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Abstract. A pairing-friendly curve is a curve over a finite field whose Jaco-
bian has small embedding degree with respect to a large prime-order subgroup.
In this paper we construct pairing-friendly genus 2 curves over finite fields Fq

whose Jacobians are ordinary and simple, but not absolutely simple. We show
that constructing such curves is equivalent to constructing elliptic curves over
Fq that become pairing-friendly over a finite extension of Fq. Our main proof
technique is Weil restriction of elliptic curves. We describe adaptations of the
Cocks-Pinch and Brezing-Weng methods that produce genus 2 curves with
the desired properties. Our examples include a parametric family of genus 2
curves whose Jacobians have the smallest recorded ρ-value for simple, non-
supersingular abelian surfaces.

1. Introduction

Let q be a prime power and Fq be a finite field of q elements. In this paper we
study two types of abelian varieties:

• Elliptic curves E, defined over Fqd , with j(E) ∈ Fq.
• Genus 2 curves C, defined over Fq, whose Jacobians are isogenous over Fqd

to a product of two isomorphic elliptic curves defined over Fq.

Both types of abelian varieties have recently been proposed for use in cryptography.
In the first case, Galbraith, Lin, and Scott [16] showed that arithmetic operations
on certain elliptic curves E as above can be up to 30% faster than arithmetic on
generic elliptic curves over prime fields. In the second case, Satoh [27] showed that
point counting on Jacobians of certain genus 2 curves C as above can be executed
much faster than point counting on Jacobians of generic genus 2 curves.

We consider the construction of these two types of abelian varieties for use in
pairing-based cryptography [24]. To be suitable for this application, the variety must
be pairing-friendly, which means that it must have

• a subgroup of large prime order r, and
• a small embedding degree k = [Fq(ζr) : Fq].

Our main result is to show that constructing pairing-friendly abelian varieties
of the above two types is in a sense equivalent. Specifically, if we can construct
an elliptic curve E/Fq whose base extension to Fqd is pairing-friendly (and d is
minimal with this property), then there is a simple pairing-friendly abelian variety
A/Fq that is isogenous over Fqd to Ee, where e = ϕ(d) or ϕ(d)/2. If e = 2 and
certain further conditions are met, then we can construct a genus 2 curve C over Fq

whose Jacobian is isogenous to A. Conversely, given certain genus 2 curves C/Fq

as above whose Jacobians are simple and pairing-friendly, we can construct elliptic
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curves E/Fq whose base extensions to Fqd are pairing-friendly. (We focus on simple
abelian surfaces A because we can replace a non-simple A by one of its elliptic curve
factors in any application.)

In our principal application of the main result, we take previous methods that
construct pairing-friendly elliptic curves and adapt them to produce genus 2 curves
with pairing-friendly Jacobians. Our technique has the advantage that the fields
Fq over which the resulting abelian surfaces are defined can be made much smaller
relative to the group orders r than previous techniques would allow. This ratio is
measured by the ρ-value, defined as ρ(A) = dimA · log q/ log r. Our construction
produces pairing-friendly abelian surfaces with ρ-values that are generically around
4, and we achieve a “record” ρ-value of approximately 2.2 in the case k = 27. (The
corresponding figures when A is absolutely simple are ρ ≈ 8 generically [13] and
ρ ≈ 4 for certain examples [11]. When A is supersingular we can achieve ρ ≈ 1 but
are restricted to k ≤ 12 [26].)

Our constructions properly contain those of Kawazoe and Takahashi [21], who
consider a single isomorphism class of genus 2 curves with split Jacobians.

Outline. In Section 2 we introduce notation and recall some basic facts about
abelian varieties. In Section 3 we introduce and study Weil restriction, which is
the process by which, given a finite extension of fields L/K, we can interpret a
variety V over L as a higher-dimensional variety V ′ over K. Our main result is
that Jacobians that split over Fqd into a product of isomorphic elliptic curves E/Fq

are isogenous to subvarieties of the Weil restriction of E from Fqd down to Fq. We
also study when these subvarieties are simple.

In Section 4 we study two specific families of genus 2 curves with split Jacobians,
paying careful attention to the minimal field over which this splitting occurs. We
apply the theory developed in Section 3 to determine precisely the subvarieties of
Weil restrictions to which these Jacobians are isogenous.

In Section 5 we put the theory to work in the form of algorithms that can be used
to produce genus 2 curves with pairing-friendly Jacobians. We give two algorithms
that produce a pairing-friendly Frobenius element: one modeled on the algorithm
of Cocks and Pinch [8] that is very flexible, and one modeled on the algorithm of
Brezing and Weng [6] that is more restrictive but leads to smaller ρ-values. Section
6 gives examples of pairing-friendly genus 2 curves produced by our algorithms.

In Section 7 we describe an extension of our techniques that generalizes a method
of Freeman, Scott, and Teske [12, Section 6.4], and give some examples produced
by this method. Finally we conclude in Section 8 with some open questions.

2. Abelian varieties

We assume throughout that all fields are perfect. We first recall some background
on abelian varieties. An abelian variety is a smooth, projective, geometrically irre-
ducible group variety. An elliptic curve is a one-dimensional abelian variety, and
an abelian surface is a two-dimensional abelian variety.

Let Fq be a finite field of q elements. An abelian variety A/Fq is ordinary if

#A(Fq)[p] = pdim A, where p = char(Fq), and A is supersingular if it is isogenous

over Fq to a product of non-ordinary elliptic curves. If dimA ≥ 2 then it is possible
that A is neither ordinary nor supersingular.

If A is an abelian variety over a field F we use End(A) to denote the ring of
endomorphisms of A that are defined over F , and we use EndF (A) to denote the
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ring of endomorphisms of A that are defined over the algebraic closure F . If A is
an ordinary abelian variety over a finite field, then these two rings are equal.

An isogeny of abelian varieties is a surjective morphism of varieties that is a
group homomorphism. Two varieties A,A′ over F are isogenous if there is an
isogeny between them that is defined over F . (If there is an isogeny defined over
an extension field F ′ then the two varieties are isogenous over F ′.) An abelian
variety A over F is simple if it is not isogenous (over F ) to a product of two abelian
varieties of positive dimension. We say A is absolutely simple if it remains simple
when base-extended to F .

A twist of an abelian variety A over F is an abelian variety A′ that is isomorphic
to A over F . The degree of the twist is the degree of the smallest field extension
F ′/F such that there is an isomorphism φ : A→ A′ defined over F ′.

If A is an abelian variety over Fq, we let fA,q(x) denote the characteristic poly-
nomial of the q-power Frobenius endomorphism of A. This is a q-Weil polynomial:
a monic polynomial in Z[x] all of whose roots have absolute value

√
q. If dimA = g

then deg fA,q = 2g. A q-Weil number is a root of an irreducible q-Weil polynomial.
We will make extensive use of the following facts.

Theorem 2.1.

(a) Two abelian varieties A,B are isogenous over Fq if and only if fA,q = fB,q.
(b) If A,B are abelian varieties over Fq then fA×B,q = fA,qfB,q.
(c) There is a bijection

{

isogeny classes of
simple abelian varieties over Fq

}

→
{

irreducible
q-Weil polynomials

}

isogeny class of A/Fq 7→ (fA,q)
1/e,

where e is the largest integer such that (fA,q)
1/e ∈ Z[x].

(d) If A/Fq is ordinary and simple, the integer e from (a) is equal to 1, and
End(A) ⊗ Q ∼= Q[x]/(fA,q(x)).

Proof.

(a) This is [30, Theorem 1].
(b) This follows from the fact that the Tate module Vℓ(A × B) is equal to

Vℓ(A) × Vℓ(B).
(c) This is the main result of Honda-Tate theory [31, Théorème 1 (i)].
(d) By [31, Théorème 1 (ii)], Q[x]/(fA,q(x)

1/e) is isomorphic to the center of
End(A) ⊗ Q, and if e is as in part (a) then e2 is the degree of End(A) ⊗ Q
over its center. By [33, Theorem 7.2], if A is ordinary then End(A) is
commutative, and the result follows. �

If A/Fq is ordinary and simple, then the middle coefficient of fA,q is prime to
q. In this case we say that fA,q is an ordinary q-Weil polynomial, and its roots are
ordinary q-Weil numbers.

3. Weil restrictions

We now recall the concept of Weil restriction, also known as restriction of scalars.
Let L/K be a finite (separable) extension of fields. The Weil restriction from L to
K, denoted ResL/K , is a functor from varieties over L to varieties over K. On the
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level of affine varieties, the Weil restriction of a variety X defined over L can be
obtained by the following process:

(1) Choose a K-basis {αi} of L.
(2) Expand the equations defining X in terms of this basis, with each variable

over L becoming [L : K] variables over K.
(3) Collect terms with matching basis elements to obtain [L : K] equations over

K from each equation over L. These equations define X ′ = ResL/K(X).

It holds that dimX ′ = [L : K] dimX . For projective varieties X we can apply this
procedure on affine open subsets and glue the results together to obtain X ′. If X
is an abelian variety, then X ′ is as well, since on affine patches we can apply the
same process to the equations defining the group law. For further details see [34,
Section 1.3].

In this paper we focus on abelian varieties described by the following proposition,
whose proof was shown to us by Marco Streng.

Proposition 3.1. Let A be a g-dimensional simple abelian variety defined over a
perfect field K. Let L be a finite extension of K, and suppose A is isogenous over
L to a product of g isomorphic simple abelian varieties B defined over K. Then A
is isogenous over K to a subvariety of the Weil restriction ResL/K(B).

Proof. By the functoriality of Weil restriction, any map φ : A→ Bg defined over L
descends to a map φ′ : ResL/K(A) → ResL/K(Bg) ∼= (ResL/K(B))g. Furthermore,
there is an abelian subvariety B ⊂ ResL/K(A) isomorphic to A: let α1, . . . , αd

be a basis of L as a K-vector space, with α1 ∈ K, and let xi be the variables
defining A/L on some affine open subset U . Then B ∩ U is defined by writing
xi = yi1α1 + · · · + yidαd and intersecting ResL/K(A) with the hyperplanes defined
by yij = 0 for all i and j = 2, . . . , d, and these patches can be glued to obtain all of
B. Thus A is isogenous to a subvariety of (ResL/K(B))g, and since A is simple it
must be isogenous to a subvariety of ResL/K(B). �

When L and K are finite fields, we wish to know how the characteristic polyno-
mials of Frobenius of A and ResL/K(A) are related. It is known that for any prime

ℓ 6= charK, the ℓ-adic representation of Gal(K/K) on the Tate module Vℓ(X
′) is

the induced representation of Gal(K/L) on Vℓ(X). The next proposition is an im-
mediate consequence of this fact (see [9, Proposition 1.21]). We give here a direct
elementary proof starting from the fact that for any variety X and any K-algebra
R, we have

(3.1) ResL/K(X)(R) ∼= X(L⊗K R)

scheme-theoretically [4, Section 7.6]. Furthermore, if X is a group variety then
(3.1) is a group isomorphism.

Proposition 3.2. Let A be an abelian variety over a finite field Fqd , and let A′ =

ResF
qd /F

q
(A). Then fA′,q(x) = fA,qd(xd).

Proof. Our proof uses the properties of resultants. If K is a perfect field and
f, g ∈ K[x], the resultant of f and g is

(3.2) Rx(f(x), g(x)) =
∏

α∈K
f(α)=0

g(α) = (−1)deg f deg g
∏

β∈K

g(β)=0

f(β).
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Let X be an abelian variety over Fq and let π be the q-power Frobenius morphism.
Since X(Fq) is the kernel of π− 1, then #X(Fq) = fX,q(1). Furthermore, since πm

is the qm-power Frobenius morphism for any m ≥ 1, we have

(3.3) #X(Fqm) = Rx (fX,q(x), x
m − 1) .

The expression on the right-hand side is the mth cyclic resultant of f . In addition,
observe that

(3.4) Fqd ⊗Fq Fqm ∼= (Fqlcm(d,m))gcd(d,m) = (Fqabc)a,

where a = gcd(m, d), m = ab, and d = ac. We thus have

#A′(Fqm) = #A(Fqabc)a by (3.1) and (3.4),

= Rx

(

fA,qd(x), xb − 1
)a

by (3.3),

=
∏

ζb=1

fA,qd(ζ)a by (3.2),

=
∏

ζb=1

fA,qd(ζc)a since gcd(b, c) = 1,

=
∏

ηab=1

fA,qd(ηac) by taking ath roots,

= Rx

(

fA,qd(xd), xm − 1
)

by (3.2),

= Rx(fA′,q(x), x
m − 1) by (3.1).

(Note that we can ignore the minus signs arising in (3.2) since fA,qd has even degree.)
By an argument of Kedlaya [22, Section 8], a q-Weil polynomial is determined
uniquely by its sequence of cyclic resultants. Thus we conclude that fA,qd(xd) =
fA′,q(x). �

3.1. Primitive subgroups. Our main construction involves taking an abelian va-
riety defined over a field K, base extending to a field L, and then taking the Weil
restriction back down to K. If L/K is cyclic, then this Weil restriction decomposes
nicely into factors that correspond to the subfields of L containing K. The factor
which is “new” for L, in other words, which does not appear as a factor in the Weil
restrictions for proper subfields of L, was studied by Frey, Kani and Völklein [14],
and in cryptographic contexts by Rubin and Silverberg [26]. This factors, known
as a primitive subgroup, is defined as follows.

Definition 3.3 ([26, Definition 8.1]). Let A be an abelian variety defined over
a field K, and let L be a finite, nontrivial extension of K. Define the primitive
subgroup of ResL/K(A) to be

VL/K =
⋂

K⊆F(L

ker

(

ResL/K(A)
TrL/F−−−−→ ResF/K(A)

)

,

where TrL/F : ResL/K(A) → ResF/K(A) is the Weil restriction of the usual trace
map from A(L) to A(F ) defined on x ∈ A(L) by

x 7→
∑

σ∈Gal(L/F )

σ(x).

Define VK/K(A) = A.
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Diem [9, Theorem 5] has shown that there is an isogeny decomposition

(3.5) ResL/K(A) ∼
⊕

K⊆F⊆L

VF/K(A).

See [9, Section 2.1.3] for further details.
Now suppose K is a finite field Fq; in this case we use Vd(A) or Vd (when A

is obvious from context) to denote VF
qd/F

q
(A). Let π be the q-power Frobenius

endomorphism of A. Since A(Fqd) = ker(πd − 1), we can decompose A(Fqd) into

subgroups corresponding to cyclotomic factors of πd − 1. The subgroup ker(Φd(π))
is exactly the intersection of the kernels of the trace maps on A from Fqd to proper
subfields. It follows from Definition 3.3 and property (3.1) of Weil restriction that
there is a group isomorphism Vd(A)(Fq) ∼= ker(Φd(π)). We now determine the
characteristic polynomial of Frobenius of Vd(A).

Proposition 3.4. Let A be a g-dimensional ordinary abelian variety over Fq, and
write

fA,q(x) =

2g
∏

i=1

(x− αi).

Then the characteristic polynomial of Frobenius of Vd(A) is

fVd(A),q(x) =

2g
∏

i=1

α
ϕ(d)
i Φd(x/αi) =

2g
∏

i=1

∏

1≤j≤d

(d,j)=1

(x− ζjαi),

where ζ is a primitive dth root of unity.

Proof. The result is obvious for d = 1. Let X = ResF
qd/F

q
A and let ζ ∈ C be a

primitive dth root of unity. By Proposition 3.2 we have

fX,q(x) =

2g
∏

i=1

(xd − αd
i ) =

2g
∏

i=1

d
∏

j=1

αi(x/αi − ζj) =
∏

e|d

(

2g
∏

i=1

α
ϕ(e)
i Φe(x/αi)

)

.

The result now follows inductively from the base case d = 1 and equation (3.5). �

Remark 3.5. If d is odd, then since Φ2d(x) = Φd(−x), Proposition 3.4 implies
that V2d is isogenous to the quadratic twist of Vd. In particular, V2 is isogenous to
the quadratic twist A′ of A, with A′ defined over Fq and isomorphic to A over Fq2 .

Furthermore, it follows from our observations above that when d is even, the
group Vd(Fq) is isomorphic to a subgroup of A′(Fqd/2), where A′ is the quadratic
twist of A over Fqd ; that is, a variety defined over Fqd that is isomorphic to A over
Fq2d . If d is a power of 2 then this subgroup is the entire group A′(Fqd/2).

Proposition 3.6. Let A be an ordinary, absolutely simple abelian variety over
Fq. Let K = End(A) ⊗ Q. The primitive subgroup Vd(A) is simple if and only if
K ∩ Q(ζd) = Q.

Diem [9, Theorem 5] proves the statement using representation theory; we give
an alternative proof.

Proof. Let α be the q-power Frobenius element of A (so K = Q(α)) and let ζ be
a primitive dth root of unity. Since αd is the qd-power Frobenius element of A, our
hypotheses on A imply that Q(αd) has degree 2·dimA, and therefore Q(αd) = Q(α).
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Since Q(αd) ⊂ Q(ζα), this implies that α ∈ Q(ζα) and thus Q(ζα) = Q(ζ, α). Since
Q(ζ)/Q is Galois, we have

[Q(ζα) : Q] =
[Q(ζ) : Q][Q(α) : Q]

[Q(ζ) ∩ Q(α) : Q]
=

2 · dimA · ϕ(d)

[Q(ζ) ∩ Q(α) : Q]
.

By Proposition 3.4, the algebraic integer ζα is a root of fVd,q, which has degree
2 · dimA · ϕ(d). We conclude that fVd,q is irreducible, and thus Vd(A) is simple, if
and only if Q(ζ) ∩ Q(α) = Q. �

We will use the result Q(ζα) = Q(ζ, α) in subsequent proofs, so we state it here
as a lemma.

Lemma 3.7. Let A be an abelian variety over Fq. Let α be the q-power Frobenius
endomorphism of A, and let ζ be a root of unity. If A is ordinary and absolutely
simple, then Q(ζα) = Q(ζ, α). �

In the case of elliptic curves we can determine the structure of Vd precisely in
the cases where it splits; see also [9, Corollary 8].

Proposition 3.8. Let E/Fq be an ordinary elliptic curve, and let d ≥ 3 be an
integer. Let K = End(E) ⊗ Q. If K ⊂ Q(ζd), then Vd(E) is isogenous to the
product of two simple, non-isogenous abelian varieties of dimension ϕ(d)/2.

Proof. Let α ∈ K be a root of fE,q. By Proposition 3.4 the roots of fVd,q are
{αζi

d, αζ
i
d} for 1 ≤ i ≤ d with (i, d) = 1. If these are not all distinct then α/α = α2/q

is a root of unity and therefore E is supersingular, a contradiction. By Lemma 3.7
we have Q(αζd) = Q(α, ζd) = Q(ζd). Thus αζd is a q-Weil number of degree ϕ(d).
It follows from Theorem 2.1 that Vd(E) is isogenous to the product of two simple
abelian varieties of dimension ϕ(d)/2. Since the roots of fVd,q are distinct these
factors are not isogenous. �

4. Non-simple abelian surfaces.

We now give some examples of genus 2 curves whose Jacobians are isogenous
over an extension field to a product of isomorphic elliptic curves. We will see that
in certain cases, the Jacobians of these curves realize, up to isogeny, the primitive
subgroups discussed in the previous section.

In the following we let K be a perfect field of characteristic not equal to 2 or 3.
Our first example was described by Satoh [27] and Gaudry and Schost [19, Section
4]; we give an alternative construction that allows us to determine explicitly the
field of definition of the various maps.

Proposition 4.1. Let C : y2 = x5 + ax3 + bx be a hyperelliptic curve over K, let
c = a/

√
b ∈ K, and let i ∈ K be a primitive fourth root of unity. Then Jac(C) is

isogenous over K(b1/4, i) to E × E, where

(4.1) E : y2 = (c+ 2)u3 − (3c− 10)u2 + (3c− 10)u− (c+ 2)

is an elliptic curve defined over K(b1/2) with

(4.2) j(E) = 26 (3c− 10)3

(c− 2)(c+ 2)2
.
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Proof. The curve C is isomorphic to C′ : y2 = x5 +cx3+x by the map φ : (x, y) 7→
(b1/4x, b5/8y). The map φ is defined over K(b1/8), and the curve C′ is defined over
K(b1/2). Writing C′ in weighted projective coordinates [x : y : z] and substituting
u = (x+ z)/2, v = (x− z)/2 gives a map ρ defined over K to the curve

C′′ : y2 = (c+ 2)u6 − (3c− 10)u4v2 + (3c− 10)u2v4 − (c+ 2)v6,

which is also defined over K(b1/2). The functions ψ1 : [u : y : v] 7→ [u2 : y : v2]
and ψ2 : [u, y, v] 7→ [v2 : iy : u2] give maps from C′′ to E defined over K and K(i),
respectively. Thus the map ψ1ρφ×ψ2ρφ : C → E×E is defined over K(b1/8, i) and
induces an isogeny λ : Jac(C) → E × E. The discriminant of E is (c− 2)(c+ 2)2;
the fact that C is nonsingular implies c 6= ±2 and thus E is nonsingular. The
calculation of j(E) is straightforward. �

We now consider an analogous family of degree 6 curves. These curves have also
been studied by Duursma and Kiyavash [10, Section 4.2] and Gaudry and Schost
[19, Section 3]. As before, our construction allows us to keep track of the field of
definition over which the various maps are defined.

Proposition 4.2. Let C : y2 = x6 + ax3 + b be a hyperelliptic curve over K, let
c = a/

√
b ∈ K, and let ζ3 ∈ K be a primitive cube root of unity. Then Jac(C) is

isogenous over K(b1/6, ζ3) to E × E, where

(4.3) E : y2 = (c+ 2)u3 − (3c− 30)u2 + (3c+ 30)u− (c− 2)

is an elliptic curve defined over K(b1/2) with

(4.4) j(E) = 2833 (2c− 5)3

(c− 2)(c+ 2)3
.

Proof. The curve C is isomorphic to C′ : y2 = x6 +cx3 +1 by the map φ : (x, y) 7→
(b1/6x, b1/2y). The map φ is defined over K(b1/6), and the curve C′ is defined over
K(b1/2). Writing C′ in weighted projective coordinates [x : y : z] and substituting
u = (x+ z)/2, v = (x− z)/2 gives a map ρ defined over K to the curve

C′′ : y2 = (c+ 2)u6 − (3c− 30)u4v2 + (3c+ 30)u2v4 − (c− 2)v6,

with C′′ also defined over K(b1/2). The function ψ1 : [u : y : v] 7→ [u2 : y :
v2] maps C′′ to E. The discriminant of E is (c − 2)(c + 2)3; the fact that C is
nonsingular implies c 6= ±2 and thus E is nonsingular. The calculation of j(E) is
straightforward.

Let Ec be the elliptic curve of (4.3), parametrized by c. Then the function
ψ2 : [u : y : v] 7→ [v2 : y : u2] maps C′′ to the elliptic curve E−c. Both ψ1 and ψ2

are defined over K. Thus the map ψ1ρφ × ψ2ρφ : C → Ec × E−c is defined over
K(b1/6) and induces an isogeny λ : Jac(C) → Ec × E−c.

It remains to show that Ec and E−c are isogenous over K(b1/6, ζ3). By taking
the second derivative of the equation for Ec, we find that Ec has rational 3-torsion
points at (1,±8). Taking the quotient of Ec by the order-3 subgroup generated by
these points gives a curve

E′
c : y2 = x3 − (3c− 30)x2 + (3c2 − 924c− 1860)x− (c3 + 834c2 + 30972c+ 58616).

The curve E′
c is isomorphic to E−c over K(ζ3) by the map

(x, y) 7→
(

x+ 2c+ 40

3c− 6
,− y

(3c− 6)
√
−3

)

.
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We conclude that Ec and E−c are 3-isogenous over K(b1/6, ζ3). �

Remark 4.3. If x6+ax3+b has a root in K, then we can move that root to infinity
to obtain a degree 5 model for C. In general, arithmetic and pairing operations
on a hyperelliptic curve with an imaginary (i.e., odd-degree) model are faster than
the same operations on a curve with a real (i.e., even-degree) model, though there
have been some recent advances in the latter case [17, 18]. However, to unify our
presentation we will continue to use the degree 6 model when working with the
curves of Proposition 4.2.

For the remainder of this section we let K = Fq be a finite field of characteristic
greater than 3. Combining Propositions 4.1 and 4.2 with the results of Section 3
gives the following.

Theorem 4.4. Let C : y2 = x5 + ax3 + bx be a hyperelliptic curve over Fq,
and suppose Jac(C) is ordinary. Let E be the elliptic curve given by (4.1), with

c = a/
√
b. If b ∈ (F∗

q)
2 \ (F∗

q)
4 and End(E) ⊗ Q 6∼= Q(i), then Jac(C) is simple and

isogenous over Fq to V4(E).

Proof. The hypothesis on b implies that i ∈ Fq and Fq(b
1/8) = Fq4 . By Proposition

4.1, Jac(C) is isogenous over Fq4 to E × E. Let φ : C → C′, ρ : C′ → C′′, and
ψ1, ψ2 : C′′ → E be as in Proposition 4.1. Since i ∈ Fq, the maps ψ1ρ, ψ2ρ : C′ → E
are both defined over Fq. Thus the map ψ1ρ×ψ2ρ : C′ → E×E induces an isogeny
from Jac(C′) to E × E defined over Fq. By Theorem 2.1 we have fJac(C′),q(x) =

fE,q(x)
2.

Write fE,q(x) = (x−α)(x−α). Since the map φ : C → C′ is a twist of degree 4,
the eigenvalues of Frobenius on Jac(C) are primitive fourth roots of unity times
eigenvalues of Frobenius on Jac(C′). In particular, one of ±iα is an eigenvalue of
Frobenius on Jac(C), i.e., a root of fJac(C),q. Since Jac(C) is ordinary, we may
apply Lemma 3.7 to deduce that Q(iα) = Q(i, α). Since α 6∈ Q(i), the field Q(i, α)
has degree 4 over Q. Thus fJac(C),q is a degree 4 polynomial with a root that defines
a degree 4 number field, so it is irreducible. By Theorem 2.1, Jac(C) is simple.

By Proposition 3.1, Jac(C) is isogenous over Fq to a subvariety ofX = ResFq4/Fq
(E).

By equation (3.5), the variety X is isogenous to V1(E) × V2(E) × V4(E), where
dimVd(E) = ϕ(d). Since Jac(C) is simple, it must be isogenous to V4(E). �

Theorem 4.5. Let C : y2 = x6 + ax3 + b be a hyperelliptic curve over Fq, and
suppose Jac(C) is ordinary. Let E be the elliptic curve given by (4.3), with c =

a/
√
b. If b ∈ (F∗

q)
2 \ (F∗

q)
6 and End(E) ⊗ Q 6∼= Q(ζ3), then Jac(C) is simple and

isogenous over Fq to V3(E).

Proof. The hypothesis on b implies that ζ3 ∈ Fq and Fq(b
1/6) = Fq3 . By Propo-

sition 4.2, Jac(C) is isogenous over Fq3 to E × E. By Proposition 3.1, Jac(C) is
isogenous over Fq to a subvariety of X = ResFq3/Fq

(E). By (3.5), X is isogenous

to V1(E) × V3(E), where Vd(E) has dimension ϕ(d). Since End(E) ⊗ Q 6∼= Q(ζ3),
V3(E) is simple by Proposition 3.6. Since Jac(C) is two-dimensional, it must be
isogenous to V3(E). �

In both of the above cases, the condition that Jac(C) is ordinary is easy to
test: if Jac(C) is not ordinary then the elliptic curve E given by (4.1) or (4.3) is
supersingular and has q + 1 − t points over Fq, with t ∈ {0,±√

q,±2
√
q} (since
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charFq > 3). Choosing a random point P ∈ E(Fq) and multiplying by the possible
group order(s) will quickly determine whether E, and thus Jac(C), is ordinary.

If b is not a square, we can perform the same analysis as in Theorems 4.4 and
4.5, but in this case we see from (4.2) and (4.4) that the elliptic curve E usually
has j-invariant outside of Fq. In the cases where j(E) ∈ Fq, we have the following
results:

Proposition 4.6. Let C : y2 = x5 + ax3 + bx be a hyperelliptic curve over Fq,

and let p = char Fq. Let E be the elliptic curve given by (4.1) (with c = a/
√
b). If

b 6∈ (F∗
q)

2 and j(E) ∈ Fq, then one of the following holds:

(1) a = 0, j(E) = 8000, and Jac(C) is:
• supersingular, if p ≡ 5, 7 (mod 8).
• ordinary, simple, and isogenous to V4(E), if q ≡ 3 (mod 8), or
• ordinary, simple, and isogenous to a subvariety of V8(E), otherwise.

(2) a/
√
b = ± 10

9

√
−7, j(E) = −3375, and Jac(C) is supersingular.

Proof. Set c = a/
√
b and let j(c) denote the right hand side of (4.2). Since the

nontrivial element σ ∈ Gal(Fq(
√
b)/Fq) satisfies σ(

√
b) = −

√
b (and thus σ(c) =

−c), solving j(c) = j(−c) gives all values of c for which j(c) ∈ Fq. We find the

solutions {0,±2,± 10
9

√
−7}. The solutions c = ±2 give singular curves so we can

ignore them.
If c = 0, then Propositions 4.1 and 3.1 imply that j(E) = 8000 and Jac(C) is

isogenous over Fq to a subvariety of ResFq8/Fq
(E). Since C is isomorphic over Fq

to the curve y2 = x5 + x, we can apply [15, Theorem 3] to conclude that Jac(C) is
ordinary if p ≡ 1, 3 (mod 8) and supersingular otherwise. In the ordinary case the
fact that j(E) = 8000 implies End(E) ⊗ Q ∼= Q(

√
−2).

Let C′ be as in Proposition 4.1. If q ≡ 1 (mod 8) then Fq(b
1/8, i) = Fq8 . In

this case C′ is a degree 8 twist of C and Jac(C′) is isogenous over Fq to E × E. If

fE,q(x) = (x−α)(x−α), then there is some primitive 8th root of unity ζ8 ∈ Q such
that ζ8α is an eigenvalue of Frobenius for Jac(C), i.e., a root of fJac(C),q. Since
Jac(C) is ordinary, we may apply Lemma 3.7 to deduce that Q(ζ8α) = Q(ζ8, α) =
Q(ζ8), with the last equality following from α ∈ Q(

√
−2) ⊂ Q(ζ8). Taking the

Gal(Q(ζ8)/Q)-conjugates of ζ8α, we see that

fJac(C),q = (x− ζ8α)(x − ζ3
8α)(x− ζ5

8α)(x− ζ7
8α).

It follows from Proposition 3.4 that fJac(C),q divides fV8(E),q, and thus Jac(C) is
isogenous to a subvariety of V8(E). By Proposition 3.8, Jac(C) is simple.

If q ≡ 3 (mod 4), then Fq(b
1/8, i) = Fq4 . In this case Jac(C′) is isogenous over

Fq to E × E′, where E and E′ are quadratic twists of each other. Let α be an
eigenvalue of Frobenius for E; then −α is an eigenvalue of Frobenius for E′. Since
C and C′ are degree 4 twists of each other, one of ±iα is an eigenvalue of Frobenius
for Jac(C′). Continuing the analysis as in Theorem 4.4, we conclude that Jac(C)
is simple and isogenous to V4(E).

Finally, if c = ± 10
9

√
−7 then from (4.2) we have j(E) = −3375, so E is the

reduction of the curve over Q with CM by Z[
√
−7] (see [28, Section A.3]). If c = 0

then p = 5 or 7 and Jac(C) is supersingular by the analysis above. If c 6= 0 then
our assumption on b implies that −7 is a non-square in F∗

q , and therefore p is inert

in Q(
√
−7). By a standard result of CM theory (see [23, Theorem 13.12]), this

implies that E is supersingular, and thus Jac(C) is as well. �
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Remark 4.7. If a = 0 and q ≡ 1 (mod 4) we have obtained the “Type I” case of
Kawazoe and Takahashi [21], while if a = 0 and q ≡ 3 (mod 4) we have obtained
the “Type II” case. Further analysis of the special case a = 0, including a formula
for fJac(C),q in terms of b and q only, can be found in [15].

Proposition 4.8. Let C : y2 = x6 + ax3 + b be a hyperelliptic curve over Fq. Let

E be the elliptic curve given by (4.3) (with c = a/
√
b). If b 6∈ (F∗

q)
2 and j(E) ∈ Fq,

then one of the following holds:

(1) a = 0, j(E) = 54000, and either Jac(C) is supersingular or Jac(C) is
ordinary and not simple;

(2) a/
√
b = ±5

√
−2, j(E) = 8000, and Jac(C) is supersingular; or

(3) a/
√
b = ± 1

2

√
−11, j(E) = −32768, and Jac(C) is supersingular.

Proof. We set c = a/
√
b and let j(c) be defined by the right hand side of (4.4).

The solutions to j(c) = j(−c) are {0,±2,±5
√
−2,± 1

2

√
−11}. The solutions c = ±2

give singular curves so we can ignore them.
If c = 0, then Propositions 4.2 and 3.1 imply that Jac(C) is isogenous to a

subvariety of ResFq6/Fq
(E′) with j(E′) = 54000. If E′ is supersingular then Jac(C)

is supersingular. If E′ is ordinary then End(E′) ⊗ Q ∼= Q(ζ3) (see [28, Section
A.3]). Thus by Proposition 3.8 V3(E) and V6(E) are not simple, and thus Jac(C)
is ordinary and not simple.

If c = ±5
√
−2 or c = ± 1

2

√
−11 then we can perform the same analysis as in case

(2) of Proposition 4.6. If c 6= 0 then in both cases E is the reduction of a curve over
Q with CM by Z[

√
−D] with −D a non-square in F∗

q , so Jac(C) is supersingular.
If c = 0 then either p (= charFq) = 5 and j(E) = 0, or p = 11 and j(E) = 1728.
In both cases the curve E has an automorphism that does not commute with the
p-power Frobenius endomorphism, so E is supersingular. �

5. Constructing Pairing-Friendly Curves

We now turn our attention to constructing pairing-friendly abelian varieties,
which informally are abelian varieties that have small embedding degree with re-
spect to a large prime-order subgroup. We call a curve pairing-friendly if its Jaco-
bian is so. We first define the embedding degree, which is the degree of the field
extension of Fq in which the Weil and Tate pairings take their values.

Definition 5.1. Let A be an abelian variety defined over Fq, where q = pm for some
prime p and integer m. Let r 6= p be a prime dividing #A(Fq). The embedding
degree of A with respect to r is the smallest integer k such that r divides qk − 1.

Let A be a simple (though not necessarily absolutely simple) abelian variety over
Fq. Let π be the Frobenius endomorphism of A; we will also use π to refer to a root
of fA,q. From this point on we will assume that K = Q(π) is the full endomorphism
algebra End(A)⊗Q; in particular, this is the case when A is ordinary. Under these
assumptions, we have [K : Q] = 2 · dimA (see Theorem 2.1), and the number of
Fq-rational points of A is given by

#A(Fq) = fA,q(1) = NK/Q(π − 1).

We can thus express the conditions for A being pairing-friendly as follows.
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Proposition 5.2. Let A/Fq be a simple abelian variety with Frobenius endomor-
phism π, and assume K = Q(π) equals End(A)⊗Q. Let k be a positive integer, let
Φk be the kth cyclotomic polynomial, and let r be a prime not dividing kq. If

NK/Q(π − 1) ≡ 0 (mod r),

Φk(ππ) ≡ 0 (mod r),

then A has embedding degree k with respect to r. �

It follows from Proposition 5.2 that the property of being pairing-friendly de-
pends only on the isogeny of class of A.

The following theorem relates the “pairing-friendliness” properties of elliptic
curves over extension fields and primitive subgroups of Weil restrictions.

Proposition 5.3. Let A be an ordinary, simple abelian variety defined over a finite
field Fq. Let r be prime and k, d be integers with r ∤ kq. Assume that

(1) d is the smallest integer such that A(Fqd) has a point of order r, and
(2) Φk(q) ≡ 0 (mod r).

Then A base extended to Fqd has embedding degree k/ gcd(k, d) with respect to r,
and Vd/Fq has embedding degree k with respect to r.

Proof. Assumption (1) implies that Vd(Fq) has a point of order r. Assumption (2)
thus implies directly that Vd/Fq has embedding degree k with respect to r. Further-
more, one can show (see e.g. [26, Lemma 5.2]) that Φk(x) divides Φk/ gcd(k,d)(x

d)

as polynomials. Given this fact, assumption (2) implies that Φk(qd) ≡ 0 (mod r),
and thus A/Fqd has embedding degree k/ gcd(k, d) with respect to r. �

Remark 5.4. If A/Fq has embedding degree k with respect to r and q is not
prime, then the Weil and Tate pairings on E may take values in a proper subfield
of Fqk , called the minimal embedding field [20]. If p = char(Fq), then the minimal
embedding field is Fp(ζr). In this case, the security of cryptosystems based on A
will be determined not by the embedding degree but by the size of the minimal
embedding field. For example, if A is as in Proposition 5.3 and d ∤ k, then A/Fqd

has embedding degree k′ = k/ gcd(k, d) but the minimal embedding field is Fqk ,
which is a proper subfield of F(qk′d). For the remainder of our discussion we will

have q prime and d | k, so we may safely continue to work with the embedding
degree only.

Combining Proposition 5.3 with the results of Section 3.1, we see that for any
integer d, we can construct simple pairing-friendly abelian varieties Vd/Fq of di-
mension ϕ(d) (or dimension ϕ(d)/2 if End(E)⊗Q ⊂ Q(ζd)) by constructing elliptic
curves E/Fq that become pairing-friendly when base extended to Fqd . In general
the variety Vd will not be the Jacobian of a curve, so one will have to use the
“compression” technique of Rubin and Silverberg [26, Section 10] to do arithmetic
on Vd.

However, in Theorems 4.4 and 4.5 and Proposition 4.6 we have seen explicit
examples of genus 2 curves whose Jacobians are isogenous to a subvariety of Vd

for d = 4, 3, and 8, respectively. If we start with an elliptic curve over Fq whose
base-extension to Fqd is pairing-friendly, then we can work backwards from j(E) to
find the equation for a curve C whose Jacobian is simple and pairing-friendly.
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5.1. Elliptic curves whose base extensions are pairing-friendly. We now
turn to the problem of constructing an elliptic curve E that has the two properties
given in Proposition 5.3. Fix a prime r and integers k, d with d | k. Let K be a
quadratic imaginary field and let π ∈ K be the Frobenius endomorphism of E/Fq.
Suppose further that r splits in OK . We consider each property of Proposition 5.3
in turn:

Condition (1) holds if and only if NK/Q(πd−1) ≡ 0 (mod r) and NK/Q(πe−1) 6=
0 (mod r) for all e < d. These two conditions, in turn, hold if and only if there
is a prime r of OK over r such that πd ≡ 1 (mod r) and both πe 6≡ 1 and πe 6≡ 1
(mod r) for all e < d. It follows that we must have

(5.1) π ≡ ζd (mod r)

for some primitive dth root of unity ζd ∈ Fr and some prime r | r in OK .
Condition (2) holds if and only if ππ is a primitive kth root of unity ζk mod r;

without loss of generality we may assume that this congruence is modulo the same
r as above. This implies that

(5.2) π ≡ ζk/ζd (mod r).

Since condition (1) requires πe 6≡ 1 (mod r) for all e < d, we must also require
that the order of ζk/ζd be at least d. The order of ζk/ζd may depend on the specific
kth and dth roots of unity chosen, but if we assume k > d then ζk/ζd always has
order k.

We can use the congruences (5.1) and (5.2) as the basis for either a Cocks-Pinch
type algorithm or a Brezing-Weng type algorithm to construct π. The former
has the advantage of applying to arbitrary embedding degree k and imposing few
conditions on the subgroup size r; the latter has the advantage of producing smaller
field sizes q relative to r for certain embedding degrees k and a more restricted set
of subgroup sizes r.

Our first algorithm is based on Freeman, Stevenhagen, and Streng’s generaliza-
tion of the Cocks-Pinch algorithm [13], and is as follows:

Algorithm 5.5. Input: integers k, d with d | k and d < k, a quadratic imaginary
field K, and a real number b. Output: a q-Weil number π ∈ K, with q prime, and
a prime r.

(1) Choose a prime r > 2b such that r ≡ 1 (mod k), r > 2 disc(OK), and r
splits in OK .

(2) Choose a primitive kth root of unity ζk ∈ Fr and a primitive dth root of
unity ζd ∈ Fr.

(3) Write rOK = rr.
(4) Compute a π ∈ OK such that

π ≡ ζd (mod r), π ≡ ζk/ζd (mod r)

and q = ππ is prime.
(5) Output π and r.

The method of Brezing and Weng [6] has the same structure as the Cocks-Pinch
algorithm, except we replace the ring of integers OK with the polynomial ring K[x].
The algorithm generates polynomials π(x) and r(x) and searches for values of x
for which q(x) = π(x)π(x) is prime and r(x) is prime or has a large prime factor.
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For this to be possible q(x) must satisfy certain conditions, incorporated in the
following definition.

Definition 5.6. Let f(x) ∈ Q[x] be a non-constant, irreducible polynomial with
positive leading coefficient. We say f is a Bateman-Horn polynomial if (1) f(x) ∈ Z
for some x ∈ Z, and (2) gcd({f(x) : x, f(x) ∈ Z}) = 1.

Definition 5.6 derives its nomenclature from the conjecture of Bateman and Horn
[2], which says that if f ∈ Q[x] satisfies conditions (1) and (2), then f(x) takes on
an infinite number of prime values, and furthermore gives a heuristic asymptotic
formula for the number of prime values. In previous work (e.g. [12, 11]) such a
polynomial was said to represent primes. Since it is not known whether any such
polynomial of degree at least 2 does in fact take an infinite number of prime values,
some may find this terminology misleading.

Our algorithm is based on Freeman’s generalization of the Brezing-Weng algo-
rithm [11], and is as follows:

Algorithm 5.7. Input: integers k, d with d | k and d < k, a quadratic imaginary
field K, and a real number b. Output: a q-Weil number π ∈ K, with q prime, and
a prime r.

(1) Choose an irreducible polynomial r(x) ∈ Z[x] such that L = Q[x]/(r(x))
contains K and a primitive kth root of unity.

(2) Choose a primitive kth root of unity ζk ∈ L and a primitive dth root of
unity ζd ∈ L.

(3) Write r(x) = r(x)r(x) in K[x].
(4) Compute a π(x) ∈ K[x] such that

π(x) ≡ ζd mod r(x), π(x) ≡ ζk/ζd mod r(x)

and q(x) = π(x)π(x) ∈ Q[x] is a Bateman-Horn polynomial.

(5) Find an integer x0 such that π(x0)π(x0) is prime and r(x0) has a prime
factor greater than max(2b, 2 disc(OK)).

(6) Output π(x0) and the largest prime factor of r(x0).

If π(x) and r(x) are as produced by Algorithm 5.7, we say that (π(x), r(x))
parametrizes a family of pairing-friendly Frobenius elements, and we often refer to
(π(x), r(x)) as a family.

Theorem 5.8. Suppose π, r are output by Algorithm 5.5 or 5.7, on inputs k, d,
and K. Let q = ππ and assume r 6= q. Let E/Fq be an elliptic curve with Frobenius
endomorphism π. Then E is ordinary, E base extended to Fqd has embedding degree
k/d with respect to r, and Vd(E) has embedding degree k with respect to r.

Furthermore, if d is even then the quadratic twist of E over Fqd/2 has embedding
degree 2k/d with respect to r.

Proof. To prove the statements in the first paragraph it suffices to show that E
satisfies the hypotheses of Proposition 5.3. To start, the assumption r > 2 disc(K)
implies that q > disc(K), and thus q is unramified in OK . Since q is prime, the
curve E is supersingular if and only if π = ±√−q, so we deduce that E is ordinary.
Since E is an elliptic curve it is necessarily simple. Next, in both cases we have
r ≡ 1 (mod k) and thus r ∤ k, and by assumption r ∤ q. By construction, since r ∤ d
and k > d, d is the smallest integer such that NK/Q(πd − 1) ≡ 0 (mod r) and thus
the smallest integer such that E(Fqd) has a point of order r. Finally, the fact that
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Φk(q) ≡ 0 (mod r) follows immediately from the construction. The “furthermore”
statement follows from Remark 3.5. �

Remark 5.9. The “furthermore” clause of Theorem 5.8 shows that when d = 4,
we can use our algorithms to construct pairing-friendly elliptic curves of the type
considered by Galbraith, Lin, and Scott [16], i.e., curves E over Fq2 with j(E) ∈ Fq.
This answers an open question posed by Benger et al. [3, Section 5].

Let π be a q-Weil number output by Algorithm 5.5 or 5.7. We can use the
complex multiplication method (or CM method) to construct an ordinary elliptic
curve E with Frobenius endomorphism π. This method, developed originally by
Atkin and Morain [1], constructs an elliptic curve E whose endomorphism ring is
isomorphic to a given order O in a quadratic imaginary field K. If H is the Hilbert
class field of O then j(E) ∈ H . Since p = (π) is a principal degree one prime of
K over q, the prime p splits completely in H . It follows that E has good ordinary
reduction at all primes of H over p, any reduction E′ also has endomorphism ring
isomorphic to O, and the Frobenius endomorphism of any such E′ is equal to ζπ
for some root of unity ζ ∈ O. (See [7, Section 3] for further details.)

This discussion leads naturally to the issue of twisting. Algorithms 5.5 and 5.7
produce q-Weil numbers π, but the CM method produces an elliptic curve E′ whose
Frobenius endomorphism is ζπ for some root of unity ζ. The curve E is a degree
e twist of E′, where e is the order of ζ. Thus for any order O 6= Z[i] or Z[ζ3], the
desired curve E is isomorphic to the constructed curve E′ over at most a quadratic
extension of Fq. In this case the integer e is usually determined by taking a random
point P ∈ E′ and multiplying it by (p + 1 − TrK/Q(π)). If the result is O then
e = 1; otherwise e = 2. (Rubin and Silverberg [25] have offered an alternative,
deterministic method for determining the correct twist.)

We will return to the special cases of O = Z[i] or Z[ζ3] in Section 5.4 below. For
now we note the following result, which we will apply when we use the outputs of
Algorithms 5.5 or 5.7 to construct pairing-friendly curves of the types discussed in
Section 4.

Proposition 5.10. Suppose E and E′ are elliptic curves over Fq that are quadratic
twists of each other.

(1) If 4 | d, then Vd(E) is isogenous over Fq to Vd(E′).
(2) If d is odd, then Vd(E) and Vd(E

′) are quadratic twists of each other.

Proof. If π and π′ are the Frobenius elements of E and E′ respectively, then since
E and E′ are quadratic twists of each other we have π = −π′. The statement now
follows from Proposition 3.4 and properties of cyclotomic polynomials. �

5.2. Constructing pairing-friendly genus 2 curves. In the previous section
we showed how to construct the Frobenius element of an elliptic curve E such that
Vd(E) is pairing-friendly for a given d. If ϕ(d) = 2, then Vd(E) is isogenous to the
Jacobian of a genus 2 curve. We now describe step-by-step the method for finding
a curve whose Jacobian is isogenous to Vd(E).

Again letK be a quadratic imaginary field and let π ∈ K be output by Algorithm
5.5 or 5.7, with q = ππ prime. Let E be an elliptic curve over Fq with Frobenius
endomorphism π. For future reference, we let j0 be the j-invariant of E. By
construction, E satisfies conditions (1) and (2) of Proposition 5.3, and therefore
Vd(E) has embedding degree k with respect to r. If Vd(E) is simple let A = Vd(E);
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if Vd(E) is not simple let A be the simple factor of Vd(E) that has a point of order
r.

We now consider the case where A has dimension 2. By Propositions 3.6 and
3.8, this occurs if and only if

(5.3) [Q(ζd) : Q(ζd) ∩K] = 2.

In most cases where (5.3) holds, we can use the following algorithm to construct a
genus 2 curve whose Jacobian is isogenous over Fq to Vd(E).

Algorithm 5.11. Input: a q-Weil number π ∈ K, where q ≡ 1 (mod d) is prime
and K is a quadratic imaginary field; and an integer d ∈ {3, 4, 8}, with d = 8 only
allowed if K = Q(

√
−2). Output: a genus 2 curve over Fq or the symbol ⊥.

(1) Use the CM method to find the j-invariant j0 of an ordinary elliptic curve
E/Fq with End(E) ∼= OK .

(2) Compute c ∈ Fq satisfying equation (4.2) (if d = 4, 8) or (4.4) (if d = 3)
with j(E) = j0. If there is no such c ∈ Fq, output ⊥ and terminate.

(3) Choose a, b ∈ Fq such that
• a/c is a nonsquare, b = (a/c)2, if d = 4 and c 6= 0;
• a = 0, b is a square and not a fourth power, if d = 4 and c = 0;
• a = 0, b is a nonsquare, if d = 8;
• a/c is a noncube, b = (a/c)2, if d = 3.

(4) Define the curve C : y2 = x5 +ax3 +bx (if d = 4, 8) or C : y2 = x6 +ax3 +b
(if d = 3).

(5) If d = 4 or 8, output C.
(6) If d = 3, do the following:

(a) Choose a random point P ∈ Jac(C)(Fq).
(b) Let n = Φd(π)Φd(π).
(c) If [n]P = O, output C. Otherwise output a quadratic twist C′ of C.

We see from this description that the “Type I” curves of Kawazoe and Takahashi
[21] are produced by our algorithm when K = Q(

√
−2), d = 4 or 8, and c = 0.

The “Type II” curves can be produced by a similar procedure when K = Q(
√
−2),

d = 4, and q ≡ 3 (mod 4): in Step (3) we set a = 0 and choose b to be a nonsquare.

Theorem 5.12. Suppose π, r are output by Algorithm 5.5 or 5.7 on inputs k, d, and
K, with K not isomorphic to Q(i) or Q(ζ3). Assume ππ 6= r. Suppose Algorithm
5.11 is run on inputs π and d. If the algorithm outputs a curve C, then Jac(C) is
ordinary and simple and (with high probability) has embedding degree k with respect
to r.

Proof. The requirement q ≡ 1 (mod d) guarantees that we can choose a, b as
specified in Step (3). With this choice of a, b, the curve C satisfies the hypotheses
of Theorem 4.4 (if d = 4), Theorem 4.5 (if d = 3), or Proposition 4.6 (if d = 8).
(The fact that Jac(C) is ordinary is guaranteed by Theorem 5.8.) It follows from
these results that Jac(C) is isogenous over Fq to a subvariety of Vd(E), where E
is an elliptic curve over Fq with j-invariant as computed in Step (1). Since K is
not isomorphic to Q(i) or Q(ζ3), any elliptic curve over Fq with this j-invariant is
either E or its quadratic twist E′.

By Theorem 5.8, either Vd(E) or Vd(E′) has embedding degree k with respect
to r. If d = 4 or 8, then by Proposition 5.10, Vd(E) and Vd(E

′) are isogenous and
Jac(C) necessarily has the stated properties. If d = 3, then by Proposition 5.10,
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either Jac(C) or Jac(C′) has the stated properties. Testing whether [n]P = O in
Step (6) allows us to determine the correct twist with high probability. �

Remark 5.13. If we want to guarantee that Algorithm 5.11 does not output ⊥
in Step (2), we must ensure that the appropriate equation (4.2) or (4.4) has a root
in Fq. To find inputs where this is the case, we substituted j-invariants of CM
elliptic curves over Q into the two equations and determined when the appropriate
polynomial has a root c in either Q or a quadratic extension of Q. The results
appear in the following table:

d K j0 c

3 Q(i) 1728 7 ± 3
√

3
3 Q(

√
−2) 8000 ±5

√
−2

3 Q(
√
−11) −32768 ± 1

2

√
−11

4 Q(ζ3) 0 ± 10
3

4 Q(
√
−2) 8000 0,− 130

49 ± 160
49

√
2

4 Q(
√
−7) −3375 130

63 ,± 10
9

√
−7

8 Q(
√
−2) 8000 0

If we use the values d and K from a row of the table as input to Algorithm 5.5 or
5.7, then we can use the corresponding values of j0 and c in Steps (1) and (2) of
Algorithm 5.11. The facts that π is an ordinary q-Weil number (i.e., TrK/Q(π) 6= 0)
and q ≡ 1 (mod d) guarantee that c ∈ Fq in each case. (See also Propositions 4.6
and 4.8.)

Note that Theorem 5.12 does not guarantee correctness of Algorithm 5.11 when
(d,K) = (3,Q(i)) or (4,Q(ζ3)); see Section 5.4 for further discussion.

5.3. Measuring efficiency: ρ-values. Let A/Fq be a g-dimensional abelian va-
riety that has embedding degree k with respect to a subgroup of order r. If we are
using A in a cryptographic protocol, then the cryptographic elements (e.g., keys,
ciphertexts, signatures) usually include points on A(Fq), while security depends on
the size r of the pairing-friendly subgroup. Since points on A(Fq) are described in
terms of elements of Fq, then to minimize bandwidth and storage space we want q

to be as small as possible. Since #A(Fq) = qg +O(qg−1/2), the “optimal” size of q

is approximately r1/g. To measure how far A strays from this optimum, we define
a parameter ρ as follows:

(5.4) ρ(A) =
g log q

log r
.

Now suppose we are given a pair of polynomials (π(x), r(x)) as in Algorithm 5.7 that
parametrize Frobenius elements and group orders. If π ∈ K[x] we set g = 1

2 [K : Q]
and define

ρ(π(x), r(x)) = lim
x→∞

g log π(x)π(x)

log r(x)
=

2g deg π(x)

deg r(x)
.

Thus if A is an abelian variety with Frobenius element π(x0), if x0 is large then
ρ(A) ≈ ρ(π(x), r(x)).

We now examine the ρ-values of the abelian varieties produced using Algorithms
5.5 and 5.7. We start with Algorithm 5.5. That algorithm takes as input a CM field
K = Q(

√
−D) and constructs a π = u + v

√
−D ∈ OK with a prescribed residue

modulo a factor r of r. We have no way a priori to control the size of u and v, so
heuristically we expect π to be randomly distributed in OK/r. Since r has norm r,



18 DAVID MANDELL FREEMAN AND TAKAKAZU SATOH

we expect |π| to be on average around the size of r. Thus heuristically we expect
q = ππ to be roughly the size of r2. If C is output by Algorithm 5.11 on input π
produced by Algorithm 5.5, then we expect ρ(Jac(C)) ≈ 4. Indeed, this is what we
observe in practice; see Section 6.

On the other hand, we may do better with Algorithm 5.7. Here π(x) and r(x)
are polynomials where r(x) has a prescribed residue modulo r(x). We can thus
always find a π(x) with the desired residues and degree strictly less than deg r.
Setting q(x) = π(x)π(x), for large values of x we will have deg q < 2 deg r, and thus
ρ-values of varieties produced by Algorithm 5.11 will be less than 4. Note that in
this case 2ρ(π(x), r(x)) is a good estimate of the ρ-values of varieties produced by
Algorithm 5.11, where the factor of 2 comes from the increase in dimension when
taking the Weil restriction. See Section 6 for examples.

While the optimal ρ-value is ≈ 1, in certain cases we have larger lower bounds for
the ρ-value. Specifically, we have the following, which generalizes [12, Proposition
2.9 and Remark 2.10].

5.4. CM fields with extra roots of unity. In Theorem 5.12, which proves the
correctness of Algorithm 5.11, we specifically excluded the CM fields Q(ζ3) and
Q(i), corresponding to (the isogeny classes of) elliptic curves with j-invariant 0
and 1728, respectively. The difficulty with these fields stems from the fact that the
fields have more than two roots of unity, and thus over any given field Fq there are
more than two isogeny classes of elliptic curves with these j-invariants.

We first consider the case K = Q(i). Fix an elliptic curve E/Fq with j-invariant
1728. By Propositions and 3.6 and 3.8, if (5.3) holds then d = 3, 6, 8, or 12. For
the case d = 8, it follows from Propositions 4.1, 4.2, 4.6, and 4.8 that no genus 2
curve having one of the forms considered in Section 4 can be defined over Fq and
isogenous over Fq to a subvariety of V8(E). It is thus an open question to construct
a genus 2 curve over Fq with this property.

For the remaining values of d, we first observe that V12(E) has four simple two-
dimensional factors. It follows from Proposition 3.4 that each of these factors is
isogenous to V3(Ea) for a distinct twist Ea of E. Suppose π is a q-Weil number
output by Algorithm 5.5 or 5.7 on inputs K = Q(i), d = 3, and any k divisible by 3.
Then the curve C output by Algorithm 5.11 will be isogenous over Fq to V3(Ea) for
one of the twists Ea, but it may not be the twist with Frobenius endomorphism π.
By Proposition 5.10 we can take the quadratic twist of C to get V3 of the quadratic
twist of Ea. However, if the correct curve is a quartic twist of Ea then we cannot
twist C to get V3 of the correct curve — the quartic twist is defined over Fq4 but
all twisting isomorphisms of C are defined over Fq6 .

If K = Q(i) and d = 3 we can still run Algorithm 5.11 and hope to produce a
curve with embedding degree k, but even if Jac(C) is simple the algorithm is not
guaranteed to output a curve with the desired properties. The above discussion
suggests that heuristically, given a sufficiently random set of elements π we should
expect Algorithm 5.11 to output the correct curve half the time. Indeed, this is what
we find in practice: we ran Algorithm 5.5 2000 times with K = Q(i), d = 3, and k
a random multiple of 3 in [6, 99]. We produced 1000 pairs π, r with r 160 bits, and
1000 pairs π, r with r 256 bits. Running Algorithm 5.11 on the outputs produced
507 pairing-friendly genus 2 curves in the first case and 519 pairing-friendly genus
2 curves in the second case.
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The analysis is similar for the case K = Q(ζ3). Fix an elliptic curve E/Fq with
j-invariant 0. By Propositions and 3.6 and 3.8, if (5.3) holds then d = 4 or 12. For
the case d = 12, we see that no genus 2 curve that has one of the forms considered
in Section 4 and is defined over Fq can be isogenous over Fq to a subvariety of
V12(E). It is thus an open question to construct a genus 2 curve over Fq with this
property.

For the case d = 4 the analysis is as above: there are six twists of the curve
E, grouped into three pairs of quadratic twists (Ea, E

′
a), and the curve C output

by Algorithm 5.11 is not necessarily isogenous to V4(Ea) for the twist Ea with
Frobenius endomorphism π. As before, we can still run Algorithm 5.11 and hope
to find a curve with the desired properties; here we expect (heuristically) to find the
correct curve one third of the time. The same experiment as above supports this
reasoning: we found 332 pairing-friendly curves with a 160-bit r and 333 pairing-
friendly curves with a 256-bit r, out of 1000 Frobenius elements π in each case.

6. Examples

6.1. Cocks-Pinch curves. We begin with examples of Cocks-Pinch type curves
constructed using Algorithm 5.5.

Example 6.1. Input to Algorithm 5.5: k = 8, d = 4, K = Q(
√
−7).

Output from Algorithm 5.5:

π = 1314477132061358983885556245278266383885541313109

+ 4469363578043653387037313202346701830329373640556
√
−7

r = 2160 − 47

Output from Algorithm 5.11:

C : y2 = x5 + ax3 + bx, where

a = 3

b = 103739098676851575119389031960357697245634944351740405109402012008307005764

442512041837790917528748

ρ = 4.076

Example 6.2. Input to Algorithm 5.5: k = 15, d = 3, K = Q(
√
−2010).

Output from Algorithm 5.5:

π = −1678660572854406197005072337476013708314561165592117087229107334822409768

584412769544548215830401432939451391532546387168088333818752975889914295111

88643523 + 2087758604208696186561202475993423618555089317872195249350214064

975820696350431582112986078611804761500145293453694572934872232159144577884

78905215290201195
√
−2010

r = 2512 − 975
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Output from Algorithm 5.11:

C : y2 = x6 + ax3 + b, where

a = 3

b = 196834836583645606597438195002123527753077782186185205354354777464166213616

984778389936993413153955376136984353070795595196392582393435044914727006741

891809646067442467350068290456274838175167955502877772412208131414454806932

858537851070061634315466276333183856839732803580435434609693925915577343591

53873275746138

ρ = 4.074

Examples of the Cocks-Pinch method with d = 8 and K = Q(
√
−2) can be found

in [21].

6.2. Brezing-Weng families. We implemented Algorithm 5.7 in Magma [5] and
did a systematic search for families with embedding degree k ≤ 100. For each k we
did the following:

• If 3 | k, do the following for each D ∈ {1, 2, 5, 6, 7, 10, 11, 13, 14, 15}:
(1) Let K = Q(

√
−D).

(2) Let ℓ = lcm(k,D) if D ≡ 3 (mod 4), ℓ = lcm(k, 4D) otherwise. If
ϕ(ℓ) > 60 then go to the next D.

(3) Let A = {iℓ/k : 1 ≤ i ≤ k, gcd(i, k) = 1}
(4) Let B = {iℓ/d : 1 ≤ i ≤ d, gcd(i, d) = 1}
(5) For each a ∈ A and b ∈ B, run Algorithm 5.7, with

– r(x) = Φℓ(x) in Step (1),
– ζk = xa mod r(x) and ζd = xb mod r(x) in Step (2).

• If 4 | k, repeat the above for each D ∈ {2, 3, 5, 6, 7, 10, 11, 13, 14, 15}.
• If 8 | k, repeat the above with D = 2.

Observe that the ℓ computed in Step (2) is such that Q(ζℓ) is the smallest
cyclotomic field containing a primitive kth root of unity and the field K. We ignore
values ℓ with ϕ(ℓ) > 60 because for such ℓ it will difficult to find values of r(x) with
a large prime factor of cryptographic size. (See the discussion of [12, Section 8].)
The sets A and B are constructed so that xa and xb range over primitive kth and
dth roots of unity mod r(x), respectively.

Table 1 lists all the embedding degrees for which we found families with ρ < 3.5.
For each such embedding degree we list the smallest ρ-value of a family that we could
use to produce an explicit curve, and the corresponding value of D. Embedding
degrees marked with * indicate that the corresponding families were already found
by Kawazoe and Takahashi. A list of the values of π(x) for each k can be found in
the Appendix.

We now give some specific examples.

Example 6.3. Let α =
√
−7.

Input to Algorithm 5.7: k = 6, d = 3, K = Q(α).
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Table 1. Best ρ-values for families produced by Algorithm 5.7.

k d D r(x) 2ρ(π(x), r(x)) k d D r(x) 2ρ(π(x), r(x))
6 3 7 Φ42(x) 3.00 42 3 7 Φ42(x) 3.00
9 3 1 Φ36(x) 2.67 44 4 11 Φ44(x) 3.00
12 4 3 Φ12(x) 3.00 45 3 1 Φ180(x) 2.67
18 3 1 Φ36(x) 3.33 54 3 1 Φ108(x) 2.44
21 3 1 Φ84(x) 2.67 64* 8 2 Φ64(x) 3.13
24* 4 2 Φ24(x) 3.00 66 3 1 Φ132(x) 2.60
27 3 1 Φ108(x) 2.22 78 3 1 Φ156(x) 2.83
32* 8 2 Φ32(x) 3.25 80 4 5 Φ80(x) 3.13
33 3 1 Φ132(x) 2.80 88* 8 2 Φ88(x) 3.40
39 3 1 Φ156(x) 2.33 90 3 1 Φ180(x) 2.83
40 4 5 Φ40(x) 3.25 100 4 5 Φ100(x) 3.10

Output from Algorithm 5.7:

π(x) = 1
14 (2αx9 + (−α+ 7)x7 + 2αx4 − 2αx2 − 2αx− 14)

r(x) = Φ42(x)

2ρ(π(x), r(x)) = 3

x0 = 614418

With x0 as above, we compute a 342-bit prime q(x0) and a 230-bit prime group
order r(x0). The output from Algorithm 5.11 is

C : y2 = 2x6 + 6x3 + b, where

b = 324171225620076869571188623794759633701424533679792906824955935054498501314

6192267340219164093362942895.

Since qk has 2047 bits, this curve is suitable for applications at a security level
equivalent to a 112-bit symmetric-key system. The precise ρ-value of Jac(C) is
2.976. �

Example 6.4. Let α =
√
−5.

Input to Algorithm 5.7: k = 20, d = 4, K = Q(α).
Output from Algorithm 5.7:

π(x) = 1
10 (2αx7 + (2α+ 5)x6 − (2α+ 5)x5 − 2αx4 − αx − α)

r(x) = Φ20(x)

2ρ(π(x), r(x)) = 7/2

x0 = 16915738899553523459

With x0 as above, we compute a 892-bit prime q(x0) and a 512-bit prime group
order r(x0). The output from Algorithm 5.11 is

C : y2 = x5 + 2x3 + bx, where

b = 628251615243589193596440571791700247856145963459257227129804674856286600398

898676314154498737832883390780288650315378271801413491072526640295077133022

376579357249696250246041156465818149048348953057323584016154656213825316772

2942322526487325733134709477134661258549165
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Since qk has 17839 bits, this curve is suitable for applications at a security level
equivalent to a 256-bit symmetric-key system. The precise ρ-value of Jac(C) is
3.491. �

As discussed in Section 5.4, we can run Algorithms 5.5 or 5.7 with K = Q(i) or
Q(ζ3), but it is not guaranteed that we can use the output to find a genus 2 curve
using Algorithm 5.11.

Example 6.5. Input to Algorithm 5.7: k = 9, d = 3, K = Q(i).
Output from Algorithm 5.7:

π(x) = − 1
2 (x8 − x6 − ix5 − ix3 − x2 + 1)

r(x) = Φ36(x)

2ρ(π(x), r(x)) = 8/3

x0 = 2877297

With x0 as above, we compute a 342-bit prime q(x0) and a 258-bit prime group
order r(x0). The output from Algorithm 5.11 is

C : y2 = x5 + 2x3 + bx, where

b = 469065418859487593061098271633991723478908388629575949548914195968254996666

5605439902463088856294758523

Since qk has 3072 bits, this curve is suitable for applications at a security level
equivalent to a 128-bit symmetric-key system. The precise ρ-value of Jac(C) is
2.651. �

Let π(x), r(x) be as in Example 6.5. A sampling of a large number of values of
x0 such that π(x0)π(x0) and r(x0) are both prime suggests that Algorithm 5.11
will output a pairing-friendly curve in approximately one third of such cases. This
finding contradicts the reasoning of Section 5.4, which suggests we should expect
to find a pairing-friendly curve one half of the time, and we have no explanation
of this phenomenon. However, we will see in the next section how to improve this
probability.

7. Varying the CM field

Freeman, Scott, and Teske [12, Section 6.4] showed that if the polynomials π(x) ∈
K[x] and r(x) ∈ Z[x] generated in the Brezing-Weng method have a certain form,
then one can perform a substitution to produce polynomials π′(x) ∈ K ′[x] and
r′(x) ∈ Z[x] that have the same embedding degree properties but make use of a
different CM field K ′. They suggest that one might wish to make such a change for
reasons of security — being able to change the CM field K might foil any potential
attacks on the discrete logarithm problem that are effective for specific CM fields
(though at present we know of no such attacks). They also use the substitution
in some cases where π(x)π(x) never takes on prime values; after the substitution
π′(x)π′(x) may take on prime values.

In this section we describe how the observation of Freeman, Scott, and Teske
applies to the polynomials constructed in Algorithm 5.7. We then apply this result
to Example 6.5. By replacing the CM field Q(i) with a field K ′ that has only two
roots of unity, whenever π(x0)π(x0) is prime we can use Algorithm 5.11 to find a
genus 2 curve whose Jacobian has the specified embedding degree.
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Our construction uses the following result.

Proposition 7.1. Let u(x) ∈ Z[x] be an irreducible polynomial that is not even,
and let L = Q[x]/(u(x)). Suppose η(x) ∈ Q[x] satisfies

η(x) ≡ σ mod u(x), η(−x) ≡ τ mod u(x)

for some σ, τ ∈ L. Let K = Q(α) be a quadratic imaginary field with α2 ∈ Q and
α 6∈ L. Define π(x) = η(αx) ∈ K[x] and r(x) = u(αx)u(−αx) ∈ Q[x]. Then r(x)
is irreducible, and

π(x) ≡ σ mod u(αx), π(x) ≡ τ mod u(αx).

Proof. Let θ be a root of u(x), so L = Q(θ). Then K(θ) = L(α), and since α 6∈ L
this field is a quadratic extension of L. It follows that u(x) is irreducible in K[x],
and thus u(αx) is as well. Since u(x) is not even, u(αx) 6∈ Q[x], and thus r(x) is
irreducible in Q[x]. We have an field inclusion Q[x]/(u(x)) →֒ K[y]/(u(αy)) given
by x 7→ αy, and the properties of π(x) follow immediately. �

We apply this result in the following construction, which generalizes Example
6.5.

Proposition 7.2. Let k ≡ 9 or 15 (mod 18), let u(x) = Φk(x), and define

η(x) = − 1
2 (x2k/3+2 + x2k/3 + xk/3+2 − xk/3 + x2 + 1).

Let K = Q(α) be a quadratic number field with α2 ∈ Z square free and α2 ∤ k.
Define π(x) = η(αx) ∈ K[x] and r(x) = u(αx)u(−αx) ∈ Q[x]. Then r(x) is
irreducible, and

π(x) ≡ ζ3 mod u(αx), π(x)π(x) ≡ ζk mod u(αx).

where ζ3, ζk are primitive 3rd and kth roots of unity, respectively.

Proof. Let h(x) = Φ3(x
k/3) = x2k/3 + xk/3 + 1, and note that h(x) is divisible by

u(x) = Φk(x). Then we have

η(x) ≡ η(x) + 1
2 (x2 + 1)h(x) = xk/3 mod u(x)

η(−x) ≡ η(−x) + 1
2 (x2 + 1)h(x) = xk/3+2 mod u(x)

Since k is a multiple of 3, xk/3 is a primitive cube root of unity mod u(x). Since
gcd(k/3 + 2, k) = 1 if and only if k ≡ 0 or 6 (mod 9), we see that π(x)π(x) ≡
x2k/3+2 mod u(x) is a primitive kth root of unity mod u(x). The fact that α2 ∤ k
implies that α 6∈ Q[x]/(u(x)) ∼= Q(ζk). The result now follows from Proposition
7.1. �

Fix k and let η(x) be as in Proposition 7.2. Computations with Magma [5] show
that η(x) is irreducible for all k < 1000 divisible by 3, and we conjecture η(x) is
irreducible for all such k. For any α as in the theorem, let πα(x) = η(αx); then
πα(x) 6∈ Q[x] (since k/3 is odd), so qα(x) = πα(x)πα(x) is irreducible if and only
if η(x) is. In addition, if α2 is odd then qα(x) is an odd integer, so there is hope
that q(x) will take on prime values. However, without checking each value of α
individually we do cannot say whether qα(x) is a Bateman-Horn polynomial.

Let rα(x) = Φk(αx)Φk(−αx). In the case where qα(x) is a Bateman-Horn poly-
nomial, we have ρ(πα(x), rα(x)) = (2k/3 + 2)/ϕ(k) (note that this is independent
of α). The entries in Table 1 with k ∈ {9, 15, 27, 33, 45} are exactly these families
with α =

√
−1. (See the Appendix for the explicit values of πα(x).) The smallest
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ρ-value for an abelian surface constructed using these families is for k = 27, in
which case 2ρ(π(x), r(x)) = 20/9. Performing a search over α and x found the
following example.

Example 7.3. Fix k = 27, and let πα(x) and rα(x) be as above. Let α =√
−188765 and x0 = 49. Then qα(x0) is a 569-bit prime and rα(x0) is a 514-bit

prime. The output from Algorithm 5.11 is

C : y2 = x5 + 2x3 + bx, where

b = 135534848737404526841561395235699487268275015606939185391977835106127376721

548255877742176038099282483607627708802571292467474279112671395811904432026

91899069858829761084772

Since qk has 15342 bits, this curve is suitable for applications at a security level
equivalent to a 256-bit symmetric-key system. The precise ρ-value of Jac(C) is
2.214. The improvement in ρ-value by a factor of 1.5 over Example 6.4 means that
computations on this curve will run much faster than computations on the curve
of Example 6.4, which has the same security level. �

If we fix α =
√
−1, the closest we are able to get to the parameters of Example 7.3

is a 510-bit value for r and a 579-bit value for q (q27 = 15608 bits), with x0 = 23205.
Thus to specify the bit sizes precisely it is necessary to vary the field K = Q(α)
in the search. Current methods to compute Hilbert class polynomials (required for
Step (1) of Algorithm 5.11) are feasible for discriminants D with |D| < 1012 [29];
the field of Example 7.3 is well within this range.

8. Open Questions

Our algorithms in Section 5 produce an algebraic integer π in a quadratic imag-
inary field K such that an elliptic curve E with Frobenius element π is pairing-
friendly over some extension field Fqd (where q = ππ and we assume d is minimal).
The theory developed in Section 3 tells us that there is a simple subvariety A of the
Weil restriction ResF

qd/F
q
(E) that is also pairing-friendly. If A is two-dimensional

and certain conditions hold, then we can realize A (up to isogeny) as the Jacobian
of one of the genus 2 curves described in Section 4.

It is an open question to efficiently realize A as the Jacobian of a genus 2 curve
in all cases where it has dimension 2. One obstacle to our method is that we
cannot always find an elliptic curve E with Frobenius element π; this occurs when
equations (4.2) or (4.4) have no solutions in Fq for any root j of the Hilbert class
polynomial for OK . One avenue for further research is to find conditions on q and
K that guarantee that these equations have a solution in Fq.

Even when we can find an elliptic curve E with Frobenius element π, we cannot
use the genus 2 curves discussed in Section 4 in the following cases:

• d = 3 and q ≡ 2 (mod 3),
• d = 4 and q ≡ 3 (mod 4).

The problem in both these cases is that the Jacobians of the curves discussed
in Section 4 either split over the base field or split over an extension field into
products of elliptic curves defined over Fp2 . Thus beyond a few exceptional cases
(cf. Propositions 4.6 and 4.8) there is no “middle ground” where the Jacobian is
simple over the base field yet splits over an extension field into a product of elliptic
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curves defined over Fp. It is thus an open question to find genus 2 curves whose
Jacobians are isogenous over Fq to a simple subvariety of Vd(E) when d and q are
as above.

One idea for solving this problem is to investigate genus 2 curves constructed
by gluing elliptic curves along ℓ-torsion subgroups with ℓ > 2. The genus 2 curves
in Section 4 come from elliptic curves glued along 2-torsion; gluing elliptic curves
along higher torsion subgroups is considerably more complicated.

Another idea is to use the genus 2 CM method [32], which, given an order O
in a quartic CM field K and a prime p, produces all abelian surfaces over Fp with
endomorphism ring isomorphic to O. If π ∈ O is the Frobenius endomorphism
of Vd(E), then any Jacobian produced by the CM method will solve our problem.
However, it may happen that for all orders O small enough for the CM method
to be inefficient, all abelian surfaces A with End(A) ∼= O are products of elliptic
curves. This is especially likely to happen if K has small class number and the
primes dividing [OK : Z[π, π]] are all large. In a few test cases we found that the
CM method does not help us find Jacobians where we could find none via our other
methods; however, the method requires more study.

The curves of Section 4 also cannot be used when d = 8 and K = Q(i), or when
d = 12 and K = Q(i) or Q(ζ3). It is also an open question to find genus 2 curves
whose Jacobians are isogenous to a simple subvariety of Vd(E) in these cases.

Finally, when d = 3 and K = Q(i) or d = 4 and K = Q(ζ3), the fact that the
elliptic curveE is isogenous to a curve with extra automorphisms means we can only
sometimes use the curves of Section 4. The heuristic reasoning and experiments
discussed in Section 5.4 indicate that the curves of Section 4 realize the variety A
half of the time when d = 3 and K = Q(i) and one third of the time when d = 4
and K = Q(ζ3). It is an open question to find a genus 2 curve realizing A in the
remainder of the cases.
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Appendix: Values of π(x) for families in Table 1

k = 6, α =
√
−7

π(x) = 1
7

(

αx9 + −α+7
2 x7 + αx4 − αx2 − αx− 7

)

k = 9, α =
√
−1

π(x) = 1
2 (−x8 + x6 + αx5 + αx3 + x2 − 1)

k = 12, α =
√
−3

π(x) = 1
3

(

α−3
2 x3 + −α−3

2 x2 − αx + α
)

k = 18, α =
√
−1

π(x) = 1
2

(

−x10 + αx7 + x6 + x4 + αx3 − 1
)

k = 21, α =
√
−1

π(x) = 1
2

(

−x16 + x14 + αx9 + αx7 + x2 − 1
)

k = 24, α =
√
−2

π(x) = 1
4

(

2x6 + (α− 2)x5 + αx4 − αx3 − αx2 − αx− α
)

k = 27, α =
√
−1

π(x) = 1
2

(

−x20 + x18 + αx11 + αx9 + x2 − 1
)

k = 32, α =
√
−2

π(x) = 1
4

(

2x13 + 2x12 − αx9 + αx8 − αx+ α
)

k = 33, α =
√
−1

π(x) = 1
2

(

−x28 + x22 + αx17 + αx11 + x6 − 1
)

k = 39, α =
√
−1

π(x) = 1
2

(

−x28 + x26 − αx15 − αx13 + x2 − 1
)

k = 40, α =
√
−5

π(x) = 1
10

(

2αx13 − 2αx12 + 5x11 + 5x10 − 2αx9 + 2αx8 − αx + α
)

k = 42, α =
√
−7

π(x) = 1
7

(

−αx9 + αx8 + α−7
2 x7 + −α−7

2 x6 − αx4 + αx3 + αx2 − α
)
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k = 44, α =
√
−11

π(x) = 1
11

(

αx15 + αx14 + α−11
2 x11 + α+11

2 x10 − αx9 − αx8 − αx5

−αx4 + αx3 + αx2 − αx − α
)

k = 45, α =
√
−1

π(x) = 1
2

(

−x32 + x30 − αx17 − αx15 + x2 − 1
)

k = 54, α =
√
−1

π(x) = 1
2

(

−x22 + x18 + αx13 + αx9 + x4 − 1
)

k = 64, α =
√
−2

π(x) = 1
4

(

−2x25 − 2x24 + αx17 − αx16 + αx − α
)

k = 66, α =
√
−1

π(x) = 1
2

(

−x26 + x22 + αx15 + αx11 + x4 − 1
)

k = 78, α =
√
−1

π(x) = 1
2

(

−x34 + x26 − αx21 − αx13 + x8 − 1
)

k = 80, α =
√
−5

π(x) = 1
10

(

−2αx25 + 2αx24 − 5x21 − 5x20 + 2αx17 − 2αx16 + αx− α
)

k = 88, α =
√
−2

π(x) = 1
4

(

2x34 + 2x33 + αx23 − αx22 + αx− α
)

k = 90, α =
√
−1

π(x) = 1
2

(

−x34 + x30 − αx19 − αx15 + x4 − 1
)

k = 100, α =
√
−5

π(x) = 1
10

(

−2αx31 + 2αx30 − 5x26 − 5x25 + 2αx21 − 2αx20 + αx− α
)
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