg(F)/4 belonging to Q(Ö
]]
D, i). We see that
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u1(x) = Õ
σÎGr

(x , σ(θ)) = u1+(x)u1,(x),

u2(x) = (gr(u1))(x) = Õ
σÎGr

(x , gr(σ(θ))) = u2+(x)u2,(x).

Note that u1+(x) is the minimal polynomial of θ over Q(Ö
]]
D, i). We define two embed-

dings ι1 : Q(Ö
]]
D)[x]/〈u1(x)〉→ K and ι2 : Q(Ö

]]
D)[x]/〈u2(x)〉→ K by ι1(x) = θ and ι2(x) = gr(θ),

respectively.

Lemma 3.3. The polynomial y(x) obtained in Step 4 satisfies y(x)ÎQ[x] and (3.7).

Proof. Note that the conditions degu1 < deg F and degu2 < deg F and

u1v1 +u2v2 = 1 (3.11)

uniquely determine v1(x), v2(x)ÎQ(Ö
]]
D)[x]. On the other hand, letting gr act on (3.11),

we obtain

u1gr(v2)+u2gr(v1) = 1.

(Recall that u2 = gr(u1).) Since the action of G does not change a degree of a

polynomial, the above uniqueness implies gr(v1) = v2 and therefore

gr(u1v1) = u2v2. (3.12)

It is obvious that y(x)ÎQ(Ö
]]
D)[x]. However,

gr(y) = ,
Ö
]]
D

1]]]] gr(z+ 1)gr(u2v2 ,u1v1) = y

by (3.12). This proves that in fact y(x)ÎQ[x]. By construction, ι1(Ö
]]
Dy(x),1) = ζk and

ι2(,Ö
]]
Dy(x),1) = gr(ζk). Since ι1 and ι2 are field embeddings over Q(Ö

]]
D), we obtain

ι1(Φk(Ö
]]
Dy(x), 1)) = ι2(Φk(Ö

]]
Dy(x), 1)) = 0.

This proves (3.7) since u1(x) and u2(x) are the minimal polynomials of θ and gr(θ))

over Q(Ö
]]
D), respectively. ÷

Lemma 3.4. The polynomials t(x) and p(x) belong to Q(x) and they satisfy (3.6) and

(3.5).

Proof. It is obvious that t(x)ÎQ[x] and that (3.5) holds. Since y(x)ÎQ[x], Step 6

ensures p(x)ÎQ[x]. Recall that u1+ is the minimal polynomial of θ over Q(Ö
]]
D, i).

Since t(θ),i(Ö
]]
Dy(θ),2) = 0 and t(x),i(Ö

]]
Dy(x),2)ÎQ(Ö

]]
D, i)[x],

u1+(x) | t(x), i(Ö
]]
Dy(x), 2).

Letting gi act on the formula, we obtain u1,(x) | t(x)+i(Ö
]]
Dy(x),2). Therefore
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u1+(x)u1,(x) | t(x)
2 + (Ö

]]
Dy(x), 2))

2 = t(x)
2 + Dy(x)

2 , 4Ö
]]
Dy(x)+ 4

u1(x) | 4( p(x), Ö
]]
Dy(x)+ 1).

Letting gr act on the formula, we obtain u2(x) | p(x)+Ö
]]
Dy(x)+1. ÷

Remark 3.5. This explains why our method gives a better ρ-value, or in other words,

smaller degree p(x). Note that the Galois group of the degree four primitive CM

fields over Q is Z/4Z while the Galois group of the degree four imprimitive CM fields

is (Z/2Z)
2
. In Freeman[3, Algorithm 3.8], p(x) is represented by a norm between a

degree four extension while in our method p(x) is represented by a norm between

quadratic extensions in three ways.

4. Examples

We give an illustrative example here. The ρ-value as a polynomial parameter of the

example is 7/2.

Example 4.1. We take k := 20, K :=Q(ζ20) ≅Q[x]/〈F(x)〉 with

F(x) := Φ20(x) = x8 , x6 + x4 , x2 + 1.

In this case, θ = ζ20 and i = ζ20
5

. Using the Gauss sum (see e.g. Lang[9, Sect. IV.3]),

we see

Ö
]]
5 = ζ5 , ζ5

2 , ζ5
3 + ζ5

4

= ,2ζ20
6 + 2ζ20

4 + 1.

We have u1(x) = x4,
2

1+Ö
]]
5]]]]]]x2+1, u2(x) = x4,

2
1,Ö

]]
5]]]]]]x2+1, v1(x) =

5
Ö
]]
5]]]]x2,

10
5,Ö

]]
5]]]]]],

v2(x) =,
5
Ö
]]
5]]]]x2,

10
5+Ö

]]
5]]]]]]. Then we obtain

y(x) =
5
1]](, 2x7 , 2x6 + 2x5 + 2x4 + x + 1).

The value t(θ) should be

ζ20
5

(Ö
]]
5y(ζ20), 2) = ζ20

6 , ζ20
5

.

Thus, t(x) = x6,x5 and

p(x) =
20
1]]](4x14 + 8x13 + x12,26x11 + x10 + 8x9,8x7 + 8x5 + 4x4 + x2 + 2x + 1).

Hence, the ρ-value for the polynomials is 2•14/8 = 7/2. We can verify that

p := p(197) = 26788377863233717984813886667001 is a 105 bit prime. Since

t(197) = 58155019028372, the resulting Jacobian has the order

717617188543390298150201207626932772782700088353029767829970384
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which is divisible by l := 11065339871837941 which is a 54 bit prime. The class poly-

nomial for the discriminant ,20 is j
2,1264000 j,681472000 = 0. In Fp, it has two

solutions. We take a solution j = 15822175166840368949758056216811. Then, (2.8) has

one Fp solution γ = 19681564606374977560729487102594. The resulting curve is

Y
2 = X

5 + 18177693347944665301994736059631X
3 + 4X

The ρ-value for the curve is approximately 3.88.

As to cryptographic size examples, we give two values of x here. In the case

x = 1053959, we see Φ20(x) is a 161 bit prime and p(x) is a 278 bit pime, hence the

ρ-value is 3.45. In the case x = 20005259, we see Φ20(x) is a 195 bit prime and p(x)

is a 338 bit pime, hence the ρ-value is 3.47.

Remark 4.2. Freeman[3, Table 1] reports the ρ-value 6 for the embedding degree 20,

a primitive CM filed Q(ζ5) and F(x) =Φ20(x).

Remark 4.3. Unlike the original Brezing-Weng algorithm, the parameters k = 4,

K =Q(ζ8), D = 2 do not seem to work. In this case, we obtain

p(x) =
8
1]](3x6 , 6x5 + x4 + 3x2 + 2x + 1)

which does not take an integral value at any integer.
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