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Abstract

We construct paring friendly curves of the form Y2=X"+uX®+vX over large
finite prime fields. The o-value of our family is always less than 4. Our
method is based on the fact that, under a certain condition, the Jacobian </
of the curve splits to a square of an elliptic curve over the quadratic exten-
sion of the base field. However, the generated curves by our method are
F,-simple. A key ingredient is the construction of a pairing non-friendly el-
liptic curve by the modified Brezing-Weng-Freeman method so that J is
pairing-friendly.

1. Introduction

Nowadays, importance of pairing based cryptographic systems does not need explanation.
However, generating pairing-friendly curves is still a challenging problem. Let A be
an Abelian variety of dimension d, defined over the finite field F, with ¢ elements.
Assume that we wuse a cyclic subgroup of A(F,) of order [ for pairing based

cryptosystems. The efficiency of such a system is measured by the g-value defined by
dlogq

logl *

In Brezing-Weng algorithm[1] and its generalization, we actually generate poly-

nomials whose specialization gives curve parameters. More specifically, we introduce

the following notion formulated in Freeman[3, Def. 3.7] with slight modification.

Definition 1.1. Let K be a CM field of degree 2d. We call a pair of polynomials

(p(x), I(x)) € Qlx]1xQ[x] a polynomial parameter for family of d dimensional Abelian va-

riety with embedding degree %k if the following conditions hold:

(1.1) There exists w(x) e K[x] such that w(x)w(x)=p(x). (Here w is the coefficient-wise
complex conjugation of w.)

(1.2) p(x) represents primes in the sense of Freeman[3, Def. 3.6].

(1.3) I(x) is an irreducible, non-constant, integer-valued polynomial.
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(1.4) I(x) | Ngqw(x)-1).
(1.5) I(x) | &,(p(x)) where &,(x) is the k-th cyclotomic polynomial.

The o-value of the polynomial parameter is defined to be

ddeg p(x)
degl(x) °

An excellent survey article for paring friendly elliptic curve (that is, the case
d=1) generation is Freeman, Scott and Teske[4]. As to genus two curves, Freeman[2]
constructed absolutely simple ordinary curves over large prime fields whose ¢-value is
approximately 8. Later, Freeman[3] constructed the Freeman, Stevenhagen, Streng
method[5] analogue of the Brezing-Weng algorithm[1] He gave several polynomial
parameters, one of which has p-value 4. Hitt O’Connor et al.[7] gave a construction
for curves with p-rank 1 (where p is a characteristic of the definition field), whose
o-value is approximately 16. Kawazoe and Takahashi[8] proposed use of the special
curve Y?=X"+aX to produce curves with p-values (as an individual curve) approxi-
mately 4 in general, but one curve attained ¢=2.975. On the other hand, curves de-
fined over binary fields, Hitt[6] gave families with ¢-values not more than 2 (often
close to 1). This motivates us to look for better construction of genus two hyperel-

liptic curves defined over large prime fields with a smaller o-value.

Our method is as follows. We consider hyperelliptic curves of the form
Y2=X°+uX®+vX defined over F, Let J be the Jacobian of the curve. Under some
assumptions, J splits as E? over sz where E is an elliptic curve defined over F,.
This gives rise to an explicit relation between order of J(F,) and E(F,). We modify
the Brezing-Weng method[1] so that we can construct E which makes o
pairing-friendly. @We can regard our method as the degree four imprimitive CM field
version of Freeman[3, Algorithm 3.8]. However, the ¢-value of our polynomial param-
eter is always less than 4 and resulting Jacobians are always F,-simple and ordinary.
We also note that E/F, is not pairing-friendly. (If we regard E as a curve over Fp4,
it become a pairing-friendly curve with o-value 8, which is not really pairing-friendly.)
As to the difficulty of the discrete log problem on such a Jacobian, we refer to [12,

Sect. 8].

We notice that although the Kawazoe-Takahashi method can generate only curves
given by binomial polynomials of X, their method can be applicable to the case that
the splitting field of J is not sz.

The rest of paper is organized as follows. In Section 2, we give a explicit rela-
tion between the zeta function of J and the zeta function of E. In Section 3, we
present our algorithm. In Section 4, we give a polynomial parameter with embedding

degree 20 whose p-value is 7/2.
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k
general, we denote the p2-th power Frobenius endomorphism on an Abelian variety

Notation: Throughout the paper, {, stands for exp[@]. Let p be a prime. In

A/F,; by I, and the p-th power Frobenius endomorphism on an Abelian variety A/F,
by m,. The (1-dimensional part) of the zeta function of A/F, is denoted as Z,(T.F)

where T is an indeterminate.

2. The Zeta Functions

We reformulate some formulae in Leprévost and Morain[10], or Satoh[12] in our setting
to obtain an explicit formula for the zeta function of our curve. Let p>7 be a prime.
Let C:Y?=X°+uX?+vX be a hyperelliptic curve defined over F, Let J be the Jaco-
bian variety of C. We further assume the following conditions:

(2.1) v is a square element of F,.

(2.2) v is not a fourth power element of F;.

They impose the condition p=1mod4. Under the condition (2.1), the Jacobian  splits
over F,. Then the condition (2.2) is necessary for J to be F,-simple. There exist a,
ﬁEFp4 such that X4+uX2+v:(X2—oc2)(X2—/32). The assumption on v implies that of is

a non square element of F;.

Theorem 2.1. Let J be as above. Let E/F, be the elliptic curve defined by

Y2 = (X -D(&X*-9X +1) (2.3)
where

y = 2(02+60f+5)/(a—p) 2.4)
Assume that E is ordinary and that End(E)®Q=Q(v'-1). Then J is F,-simple and

Z,(T,F,) = (T” - p)* +(Trny)*T>. (2.5)

Proof. Let s be one of square roots of «f. The condition (2.1) ensures that SEF;z.
Define El/Fp2 and Ez/sz by

E, :Y? = 6(X-1)(X*—yX +1)
Ey:Y? = —8(X -1)(X*—yX +1)
with
o (@p)
6= —eig (2.6)
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First we prove that E; and E, are quadratic twists of E over F, Assume that

s=s3 with SOEsz. Since s?=afcF,, we see
4
VI 2) _ 4y —
v=8= NFFZ/FP(S ) = Nsz/Fp(So) = NFPZ/FP(SO) ’

which contradicts to (2.2) Therefore s is not a square element in sz. Hence 6 and
-6 are not square elements in Fpg, which proves the assertion. Put c::TrHE1 which is

equal to Trlly because E, and E, are isomorphic over F, As a consequence, we have

¢ = —Trlly = - (Trmy)” - 2p). (2.7)

Next we determine Z,(T,F,). There exist two covering maps ¢, :C—E, defined

over sz by
x+8)\2 Yy
oy = |(323) —3]
(x—s)
— Yy
xy = (22 .
PolX, ¥ (x+s) (x+s)’

(For details, see [12, Sect. 3].) Then ¢, induces a group homomorphism ¢,,:J —E,,
for m=1,2 and (¢, ¢9,,):J - E;xE, is an isogeny defined over Fpg. As is well known,
H}%m—cHEm+p2:O in End(E,). Observe that

(01, gpz*)O(Hg —cll; + p?) = ((HI%1 - cHE1 +p20y,, (Hl—f'2 —cHE2 +p?)°9,) = 0.

Since an isogeny is of finite type, Hf—cHJ+p2:O. On the other hand, J is already

defined over F, and I[;=n%. Thus
4 —cnd+p? = 0.

Put f(T):=T"-cT?+p2=T*+*-2p)T*+p2. Because E is ordinary, ¢=#0. Moreover,
nEeEnd(Q)®Q¢Q(\/—_1) implies that 4p—¢2 is not a square. Thus f(T) is irreducible
over Q by Riick[11, Lemma 3.1]. Assume that J splits to & x&, over F, where & and
6, are elliptic curves defined over F,. Let y:J—>&xé, be an isogeny over F, and let

pr, : 61X — 6, be a projection for m=1, 2. Since pr,°y is defined over F,, we have
Frs )Py = prppef () = 0.

However, pr,°yp is an epimorphism and End(é,) is an integral domain. Hence f(T') is
divisible by the minimal polynomial of e which is Z, (T, F,). This contradicts to the
irreducibility of f(T). Thus J is F,-simple. By Waterhouse and Milne[13, Theorem
81, Z,(T,F,) is either an irreducible polynomial of degree four or a square of an irre-
ducible polynomial of degree two. Using the irreducibility of f(T') again, we see
Z)T,F)=f(T). O
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Remark 2.2. We can paraphrase (2.5) as Z/T,F,)=Zgz(T,F,)Zg(-iT,F,) (where
i=v-1).

Remark 2.3. Under the condition yeF,, not every elliptic curve is isomorphic (over

the algebraic closure of Fp) to the elliptic curve of the form (2.3). Indeed, we see

s(y+ 1)3
y+2 °

J(E) = 2 (2.8)

Thus only an elliptic curve whose j-invariant is represented as the right hand side of

(2.8) is isomorphic to the elliptic curve of the form (2.3).

Corollary 2.4. Let ty+y,v-D with t, yOE%Z, DeN be one of the roots of
Zg(T,F,)=0. Put y:=2y, Then,

Z,(T,F,) = (p+T*)? - y2DT". (2.9)

Proof. This is an immediate consequence of (2.5), Trn,=2¢, and t(2)+y§D: p. O

Lemma 2.5. For any UOEF; and yeF, with y=2, There exists o, ﬁer4 satisfying the

relation (2.4) among o, S, v, and oc2+[32€Fp and af=v,,

Proof. By the change of variable w:=o/, Eq. (2.4) becomes
(y-2w?2-2y+12w+(y-2) = 0.

By the assumption y=2, this is a reciprocal quadratic equation on w. Hence its solu-

. . 1 2y+12
tion satisfies w+y;= €F,. Therefore,
=2 P
v
o2+ = vow+w0 = vo[w+%] e F,

O

3. The algorithm

In this section, we present our modification to Brezing-Weng-Freeman algorithm and
prove its correctness. We keep notations in Section 2. We denote Trm, by ¢ for
simplicity. In order to specify an embedding Q(v'-D)—C explicitly, we use ivD
rather than /-D.

Let kN be a given embedding degree. Let D be a positive integer such that
-D is a discriminant of an order of an imaginary quadratic field and that D &Q
and that D#3. We are going to construct a pairing-friendly hyperelliptic curve with
help of E satisfying End(E)®Q=Q(~/'-D). Note that if %+%i\/ﬁ with yeZ is a root
of Zy(T, F,, it holds that

t2+y2D = 4p. (3.1)
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By (2.9),
"J(F,) = Z)1,F,) = 1-yvD+p)1+yvD+p).

Now assume that #J(Fp) is divisible by a prime [ which satisfies the following

conditions:

(3.2) The prime [ splits to principal prime ideals generated by 1, and 1, in Q(+/D).

(8.3) ;1 1-yv/D+p and Ay | 1+yv/D+p. (Changing the sign of y if necessary, we see
that these conditions always hold in case of I> /#J(Fp). Indeed, if /1 1-yvD+p,
then [°< Nowpyl-yvD+p)| ="J(F,).)

By Freeman[2, Prop. 2.3], the embedding degree for the group J(F,)[/] is %k if and only

if /| ®,(p), which is equivalent to

Ay | @(p) and 1y, | Pu(p)

under the condition (3.2). Using (3.3), we see that the embedding degree is % if and
only if

Our task is to find rational integers ¢, ¥y and [ for given 2 and D which satisfy (3.1),
(3.3) and (3.4).

In order to find such integers, we modify the Brezing-Weng method[1] so that it
works with prime elements of the quadratic field Q(+/D). Let K be a finite Galois
extension of Q containing i, VD, {,eK. Let 0 be an algebraic integer which gener-
ates K over Q. Let F(x)eZlx] be the monic minimal polynomial of 6 over Q.
Further, assume that the polynomial F(x) factors as F(x)=u,(x)uy(x) over Q(v/D). Re-
placing 0 with its suitable conjugate, we may assume that u,(x) is the minimal polyno-
mial of 0 over Q(v/D). We look for polynomials satisfying
(3.5) 4p(x)=t(x)*+Dy(x)’

(3.6) u,(x) | 1-vDy(x)+p(x) and u,(x) | 1+~ Dy(x)+ p(x).

(3.7) uy(x) | ®(vDy(x)-1) and u,(x) | ¢,(—vDy(x)-1).

Here we consider divisibility in Q(+v/D)[x]. Note that (3.6) and (3.5) imply
F(x) | (p(x)—1)2+t(x)2. Then we search n N satisfying the following conditions:

(3.8) p(n) is prime and p(n)=1mod4.

tw) ¥, — -D+ivD|
2 2 2
(3.10) F(n) has a large prime factor.

(3.9)

Then, we use the CM-method to compute the j-invariant of an ordinary elliptic curve
-D+ivD
— |
we extract y from (2.8). Note that (TrnE)Z:tz since D=#1, 3. Since what we really

whose endomorphism ring is isomorphic to Z By the definition (2.3) of E,

need is ¢2, the choice of a correct twist class does not matter to us. If y€F, or y=2,
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we try another value of n. Otherwise, we choose a non-square element UOEF; and

use Lemma 2.5 to obtain u (and set v:=vd).
Our modified Brezing-Weng-Freeman algorithm is as follows.

Algorithm 3.1.

Input: DN such that vVD&N and that D=3,

keN,

K: the finite Galois extension of Q containing {, VD and i,

0: a primitive element of K which is an algebraic integer,

F(x) € Z[x]: the monic minimal polynomial of 6 over Q.

Output: Polynomials y(x), t(x) and p(x) e Qlx] satisfying (3.5), (3.6) and (3.7).
Procedure:

1: factorize F(x) over Q(~/D) to obtain u,(x) and u,(x).

determine z(x) € Q[x] by z(0)={, and degz<degF.

find v (x) and vy(x) s.t. u,(x)v,(x)+uy(x)vy(x)=1 and degv,<degF, degv,<degF.
y(x) = %(1 +2(20)) (o (x)vy(x) — 1, (x)v,(x)) mod F(x).

determine t(x) € Q[x] by t(0)=i(~'Dy(0)-2) and degt<degF.

p() = ()" + Dy().

return y(x), t(x), p(x).

Nk W

Remark 3.2. Our algorithm does not involve choosing polynomials as in Freeman[3, Al-
gorithm 3.8, Step 4]. This is because we use the algorithm to generate curve parame-

ters for the elliptic curve CM method.

Provided p(x) represents primes, (p(x),F(x)) is a polynomial parameter for 2 di-

mensional  Abelian  varieties with embedding degree k. (For (1.1), take

w(x) :=it(x)++Dy(x).) The o-value of our polynomial parameter (p(x), F(x)) is clearly
h 4(degF -1)

not greater than 7deg F

A proof of correctness of Algorithm 3.1 is quite similar to those of Freeman,
Stevenhagen and Streng[5, Algorithm 2.12] and Freeman[3, Algorithm 3.8]. However
we include our proof here for completeness. @We need some more notation. Put
G :=Gal(K/Q), G,:=Gal(K/Q(~'D)), G,;:=Gal(K/Q()), and G,:=Gal(K/Q(v/D,i))=G,NG,.
We choose (and fix) g¢,€G;-G,, g;,=G,.—G; (but usually g, is the complex conjugation).
Then G=G,llg,G,.=G;llgG,;, G.=G,llgG, G;=Gyllg,G,. Put

u,,(x) = [_(]; (x-0(0)),  uy,(x) = |_(|; (x — g,0(0)),
u, (x) = ré (x - g;o(0)), uy (x) = ﬂG (x - 9,9,0(0)).

Since G, is a normal subgroup of G, they are irreducible polynomials of degree
deg(F)/4 belonging to Q(~/D,i). We see that
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u,x) = [ ] (x-0(0) = uy (0)u, (x),

@,

uy(x) = (g, N = [] (x-g.(0)) = uy,(x)u, (x).

i@,

Note that u, (x) is the minimal polynomial of ¢ over Q(v/D,i). We define two embed-
dings 1:Q(vVD)xl/{uy(x))—>K and 1:Q(D)xl/{uyx))—>K by n(x)=0 and i,(x)=g,(09),

respectively.
Lemma 3.3. The polynomial y(x) obtained in Step 4 satisfies y(x)< Qlx] and (3.7).

Proof. Note that the conditions degu,<degF and degu,<degF and
Uy +ugvy = 1 (3.11)

uniquely determine v,(x), v2(x)eQ(\/5)[x]. On the other hand, letting g, act on (3.11),

we obtain
u,9,(vy) +uyg,(vy) = 1.

(Recall that wu,=g.(u,).) Since the action of G does not change a degree of a

polynomial, the above uniqueness implies g¢,(v,)=v, and therefore
9, (uvy) = ugv,. (3.12)
It is obvious that y(x)=Q(+~/D)[x]. However,
1
9/ ) = =59,z + 1)g,(uyvy —uwy) =y

by (3.12). This proves that in fact y(x)=Ql[x]. By construction, zl(x/ﬁy(x)—l):Ck and
1o(—vDy(x)-1)=g,((,). Since 1, and 1, are field embeddings over Q(+/D), we obtain

1(@,(vDy(x) - 1)) = 1,(P,(v'Dy(x)-1)) = 0.

This proves (3.7) since u;(x) and u,(x) are the minimal polynomials of 0 and g,.(0))
over Q(v/D), respectively. [J

Lemma 3.4. The polynomials t(x) and p(x) belong to Q(x) and they satisfy (3.6) and
(3.5).

Proof. It is obvious that #(x)=Q[x] and that (3.5) holds. Since y(x)<= Q[x], Step 6
ensures p(x)=Qlx]. Recall that u,, is the minimal polynomial of ¢ over Q(VD, ).
Since #(0)—i(vDy(0)-2)=0 and #(x)—i(~'Dy(x)-2)c Q(~/D, i)[x],

uy,(x) 1 tx) —i(vDy(x) - 2).

Letting g, act on the formula, we obtain u, (x) | #(x)+i(~'Dy(x)-2). Therefore
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u (®u, (%) 1 t1x)*+(VDy(x) -2))" = t(x)>+ Dy(x)* — 4/ Dy(x) + 4
u(x) | 4(p(x)-~"Dy(x)+1).

Letting g, act on the formula, we obtain uy(x) | p(x)++Dy(x)+1. O

Remark 3.5. This explains why our method gives a better o-value, or in other words,
smaller degree p(x). Note that the Galois group of the degree four primitive CM
fields over Q is Z/4Z while the Galois group of the degree four imprimitive CM fields
is (Z/2Z)*>. In Freeman[3, Algorithm 3.8], p(x) is represented by a norm between a
degree four extension while in our method p(x) is represented by a norm between

quadratic extensions in three ways.

4, Examples

We give an illustrative example here. The ¢-value as a polynomial parameter of the

example is 7/2.

Example 4.1. We take k:=20, K :=Q({y)=Qlx]/(F(x)) with
F(x) == Pgg(x) = a8 — a8+ x4 —x2+ 1.

In this case, 0={y, and i:CSO. Using the Gauss sum (see e.g. Lang[9, Sect. IV.3]),

we see
VB = -G-8+
= 205, + 205 + 1.
We \};ive \L;I_(DC):.TL— 1+2\/5x2+1’ uz(x):x4_1—2\/gx2+1’ vl(x):§x2_5—16/5,
V5 o u. Then we obtain

0y(0)=="5 =g
y(x) = %( —2x7—2x84+2x5 + 2x4 + x + 1).
The value #(0) should be
Go(v/By(G0) = 2) = Lo =G
Thus, #(x)=x6-x5 and
plx) = %(43514 +8x13 + x12-26x11 + 10 + 8x9—-8x7 + 8x5 + 4x% + x2 + 2x + 1).

Hence, the ¢-value for the polynomials is 2-14/8=7/2. We can verify that
p:=p(197)=26788377863233717984813886667001 is a 105  bit  prime. Since
t(197)=58155019028372, the resulting Jacobian has the order

717617188543390298150201207626932772782700088353029767829970384
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- 10 -

which is divisible by [:=11065339871837941 which is a 54 bit prime. The class poly-
nomial for the discriminant -20 is j2—1264000j—68147200020. In F,, it has two
solutions. We take a solution j=15822175166840368949758056216811. Then, (2.8) has
one F, solution y=19681564606374977560729487102594. The resulting curve is

Y2 = X5+ 18177693347944665301994736059631X° + 4X

The o-value for the curve is approximately 3.88.

As to cryptographic size examples, we give two values of x here. In the case
x=1053959, we see Py(x) is a 161 bit prime and p(x) is a 278 bit pime, hence the
o-value is 3.45. In the case x=20005259, we see Py (x) is a 195 bit prime and p(x)
is a 338 bit pime, hence the p-value is 3.47.

Remark 4.2. Freeman[3, Table 1] reports the o-value 6 for the embedding degree 20,
a primitive CM filed Q({;) and F(x)= Pyy(x).

Remark 4.3. Unlike the original Brezing-Weng algorithm, the parameters k=4,

K=Q(), D=2 do not seem to work. In this case, we obtain
px) = %(3x6 —6x5+x4+3x24+2x+1)

which does not take an integral value at any integer.
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