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Abstract

Most of the work in the analysis of cryptographic schemes is concentrated in abstract ad-
versarial models that do not capture side-channel attacks. Such attacks exploit various forms
of unintended information leakage, which is inherent to almost all physical implementations.
Inspired by recent side-channel attacks, especially the “cold boot attacks” of Halderman et
al. (USENIX Security ’08), Akavia, Goldwasser and Vaikuntanathan (TCC ’09) formalized a
realistic framework for modeling the security of encryption schemes against a wide class of side-
channel attacks in which adversarially chosen functions of the secret key are leaked. In the
setting of public-key encryption, Akavia et al. showed that Regev’s lattice-based scheme (STOC
’05) is resilient to any leakage of L/polylog(L) bits, where L is the length of the secret key.

In this paper we revisit the above-mentioned framework and our main results are as follows:

∙ We present a generic construction of a public-key encryption scheme that is resilient to
key leakage from any universal hash proof system. The construction does not rely on
additional computational assumptions, and the resulting scheme is as efficient as the un-
derlying hash proof system. Existing constructions of hash proof systems imply that our
construction can be based on a variety of number-theoretic assumptions, including the
decisional Diffie-Hellman assumption (and its progressively weaker d-Linear variants), the
quadratic residuosity assumption, and Paillier’s composite residuosity assumption.

∙ We construct a new hash proof system based on the decisional Diffie-Hellman assumption
(and its d-Linear variants), and show that the resulting scheme is resilient to any leakage
of L(1−o(1)) bits. In addition, we prove that the recent scheme of Boneh et al. (CRYPTO
’08), constructed to be a “circular-secure” encryption scheme, fits our generic approach
and is also resilient to any leakage of L(1− o(1)) bits.

∙ We extend the framework of key leakage to the setting of chosen-ciphertext attacks. On
the theoretical side, we prove that the Naor-Yung paradigm is applicable in this setting
as well, and obtain as a corollary encryption schemes that are CCA2-secure with any
leakage of L(1 − o(1)) bits. On the practical side, we prove that variants of the Cramer-
Shoup cryptosystem (along the lines of our generic construction) are CCA1-secure with
any leakage of L/4 bits, and CCA2-secure with any leakage of L/6 bits.
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1 Introduction

Proving the security of a cryptographic scheme consists of two main ingredients: (1) an adversarial
model specifying the adversarial access to the system and the adversary’s computational capabilities,
and (2) a notion of security specifying what it means to “break” the security of the scheme.
Whereas notions of security have significantly evolved over the years (following the seminal work
of Goldwasser and Micali [19]), the vast majority of cryptographic schemes are still analyzed in
the “standard” adversarial model. This is an abstract model in which the parties are viewed as
interactive Turing machines, each party has its own secret memory, private source of random bits,
and so on. In this model the adversarial access is well defined, and although the model seems
rather limited, it nevertheless captures many realistic attacks. In real life, however, almost any
physical implementation leaks additional information. Any such information that is not captured
by the standard model is referred to as a side channel; typical examples include electromagnetic
measurements, detection of internal faults, timing information, and many more. Over the years
side-channel attacks exposed crucial vulnerabilities of schemes that are considered secure in the
standard model (see, for example, [3, 5, 31, 32]).

Countermeasures for protecting against side-channel attacks follow two complementing ap-
proaches. The first approach is to make the physical world similar to the standard model by
preventing unintended leakage of information (e.g., building “tamper-proof” devices, minimizing
electromagnetic noise, and more). This approach is typically rather inefficient and expensive, and
is even impossible in some cases. The second approach is to design systems that are robust to mod-
ifications of the standard model. This approach mainly includes protecting against side-channel
attacks by modeling them, as much as possible, using abstract notions of computation.

Physically observable cryptography. In their pioneering work, Micali and Reyzin [36] put for-
ward a comprehensive framework for modeling security against side-channel attacks. Their frame-
work captures any such attack in which leakage of information occurs as a result of computation.
The framework relies on the basic assumption that computation and only computation leaks infor-
mation, that is, there is no leakage of information in the absence of computation. This assumption
has led to the construction of various cryptographic primitives that are robust to “computational”
leakage (see, for example, [16, 20, 36, 38, 39]).

Key-leakage attacks. Recently, Halderman et al. [22] presented a suite of attacks that violate
the basic assumption underlying the framework of Micali and Reyzin. Halderman et al. showed that,
contrary to popular assumptions, a computer’s memory is not erased when it loses power. They
demonstrated that ordinary DRAMs typically lose their contents gradually over a period of seconds,
and that residual data can be recovered using simple, non-destructive techniques that require only
momentary physical access to the machine. Halderman et al. presented attacks that exploit DRAM
remanence effects to recover cryptographic keys held in memory. Specifically, their “cold boot”
attacks showed that a significant fraction of the bits of a cryptographic key can be recovered if the
key is ever stored in memory. Halderman et al. managed to completely compromise the security of
several popular disk encryption systems (including BitLocker, TrueCrypt, and FileVault), and to
reconstruct DES, AES, and RSA keys (see also the improvements and further analysis of Heninger
and Shacham [24]).

Inspired by the cold boot attacks, Akavia, Goldwasser and Vaikuntanathan [2] formalized a
general framework for modeling “memory attacks” in which adversarially chosen functions of the
secret key are leaked in an adaptive fashion, with the only restriction that the total amount of
leakage is bounded. Akavia et al. showed that the lattice-based public-key encryption scheme
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of Regev [40] and the identity-based encryption of Gentry, Peikert, and Vaikuntanathan [17] are
resilient to such bounded key leakage.

Our contributions. In this work we revisit the framework of key-leakage attacks introduced by
Akavia et al. in the setting of public-key encryption. We present a generic construction of a public-
key encryption scheme that is resilient to key leakage, and show that the construction can be based
on a variety of number-theoretic assumptions. Moreover, we demonstrate that our approach leads
to encryption schemes that are both resilient to significantly large amounts of leakage, and that are
efficient and can be used in practice (see, in particular, the instantiation in Section 4.2 that is based
on the decisional Diffie-Hellman assumption). In addition, we extend the framework of key-leakage
attacks to the setting of chosen-ciphertext security. We present both a generic transformation from
chosen-plaintext security to chosen-ciphertext security in the context of key-leakage attacks, and
efficient schemes that are based on specific number-theoretic assumptions.

1.1 Overview of Our Results

In what follows we present a more elaborated exposition of our results, but first, we briefly describe
the framework introduced by Akavia et al. and their results. Informally, an encryption scheme is
resilient to key-leakage attacks if it is semantically secure even when the adversary obtains sensitive
leakage information. This is modeled by providing the adversary with access to a leakage oracle:
the adversary can submit any function f and receive f(sk), where sk is the secret key (we note that
the leakage functions can be chosen depending on the public key, which is known to the adversary).
The adversary can query the leakage oracle adaptively, with only one restriction: the sum of output
lengths of all the leakage functions has to be bounded by a predetermined parameter ¸ (clearly,
¸ has to be less than the length of the secret key)1. A formal definition is provided in Section 3.
In the setting of public-key encryption, Akavia et al. showed that Regev’s public-key encryption
scheme [40] is resilient to any key leakage of L/polylog(L) bits, where L is the length of the secret
key (see improvements to the allowed amount of leakage in the full version of their paper). We are
now ready to state our results more clearly:

A generic construction. We present a generic construction of a public-key encryption scheme
that is resilient to key leakage from any universal hash proof system, a very useful primitive intro-
duced by Cramer and Shoup [8] for protecting against chosen-ciphertext attacks. The construction
does not rely on additional computational assumptions, and the resulting scheme is as efficient as
the underlying hash proof system. Existing constructions of hash proof systems (see, for example,
[8, 30, 44]) imply that our construction can be based on a variety of number-theoretic assumptions,
including the decisional Diffie-Hellman (DDH) assumption and its progressively weaker d-Linear
variants, the quadratic residuosity assumption, and Paillier’s composite residuosity assumption.
Informally, a very natural approach for protecting against bounded key leakage is to add redun-
dancy to the secret key (i.e., any public key corresponds to many secret keys), so that every (short)
function of it will still keep many possibilities for the “real secret”. In our generic construction we
show that hash proof systems yield a convenient method for realizing this approach.

We then emphasize a specific instantiation with a simple and efficient DDH-based hash proof
system. The resulting encryption scheme is resilient to any leakage of L(1/2− o(1)) bits, where L
is the length of the secret key. Although one can instantiate our construction with any hash proof
system, we find this specific instantiation rather elegant (we refer the reader to Section 4.2).

1Akavia et al. refer to such attacks as adaptive memory attacks. They also define the notion of non-adaptive
memory attacks which we discuss later on.
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The schemes that result from our generic construction satisfy in fact a more general notion of
leakage resilience: these schemes are secure even if the leakage functions chosen by the adversary
are applied to the random bits used by the key generation algorithm. This clearly generalizes the
framework of Akavia et al. and guarantees security even in case that intermediate values from the
process of generating the secret and public keys are leaked2. In addition, we consider several other
generalizations of the framework of Akavia et al. that are satisfied by our schemes. These include
a scenario in which the adversary obtains a noisy version of all of the memory as in the attack
of Halderman et al. (i.e., the leakage may be as long as the whole memory and not of bounded
length), and a scenario in which partial results of the decryption process are leaked.

Improved key-leakage resilience. We propose two public-key encryption schemes that are
resilient to any key leakage of L(1 − o(1)) bits, where L is the length of the secret key. Our
proposals are based on the observation that our generic construction from hash proof systems can
in fact be based on hash proof systems with a slightly weaker universality property. When viewing
hash proof systems as key-encapsulation mechanisms, relaxing the universality property enables us
to achieve essentially the best possible ratio between the length of the secret key and the length
of the encapsulated symmetric key. This ratio translates to the relative amount of key leakage to
which the encryption schemes are resilient3.

For our first proposal we construct a new hash proof system based on the decisional Diffie-
Hellman assumption (and more generally, on any of the d-Linear assumptions) that satisfies this
weaker universality property. The resulting encryption scheme is then obtained by instantiating
our generic construction with this hash proof system. For our second proposal, we show the recent
“circular-secure” encryption scheme of Boneh et al. [6] fits into our generic approach using a different
hash proof system (that satisfies the same weaker universality property).

Chosen-ciphertext security. We extend the framework of key leakage to the setting of chosen-
ciphertext security. Technically, this is a very natural extension by providing the adversary with
access to both a leakage oracle and a decryption oracle. On the theoretical side, we show that
the Naor-Yung “double encryption” paradigm [14, 37] can be used as a general transformation
from chosen-plaintext security to chosen-ciphertext security in the presence of key leakage. As an
immediate corollary of our above-mentioned results, we obtain a scheme that is CCA2-secure with
any leakage of L(1− o(1)) bits, where L is the length of the secret key.

The schemes resulting from the Naor-Yung paradigm are rather inefficient due to the usage
of generic non-interactive zero-knowledge proofs. To complement this situation, on the practical
side, we prove that variants of the Cramer-Shoup cryptosystem [9] (along the lines of our generic
transformation from hash proof systems) are CCA1-secure with any leakage of L(1/4− o(1)) bits,
and CCA2-secure with any leakage of L(1/6− o(1)) bits. It is left as an open problem to construct
a practical CCA-secure scheme that is resilient to any leakage of L(1− o(1)) bits (where a possible
approach is to examine recent refinements of the Cramer-Shoup cryptosystem [1, 30, 33]).

“Weak” key-leakage security. Akavia et al. also considered the following weaker notion of key
leakage (which they refer to as “non-adaptive” leakage): a leakage function f with output length

2We note that it is not clear that Regev’s scheme is resilient to leakage of intermediate key-related values, or at
least, the proof of security of Akavia et al. does not seem to generalize to this setting. The main reason is that their
proof of security involves an indistinguishability argument over the public key, and an adversary that has access to
the randomness of the key generation algorithm (via leakage queries) can identify that the public key was not sampled
from its specified distribution.

3We do not argue that such a relaxation is in fact necessary for achieving the optimal ratio.
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¸ is chosen by the adversary ahead of time (without any knowledge of the public key), and then
the adversary is given (pk, f(sk)). That is, in a “weak” key-leakage attack the leakage function f
is chosen independently of pk. Akavia et al. proved that Regev’s encryption scheme is resilient to
any weak key leakage of L(1− o(1)) bits.

Although this notion of key leakage seems rather limited, it still captures many realistic attacks
in which the leakage does not depend on the parameters of the encryption scheme. Specifically,
this notion captures the cold boot attack of Halderman et al. [22], in which the leakage depends
only on the properties of the hardware devices that are used for storing the secret key.

For weak key-leakage attacks we present a generic construction that transforms any encryption
scheme to one that is resilient to any weak leakage of L(1− o(1)) bits, where L is the length of the
secret key. The resulting scheme is essentially as efficient as the original one, and does not rely on
additional computational assumptions. Our approach crucially relies on the fact that the leakage
is independent of the public key. One may interpret our construction as evidence to the deficiency
of this weaker notion of key-leakage attacks.

1.2 Related Work

Extensive work has been devoted for protecting against side-channel attacks, and for exploiting
side-channels to compromise the security of cryptographic schemes. It is far beyond the scope of
this paper to present an exhaustive overview of this ever-growing line of work. We focus here on
the results that are most relevant to our work. Already in 1985 Rivest and Shamir [41] introduced
a model for leakage attacks in the context of factoring. They considered a scenario in which an
adversary is interested in factoring an n-bit modulus N = PQ, and is allowed to ask a certain
number of arbitrary “Yes/No” questions. Rivest and Shamir asked the following question: how
many questions are needed in order to factor N in polynomial time? Clearly, if the adversary is
allowed to ask about n/2 questions, then the binary representation of P can be fully revealed.
Rivest and Shamir showed an attack that requires only n/3 questions. Specifically, in their attack
the adversary requests the top n/3 bits of P . This was later improved by Maurer [35] who showed
that ²n questions are sufficient, for any constant ² > 0.

Canetti et al. [7] introduced the notion of exposure resilient cryptographic primitives, which
remain secure even if an adversary is able to learn almost all of the secret key of the primitive.
Most notably, they introduced the notion of an exposure resilient function: a deterministic function
whose output appears random even if almost all the bits of the input are known (see also the work
of Dodis et al. [12] on adaptive security of such functions). Ishai et al. [26, 27] considered the more
general problem of protecting privacy in circuits, where the adversary can access a bounded number
of wires in the circuit. Ishai et al. proposed several techniques for dealing with this type of attacks.

Dziembowski and Pietrzak [16] and Pietrzak [39] introduced a general framework for leakage-
resilient cryptography, following the assumption of Micali and Reyzin that only computation leaks
information. Their main contributions are constructions of leakage-resilient stream-ciphers. In-
formally, their model considers cryptographic primitives that proceed in rounds, and update their
internal state after each round. In each round, the adversary can obtain bounded leakage informa-
tion from the portions of memory that were accessed during that round.

Dodis, Tauman Kalai, and Lovett [13] studied the security of symmetric-key encryption schemes
under key leakage attacks. They considered leakage of the form f(sk), where sk is the secret key
and f is any exponentially-hard one-way function. On one hand they do not impose any restriction
on the min-entropy of the secret key given the leakage, but on the other hand, they require that the
leakage is a function that is extremely hard to invert. Dodis et al. introduced a new computational
assumption that is a generalization of learning parity with noise, and constructed symmetric-key
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encryption schemes that are resilient to any key leakage that is exponentially hard to invert.
In a concurrent and independent work, Tauman Kalai and Vaikuntanathan [46] considered

leakage of hard-to-invert functions in the setting of public-key encryption. Their main result is
that the circular-secure encryption scheme of Boneh et al. [6] is resilient not only to bounded key
leakage, but also to any leakage that is a sub-exponentially hard to invert (as a function of the
secret key). In addition, they proved that the Naor-Yung paradigm can be used to achieve chosen-
ciphertext security in the setting of key leakage, and their construction and proof of security are
essentially identical to ours.

1.3 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we present some basic notions,
as well as several tools that are used in our constructions. In Section 3 we formally describe the
framework of key-leakage attacks, and extend it to the setting of chosen-ciphertext attacks. In
Section 4 we present our generic construction from hash proof systems, and provide a simple and
efficient instantiation. In Section 5 we present our two proposals that are resilient to any key
leakage of L(1 − o(1)) bits. In Section 6 we present encryption schemes that are secure against
chosen-ciphertext key-leakage attacks. In Section 7 we present a generic construction for protecting
against weak key-leakage attacks. In Section 8 we discuss several generalizations of the framework
of key leakage that are satisfied by our schemes. In Appendix A we introduce the matrix d-Linear
assumption (a generalization of the matrix DDH assumption introduced by Boneh et al. [6]) on
which we base our new hash proof system in Section 5, and prove that it is implied by the d-Linear
assumption.

2 Preliminaries, Assumptions, and Tools

In this section we present some basic notions, definitions, and tools that are used in our construc-
tions. We formally state the decisional Diffie-Hellman and the d-Linear assumptions, and present
the notions of an average-case strong extractor and hash proof systems.

2.1 Computational Assumptions

Let G be a probabilistic polynomial-time algorithm algorithm that takes as input a security pa-
rameter, and outputs a triplet G = (G, q, g) where G is a group of order q that is generated by
g ∈ G.

The decisional Diffie-Hellman assumption. The decisional Diffie-Hellman (DDH) assump-
tion is that the ensembles {(G, g1, g2, gr1, gr2)}n∈ℕ and {(G, g1, g2, gr11 , gr22 )}n∈ℕ are computationally
indistinguishable, where G Ã G(1n), and the elements g1, g2 ∈ G and r, r1, r2 ∈ ℤq are chosen
independently and uniformly at random.

The d-Linear assumption. Boneh, Boyen, and Shacham [4] introduced the Linear assumption,
intended to take the place of DDH in groups where DDH is easy (specifically, in bilinear groups).
They showed that the hardness of DDH implies that hardness of Linear, but at least in generic
groups (see, for example, [28, 45]), Linear remains hard even if DDH is easy. The DDH and Linear
assumptions naturally generalize to the family of d-Linear assumptions [29, 44], where for every
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d ≥ 1 the d-Linear assumption is that the ensembles
{(
G, g1, . . . , gd, gd+1, g

r1
1 , . . . , grdd , g

∑d
i=1 ri

d+1

)}

n∈ℕ
{(
G, g1, . . . , gd, gd+1, g

r1
1 , . . . , grdd , g

rd+1

d+1

)}
n∈ℕ ,

are computationally indistinguishable, where G Ã G(1n), and the elements g1, . . . , gd+1 ∈ G and
r1, . . . , rd+1 ∈ ℤq are chosen independently and uniformly at random.

Note that DDH is the 1-Linear assumption, and that Linear is the 2-Linear assumption. These
assumptions are progressively weaker: the hardness of d-Linear implies the hardness of (d + 1)-
Linear, but in generic groups (d+ 1)-Linear remains hard even if d-Linear is easy.

2.2 Randomness Extraction

The statistical distance between two random variablesX and Y over a finite domain Ω is SD(X,Y ) =
1
2

∑
!∈Ω ∣Pr [X = !]−Pr [Y = !] ∣. We say that two variables are ²-close if their statistical distance

is at most ². The min-entropy of a random variable X is H∞ (X) = − log(maxx Pr [X = x]).
Dodis et al. [11] formalized the notion of average min-entropy that captures the remaining

unpredictability of a random variable X conditioned on the value of a random variable Y , formally
defined as follows:

H̃∞ (X∣Y ) = − log
(
EyÃY

[
2−H∞(X∣Y=y)

])
.

The average min-entropy corresponds exactly to the optimal probability of guessingX, given knowl-
edge of Y . The following bound on average min-entropy was proved in [11]:

Lemma 2.1 ([11]). If Y has 2r possible values and Z is any random variable, then H̃∞ (X∣(Y,Z)) ≥
H∞ (X∣Z)− r.

A main tool in our constructions in this paper is a strong randomness extractor. The following
definition naturally generalizes the standard definition of a strong extractor to the setting of average
min-entropy:

Definition 2.2 ([11]). A function Ext : {0, 1}n ×{0, 1}t → {0, 1}m is an average-case (k, ²)-strong
extractor if for all pairs of random variables (X, I) such that X ∈ {0, 1}n and H̃∞ (X∣I) ≥ k it
holds that

SD ((Ext(X,S), S, I), (Um, S, I)) ≤ ² ,

where S is uniform over {0, 1}t.
Dodis et al. proved that any strong extractor is in fact an average-case strong extractor, for an

appropriate setting of the parameters:

Lemma 2.3 ([11]). For any ± > 0, if Ext is a (worst-case) (m− log(1/±), ²)-strong extractor, then
Ext is also an average-case (m, ²+ ±)-strong extractor.

As a specific example, they proved the following generalized variant of the leftover hash lemma,
stating that any family of pairwise independent hash functions is an average-case strong extractor:

Lemma 2.4 ([11]). Let X,Y be random variables such that X ∈ {0, 1}n and H̃∞ (X∣Y ) ≥ k. Let
ℋ be a family of pairwise independent hash functions from {0, 1}n to {0, 1}m. Then for ℎ Ã ℋ, it
holds that

SD ((Y, ℎ, ℎ(X)), (Y, ℎ, Um)) ≤ ²

as long as m ≤ k − 2 log(1/²).
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2.3 Hash Proof Systems

We present the framework of hash proof systems, introduced by Cramer and Shoup [8]. For sim-
plicity we frame the description by viewing hash proof systems as key-encapsulation mechanisms
(using the notation of Kiltz et al. [30]), and refer the reader to [8] for a more complete description.

A key-encapsulation mechanism is a public-key encryption scheme that is used for encrypting
random messages. Typically, these messages are used as encryption keys for a symmetric-key
encryption scheme, which in turn encrypts the actual plaintext. In this setting, hash proof systems
may be viewed as key-encapsulation mechanisms in which ciphertexts can be generated in two
modes. Ciphertexts generated using the first mode are referred to as valid ciphertexts, and are
indeed encapsulations of symmetric keys. That is, given a public key and a valid ciphertext, the
encapsulated key is well defined, and can be decapsulated using the secret key. In addition, the
generation process of a valid ciphertext also produces a “witness” to the fact that the ciphertext
is indeed valid. Ciphertexts generated using the second mode are referred to as invalid ciphertexts,
and essentially contain no information on the encapsulated key. That is, given a public key and an
invalid ciphertext, the distribution of the encapsulated key (as it will be produced by the decryption
process) is almost uniform. This is achieved by introducing redundancy into the secret key: each
public key has many corresponding secret keys. The only computational requirement is that the
two modes are computational indistinguishable: any efficient adversary that is given a public key
cannot distinguish with a noticeable advantage between valid ciphertexts and invalid ciphertexts.
We note that the secret and public keys are always generated using the same algorithm, and the
indistinguishability requirement is only over the ciphertexts.

Smooth projective hashing. Let SK, PK, and K be sets where we view SK as the set of secret
keys, PK as the set of public keys, and K as the set of encapsulated symmetric keys. Let C and
V ⊂ C be sets, where we view C as the set of all ciphertexts, V as the set of all valid ciphertexts (i.e.,
those generated appropriately with a corresponding witness). We assume that there are efficient
algorithms for sampling sk ∈ SK, C ∈ V together with a witness w, and C ∈ C ∖ V.

Let Λsk : C → K be a hash function indexed with sk ∈ SK that maps ciphertexts to symmetric
keys. The hash function Λ(⋅) is projective if there exists a projection ¹ : SK → PK such that
¹(sk) ∈ PK defines the action of Λsk over the subset V of valid ciphertexts. That is, for every valid
ciphertext C ∈ V, the value K = Λsk(C) is uniquely determined by pk = ¹(sk) and C. In other
words, even though there are many different secret keys sk corresponding to the same public key
pk, the action of Λsk over the subset of valid ciphertexts in completely determined by the public
key pk. On the other hand, the action of Λsk over the subset of invalid ciphertexts should be
completely undetermined: A projective hash function is ²-almost 1-universal if for all C ∈ C ∖ V,

SD ((pk,Λsk(C)) , (pk,K)) ≤ ² (2.1)

where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = ¹(sk).

Hash proof systems. A hash proof system HPS = (Param,Pub,Priv) consists of three algorithms
that run in polynomial time. The randomized algorithm Param(1n) generates parameterized in-
stances of the form (group,K, C,V,SK,PK,Λ(⋅), ¹), where group may contain public parameters.
The deterministic public evaluation algorithm Pub is used to decapsulate valid ciphertexts C ∈ V
given a “witness” w of the fact that C is indeed valid (specifically, one can think of w as the
random coins used to sample C from the set V). The algorithm Pub receives as input a public
key pk = ¹(sk), a valid ciphertext C ∈ V, and a witness w of the fact that C ∈ V, and outputs
the encapsulated key K = Λsk(C). The deterministic private evaluation algorithm Priv is used to
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decapsulate valid ciphertexts without knowing a witness w, but by using the secret key sk. That is,
the algorithm Priv receives as input a secret key sk ∈ SK and a valid ciphertext C ∈ V, and outputs
the encapsulated key K = Λsk(C). We assume that ¹ and Λ(⋅) are efficiently computable. We say
that a hash proof system is 1-universal if for all possible outcomes of Param(1n) the underlying
projective hash function is ²(n)-almost 1-universal for some negligible ²(n).

Subset membership problem. As a computational problem we require that the subset mem-
bership problem is hard in HPS, which means that for random valid ciphertext C0 ∈ V and random
invalid ciphertext C1 ∈ C ∖V, the two ciphertexts C0 and C1 are computationally indistinguishable.
This is formally captured by defining the advantage function AdvSMHPS,A(n) of an adversary A as

AdvSMHPS,A(n) =
∣∣PrC0ÃV [A(C,V, C0) = 1]− PrC1ÃC∖V [A(C,V, C1) = 1]

∣∣ ,

where C and V are generated using Param(1n).

Example: A DDH-based hash proof system. Hash proof systems are known to exist based
on a variety of number-theoretic assumptions: the decisional Diffie-Hellman assumption and its
progressively weaker d-Linear variants, the quadratic residuosity assumption, and Paillier’s com-
posite residuosity assumption [8, 30, 44]. We conclude this section by presenting a simple example
of a hash proof system (due to Cramer and Shoup [8]) that is based on the decisional Diffie-Hellman
assumption. This hash proof system is used in Section 4.2 to instantiate our generic construction
of a public-key encryption scheme that is resilient to key leakage.

Let G be a group of prime order q. We define a hash proof system HPS = (Param,Pub,Priv) as
follows. The algorithm Param(1n) generates instances (group,K, C,V,SK,PK,Λ, ¹), where:

∙ group = (G, g1, g2), where g1, g2 ∈ G are uniformly chosen generators.

∙ C = G2, V = {(gr1, gr2) : r ∈ ℤq}, K = G.

∙ SK = ℤ2
q , PK = G.

∙ For sk = (x1, x2) ∈ SK we define ¹(sk) = gx1
1 gx2

2 ∈ PK.

∙ For C = (gr1, g
r
2) ∈ V with witness r ∈ ℤq we define Pub(pk,C, r) = pkr.

∙ For C = (c1, c2) ∈ V we define Priv(sk, C) = Λsk(C) = cx1
1 cx2

2 .

This hash proof system can be easily shown to be 1-universal based on the DDH assumption
(see, for example, [30] for a complete proof).

3 Defining Key-Leakage Attacks

In this section we define the notion of a key-leakage attack, as introduced as Akavia et al. [2]. In
addition, we present a natural extension of this notion to the setting of chosen-ciphertext attacks,
and define the notion of a weak key-leakage attack. In Section 8 we discuss several generalizations
of this framework.
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3.1 Chosen-Plaintext Key-Leakage Attacks

Informally, an encryption scheme is resilient to key-leakage attacks if it is semantically secure
even when the adversary obtains sensitive leakage information. This is modeled by providing the
adversary with access to a leakage oracle: the adversary can submit any function f and receive
f(SK), where SK is the secret key. The adversary can query the leakage oracle adaptively, with
only one restriction: the sum of output lengths of all the leakage functions has to be bounded by
a predetermined parameter ¸.

More formally, for a public-key encryption scheme (G, ℰ ,D) we denote by SKn and PKn the sets
of secret keys and public keys that are produced by G(1n). That is, G(1n) : {0, 1}∗ → SKn×PKn for
every n ∈ ℕ. The leakage oracle, denoted Leakage(SK), takes as input a function f : SKn → {0, 1}∗
and outputs f(SK). We say that an oracle machine A is a ¸-key-leakage adversary if the sum of
output lengths of all the functions that A submits to the leakage oracle is at most ¸.

Definition 3.1 (key-leakage attacks). A public-key encryption scheme Π = (G, ℰ ,D) is seman-
tically secure against ¸(n)-key-leakage attacks if for any probabilistic polynomial-time ¸(n)-key-
leakage adversary A = (A1,A2) it holds that

AdvLeakageΠ,A (n)
def
=

∣∣∣Pr
[
ExptLeakageΠ,A (0) = 1

]
− Pr

[
ExptLeakageΠ,A (1) = 1

]∣∣∣

is negligible in n, where ExptLeakageΠ,A (b) is defined as follows:

1. (SK,PK) Ã G(1n).
2. (M0,M1, state) Ã ALeakage(SK)

1 (PK) such that ∣M0∣ = ∣M1∣.
3. C Ã ℰpk(Mb).

4. b′ Ã A2(C, state)

5. Output b′.

Challenge-dependent key leakage. Note that the adversary is not allowed to access the leakage
oracle after the challenge phase. This restriction is necessary: the adversary can clearly encode the
decryption algorithm, the challenge ciphertext, and the two messages M0 and M1 into a function
that outputs the bit b. It will be very interesting to find an appropriate definition that allows a
certain form of challenge-dependent leakage.

Adaptivity. As pointed out by Akavia et al. [2], Definition 3.1 is in fact equivalent to a definition
in which the adversary queries the leakage oracle only once. Informally, the adversary can encode
its adaptive behavior into a single polynomial-size leakage function. It is not clear, however, that
the same equivalence holds when we extend the definition to consider chosen-ciphertext attacks.
Therefore, for consistency, we chose to present this adaptive definition.

3.2 Chosen-Ciphertext Key-Leakage Attacks

Extending the above definition to the setting of chosen-ciphertext security is rather natural. In
this case the adversary is allowed to adaptively access a decryption oracle D(SK, ⋅) that receives as
input a ciphertext and outputs a decryption using the secret key SK. We denote by D∕=C(SK, ⋅)
a decryption oracle that decrypts any ciphertext other than C. As in the standard definition of
chosen-ciphertext attacks we distinguish between a-priori chosen-ciphertext attacks (CCA1) and
a-posteriori chosen-ciphertext attacks (CCA2).
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Definition 3.2 (a-priori chosen-ciphertext key-leakage attacks). A public-key encryption scheme
Π = (G, ℰ ,D) is semantically secure against a-priori chosen-ciphertext ¸(n)-key-leakage attacks if
for any probabilistic polynomial-time ¸(n)-key-leakage adversary A = (A1,A2) it holds that

AdvLeakageCCA1Π,A (n)
def
=

∣∣∣Pr
[
ExptLeakageCCA1Π,A (0) = 1

]
− Pr

[
ExptLeakageCCA1Π,A (1) = 1

]∣∣∣

is negligible in n, where ExptLeakageCCA1Π,A (b) is defined as follows:

1. (SK,PK) Ã G(1n).

2. (M0,M1, state) Ã ALeakage(SK),D(SK,⋅)
1 (PK) such that ∣M0∣ = ∣M1∣.

3. C Ã ℰpk(Mb).

4. b′ Ã A2(C, state)

5. Output b′.

Definition 3.3 (a-posteriori chosen-ciphertext key-leakage attacks). A public-key encryption sche-
me Π = (G, ℰ ,D) is semantically secure against a-posteriori chosen-ciphertext ¸(n)-key-leakage
attacks if for any probabilistic polynomial-time ¸(n)-key-leakage adversary A = (A1,A2) it holds
that

AdvLeakageCCA2Π,A (n)
def
=

∣∣∣Pr
[
ExptLeakageCCA2Π,A (0) = 1

]
− Pr

[
ExptLeakageCCA2Π,A (1) = 1

]∣∣∣

is negligible in n, where ExptLeakageCCA2Π,A (b) is defined as follows:

1. (SK,PK) Ã G(1n).

2. (M0,M1, state) Ã ALeakage(SK),D(SK,⋅)
1 (PK) such that ∣M0∣ = ∣M1∣.

3. C Ã ℰpk(Mb).

4. b′ Ã AD ∕=C(SK,⋅)
2 (C, state)

5. Output b′.

3.3 Weak Key-Leakage Attacks

Akavia et al. also considered the following weaker notion of leakage (which they refer to as “non-
adaptive” leakage): a leakage function f with output length ¸ is chosen by the adversary ahead
of time (without any knowledge of the public key), and then the adversary is given (PK, f(SK)).
That is, the leakage function f is chosen independently of the public key. Although this notion
seems rather weak, it nevertheless captures realistic attacks in which the leakage depends only on
hardware devices (as in [22]) and is independent of the parameters of the system, including the
public key.

Definition 3.4 (weak key-leakage attacks). A public-key encryption scheme Π = (G, ℰ ,D) is
semantically secure against weak ¸(n)-key-leakage attacks if for any probabilistic polynomial-time
adversary A = (A1,A2), and for any ensemble ℱ =

{
fn : SKn → {0, 1}¸(n)}

n∈ℕ of efficiently
computable functions, it holds that

AdvWeakLeakage
Π,A,ℱ (n)

def
=

∣∣∣Pr
[
ExptWeakLeakage

Π,A,ℱ (0) = 1
]
− Pr

[
ExptWeakLeakage

Π,A,ℱ (1) = 1
]∣∣∣

is negligible in n, where ExptWeakLeakage
Π,A,ℱ (b) is defined as follows:
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1. (SK,PK) Ã G(1n).
2. (M0,M1, state) Ã A1(PK, fn(SK)) such that ∣M0∣ = ∣M1∣.
3. C Ã ℰpk(Mb).

4. b′ Ã A2(C, state)

5. Output b′.

4 A Generic Construction from Hash Proof Systems

In this section we present a generic construction of a public-key encryption scheme that is resilient
to key-leakage attacks. We then present an instantiation of our generic construction with a simple
and efficient hash proof system based on the DDH assumption. The resulting encryption scheme
is resilient to any leakage of L(1/2− o(1)) bits, where L is the length of the secret key. Although
one can instantiate our generic construction with any hash proof system, we find this specific
instantiation rather elegant.

4.1 The Construction

Let HPS = (Param,Pub,Priv) be an ²1-almost 1-universal hash proof system (see Section 2.3
for an overview of hash proof systems), where Param(1n) generates parameterized instances of
(group,K, C,V,SK,PK,Λ(⋅), ¹) which are used as the public parameters of the encryption scheme.
Let ¸ = ¸(n) be a bound on the amount of leakage, and let Ext : K × {0, 1}t → {0, 1}m be an
average-case (log ∣K∣−¸, ²2)-strong extractor (see Lemma 2.3 stating that any strong extractor is in
fact also an average-case strong extractor). We assume that ²1 and ²2 are negligible in the security
parameter. The following describes the encryption scheme Π = (G, ℰ ,D):

∙ Key generation: Choose a random sk ∈ SK and let pk = ¹(sk) ∈ PK. Output the pair
(sk, pk).

∙ Encryption: On input a message M ∈ {0, 1}m, choose a random C ∈ V together with a
corresponding witness w, and a random seed s ∈ {0, 1}t. Let Ψ = Ext (Pub(pk,C,w), s)⊕M ,
and output the ciphertext (C, s,Ψ).

∙ Decryption: On input a ciphertext (C, s,Ψ), output the message M = Ψ⊕ Ext (Λsk(C), s).

The correctness of the scheme follows from the property that Λsk(C) = Pub(pk, C,w) for any
C ∈ V with witness w. Thus, a decryption of an encrypted plaintext is always the original plaintext.
The security of the scheme (i.e., its resilience to key leakage) follows from the universality of the
proof system (see Equation (2.1) in Section 2.3): for all C ∈ C ∖ V it holds that

SD ((pk,Λsk(C)) , (pk,K)) ≤ ²1 ,

where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = ¹(sk). Therefore, even
given pk and any leakage of ¸ bits, the distribution Λsk(C) is ²1-close to a distribution with average
min-entropy at least log ∣K∣ − ¸. The strong extractor is then applied to Λsk(C) using a fresh seed
(chosen during the challenge phase and thus independent of the leakage), and guarantees that the
plaintext is properly hidden. The following theorem establishes the security of the scheme:
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Theorem 4.1. Assuming that HPS is a 1-universal hash proof system, the encryption scheme Π is
semantically secure against ¸(n)-key-leakage attacks for any ¸(n) ≤ log ∣K∣ − !(log n) −m, where
n is the security parameter and m is the length of plaintexts.

Proof. Assume that HPS is an ²1-almost 1-universal hash proof system, and recall that Ext is
chosen to be an average-case (log ∣K∣ − ¸, ²2)-strong extractor. We show that for any efficient ¸-
key-leakage adversary A = (A1,A2) there exists an efficient adversary A′ for the subset membership
problem of the hash proof system HPS such that

AdvLeakageΠ,A (n) ≤ 2
(
AdvSMHPS,A′(n) + ²1(n) + ²2(n)

)
.

For S ∈ {V, C ∖ V} and b ∈ {0, 1} consider the following experiment denoted ExptLeakageΠ,A (S, b):
1. Generate (K, C,V,SK,PK,Λ(⋅), ¹) Ã Param(1n), choose a random sk ∈ SK and let pk =

¹(sk) ∈ PK.

2. (M0,M1, state) Ã ALeakage(sk,pk)
1 (pk) such that ∣M0∣ = ∣M1∣.

3. Choose a random C Ã S, a random seed s ∈ {0, 1}t, and let Ψ = Ext (Λsk(C), s)⊕Mb.

4. b′ Ã A2((C, s,Ψ), state).

5. Output b′.

Using the notation of Definition 3.1 and the triangle inequality, for any adversary A it holds that

AdvLeakageΠ,A (n) =
∣∣∣Pr

[
ExptLeakageΠ,A (0) = 1

]
− Pr

[
ExptLeakageΠ,A (1) = 1

]∣∣∣
=

∣∣∣Pr
[
ExptLeakageΠ,A (V, 0) = 1

]
− Pr

[
ExptLeakageΠ,A (V, 1) = 1

]∣∣∣ (4.1)

≤
∣∣∣Pr

[
ExptLeakageΠ,A (V, 0) = 1

]
− Pr

[
ExptLeakageΠ,A (C ∖ V, 0) = 1

]∣∣∣ (4.2)

+
∣∣∣Pr

[
ExptLeakageΠ,A (C ∖ V, 0) = 1

]
− Pr

[
ExptLeakageΠ,A (C ∖ V, 1) = 1

]∣∣∣ (4.3)

+
∣∣∣Pr

[
ExptLeakageΠ,A (C ∖ V, 1) = 1

]
− Pr

[
ExptLeakageΠ,A (V, 1) = 1

]∣∣∣ , (4.4)

where the equality in (4.1) follows from the property that Λsk(C) = Pub(pk, C,w) for any C ∈ V
with witness w. It is straightforward that there exists an adversary A′ for the subset membership
problem of the hash proof system HPS such that the terms (4.2) and (4.4) are upper bounded by
AdvSMHPS,A′(n). The following claim bounds the term (4.3) and concludes the proof of the theorem.

Claim 4.2. For any probabilistic polynomial-time adversary A it holds that
∣∣∣Pr

[
ExptLeakageΠ,A (C ∖ V, 0) = 1

]
− Pr

[
ExptLeakageΠ,A (C ∖ V, 1) = 1

]∣∣∣ ≤ 2 (²1(n) + ²2(n)) .

Proof. For each b ∈ {0, 1} we claim that in experiment ExptLeakageΠ,A (C ∖ V, b) the value Ψ in the
challenge ciphertext is (²1 + ²2)-close to the uniform distribution over m bits from the adversary’s

point of view. Noting that the experiments ExptLeakageΠ,A (C ∖ V, 0) and ExptLeakageΠ,A (C ∖ V, 1) differ only
on Ψ, this implies that the statistical distance between the distributions of the adversary’s view in
these experiments is at most 2(²1 + ²2).

The hash proof system guarantees that for C ∈ C ∖ V the value Λsk(C) is ²1-close to uniform
over the set K given pk and C. In our setting, however, the adversary learns additional ¸ bits of
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information using the leakage oracle. However, Lemma 2.1 states that this can reduce the average
min-entropy of Λsk(C) by at most ¸. That is, Λsk(C) is ²1-close to a distribution that has average
min-entropy at least log ∣K∣−¸ given the adversary’s view. The application of the strong extractor
with a randomly chosen seed (that is independent of the adversary’s view so far) guarantees that
Ext(Λsk(C), s) is ²2-close to the uniform distribution over m bits, and therefore Ψ is (²1 + ²2)-close
to uniform.

4.2 Example: A DDH-Based Instantiation

Let G be a group of prime order q, let ¸ = ¸(n) be the leakage parameter, and let Ext : G×{0, 1}t →
{0, 1}m be an average-case (log q − ¸, ²)-strong extractor for some negligible ² = ²(n).

∙ Key generation: Choose x1, x2 ∈ ℤq and g1, g2 ∈ G uniformly at random. Let ℎ = gx1
1 gx2

2 ,
and output the keys

SK = (x1, x2) , PK = (g1, g2, ℎ) .

∙ Encryption: On input a message M , choose r ∈ ℤq and s ∈ {0, 1}t uniformly at random,
and output the ciphertext

(gr1, g
r
2, s,Ext(ℎ

r, s)⊕M) .

∙ Decryption: On input a ciphertext (u1, u2, s, e), output e⊕ Ext(ux1
1 ux2

2 , s).

The hash proof system underlying the above encryption scheme is the one described in Section
2.3. This hash proof system is 1-universal based on the DDH assumption, and as an immediate
consequence we obtain the following corollary of Theorem 4.1:

Corollary 4.3. Assuming the hardness of DDH, the above encryption scheme is semantically-
secure against (L/2 − !(logn) − m)-key-leakage attacks, where n denotes the security parameter,
L = L(n) denotes the length of the secret key and m = m(n) denotes the length of the plaintext.

5 Improved Resilience Based on DDH and d-Linear

In this section we propose two encryption schemes that are resilient to any key leakage of L(1−o(1))
bits, where L is the length of the secret key. These proposals are based on the observation that
our generic construction from hash proof systems can in fact be based on hash proof systems with
a slightly weaker 1-universality property. Specifically, the 1-universality property asks that for all
C ∈ C ∖ V it holds that

SD ((pk,Λsk(C)) , (pk,K)) ≤ ²

where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = ¹(sk). It is rather
straightforward that our generic construction only requires this property to hold with overwhelming
probability over the choice of C ∈ C ∖ V.

For our first proposal we construct a new hash proof system that is based on the d-Linear
assumption (for any d ≥ 1) and satisfies this weaker 1-universality property4. The hash proof system
is a generalization of the hash proof system underlying the simple encryption scheme described
in Section 4.2. The resulting encryption scheme is then obtained by instantiating our generic
construction with this hash proof system.

4Recall that the DDH is the 1-Linear assumption.

14



Our second proposal is a recent encryption scheme of Boneh et al. [6], that is secure under key
cycles (and more generally, under encryptions of linear functions of the secret keys). This is the
first and only known encryption scheme with this property. We refer to this scheme as the BHHO
scheme, and show that it fits into our generic approach using an appropriate hash proof system
(that satisfies the same weaker universality property). As a corollary we derive that the BHHO
scheme is resilient to any leakage of L(1− o(1)) bits5.

The main difference between the two schemes proposed in this section is in their method of
extracting randomness from the secret key. In the first proposal an invertible function is applied
to the secret key (thus preserving its min-entropy), and then a strong extractor is applied to the
resulting value. In the second proposal, the entropy of the secret key is extracted directly using a
strong extractor that is implicit in the construction.

5.1 Proposal 1: A New Hash Proof System

We begin by presenting the encryption scheme, and then turn to describe the underlying hash proof
system and its properties.

Notation. Let G = (G, q, g) where G a group of order q that is generated by g. For two vectors
v = (g1, . . . , gk) ∈ Gk and u = (u1, . . . , uk) ∈ ℤk

q we define v ⋅ uT =
∏k

i=1 g
ui
i , and note the notation

naturally extends to matrix-vector and matrix-matrix multiplications.

The encryption scheme. Let k = k(n) ≥ d+ 1 be any polynomial, let ¸ = ¸(n) be the leakage
parameter, and let Ext : Gk−d × {0, 1}t → {0, 1}m be an average-case ((k − d) log q − ¸, ²)-strong
extractor for some negligible ² = ²(n).

The following encryption scheme has a secret key of size essentially k log q bits (k group ele-
ments), and is resilient to any leakage of ¸ ≤ (k−d) log q−!(log n)−m bits, where m is the length
of plaintexts. That is, the scheme is resilient to any leakage of essentially a (1 − d/k)-fraction of
the length of the secret key.

∙ Key generation: Choose x ∈ ℤk
q and Φ ∈ Gd×k uniformly at random. Let y = Φx ∈ Gd,

and output the keys
SK = x, PK = (Φ, y) .

∙ Encryption: On input a message M , choose R ∈ ℤ(k−d)×d
q and s ∈ {0, 1}t uniformly at

random, and output the ciphertext

(RΦ, s,Ext (Ry, s)⊕M) .

∙ Decryption: On input a ciphertext (Ψ, s, e) output e⊕ Ext (Ψx, s).

The following theorem establishes the security of the scheme:

Theorem 5.1. Assuming the hardness of d-Linear, for any polynomial k = k(n) ≥ d + 1 the
above encryption scheme is semantically-secure against a ((1− d/k)L− !(logn)−m)-key-leakage
attack, where n denotes the security parameter, L = L(n) denotes the length of the secret key and
m = m(n) denotes the length of the plaintext.

5We note that not every circular-secure scheme is also resilient to key leakage.

15



The hash proof system. Let k = k(n) ≥ d+1 be any polynomial, and let Ext : Gk−d×{0, 1}t →
{0, 1}m be an average-case ((k − d) log q, ²)-strong extractor for some negligible ² = ²(n).

We define a hash proof system HPS = (Param,Pub,Priv) as follows. The algorithm Param(1n)
generates instances (group,K, C,V,SK,PK,Λ, ¹), where:

∙ group = (G,Φ, s), where Φ ∈ Gd×k and s ∈ {0, 1}t are chosen uniformly at random.

∙ C = G(k−d)×k, V =
{
RΦ : R ∈ ℤ(k−d)×d

q

}
, K = {0, 1}m.

∙ SK = ℤk
q , PK = Gd.

∙ For sk = x ∈ SK we define ¹(sk) = Φx ∈ PK.

∙ For C ∈ V with witness R ∈ ℤ(k−d)×d
q we define Pub(pk,C,R) = Ext(Ry, s).

∙ For C ∈ V we define Priv(sk, C) = Λsk(C) = Ext(Cx, s).

Before analyzing the hash proof system, we note that in the above encryption scheme we did not
include the strong extractor that is a part of the hash proof system. The reason is that the generic
transformation in Section 4 utilizes a strong extractor (using a fresh seed for every ciphertext), and
in this specific case there is no need to apply two extractors.

We now analyze the hash proof system. It is straightforward that for every C ∈ V with witness

R ∈ ℤ(k−d)×d
q it holds that

Λsk(C) = Ext(Cx, s) = Ext(RΦx, s) = Ext(Ry, s) = Pub(pk,C,R) .

For the remainder of the analysis we introduce for following additional notation. We denote by
Rki(ℤa×b

q ) the set of all matrices in ℤa×b
q with rank i. For a matrix R = {ri,j}i∈[a],j∈[b] ∈ ℤa×b

q we

denote by gR the matrix {gi,j}i∈[a],j∈[b] = {gri,j}i∈[a],j∈[b] ∈ Ga×b. We denote by Rki(Ga×b) the set

of all matrices gR ∈ Ga×b for R ∈ Rki(ℤa×b
q ).

In Appendix A we show that the d-Linear assumption implies the hardness of the subset mem-
bership problem in HPS. Specifically, we introduce the matrix d-Linear assumption stating that in
Gk×k a random matrix of rank d is computationally indistinguishable from a random matrix of rank
at least d + 1. We prove that the d-Linear assumption implies the matrix d-Linear assumption6.
Note that in the hash proof system, the matrix Φ has rank d with overwhelming probability, and
in this case the matrix

Ψ =

(
Φ

C

)
∈ Gk×k

has rank d for every C ∈ V, and has rank at least d+ 1 for every C ∈ C ∖ V.
In the following claim we prove the universality of the proof system. As noted above, it suffices

in our setting to argue 1-universality with overwhelming probability over the choice of C ∈ C ∖ V.
Claim 5.2. With overwhelming probability over the choice of C ∈ C ∖ V it holds that

SD ((pk,Λsk(C)) , (pk,K)) ≤ ² ,

where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = ¹(sk).

6We note that the case d = 1 was proved by Boneh et al. [6].
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Proof. With overwhelming probability the matrix Φ ∈ Gd×k has rank d (alternatively, it is possible
to just sample Φ from the set of rank d matrices to begin with). In this case, with overwhelming
probability over the choice over of C ∈ C ∖ V the matrix

Ψ =

(
Φ

C

)
∈ Gk×k

is invertible. Therefore, the mapping x → Cx is injective given Φ and Φx, and this implies that

H∞ (Cx ∣ Φ,Φx) = H∞ (x ∣ Φ,Φx) ≥ (k − d) log q .

The strong extractor then guarantees that Λsk(C) = Ext(Cx, s) is ²-close to the uniform distribution
over K given pk.

5.2 Proposal 2: The BHHO Scheme

We show that a simple setting of the parameters in the BHHO encryption scheme [6] results in
an encryption scheme that is resilient any key leakage of L(1 − o(1)) bits, where L is the length
of the secret key. Let G = (G, q, g) where G a group of order q that is generated by g, and set
ℓ = ¸+ 2 log q + 2 log(1/²) for some negligible ² = ²(n).

∙ Key generation: Choose s1, . . . , sℓ ∈ {0, 1} and g1, . . . , gℓ ∈ G uniformly at random. Let
ℎ =

∏ℓ
i=1 g

si
i , and output the keys

SK = (s1, . . . , sℓ), PK = (g1, . . . , gℓ, ℎ) .

∙ Encryption: On input a message M ∈ G, choose r ∈ ℤq uniformly at random, and output
the ciphertext

(gr1, . . . , g
r
ℓ , ℎ

r ⋅M) .

∙ Decryption: On input a ciphertext (u1, . . . , uk, e) output e ⋅
(∏ℓ

i=1 u
si
i

)−1
.

The encryption scheme can be viewed as based on a hash proof system with the following subset
membership problem (whose hardness follows from DDH):

C =
{(

gr11 , . . . , grℓℓ
)
: r1, . . . , rℓ ∈ ℤq

}

V = {(gr1, . . . , grℓ ) : r ∈ ℤq} .

The leftover hash lemma guarantees that with overwhelming probability over the choice of C =
(u1, . . . , uℓ) ∈ C ∖ V it holds that Λsk(C) =

∏ℓ
i=1 u

si
i is ²-close to the uniform distribution over G,

even given ℎ =
∏ℓ

i=1 g
si
i and any leakage of length ¸ bits.

Improved efficiency. A rather straightforward improvement to the efficiency of the above scheme
is choosing the values s1, . . . , sℓ as elements of ℤq instead of binary values as in the original scheme.
In turn, this allows to decrease the value of ℓ: all we need is that even given the public key and any
¸ bits of leakage, the remaining average-min entropy in the secret key is at least log q + !(logn)
(note that this suffices for applying the leftover hash lemma). That is, we need to set ℓ such that

H∞ (sk)− log q − ¸ ≥ log q + !(logn), which implies that ℓ = 2 + ¸+!(logn)
log q suffices.
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6 Protecting Against Chosen-Ciphertext Key-Leakage Attacks

In this section we present public-key encryption schemes that are resilient to chosen-ciphertext
key-leakage attacks (see Definitions 3.2 and 3.3).

6.1 A Generic Construction

We prove that the Naor-Yung “double encryption” paradigm [14, 37] is applicable also in the
setting of key leakage attacks. That is, we show that any public-key encryption scheme that is
semantically secure against chosen-plaintext key-leakage attacks can be transformed into a scheme
that is semantically secure against a-posteriori chosen-ciphertext key-leakage attacks using non-
interactive zero-knowledge proofs.

The key property of the transformation is that the size of the secret key in the resulting CCA-
secure scheme is exactly the same as in the underlying CPA-secure scheme. This enables us to
prove that the resulting CCA-secure scheme is resilient to exactly the same amount of leakage as
the underlying CPA-secure scheme.

Our construction in this section are based on the refinements of Sahai [43] and Lindell [34] to
the encryption schemes of Naor and Yung [37] and Dolev, Dwork and Naor [14]. These refinements
enable us to achieve CCA2 security without increasing the size of the secret key. We refer the
reader to [34, 43] for comprehensive overviews of the construction.

The construction. Let Π = (G, ℰ ,D) be a public-key encryption scheme that is semantically
secure against chosen-plaintext ¸-key-leakage attacks, and let (P,V) be a one-time simulation-sound
adaptive NIZK proof system7 for the following NP-language:

L = {(c0, c1, pk0, pk1) ∣ ∃m, r0, r1 s.t. c0 = ℰpk0(m; r0) and c1 = ℰpk1(m; r1)} .

The encryption scheme Π′ = (G′, ℰ ′,D′) is defined as follows:

∙ Key generation: Sample (sk0, pk0), (sk1, pk1) Ã G(1n) independently, and a reference string
¾ for the NIZK proof system. Output SK = sk0 and PK = (pk0, pk1, ¾).

∙ Encryption: On input a message M choose r0, r1 ∈ {0, 1}∗, and compute c0 = ℰpk0(M ; r0)
and c1 = ℰpk1(M ; r1). Then, invoke the NIZK prover P to obtain a proof ¼ for the statement
(c0, c1, pk0, pk1) ∈ L with respect to the reference string ¾. Output the ciphertext (c0, c1, ¼).

∙ Decryption: On input a ciphertext (c0, c1, ¼), invoke the NIZK verifier V to verify that ¼ is
an accepting proof with respect to the reference string ¾. If V accepts then output Dsk0(c0),
and otherwise output ⊥.

Proof of security. In the remainder of the section we prove the security of the scheme Π′ by
adapting the ideas of Lindell [34] and Sahai [43] to key leakage attacks. Specifically, we show that
any adversary that breaks the security of the scheme can be used to either break the simulation
soundness of the proof system (P,V) or to break the encryption scheme Π. The main point in our
setting, is that we can always simulate both the leakage oracle and the decryption oracle to such
an adversary:

∙ When attacking the proof system (P,V) we know the key sk0. We use this key to simulate
the leakage oracle, and use this key together with the verifier of the proof system to simulate
the decryption oracle.

7We refer the reader to [34, 43] for the definitions of a one-time simulation-sound adaptive NIZK proof system.
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∙ When attacking the public key pk1 we again know the key sk0 as in the previous case. In fact,
pk1 can even be sampled from a CPA-secure encryption scheme that is not resilient to key
leakage (both in the actual scheme and in the proof of security the adversary never obtains
leakage information from sk1).

∙ When attacking the public key pk0 we know the key sk1. We simulate the leakage oracle
by forwarding all queries to the leakage oracle of sk0, and we simulate the decryption oracle
using sk1 and the verifier of the proof system.

We prove the following theorem:

Theorem 6.1. Assume that Π is semantically secure against chosen-plaintext ¸-key-leakage at-
tacks, and that (P,V) is a one-time simulation-sound NIZK proof system. Then, Π′ is semantically
secure against a-posteriori chosen-ciphertext ¸-key-leakage attacks.

Proof. Given a probabilistic polynomial-time ¸-key-leakage adversary A we begin by describing a
mental experiment in which A runs its attack. The difference between the mental experiment and
a real attack is that the challenge ciphertext received by A is not properly generated. Rather, the
NIZK proof is generated by the NIZK simulator S = (S1, S2) and the two encryptions may not be
to the same message.

Experiment ExptSA(b0, b1):

1. Key generation:

∙ (¾, s) Ã S1(1
n) (a simulated reference string ¾ is used for the public key).

∙ (sk0, pk0), (sk1, pk1) Ã G(1n).
∙ Set SK = sk0 and PK = (pk0, pk1, r).

2. (M0,M1, state) Ã ALeakage(SK),D′(SK,⋅)
1 (PK).

3. Set up the challenge ciphertext c = (c0, c1, ¼):

∙ c0 Ã ℰpk0(Mb0).

∙ c1 Ã ℰpk1(Mb1).

∙ ¼ Ã S2((c0, c1, pk0, pk1), ¾, s) (a simulated proof ¼ is used for the challenge).

4. b′ Ã AD′
∕=c(SK,⋅)

2 (c, state).

Given the above experiment, the advantage of A in attacking the scheme Π′ can be bounded as
follows:

AdvLeakageCCA2Π′,A (n) =
∣∣∣Pr

[
ExptLeakageCCA2Π′,A (1) = 1

]
− Pr

[
ExptLeakageCCA2Π′,A (0) = 1

]∣∣∣
≤

∣∣∣Pr
[
ExptLeakageCCA2Π′,A (1) = 1

]
− Pr

[
ExptSA(1, 1) = 1

]∣∣∣ (6.1)

+
∣∣Pr [ExptSA(1, 1) = 1

]− Pr
[
ExptSA(0, 1) = 1

]∣∣ (6.2)

+
∣∣Pr [ExptSA(0, 1) = 1

]− Pr
[
ExptSA(0, 0) = 1

]∣∣ (6.3)

+
∣∣∣Pr

[
ExptSA(0, 0) = 1

]− Pr
[
ExptLeakageCCA2Π′,A (0) = 1

]∣∣∣ . (6.4)

The following claim shows that the terms (6.1) and (6.4) are negligible.
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Claim 6.2. For every probabilistic polynomial-time A and b ∈ {0, 1} it holds that
∣∣∣Pr

[
ExptLeakageCCA2Π′,A (b) = 1

]
− Pr

[
ExptSA(b, b) = 1

]∣∣∣ ≤ ²(n)

for some negligible function ²(n).

Proof. The correctness of the claim follows from the zero-knowledge property of the NIZK proof
system (P,V). Given a probabilistic polynomial-time ¸-key-leakage adversaryA and a bit b ∈ {0, 1}
for which

∣∣∣Pr
[
ExptLeakageCCA2Π′,A (b) = 1

]
− Pr

[
ExptSA(b, b) = 1

]∣∣∣ ≥ ²(n), we construct a probabilistic

polynomial-time distinguisher A′ that distinguishes a simulated proof from a real proof with ad-
vantage ²(n). Thus, the adaptive zero-knowledge property of (P,V) implies that ²(n) is negligible.

The distinguisher A′ works as follows: it receives a reference string ¾, samples two pairs of keys
(sk0, pk0), (sk1, pk1) Ã G(1n) and invokes A on the public-key PK = (pk0, pk1, ¾) while emulating
the decryption oracle and the leakage oracle for A using SK = sk0 (note that anyone can verify
the NIZK proofs for the decryption process). When A outputs two messages (M0,M1) for the
challenge, A′ computes c0 = ℰpk0(Mb) and c1 = ℰpk1(Mb), and asks for a proof ¼ of the (correct)
statement (c0, c1, pk0, pk1) ∈ L. The distinguisherA′ then givesA the challenge ciphertext (c0, c1, ¼)
and outputs whatever A does. Notice that if A′ receives a real proof then it perfectly simulates
ExptLeakageCCA2Π′,A (b), and if A′ receives a simulated proof then it perfectly simulates ExptSA(b, b). Thus,
the advantage of A′ is exactly ²(n).

Before proceeding, we prove a claim stating that in the experiment ExptSA(b0, b1), with over-
whelming probability all ciphertext queries to the decryption oracle that contain accepting NIZK
proofs, are of valid ciphertexts. Formally, we say that a ciphertext c = (c0, c1, ¼) is invalid with an
accepting NIZK proof if Dsk0(c0) ∕= Dsk1(c1) and V ((c0, c1, pk0, pk1), ¾, ¼) = 1. The following claim
shows that if any of A’s ciphertext queries are of the above form, then A can be used to contradict
the one-time simulation-soundness of the NIZK proof system.

Claim 6.3. For every probabilistic polynomial-time adversary A and b0, b1 ∈ {0, 1}, the probability
that in the experiment ExptSA(b0, b1) the adversary A queries the decryption oracle with an invalid
ciphertext that has an accepting NIZK proof is negligible.

Proof. The correctness of the claim follows from the one-time simulation-soundness of the NIZK
proof system (P,V). Given a probabilistic polynomial-time adversary A and b0, b1 ∈ {0, 1} for
which with a non-negligible probability A queries the decryption oracle with an invalid ciphertext
that has an accepting NIZK proof, we construct a probabilistic polynomial-time A′ that contradicts
the one-time simulation-soundness of (P,V).

A′ receives a simulator-generated reference string ¾ and runs the rest of experiment ExptSA(b0, b1)
as in the proof of Claim 6.2 (the only difference is that A′ computes c0 = ℰpk0(Mb0) and c1 =
ℰpk1(Mb1)). If during the simulation A queries the decryption oracle with an invalid ciphertext
that has an accepting NIZK proof, then A′ outputs this ciphertext and halt (A′ can check this
because it knows both decryption keys and because it can verify the validity of the NIZK proofs).
The simulation by A′ is perfect, and therefore if A outputs an invalid ciphertext with an accepting
proof in ExptSA(b0, b1), then A′ outputs a false statement with an accepting proof.

We are now ready to prove that the terms (6.2) and (6.3) are negligible.

Claim 6.4. For every probabilistic polynomial-time A it holds that
∣∣Pr [ExptSA(1, 1) = 1

]− Pr
[
ExptSA(0, 1) = 1

]∣∣ ≤ ²(n)

for some negligible function ²(n).
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Proof. The correctness of the claim follows from the security of the scheme Π = (G,E,D). Given a
probabilistic polynomial-time adversaryA for which

∣∣Pr [ExptSA(1, 1) = 1
]− Pr

[
ExptSA(0, 1) = 1

]∣∣ ≥
²(n), we construct a probabilistic polynomial-time adversary A′ that breaks the security of Π with
essentially the same advantage.

The adversary A′ receives as input a public-key pk generated by G(1n), and simulates the view
of A as follows:

1. Key generation:

∙ A′ sets pk0 = pk, and samples (sk1, pk1) Ã G(1n) and (¾, s) Ã S1(1
n).

∙ A′ sets PK = (pk0, pk1, ¾).

2. Leakage queries: Any leakage query f is forwarded to the leakage oracle corresponding to pk.

3. Decryption queries: Given a ciphertext c = (c0, c1, ¼) the adversary A′ invokes the NIZK
verifier V to verify that ¼ is an accepting proof with respect to the reference string ¾. If V
accepts then A′ outputs Dsk1(c1), and otherwise A′ outputs ⊥.

4. When A outputs two messages M0 and M1, the adversary A′ obtains c0 = ℰpk0(Mb) for a
random b ∈ {0, 1}, and outputs the challenge ciphertext c = (c0, c1, ¼), where:

∙ c1 Ã ℰpk1(M1).

∙ ¼ Ã S2((c0, c1, pk0, pk1), ¾, s) (a simulated NIZK proof).

5. A′ outputs the output of A.

From the point of view of A, the only difference between the view simulated by A′ and the
experiment ExptSA(b, 1) is that A′ performs the decryption using sk1 and not sk0. However, these
views are identical as long as A does not submit an invalid ciphertext that has an accepting NIZK
proof. Claim 6.3 guarantees that the latter event has only a negligible probability.

Claim 6.5. For every probabilistic polynomial-time A it holds that

∣∣Pr [ExptSA(0, 1) = 1
]− Pr

[
ExptSA(0, 0) = 1

]∣∣ ≤ ²(n)

for some negligible function ²(n).

Proof. The correctness of the claim follows from the security of the scheme Π = (G,E,D). Given a
probabilistic polynomial-time adversaryA for which

∣∣Pr [ExptSA(0, 1) = 1
]− Pr

[
ExptSA(0, 0) = 1

]∣∣ ≥
²(n), we construct a probabilistic polynomial-time adversary A′ that breaks the security of Π with
essentially the same advantage.

The adversary A′ receives as input a public-key pk generated by G(1n), and simulates the view
of A as follows:

1. Key generation:

∙ A′ sets pk1 = pk, and samples (sk0, pk0) Ã G(1n) and (¾, s) Ã S1(1
n).

∙ A′ sets PK = (pk0, pk1, ¾).

2. Leakage queries: Given a function f the simulator A′ outputs f(sk0).
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3. Decryption queries: Given a ciphertext c = (c0, c1, ¼) the simulator A′ invokes the NIZK
verifier V to verify that ¼ is an accepting proof with respect to the reference string ¾. If V
accepts then A outputs Dsk0(c0), and otherwise A outputs ⊥.

4. When A outputs two messages M0 and M1, the simulator A′ obtains c1 = ℰpk1(Mb) for a
random b ∈ {0, 1}, and outputs the challenge ciphertext c = (c0, c1, ¼), where:

∙ c0 Ã ℰpk0(M0).

∙ ¼ Ã S2((c0, c1, pk0, pk1), ¾, s) (a simulated NIZK proof).

5. A′ outputs the output of A.

The claim now follows by noting that the simulated view of A is in fact identical to the exper-
iment ExptSA(0, b).

This concludes the proof of the theorem.

6.2 An Efficient CCA1-Secure Scheme

In this section we prove that a variant of the Cramer-Shoup “Lite” cryptosystem [9] (along the
lines of our generic construction in Section 4) is secure against a-priori chosen-ciphertext key-leakage
attacks.

Let G be a group of prime order q, let ¸ = ¸(n) be the leakage parameter, and let Ext :
G×{0, 1}t → {0, 1}m be an average-case (log q−¸, ²)-strong extractor for some negligible ² = ²(n).

We present an encryption scheme with a secret key of size essentially 4 log q bits (four group
elements), and show that the scheme is secure for any leakage of length ¸ ≤ log q − !(log n) −m,
where m is the length of plaintexts. The following describes the encryption scheme:

∙ Key generation: Choose x1, x2, z1, z2 ∈ ℤq and g1, g2 ∈ G uniformly at random. Let
c = gx1

1 gx2
2 , ℎ = gz11 gz22 , and output the keys

SK = (x1, x2, z1, z2) , PK = (g1, g2, c, ℎ) .

∙ Encryption: On input a message M ∈ {0, 1}m, choose r ∈ ℤq and s ∈ {0, 1}t uniformly at
random, and output the ciphertext

(gr1, g
r
2, c

r, s,Ext(ℎr, s)⊕M) .

∙ Decryption: On input a ciphertext (u1, u2, v, s, e), if v ∕= ux1
1 ux2

2 then output⊥ and otherwise
output e⊕ Ext(uz11 uz22 , s).

Correctness. For any sequence of coin tosses of the key generation and encryption algorithms
it holds that ux1

1 ux2
2 = (gx1

1 gx2
2 )r = cr = v and that uz11 uz22 = (gz11 gz22 )r = ℎr, and therefore the

decryption algorithm is always correct.
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Proof of security. The proof of security is based on augmenting the proof of Cramer and Shoup
with the ideas presented in Section 4. We prove the following theorem:

Theorem 6.6. Assuming the hardness of DDH, the above encryption scheme is semantically-secure
against a-priori chosen-ciphertext (L/4 − !(logn) − m)-key-leakage attacks, where n denotes the
security parameter, L = L(n) denotes the length of the secret key and m = m(n) denotes the length
of the plaintext.

Proof. We show that any efficient adversary A that breaks the security of the scheme (recall
Definition 3.2) can be used to construct an efficient algorithm A′ that distinguishes between a DH
instance and a non-DH instance with a non-negligible advantage. On input (g1, g2, u1, u2) ∈ G4 the
algorithm A′ acts as follows:

1. A′ chooses x1, x2, z1, z2 ∈ ℤq uniformly at random, and sets c = gx1
1 gx2

2 , ℎ = gz11 gz22 , SK =
(x1, x2, z1, z2), and PK = (g1, g2, c, ℎ). Then A′ invokes A with input PK.

2. A′ simulates the leakage oracle and the decryption oracle to A using SK.

3. When A outputs two messages M0 and M1, the simulator A′ chooses b ∈ {0, 1} and s ∈ {0, 1}t
uniformly at random, and sends A the challenge ciphertext (u1, u2, u

x1
1 ux2

2 , s,Ext(uz11 uz22 , s)⊕
Mb).

4. If A outputs b then A′ outputs 1, and otherwise A′ outputs 0.

In the following we say that a ciphertext (u1, u2, v, s, e) is invalid if logg1(u1) ∕= logg2(u2). The
remainder of the proof proceeds as follows. First, we prove that if (g1, g1, u1, u2) is a DH instance
then A’s view is identical to the actual attack. Then, we prove that in both the actual attack and
in the simulated attack the decryption oracle rejects all invalid ciphertexts except with a negligible
probability. Finally, we prove that if (g1, g1, u1, u2) is a non-DH instance and the decryption oracle
rejects all invalid ciphertexts then A has only a negligible advantage in outputting the bit b. Thus,
if A has a non-negligible advantage in the actual attack, then A′ has a non-negligible advantage in
distinguishing between DH instances and non-DH instances.

Claim 6.7. If (g1, g2, u1, u2) is a DH instance then A’s view is identical to the actual attack.

Proof. The actual attack and the simulated attack are identical up to the challenge phase. It
remains to prove that the challenge ciphertext has the correct distribution when (g1, g2, u1, u2) is
a DH instance. Indeed, in this case u1 = gr1 and u2 = gr2 for some randomly chosen r ∈ ℤq, and
therefore ux1

1 ux2
2 = cr and uz11 uz22 = ℎr as it should be.

Claim 6.8. In both the actual attack and the simulated attack, the decryption algorithm rejects all
invalid ciphertexts except with a negligible probability.

Proof. The actual attack and the simulated attack are identical up to the challenge phase. There-
fore, the probability that the decryption algorithm rejects all invalid ciphertexts is the same in both
attacks.

We prove the claim by considering the distribution of the point (x1, x2) ∈ ℤ2
q from the adver-

sary’s point of view. The adversary is given the public key (g1, g2, c, ℎ) and therefore from the
adversary’s point of view the point (x1, x2) is uniformly random subject to logg1(c) = x1 + °x2,
where ° = logg1(g2). Moreover, by submitting valid ciphertexts to the decryption oracle the ad-
versary does not learn any more information on (x1, x2) (in fact, by submitting a valid ciphertext
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the adversary only learns a linear combination of the constraint logg1(ℎ) = z1 + °z2 that is already
known from the public key).

Denote by (u′1, u
′
2, v

′, s′, e′) the first invalid ciphertext submitted by the adversary, where u′1 =

g
r′1
1 , u′2 = g

r′2
2 , and r′1 ∕= r′2. Denote by aux the output of all leakage functions that were submitted by

the adversary prior to submitting the invalid ciphertext. The value aux obtains at most 2¸ values,
and therefore Lemma 2.1 implies that from the adversary’s point of view prior to submitting the
invalid ciphertext it holds that

H̃∞ ((x1, x2)∣PK, aux) ≥ H∞ ((x1, x2)∣PK)− ¸ ≥ log q − ¸ .

In particular, the definition of average min-entropy implies that prior to submitting the invalid

ciphertext the probability of A in guessing (x1, x2) is at most 2−H̃∞((x1,x2)∣PK,aux) ≤ 2¸/q. However,
note that if the decryption algorithm accepts the invalid ciphertext then we obtain the following
linear equations:

{
logg1(v

′) = r′1x1 + °r′2x2
logg1(c) = x1 + °x2

As long as °(r′1 − r′2) ∕= 0 these equations are linearly independent, and therefore the adversary
can be used to guess (x1, x2). Thus, the probability that the decryption algorithm accepts the first
invalid ciphertext is at most 2¸/q.

An almost identical argument holds for all the subsequent invalid decryption queries. The only
difference is that each time the decryption oracle rejects an invalid ciphertext the adversary can rule
out one more value of (x1, x2) from the set {(x1, x2) ∈ ℤ2

q : logg1(c) = x1 + °x2}. This shows that

the decryption algorithm accepts the i-th invalid ciphertext with probability at most 2¸/(q− i+1).
The claim now follows from the fact that the number of decryption queries is polynomial, and from
the restriction ¸ ≤ log q − !(logn).

Claim 6.9. If (g1, g2, u1, u2) is a non-DH instance and the decryption algorithm rejects all invalid
ciphertexts, then A has only a negligible advantage in outputting the bit b.

Proof. We show that if (g1, g2, u1, u2) is a non-DH instance and the decryption algorithm rejects
all invalid ciphertexts then with overwhelming probability the value uz11 uz22 has average min-entropy
at least log q − ¸ ≥ m + !(log n) given all the other values in the adversary’s view. The strong
extractor then guarantees that the part of the challenge ciphertext that depends on the bit b is
²-close to uniform given the adversary’s view, for a negligible ² = ²(n).

We prove the claim by considering the distribution of the point (z1, z2) ∈ ℤq from the adversary’s
point of view. The adversary is given the public key (g1, g2, c, ℎ) and therefore from the adversary’s
point of view the point (z1, z2) is uniformly random subject to logg1(ℎ) = z1 + °z2, where ° =
logg1(g2). We assume that the decryption algorithm rejects all invalid ciphertext, and note that
by submitting valid ciphertexts to the decryption oracle the adversary does not learn any more
information (the adversary only learns a linear combination of the constraint logg1(ℎ) = z1 + °z2).
Thus, the adversary does not learn any information on (z1, z2) via decryption queries.

Let u1 = gr11 , u2 = gr22 , and denote by aux the output of all leakage functions chosen by the
adversary. Then from the adversary’s point of view in the challenge phase it holds that

H̃∞ (uz11 uz22 ∣ g1, g2, c, ℎ, aux, u1, u2) = H̃∞ (r1z1 + °r2z2 ∣ °, c, ℎ, aux, r1, r2) .
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Note that as long as °(r1− r2) ∕= 0, then for any w = uz11 uz22 the following two equations (in z1 and
z2) are linearly independent:

{
logg1(ℎ) = z1 + °z2
logg1(w) = r1z1 + °r2z2

which implies that given (°, ℎ, r1, r2) the function (z1, z2) → r1z1 + °r2z2 is injective. Applying an
injective function to a distribution preserves its min-entropy, and therefore

H̃∞ (r1z1 + °r2z2 ∣ °, c, ℎ, aux, r1, r2) = H̃∞ ((z1, z2) ∣ °, c, ℎ, aux, r1, r2)
= H̃∞ ((z1, z2) ∣ °, c, ℎ, aux) ,

where the second equality follows from the fact that (z1, z2, °, c, ℎ, aux) are all chosen independently
of (r1, r2). Finally, the leakage aux obtains at most 2¸ possible values, and therefore (see Lemma
2.1)

H̃∞ ((z1, z2) ∣ °, c, ℎ, aux) ≥ H∞ ((z1, z2) ∣ °, c, ℎ)− ¸

= H∞ ((z1, z2) ∣ °, z1 + °z2)− ¸

≥ log q − ¸ .

Combining all of the above, with overwhelming probability it holds that

H̃∞ (uz11 uz22 ∣ g1, g2, c, ℎ, aux, u1, u2) ≥ log q − ¸ .

This concludes the proof of Theorem 6.6.

6.3 An Efficient CCA2-Secure Scheme

In this section we prove that a variant of the Cramer-Shoup cryptosystem [9] (along the lines of
our generic construction in Section 4) is secure against a-posteriori chosen-ciphertext key-leakage
attacks.

Let G be a group of prime order q, let ¸ = ¸(n) be the leakage parameter, let Ext : G×{0, 1}t →
{0, 1}m be an average-case (log q− ¸, ²)-strong extractor for some negligible ² = ²(n), and let ℋ be
a family of universal one-way hash functions H : G3 → ℤq. Rompel [42] showed that universal one-
way hash functions can be constructed from one-way functions, and in particular, such functions
exist based on the hardness of DDH.

We present an encryption scheme with a secret key of size essentially 6 log q bits (six group
elements), and show that the scheme is secure for any leakage of length ¸ ≤ log q − !(log n) −m,
where m is the length of the plaintext. The following describes the encryption scheme:

∙ Key generation: Choose x1, x2, y1, y2, z1, z2 ∈ ℤq, g1, g2 ∈ G, and H ∈ ℋ uniformly at
random. Let c = gx1

1 gx2
2 , d = gy11 gy22 , ℎ = gz11 gz22 , and output the keys

SK = (x1, x2, y1, y2, z1, z2) , PK = (g1, g2, c, d, ℎ,H) .

∙ Encryption: On input a message M ∈ {0, 1}m, choose r ∈ ℤq and s ∈ {0, 1}t uniformly at
random, and compute

u1 = gr1, u2 = gr2, e = Ext(ℎr, s)⊕M, ® = H(u1, u2, s, e), v = crdr® .

Output the ciphertext (u1, u2, v, s, e).
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∙ Decryption: On input a ciphertext (u1, u2, v, s, e) compute ® = H(u1, u2, s, e), and if v =
ux1+y1®
1 ux2+y2®

2 then output the message

M = e⊕ Ext(uz11 uz22 , s) .

Otherwise output ⊥.

Correctness. For any sequence of coin tosses of the key generation and encryption algorithms
it holds that ux1+y1®

1 ux2+y2®
2 = crdr® = v and that uz11 uz22 = ℎr, and therefore the decryption

algorithm is always correct.

Proof of security. As in Section 6.2, the proof of security is based on augmenting the proof of
Cramer and Shoup with the ideas presented in Section 4. Specifically, we show that any efficient
adversary that breaks the security of the scheme can be used to either distinguish between a DH
instance and a non-DH instance or to break the security of the universal one-way hash functions.
We prove the following theorem:

Theorem 6.10. Assuming the hardness of DDH, the above encryption scheme is semantically-
secure against a-posteriori chosen-ciphertext (L/6 − !(log n) − m)-key-leakage attacks, where n
denotes the security parameter, L = L(n) denotes the length of the secret key and m = m(n)
denotes the length of the plaintext.

Proof. Given an adversary A consider the algorithm A′ that on input (g1, g2, u1, u2) ∈ G4 acts as
follows:

1. A′ chooses x1, x2, y1, y2, z1, z2 ∈ ℤq and H ∈ ℋ uniformly at random, and sets c = gx1
1 gx2

2 ,
d = gy11 gy22 , ℎ = gz11 gz22 , SK = (x1, x2, y1, y2, z1, z2), and PK = (g1, g2, c, d, ℎ,H). Then A′

invokes A with input PK.

2. A′ simulates the leakage oracle and the decryption oracle to A using SK.

3. When A outputs two messages M0 and M1, the simulator A′ chooses b ∈ {0, 1} and s ∈ {0, 1}t
independently and uniformly at random, computes

e = Ext(uz11 uz22 , s)⊕M, ® = H(u1, u2, s, e), v = ux1+y1®
1 ux2+y2®

2 ,

and sends A the challenge ciphertext (u1, u2, v, s, e).

4. If A outputs b then A′ outputs 1, and otherwise A′ outputs 0.

An immediate observation is that if (g1, g2, u1, u2) is a DH instance, then the simulation is
identical to the actual attack (and therefore A should have a non-negligble advantage in outputting
the bit b).

Claim 6.11. If (g1, g2, u1, u2) is a DH instance then A’s view is identical to the actual attack.

Proof. The actual attack and the simulated attack are identical except for the challenge ciphertext.
It remains to prove that the challenge ciphertext has the correct distribution when (g1, g2, u1, u2)
is a DH instance. Indeed, in this case u1 = gr1 and u2 = gr2 for some randomly chosen r ∈ ℤq, and
therefore ux1+y1®

1 ux2y1®
2 = crdr® and uz11 uz22 = ℎr as it should be.
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The more interesting part of the proof is devoted for showing that if (g1, g2, u1, u2) is a non-DH
instance then A has only a negligible advantage in outputting the bit b. From now on we assume
that (g1, g2, u1, u2) is a non-DH instance, where logg1(u1) = r1, logg2(u2) = r2, and r1 ∕= r2.

We denote by (u∗1, u
∗
2, v

∗, s∗, e∗) the challenge ciphertext given to A, and denote by Collision
the event in which for one of A’s decryption queries (u1, u2, v, s, e) it holds that (u1, u2, s, e) ∕=
(u∗1, u

∗
2, s

∗, e∗) and H(u1, u2, s, e) = H(u∗1, u
∗
2, s

∗, e∗). We say that a ciphertext (u′1, u
′
2, v

′, s′, e′) is
invalid if logg1(u

′
1) ∕= logg2(u

′
2).

In what follows we prove that if the event Collision does not occur then A has only a negligible
advantage in outputting the bit b. Specifically, we prove that: (1) if the event Collision does not
occur then the decryption oracle rejects all invalid ciphertexts except with a negligible probability,
and (2) if the decryption oracle rejects all invalid ciphertexts then A has only a negligible advantage
in outputting the bit b. We conclude by proving that the event Collision has a negligible probability
due to the security of the family ℋ of universal one-way hash functions.

Claim 6.12. If (g1, g2, u1, u2) is a non-DH instance and the event Collision does not occur, then
the decryption algorithm rejects all invalid ciphertext except with a negligible probability.

Proof. We prove the claim by considering the distribution of the point (x1, x2, y1, y2) ∈ ℤ4
q from

the adversary’s point of view. Ignoring the leakage functions for now, the adversary is given the
public key (g1, g2, c, d, ℎ,H) and the challenge ciphertext (u1, u2, v, s, e), and therefore from the
adversary’s point of view the point (x1, x2, y1, y2) is uniformly random subject to

⎧
⎨
⎩

logg1(c) = x1 + °x2
logg1(d) = y1 + °y2
logg1(v) = r1x1 + r2°x2 + ®r1y1 + ®r2°y2

,

where ° = logg1(g2). Note that by submitting valid ciphertexts to the decryption oracle the
adversary does not learn any more information on (x1, x2, y1, y2) (in fact, by submitting a valid
ciphertext the adversary only learns a linear combination of the constraint logg1(ℎ) = z1+°z2 that
is already known from the public key).

Denote by (u′1, u
′
2, v

′, s′, e′) ∕= (u1, u2, v, s, e) the first invalid ciphertext submitted by the ad-

versary, where u′1 = g
r′1
1 , u′2 = g

r′2
2 , r′1 ∕= r′2, and ®′ = H(u′1, u

′
2, s

′, e′). Denote by view the view of
the adversary prior to submitting the invalid ciphertext. The adversary learns at most ¸ bits of
leakage, and therefore

H̃∞ ((x1, x2, y1, y2)∣view) ≥ log q − ¸ .

In particular, the definition of average min-entropy implies that prior to submitting the invalid

ciphertext the probability of A in guessing (x1, x2, y1, y2) is at most 2−H̃∞((x1,x2,y1,y2)∣view) ≤ 2¸/q.
There are three cases to consider:

1. (u′1, u
′
2, s

′, e′) = (u1, u2, s, e). In this case ®′ = ® but v ∕= v′ and therefore the decryption
algorithm rejects.

2. (u′1, u
′
2, s

′, e′) ∕= (u1, u2, s, e) and ®′ = ®. This is impossible since we assume that the event
Collision does not occur.

3. (u′1, u
′
2, s

′, e′) ∕= (u1, u2, s, e) and ®′ ∕= ®. In this case, if the decryption algorithm accepts the
invalid ciphertext then we obtain the following linear equations:

⎧
⎨
⎩

logg1(c) = x1 + °x2
logg1(d) = y1 + °y2
logg1(v) = r1x1 + r2°x2 + ®r1y1 + ®r2°y2
logg1(v

′) = r′1x1 + r′2°x2 + ®′r′1y1 + ®′r′2°y2

,
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As long as °2(r1 − r2)(r
′
1 − r′2)(® − ®′) ∕= 0 these equations are linearly independent, and

therefore the adversary can be used to guess (x1, x2, y1, y2). Thus, the probability that the
decryption algorithm accepts the first invalid ciphertext is at most 2¸/q.

An almost identical argument holds for all the subsequent invalid decryption queries. The only
difference is that each time the decryption oracle rejects an invalid ciphertext the adversary can
rule out one more value of (x1, x2, y1, y2). This shows that the decryption algorithm accepts the
i-th invalid ciphertext with probability at most 2¸/(q− i+1). The claim now follows from the fact
that the number of decryption queries is polynomial, and from the restriction ¸ ≤ log q− !(logn).

Claim 6.13. If (g1, g2, u1, u2) is a non-DH instance and the decryption algorithm rejects all invalid
ciphertexts, then A has only a negligible advantage in outputting the bit b.

Proof. We show that if (g1, g2, u1, u2) is a non-DH instance and the decryption algorithm rejects
all invalid ciphertexts then with overwhelming probability the value uz11 uz22 has average min-entropy
at least log q − ¸ ≥ m + !(log n) given all the other values in the adversary’s view. The strong
extractor then guarantees that the part of the challenge ciphertext that depends on the bit b is
²-close to uniform given the adversary’s view, for a negligible ² = ²(n).

We prove the claim by considering the distribution of the point (z1, z2) ∈ ℤq from the adversary’s
point of view. The adversary is given the public key (g1, g2, c, d, ℎ,H) and therefore from the
adversary’s point of view the point (z1, z2) is uniformly random subject to logg1(ℎ) = z1+°z2, where
° = logg1(g2). We assume that the decryption algorithm rejects all invalid ciphertext, and note
that by submitting valid ciphertexts to the decryption oracle the adversary does not learn any more
information (the adversary only learns a linear combination of the constraint logg1(ℎ) = z1 + °z2).
Thus, the adversary does not learn any information on (z1, z2) via decryption queries.

Let u1 = gr11 , u2 = gr22 , and denote by aux the output of all leakage functions chosen by the
adversary. Then from the adversary’s point of view it holds that

H̃∞ (uz11 uz22 ∣ g1, g2, c, d, ℎ,H, aux, u1, u2) = H̃∞ (r1z1 + °r2z2 ∣ °, c, d, ℎ,H, aux, r1, r2) .

Note that as long as °(r1− r2) ∕= 0, then for any w = uz11 uz22 the following two equations (in z1 and
z2) are linearly independent:

{
logg1(ℎ) = z1 + °z2
logg1(w) = r1z1 + °r2z2

which implies that given (°, ℎ, r1, r2) the function (z1, z2) → r1z1 + °r2z2 is injective. Applying an
injective function to a distribution preserves its min-entropy, and therefore

H̃∞ (r1z1 + °r2z2 ∣ °, c, d, ℎ,H, aux, r1, r2) = H̃∞ ((z1, z2) ∣ °, c, d, ℎ,H, aux, r1, r2)

= H̃∞ ((x1, x2) ∣ °, c, d, ℎ,H, aux) ,

where the second equality follows from the fact that (z1, z2, °, c, d, ℎ,H, aux) are all chosen indepen-
dently of (r1, r2). Finally, the leakage aux obtains at most 2¸ possible output values, and therefore
(see Lemma 2.1)

H̃∞ ((z1, z2) ∣ °, c, d, ℎ,H, aux) ≥ H∞ ((z1, z2) ∣ °, c, d, ℎ,H)− ¸

= H∞ ((z1, z2) ∣ °, z1 + °z2)− ¸

≥ log q − ¸ .
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Combining all of the above, with overwhelming probability it holds that

H̃∞ (uz11 uz22 ∣ g1, g2, c, d, ℎ,H, aux, u1, u2) ≥ log q − ¸ .

Claim 6.14. If (g1, g2, u1, u2) is a non-DH instance then the event Collision occurs with only a
negligible probability.

Proof. Given an adversary A for which the event Collision occurs with only a negligible probability,
we construct an algorithm A′′ that breaks the security of the universal one-way hash functions. A′′

is essentially identical to A′ that was described above, except for choosing (u1, u2, s, e) before the
function H is chosen, where e ∈ {0, 1}m is chosen uniformly at random instead of as a function of
the messages M0 and M1. We claim, however, that as long as the event Collision does not occur
then A cannot distinguish between A′ and A′′ (the argument is identical to the proofs of Claims
6.12 and 6.13). Therefore, A helps A′′ to find a collision with H(u1, u2, s, e) with a non-negligible
probability.

Formally, consider the following algorithm A′′ that attacks the family ℋ of universal one-way
hash functions:

1. A′′ chooses (g1, g2, u1, u2) ∈ G4, s ∈ {0, 1}t and e ∈ {0, 1}m uniformly at random, and
announces (u1, u2, s, e).

2. A′′ is given as input a randomly chosen function H ∈ ℋ.

3. A′′ chooses x1, x2, y1, y2, z1, z2 ∈ ℤq independently and uniformly at random, and sets c =
gx1
1 gx2

2 , d = gy11 gy22 , ℎ = gz11 gz22 , SK = (x1, x2, y1, y2, z1, z2), and PK = (g1, g2, c, d, ℎ,H).
Then A′ sends PK to A.

4. A′ simulates the leakage oracle and the decryption oracle to A using SK.

5. In the challenge phase A′ ignores the two messages M0,M1 ∈ {0, 1}m, computes

® = H(u1, u2, s, e), v = ux1+y1®
1 ux2+y2®

2 ,

and sends A the challenge ciphertext (u1, u2, v, s, e).

6. If at some point A submits a decryption query (u′1, u
′
2, v

′, s′, e′) such that (u′1, u
′
2, s

′, e′) ∕=
(u1, u2, s, e) and H(u′1, u

′
2, s

′, e′) = H(u1, u2, s, e) then A′′ outputs (u′1, u
′
2, s

′, e′). Otherwise
A′′ outputs ⊥.

Claim 6.12 guarantees that as long as the event Collision does not occur, then the decryption
algorithm rejects all invalid ciphertexts except with a negligible probability. Claim 6.13 then
guarantees that as long as the decryption algorithm rejects all invalid ciphertexts then A cannot
distinguish betweenA′ and A′′. Specifically, both in the execution withA′ and in the execution with
A′′ the component in the challenge ciphertext that depends on the bit b is ²-close to random given
the adversary’s view (for some negligible ² = ²(n)). Therefore, with a non-negligible probability A
submits a ciphertext (u′1, u

′
2, v

′, s′, e′) such that (u′1, u
′
2, s

′, e′) ∕= (u1, u2, s, e) and H(u′1, u
′
2, s

′, e′) =
H(u1, u2, s, e), and in this case A′′ finds a collision.

This concludes the proof of Theorem 6.10.
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7 Protecting Against Weak Key-Leakage Attacks

In this section we consider weak key-leakage attacks (see Definition 3.4), in which a leakage function
with output length ¸ is chosen by the adversary ahead of time without any knowledge of the public
key. We present a generic construction that transforms any encryption scheme to one that is
resilient to any weak leakage of L(1 − o(1)) bits, where L is the length of the secret key. The
resulting scheme is essentially as efficient as the original one, and does not rely on additional
computational assumptions.

As discussed in Section 1.1, although this notion of key leakage seems very limited, it still
captures many realistic attacks in which the leakage does not depend on the parameters of the
encryption scheme. Specifically, this notion captures the cold boot attack of Halderman et al. [22],
in which the leakage depends only on the properties of the hardware devices that are used for
storing the secret key.

Let Π = (G, ℰ ,D) be any public-key encryption scheme, and denote by m = m(n) the length
of the random string used by G(1n). Given a leakage parameter ¸ = ¸(n), let Ext : {0, 1}k(n) ×
{0, 1}t(n) → {0, 1}m(n) be an average-case (k − ¸, ²)-strong extractor for some negligible ² = ²(n).
Consider the encryption scheme Π¸ = (G¸, ℰ¸,D¸) defined as follows:

∙ Key generation: On input 1n choose x ∈ {0, 1}k(n) and s ∈ {0, 1}t(n) uniformly at random,
and compute (pk, sk) = G(Ext(x, s)). Output PK = (pk, s) and SK = x.

∙ Encryption: On input a message M and a public-key PK = (pk, s), choose r ∈ {0, 1}∗
uniformly at random and output (ℰ(pk,M ; r), s).

∙ Decryption: On input a ciphertext (c, s) and a secret key SK = x, compute (pk, sk) =
G(Ext(x, s)) and output D(sk, c).

The following theorem states that if Π is semantically secure, then Π¸ is resilient to any weak
key leakage of ¸ bits.

Theorem 7.1. Let (G, ℰ ,D) be a semantically secure public-key encryption scheme. Then, for
any polynomial ¸ = ¸(n) the scheme (G¸, ℰ¸,D¸) is semantically secure against weak ¸-key-leakage
attacks.

Proof. We show that for any efficient adversaryA and ensemble ℱ of efficiently computable leakage
functions, there exists an efficient adversary A′ such that

AdvWeakLeakage
Π¸,A,ℱ (n) ≤ AdvCPAΠ,A′(n) + 2²(n) .

For b ∈ {0, 1} consider the following experiment denoted ExptΠ,A,ℱ (b):

1. Choose x ∈ {0, 1}k(n), s ∈ {0, 1}t(n), and y ∈ {0, 1}m(n) uniformly at random. Compute
(pk, sk) = G(y). Let PK = (pk, s) and SK = sk.

2. (M0,M1, state) Ã A1(PK, fn(x)) such that ∣M0∣ = ∣M1∣.
3. C Ã ℰpk(Mb).

4. b′ Ã A2(C, state)

5. Output b′.
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Using the notation of Definition 3.4 and the triangle inequality, for any adversary A it holds that

AdvWeakLeakage
Π¸,A,ℱ (n) =

∣∣∣Pr
[
ExptWeakLeakage

Π¸,A,ℱ (0) = 1
]
− Pr

[
ExptWeakLeakage

Π¸,A,ℱ (1) = 1
]∣∣∣

≤
∣∣∣Pr

[
ExptWeakLeakage

Π¸,A,ℱ (0) = 1
]
− Pr

[
ExptΠ,A,ℱ (0) = 1

]∣∣∣ (7.1)

+
∣∣Pr [ExptΠ,A,ℱ (0) = 1

]− Pr
[
ExptΠ,A,ℱ (1) = 1

]∣∣ (7.2)

+
∣∣∣Pr

[
ExptΠ,A,ℱ (1) = 1

]− Pr
[
ExptWeakLeakage

Π¸,A,ℱ (1) = 1
]∣∣∣ . (7.3)

The experiment ExptΠ,A,ℱ (b) is identical to the experiment ExptWeakLeakage
Π¸,A,ℱ (b) other than the fact

that the key generation algorithm G is invoked on a truly random input y and not on input Ext(x, s).
Note, however, that the average min-entropy of x given fn(x) is at least k − ¸, and therefore the
strong extractor guarantees that the statistical distance between the views of the adversary in these
two experiments is at most ². A crucial point here is that the leakage function is independent of
the public key, and specifically, independent of the seed s. This implies that each of the terms (7.1)
and (7.3) is upper bounded by ².

In addition, it is rather straightforward that there exists a CPA-adversary A′ for which the
term (7.2) is upper bounded by AdvCPAΠ,A′(n), and this concludes the proof.

Generalization to hard-to-invert leakage. So far in this paper we considered leakage attacks
in which the secret key is information-theoretically unpredictable given the leakage information.
One can also consider leakage attacks in which the secret key is only computationally unpredictable.
That is, the leakage may completely determine the secret key, but it is computationally hard to
actually recover the secret key. Such a notion of key leakage was studied by Dodis, Tauman Kalai,
and Lovett [13] in the setting of symmetric-key encryption. They introduced a new computational
assumption that is a generalization of learning parity with noise, and constructed symmetric-key
encryption schemes that are resilient to leakage of the form f(sk), where f is any exponentially-hard
one-way function.

The above construction for protecting against weak key-leakage attacks can be generalized in a
straightforward manner to provide protection against any leakage that is sufficiently hard to invert.
Specifically, the only modification to the above construction is that the strong extractor Ext(x, s)
is replaced by Goldreich-Levin hard-core bits GL(x, s) [18] (recall that x is the secret key, and s is
part of the public key). Thus, the resulting encryption scheme is secure with respect to any leakage
of the form f(x), where GL(x, s) is a string of m² bits (for some constant ² > 0) that is hard core
for f (note that a pseudorandom generator can be applied to GL(x, s) to obtain a pseudorandom
string of length m to be used by the key-generation algorithm). In particular, this is known to
be satisfied by any 2Ω(m²)-hard one-way function f : {0, 1}m → {0, 1}m′

(see, for example, [18,
Corollary 1]).

8 Protecting Against Generalized Forms of Key-Leakage Attacks

In this section we present several generalizations of key-leakage attacks that extend the framework
presented in Section 3, and show that they are satisfied by our schemes.

8.1 Noisy Leakage

In the side-channel attack of Halderman et al. [22] the adversary learns a noisy version of all of the
memory. This is a more general scenario than the scenario captured by Definition 3.1: The leakage
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is not of bounded length, but it is guaranteed that the secret key is still somewhat unpredictable
given the leakage. This motivates a realistic generalization that allows the adversary to learn
any random variable W (representing the leakage information) for which the conditional mutual
information (adapted to average min-entropy8) of the secret key and W given the public key is at
most ¸. That is, the adversary can learn any random variable W for which

Ĩ∞ (SK;W ∣PK)
def
= H̃∞ (SK∣PK)− H̃∞ (SK∣PK,W ) ≤ ¸

In the information-theoretic setting, this generalization does not necessarily strengthen the defi-
nition, since W may be compressed to essentially ¸ bits. However, in the computational setting
(which is the setting we consider in this work) we can conjecture that this notion is stronger9.

Our generic construction from hash proof systems satisfies this notion of security assuming an
additional property of the underlying hash proof system (that is satisfied by all the constructions
in this paper). Informally, using the notation introduced in Section 2.3, the required property is
that with overwhelming probability over the choice of an invalid ciphertext C ∈ C ∖ V, there is no
substantial gap between the min-entropy of the secret key sk ∈ SK and the min-entropy of the
encapsulated key Λsk(C) ∈ K, both conditioned on the public key pk ∈ PK. For example, for the
hash proof systems underlying the schemes in Sections 4.2 and 5.1 it holds that Ĩ∞ (Λsk(C);W ∣pk) =
Ĩ∞ (sk;W ∣pk), and this suffices for the same proofs of security to go through (a slightly more subtle
property holds for the hash proof system underlying the scheme in Section 5.2). In addition, it is
rather straightforward to verify that our CCA-secure constructions (both the generic construction
and the two specific constructions) and the generic construction for protecting against weak leakage
attacks satisfy this notion of security.

8.2 Leakage of Intermediate Values from the Key-Generation Process

Definition 3.1 assumes that the adversary does not learn any of the intermediate values that occur
during the generation of the secret and public keys. In practice, however, this is not always a valid
assumption. Specifically, in the attack of Halderman et al. [22] the adversary learns a noisy version
of all of the memory, and it is rather likely that intermediate values from the generation of the keys
are not always completely erased. This motivates a natural generalization that allows the adversary
to learn functions of the random bits that are used by the key generation algorithm. Encryption
schemes that satisfy this notion of security are more robust to leakage in the sense that the key
generation algorithm does not have to make sure that all intermediate key-related values have been
deleted. In addition, this generalization is especially important to security under composition of
cryptographic primitives. For example, the key generation algorithm may use random bits (or
pseudorandom bits) that are the output of another primitive (say, a pseudorandom generator)
which may also suffer from unintended leakage of sensitive information.

All of our constructions in this paper, except for the generic CCA-secure construction in Section
6.1 (see comment below), are secure according to this generalization. Informally, the proofs of
security of our schemes (other than the generic CCA-secure scheme) rely on an indistinguishability
argument over the challenge ciphertext and not over the public key. As a result, the simulators in
the proofs of security always generate the secret key and public key by themselves, and therefore
they know the random bits used by the key generation algorithm and can simulate the leakage
oracle to the adversary. A minor comment is that the simulators do not always generate the

8For Shannon entropy, the conditional mutual information of X and Y given Z is defined as I(X;Y ∣Z) = H(X∣Z)−
H(X∣Y, Z).

9See, as an analogy, the trade-off presented by Harsha et al. [23] between communication complexity and compu-
tation.
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public parameters of the hash proof system by themselves. These public parameters, however, can
be shared among all users and therefore they do not have to be included in the key generation
algorithm. For example, when instantiating the generic construction presented in Section 4.1 with
the Paillier-based hash proof system of Cramer and Shoup [8], the public parameters include a
modulus N = PQ. In this case, as demonstrated by Rivest and Shamir [41], an adversary that
obtains leakage information on the random bits used to generate N can efficiently compute its
factorization and completely compromise the security of the scheme. However, the factorization
of N is not needed for the encryption scheme (i.e., it is not part of the secret key), and therefore
it is possible to assume that N is publicly known and is not part of the key generation algorithm
(exactly as suggested in [8]).

The generic CCA-secure construction in Section 6.1 can be made secure against such attacks by
requiring two additional simple properties from its building blocks. First, the public key pk1 should
be sampled without producing a corresponding secret key (note that the secret key of the resulting
scheme does not include sk1 anyway). That is, there should be an efficient algorithm that generates
pk1, such that the scheme is secure even if the adversary knows the random bits used for generate
pk1. This property is satisfied by the schemes in Sections 4.2, 5.1, and 5.2. Moreover, we note that
in fact pk1 does not have to come from an encryption scheme that is resilient to key-leakage attacks
– only pk0 has to be resilient to key-leakage attacks (as shown by the proofs of Claims 6.4 and 6.5),
and therefore any public-key encryption scheme with such an oblivious sampling algorithm can be
used for pk1. Second, the NIZK proof system should also have such a property with respect to the
common reference string. That is, the NIZK proof system should maintain its security even if the
adversary knows the random bits used for generating the common reference string (note that this
should hold only for the “real” reference string, and not for the “simulated” one). In particular, this
is satisfied by any NIZK proof system in which the common reference string is a uniformly random
string. A similar comment is in place also for the CCA2-secure construction in Section 6.3: the
universal one-way hash functions should be secure even if the adversary knows the random bits used
for generating the description of a function. In general, this is a seemingly stronger requirement
(see [25]), but in practice this is not a concern since the universal one-way hash functions can be
instantiated with a fixed hash function, such as SHA-256.

8.3 Keys Generated using Weak Random Sources

When considering leakage of the random bits that are used by the key generation algorithm (as in
Section 8.2), then from the adversary’s point of view these bits are uniformly distributed subject
to the leakage information. A natural generalization in this setting is to consider cases in which
the keys are generated using a weak source of random bits. This is relevant, in particular, in light
of crucial security vulnerabilities that were recently identified in pseudorandom generators that are
used by many systems [15, 21, 47].

Formally, we consider the following security experiment. First, a global algorithm generates
public parameters for the encryption scheme. These parameters are generated using truly random
(or pseudorandom) bits, and are shared among all users. Next, we allow the adversary to specify a
distribution of random bits that will be used to generate the secret key and public key of a specific
user. The adversary can choose this distribution as a function of the public parameters, and the
only restriction is a predetermined lower bound on the min-entropy of the distribution. Then, the
experiment continues as in the standard indistinguishability of encryptions experiment.

Our schemes in Sections 4.2, 5.1, 5.2, and 6.2 satisfy this notion of security. For simplicity, we
exemplify this fact using the scheme from Section 4.2, and note that ideas we present here easily
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extend to the other schemes10. The public parameters of the scheme consist of a description of
a group G of prime order q, and two generators g1, g2 ∈ G that are chosen uniformly at random
(these are the public parameters of the corresponding hash proof system). The secret key of the
scheme is a pair (x1, x2) ∈ ℤ2

q , and we allow the adversary to specify the distribution from which
the secret key is sampled. The adversary can choose this distribution as a function of the public
parameters, and we only require that it has min-entropy at least log q + !(log n) + m, where m
is the length of plaintexts (note that this is rather far from the uniform distribution over ℤ2

q for
a wide range of parameters). The public key is then computed as ℎ = gx1

1 gx2
2 . For the proof of

security, we observe that if (g1, g2, u1, u2) is not a Diffie-Hellman tuple (i.e., u1 = gr11 , u2 = gr22 , and
r1 ∕= r2), then it holds that

H̃∞ (ux1
1 ux2

2 ∣ℎ) = H̃∞ ((x1, x2)∣ℎ) ≥ H∞ (x1, x2)− log q = m+ !(log n)

Thus, the average-case strong-extractor Ext guarantees that Ext(ux1
1 ux2

2 , s) statistically masks the
m-bit challenge plaintext.

8.4 Leakage of Intermediate Values from the Decryption Process

An additional strengthening of Definition 3.1 is to consider leakage that may occur during com-
putation, and not only leakage from the stored key. Specifically, an invocation of the decryption
algorithm may produce various intermediate values, whose leakage may compromise the security
of the scheme even if the scheme is robust against leakage from the stored key. Such a notion of
security is generically guaranteed when considering leakage of fixed bounded length (as in Defini-
tion 3.1). However, it is not always guaranteed when the adversary obtains all of the memory in a
noisy fashion (as discussed in Section 8.1).

Consider the seemingly contrived example of a decryption algorithm that first encodes the secret
key using a good error-correcting code, and then performs the actual decryption. In this case, an
adversary that obtains a noisy variant of the memory can clearly recover the secret key. This exam-
ple, however, is not so contrived, since as demonstrated by Halderman et al., encryption schemes
typically compute intermediate key-related values whose representation is rather redundant, and
this can be used to attack the scheme. Moreover, even if the encryption scheme itself does not ex-
plicitly instructs to compute intermediate values, it may be the case that such values are computed
by a specific implementation of the encryption scheme.

Although when presenting our encryption schemes in this paper we do not specify exact im-
plementations of their decryption algorithms, we point out that they can be implemented while
introducing only minimal redundancy. That is, the key-related computation has “low bandwidth”:
at any point in time the (natural) decryption algorithm works on a limited part of the key and the
intermediate results are also succinct. For example, the natural implementation of the decryption
algorithms of the schemes in Section 5 require space that is significantly smaller than the size of
their corresponding secret keys: for the scheme in Section 5.2, the length of the secret key is ℓ bits,
and the decryption algorithm requires only O(log q) bits where ℓ is significantly larger than log q,
and a similar property is satisfied by the scheme in Section 5.1.

10We note that these feasibility results do not contradict the negative result of Dodis et al. [10] on the possibility
of public-key encryption with imperfect randomness. Specifically, our generalization circumvents their impossibility
result by assuming that truly random bits are available for the encryption algorithm, and that only the keys are
generated using imperfect randomness.
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A The Matrix d-Linear Assumption

Let G be an algorithm that takes as input a security parameter and outputs a triplet G = (G, q, g)
where G a group of order q that is generated by g. We denote by Rki(ℤa×b

q ) the set of all a × b

matrices over ℤq with rank i. For a matrix R = {ri,j}i∈[a],j∈[b] ∈ ℤa×b
q we denote by gR the matrix

{gi,j}i∈[a],j∈[b] = {gri,j}i∈[a],j∈[b] ∈ Ga×b.
The matrix d-Linear assumption is that for any integers a and b, and for any d ≤ i < j ≤

min{a, b} the ensembles {(G, gR)}R∈Rki(ℤa×b
q ),n∈ℕ and {(G, gR)}R∈Rkj(ℤa×b

q ),n∈ℕ are computationally

indistinguishable, where G = (G, q, g) Ã G(1n). We prove the following lemma (noting that Boneh
et al. [6] proved it for d = 1):

Lemma A.1. The d-Linear assumption implies the matrix d-Linear assumption.

Proof. We show that for any d ≤ i < min{a, b} an efficient distinguisher A that distinguishes be-
tween the ensembles {(G, gR)}R∈Rki(ℤa×b

q ),n∈ℕ and {(G, gR)}R∈Rki+1(ℤa×b
q ),n∈ℕ with a non-negligible

advantage can be used to construct an efficient distinguisher A′ for the d-Linear problem.
On input

(
G, g1, . . . , gd+1, g

r1
1 , . . . , g

rd+1

d+1

)
where G = (G, q, g) Ã G(1n), the distinguisher A′

constructs the following matrices:

Φ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 g0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ g0 gd+1

g0 g2 g0 ⋅ ⋅ ⋅ g0 gd+1
...

...
. . .

...
...

...
...

. . .
...

...
g0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ g0 gd gd+1

gr11 gr22 ⋅ ⋅ ⋅ g
rd−1

d−1 grdd g
rd+1

d+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ G(d+1)×(d+1)

Φ2 =

⎛
⎝

Φ1

Idi−d

0a−i,b−i

⎞
⎠ ∈ Ga×b

where Idi−d is the identity matrix of size i − d of G (i.e., g on the main diagonal and g0 all other
entries), 0a−i,b−i is the zero matrix of G of size (a − i) × (b − i) (i.e., g0 all entries), and all the
other blocks in Φ2 are zero matrices.

Then, A′ chooses invertible matrices L ∈ ℤa×a
q and R ∈ ℤb×b

q independently and uniform at

random, invokes A on input Φ3 = L ⊗ Φ2 ⊗ R ∈ Ga×b (where ⊗ is naturally defined using ℤq

operations in the exponent), and outputs whatever A outputs.
In what follows we prove that with overwhelming probability if rd+1 =

∑d
i=1 ri then Φ3 = gΨ3

for a randomly chosen Ψ3 ∈ Rki(ℤa×b
q ), and if rd+1 ∕=

∑d
i=1 ri then Φ3 = gΨ3 for a randomly chosen

Ψ3 ∈ Rki+1(ℤa×b
q ). For every 1 ≤ i ≤ d+ 1 let wi = logg(gi). Then Φ1 = gΨ1 where

Ψ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 wd+1

0 w2 0 ⋅ ⋅ ⋅ 0 wd+1
...

...
. . .

...
...

...
...

. . .
...

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 wd wd+1

w1r1 w2r2 ⋅ ⋅ ⋅ wd−1rd−1 wdrd wd+1rd+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ ℤ(d+1)×(d+1)
q .
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The elements g1, . . . , gd+1 are chosen uniformly at random, and therefore with overwhelming prob-
ability it holds that

∏d+1
i=1 wi ∕= 0. In this case, if rd+1 =

∑d
i=1 ri then Ψ1 has rank d, and if

rd+1 ∕=
∑d

i=1 ri then Ψ1 has rank d+ 1. There, the matrix

Ψ2 =

⎛
⎝

R1

Idi−d

0a−i,b−i

⎞
⎠ ∈ ℤa×b

q

either has rank i if rd+1 =
∑d

i=1 ri or has rank i + 1 if rd+1 ∕= ∑d
i=1 ri. This implies that Ψ3 =

LΨ2R ∈ ℤa×b
q is either a uniformly distributed matrix with rank i or a uniformly distributed matrix

with rank i+ 1.
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