
Further Results on Implicit Factoring in Polynomial

Time

Santanu Sarkar and Subhamoy Maitra

Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
{santanu r, subho}@isical.ac.in

Abstract. In a very recent work, May and Ritzenhofen presented some interesting problems related
to factoring large integers with some implicit hints and one of the problems is as follows. Consider
N1 = p1q1 and N2 = p2q2, where p1, p2, q1, q2 are large primes. The primes p1, p2 are of same bit-size
with the constraint that certain amount of Least Significant Bits (LSBs) of p1, p2 are same. Further
the primes q1, q2 are of same bit-size without any constraint. May and Ritzenhofen proposed a strategy
to factorize both N1, N2 in poly(log N) time (N is an integer with same bit-size as N1, N2) with the
implicit information that p1, p2 share certain amount of LSBs. We look at the same problem with a
different lattice-based strategy and our method works when implicit information is available related to
either Most Significant Bits (MSBs) or LSBs. Given q1, q2 ≈ Nα, we show that one can factor N1, N2

simultaneously in poly(log N) time (under some assumption related to Gröbner Basis) when p1, p2

share (1 − α − β) log2 N many LSBs or MSBs, where −4α2 − 2αβ − 1

4
β2 + 4α + 5

3
β − 1 < 0 provided

1− 3

2
β − 2α ≥ 0. The MSB case has not been studied earlier, which we consider in this paper and find

encouraging results. The work of May and Ritzenhofen studied the LSB case, where we always find
better results in experiments; our theoretical formula also provide improved results in certain range.
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1 Introduction

Very recently, in [9], a new direction towards factorization with implicit information has
been introduced. Consider two integers N1, N2 such that N1 = p1q1 and N2 = p2q2 where
p1, q1, p2, q2 are primes and p1, p2 share t least significant bits (LSBs). It has been shown
in [9] that when q1, q2 are primes of bit-size α, then N1, N2 can be factored simultaneously if
t ≥ 2(α+1). This bound on t has further been improved when N1 = p1q1, N2 = p2q2, . . . , Nk =
pkqk and all the pi’s share t many LSBs. The motivation of this problem comes from oracle
based complexity of factorization problems. Prior to the work of [9], the main assumption in
this direction was that an oracle explicitly outputs certain amount of bits of one prime. The
idea of [9] deviates from that idea in the direction that none of the bits of the prime will
be known, but some implicit information can be available regarding the prime. That is, an
oracle, on input to N1, outputs a different N2 as described above. A nice motivation towards
the importance of this problem is presented in the introduction of [9].

Factoring of large integers is one of the most challenging problems in Mathematics and
Computer Science. The quadratic Sieve [11], the elliptic curve method [5] and number field
sieve [6] are among the significant works on classical computing model. Till date, there is
no known polynomial time factorization algorithm on this model, though in a seminal work
Shor [13] has presented a polynomial time algorithm for factorization on quantum computing



platforms. Towards the partial results for efficient factorization in classical domain (factoring
with explicit information from an oracle according to [9]), Rivest and Shamir [12] showed
that N (where N = pq) can be factored efficiently when 3

5
log2 p many MSBs of p are known.

Later, Coppersmith [2] improved this bound, where 1
2
log2 p many MSBs of p need to be

known for efficient factorization.

In this paper we assume the equality of either the MSBs or the LSBs, i.e., we consider that
p1, p2 share either t many MSBs or t many LSBs. Our approach in solving the problem is different
from that of [9].

We like to point out that the event of getting two primes with a many LSBs equal is
approximately as frequent as getting two primes with a many MSBs equal. This can be noted
as follows. Let i be an a bit integer. Consider two sets A and B where

A = {p : p is a prime of a + b bits and a many MSBs of p is i},

B = {p : p is a prime of a + b bits and a many LSBs of p is i}.

We first calculate cardinality of A. Let X = 2bi. Then from prime number theorem [1, Page

65] |A| ≈ X+2b−1
log(X+2b−1)

− X
log X

≈ 2b

log X
(assume b < a) ≈ 2b

log 2a+b , which is O(2b). Also, we have

B = {p : p is a prime of a + b bits and p ≡ i(mod2a)}. From Dirichlet’s theorem related to

prime numbers [1, Page 154], we have |B| ≈ ( 2a+b−1
log(2a+b−1)

− 2a+b−1−1
log(2a+b−1−1)

) 1
φ(2a)

≈ 2a+b−1

log 2a+b

1
2a−1 ,

which is again O(2b). Thus, |A| and |B| are of the same order.

In the next section we present our ideas. The technique is based on lattice reduction. For
detailed notion on the technique we use, the readers are referred to [10, 4].

2 Implicit Factoring of Two Large Integers

Here we present the exact conditions on p1, q1, p2, q2 under which N1, N2 can be factored
efficiently. For this we first need the following discussion.

Suppose we have a set of polynomials {f1, f2, . . . , fl} on three variables having same root
(x1,0, x2,0, . . . , xn,0). Then a Gröbner Basis {g1, g2, . . . , gt} is a set of polynomials that preserve
the set of common roots of {f1, f2, . . . , fl}. In this case, g1, g2, . . . , gt can be computed with
respect to some ordering such that the roots can be collected eliminating the variables.
Though this is true in practice, theoretically this may not always happen. For this to be
always true, one needs the following assumption. This kind of assumption has already been
used in [4, Section 6].
Assumption 1. Let J be the ideal generated by {f1, f2, . . . , fl}. We consider that the variety
V (J) of the ideal J is zero-dimensional.

Throughout this paper, we will consider p1, p2 are primes of same bit size and q1, q2 are primes
of same bit size. Thus N1 = p1q1 and N2 = p2q2 are also of same bit size. We use N to represent
an integer of same bit size as of N1, N2.



2.1 The MSB Case

The study when p1, p2 share some MSBs has not been considered in [9], which we present in
this section. The following theorem states our main technical result.

Theorem 1. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes. Let Q1, Q2 ≈ Nα,

and |P1 − P2| < Nβ. Under Assumption 1, one can factor N1, N2 in polynomial time if

−4α2 − 2αβ − 1
4
β2 + 4α + 5

3
β − 1 < 0 provided 1 − 3

2
β − 2α ≥ 0.

Proof. Here p1, p2 share certain amount of MSBs and we write p1 = p + P1 and p2 = p + P2,
where the LSBs of p are zero. Thus, N1 = (p+P1)q1 and N2 = (p+P2)q2. Eliminating p, we
get q2q1(P2−P1)+N1q2−N2q1 = 0. Thus we need to solve f ′(x, y, z) = xyz+N1x−N2y = 0
whose roots corresponding to x, y, z are q2, q1, p2 − p1. Since there is no constant term in f ′,
we define a new polynomial f(x, y, z) = f ′(x−1, y, z) = xyz−yz+N1x−N1−N2y. The root
(x0, y0, z0) of f is (q2 + 1, q1, p2 − p1). The idea of modifying the polynomial with a constant
term was introduced in [3, Appendix A] and later used in [4] which we follow here.

Let X, Y, Z be the upper bounds of q2+1, q1, p2−p1 respectively. As given in the statement
of this theorem, X = Nα, Y = Nα, Z = Nβ. Following the “Extended Strategy” of [4, Page
274],

S =
⋃

0≤j≤t

{xiyjzk+j : xiyjzk is a monomial of fm},

M = { monomials of xiyjzkf : xiyjzk ∈ S}.

We exploit t many extra shifts of z where t is a non-negative integer. Our aim is to find two
more polynomials f0, f1 that share the root (q2 + 1, q1, p2 − p1) over the integers.

From [4], we know that these polynomials can be found by lattice reduction if

Xs1Y s2Zs3 < W s, (1)

where sj =
∑

xi1yi2 zi3∈M\S ij for j = 1, . . . , 3, and W = ||f(xX, yY, zZ)||∞ ≥ N1X.

One can check s1 = m3

2
+ 5

2
m2 + 4m + 2 + 2t + 3

2
m2t + 7

2
mt, s2 = 5

6
m3 + 4m2 + 37

6
m +

3 + 2t + 3
2
m2t + 7

2
mt, s3 = 1

2
m3 + 5

2
m2 + 4m + 2 + 3

2
t2 + 7

2
t + 3

2
m2t + mt2 + 9

2
mt, and

s = 1
3
m3 + 3

2
m2 + 13

6
m + 1 + t + m2t + 2mt.

Neglecting lower order terms, form (1), we get the condition as

X
m

3

2
+ 3

2
m2tY

5

6
m3+ 3

2
m2tZ

m
3

2
+ 3

2
m2t+mt2 < W

m
3

3
+m2t.

Let t = τm. Then we get the required condition is

τ 2β + (2α +
3

2
β − 1)τ + (α +

β

2
−

1

3
) < 0. (2)

Now optimal value of τ to minimize the left hand side of (2) is
1− 3

2
β−2α

2β
. Putting this optimal

value, the required condition will be −64α2 − 32αβ − 4β2 + 64α + 80
3
β − 16 < 0. That

is, when this condition holds, according to [4], we get two polynomials f0, f1 such that
f0(x0, y0, z0) = f1(x0, y0, z0) = 0. Under Assumption 1, we can extract x0, y0, z0 following the
method of [8, Section 6]. ut



Remark 1. In the proof of Theorem 1, we have applied extra shift over z. In fact, we have
tried with extra shifts on x, y too. However, we have noted that the best theoretical as well
as experimental results are achieved using extra shifts on z.

It is clear from Theorem 1, that fixing the bit-size of N , if the size of q1, q2 (i.e., α)
increases, then the equality of the MSBs of p1, p2 should increase (i.e., β should decrease)
for efficient factorization of N1, N2.

The theoretical as well as experimental results are presented in Table 1. The experimental
results in each row are based on average of five runs where N1, N2 are 1000-bit integers. We
have written the programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on a computer with
Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB RAM and 2 MB Cache. The
experiments in Table 1 are performed with lattice dimension 46 (parameters m = 2, t = 1)
and each lattice reduction takes around 30 seconds.

To explain the results of Table 1, let us concentrate on the first row. As α = 0.23, we have
q1, q2 are of bit size 0.23×1000 = 230. Thus, p1, p2 are of bit size 1000−230 = 770. Now, the
numerical value from Theorem 1 tells that 770−0.255×1000 = 515 many MSBs of p1, p2 need
to be equal to have efficient factorization of N1, N2 simultaneously. However, the average of
the experimental results are more encouraging which shows that only 770−0.336×1000 = 434
many MSBs of p1, p2 need to be equal to have efficient factorization of N1, N2 simultaneously.

α Numerical upper bound of β Results achieved for β

following Theorem 1 from experiments

0.23 0.255 0.336

0.24 0.239 0.313

0.25 0.225 0.296

0.26 0.210 0.269

0.27 0.196 0.250

Table 1. Theoretical and experimental values of α, β for which N1, N2 can be factored efficiently.

Remark 2. From Table 1 it is clear that we get much better results in experiments than the
theoretical bound. This is because, for the parameters we consider here, the shortest vectors
belong to some sub-lattice. However, the theoretical calculation in Theorem 1 cannot capture
that and further, identifying such optimal sub-lattice seems to be difficult as pointed out
in [4, Section 7.1].

We also present evidences to show that higher lattice dimension provides better experi-
mental results. In Examples 1, 2, we find that when α = 0.25, the values of β that can be
achieved are as high as 0.308, 0.311 respectively for lattice parameters m = 3, t = 2. These
results are better than the average β = 0.296 as presented in Table 1 for m = 2, t = 1.

Example 1. For a demonstration of the experiment, consider 750-bit primes p1 and p2

3967780110926558985695599259225508707353082348138173713914249580078148537872



6599867324275434123532276863604353073078110457548149609593185038269904949915
38951443158292762268189891045388828922478530615979139037853178431738420087 and
3967780110926558985695599259225508707353082348138173713914249580078148537872
6599867324275434123532276863604353073078110457548149609597672639849904669875
11414871763397210786172961055167000499946887837157176166275686743465332147.
Note that p1, p2 share 442 many MSBs. Further, q1, q2 are 250-bit primes
1791405259026492103131865184203435870047916914753003354202248185126637129539 and
1359854273468970113914581544928445498889538930116761650886947228775354080297
respectively. We use lattice of dimension 105 (parameters m = 3, t = 2) and the lattice
reduction takes 6457.84 seconds. ut

Example 2. As another experimental result, consider 750-bit primes p1 and p2

3103293851234545621612884177271352199071965229969307590769556901553501696121
4868945041507537781070498998947022575729439699731098420594278482621105745216
61287756193724060104016731225285634163002534645448007119837656454227440177 and
3103293851234545621612884177271352199071965229969307590769556901553501696121
4868945041507537781070498998947022575729439699731098420635006115660343901889
86791515114690594523923567275780555267831035031294553991617471138271288077.
Note that p1, p2 share 439 many MSBs. Further, q1, q2 are 250-bit primes
1761986055485501596400884508719659270275271677762068580864458138443043985389 and
1793915333056311315115475413216227307458109801843263226409813428452265284467
respectively. We use lattice of dimension 105 (parameters m = 3, t = 2) and the lattice
reduction takes 7150.09 seconds. ut

In Theorem 1, we have considered that given the conditions, we can find f0, f1 by lattice
reduction. However, in practice, one may get more polynomials. In our experiments, we used
four polynomials f0, f1, f2, f3 that come after lattice reduction. Let J be the ideal generated
by {f, f0, f1, f2, f3} and let the corresponding Gröbner Basis be G. We studied the first
three elements of G and found that one of them is of the form xy − q2

q1
y2 − y. Note that

x0 = q2 + 1, y0 = q1 is the root of this polynomial.
Thus the result of Theorem 1 and the experimental evidences show that under certain

conditions polynomial time factoring is possible with implicit hints.

2.2 The LSB Case

Let us first explain the ideas presented in [9]. Let N1 = p1q1 and N2 = p2q2. In [9, Section
3], it has been explained that if q1, q2 ≈ Nα, then for efficient factorization of N1, N2, the
primes p1, p2 need to share at least 2α log2 N many LSBs.

Our strategy is different from the strategy of [9] and we apply the similar technique as
explained in Section 2.1.

Theorem 2. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes. Let q1, q2 ≈ Nα.

Consider that γ log2 N many LSBs of p1, p2 are same, i.e., p1 ≡ p2 mod Nγ . Let β = 1−α−γ.

Under Assumption 1, one can factor N1, N2 in polynomial time if −4α2 − 2αβ − 1
4
β2 + 4α +

5
3
β − 1 < 0 provided 1 − 3

2
β − 2α ≥ 0.



Proof. We can write p1 = p+NγP1 and p2 = p+NγP2. Thus, p1 − p2 = Nγ(P1 −P2). Since,
p1 = N1

q1
and p2 = N2

q2
, we get Nγ(P1 − P2)q1q2 + N2q1 − N1q2 = 0. Thus we need to solve

f ′
LSB(x, y, z) = Nγxyz+N2y−N1x = 0 whose roots corresponding to x, y, z are q2, q1, P2−P1.

Since there is no constant term in f ′
LSB, we define a new polynomial fLSB(x, y, z) = f ′

LSB(x−
1, y, z) = Nγxyz−Nγyz+N2y−N1x+N1. The root (x0, y0, z0) of fLSB is (q2 +1, q1, P2−P1).

One may note the form of fLSB is similar to that of f in the proof of Theorem 1. From this
point, the proof of this theorem follow in a similar manner that of the proof of Theorem 1.
One should note that the bound of W as in the proof of Theorem 1 and in this proof are
same as the terms NγXY Z and N1X are of the same order. Thus the final result is same as
the result achieved in Theorem 1. ut

The numerical values related to the theoretical result of [9] and Theorem 2 as well as
experimental results are presented in Table 2. The experimental results in each row are based
on one run where N1, N2 are 1000-bit integers. The experiments in Table 2 are performed
with lattice dimension 46 (parameters m = 2, t = 1) and each lattice reduction takes around
30 seconds. Similar to the observation in Section 2.1, we note from Table 2 that better results
are obtained in experiments than the theoretical bound. We believe the reason is same as
explained in Remark 2 in Section 2.1.

α Numerical upper bound of β Numerical upper bound of β Results achieved for β

following [9] following Theorem 2 from experiments

0.23 0.31 0.255 0.336

0.24 0.28 0.239 0.314

0.25 0.25 0.225 0.296

0.26 0.22 0.210 0.268

0.27 0.19 0.196 0.251

Table 2. Theoretical and experimental values of α, β for which N1, N2 can be factored efficiently.

In our notation, the number of MSBs in each of p1, p2 that are unshared is β log2 N . Thus
β = (1−α)−2α = 1−3α, where α log2 N is the bit size of q1, q2. Table 2 identifies that while
our theoretical result is either worse or better than that of [9] based on the values of α, the
experimental results that we obtain are always better than [9]. In the introduction of [9], it
has been pointed out that for 250-bit q1, q2 and 750-bit p1, p2, the primes p1, p2 need to share
502 many LSBs. We have implemented the strategy of [9] and observed similar results.

On the other hand, our experimental results are better as evident from Table 2, when α =
0.25. In fact, we experimented with a higher lattice dimension as explained in Examples 3, 4
and our strategy requires only 442 and 439 many LSBs respectively to be shared in p1, p2.
These results are much better than [9], where 502 many LSBs have been shared.

Example 3. In this experiment, consider 750-bit primes p1 and p2

5232464401790173496889776813731992463007796797197958752484439607191540455235
6608087324378089911735572744300332234102069657955934461989289309962068103250



78810654140616439325724089448684722792481034854929045247229685114499401607 and
4311796718402237315332622037900773800355832324549261614699895316190733254104
0376948850231036794311185546576317750184830286997614825307318419096215142451
35730269665188193197190838441262406453523279005533091728042442492020950919.
Note that p1, p2 share 442 many LSBs which will be clear if one writes p1, p2 in binary and
checks the LSBs. Further, q1, q2 are 250-bit primes
1631651738790114027147107602960138604308539138427653628254827153426896347739 and
1776124692833044236475237348456766321872003926797460168161822934670015844393
respectively. We use lattice of dimension 105 (parameters m = 3, t = 2) and the lattice
reduction takes 7160.63 seconds. ut

Example 4. Here we consider 750-bit primes p1 and p2

5895254139679228077142387416586490039613283191466241401307494261824605966908
4690420722716275439075281566487074700579275565739610880278518405272767367010
03322173329476277711235116947599147048863366019662261619304575961682668297 and
4392119049423447468690947059559090008016802774014559696547174955333794465234
2861564934625350120675407265601224878945969002652471346685040069850301681742
01428949181076294088915910886847055459554005392066246146594876423472933641.
Note that p1, p2 share 439 many LSBs. Further, q1, q2 are 250-bit primes
916010977814643010666950783967979656772444969801926690589674791043059104197 and
1587061752065032326280290326014711341044827082150757395718254111544994945759
respectively. We use lattice of dimension 105 (parameters m = 3, t = 2) and the lattice
reduction takes 7273.52 seconds. ut

We now discuss in more details how our strategy compares with that of [9]. It is indeed
clear from Table 2, that our experimental results provide much better performance than the
theoretical results presented in our paper as well as in [9]. Moreover, we now explain how
the technique of [9] and our strategy compare in terms of theoretical results.

Let us first concentrate on the formula β = 1 − 3α, that characterizes the bound on the
primes for efficient factoring in [9]. When α = 1

3
, then β becomes zero, implying that p1, p2

need to have all the bits shared. Thus, the upper bound on the smaller primes q1, q2 is N
1

3 ,
where sharing of LSBs in p1, p2 helps in efficient factoring.

However, in our case, the bound on the primes is characterized by −4α2 − 2αβ − 1
4
β2 +

4α + 5
3
β − 1 < 0 provided 1− 3

2
β − 2α ≥ 0. We find that β becomes zero when α = 1

2
. Thus

in our case, the upper bound on smaller primes q1, q2 is N
1

2 , where sharing of LSBs in p1, p2

helps in efficient factoring.

One may check that our method starts performing better (i.e., β in our case is greater
than that of [9]) than [9] when α ≥ 0.266. Thus for q1, q2 ≥ N0.266, our method will require
less number of LSBs of p1, p2 to be equal than that of [9]. This is also presented in Figure 1.
The shaded region in the figure identifies our improvement in terms of theoretical analysis.
However, we like to reiterate that our experimental results outperforms the theoretical results
presented by us as well as in [9].
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Fig. 1. Comparison of our theoretical results (case (i)) with that of [9] (case (ii)).

The theoretical analysis of our results related to LSBs, presented in this section, will
apply similarly for our analysis related to MSBs as explained in Section 2.1.

3 Conclusion

In this paper we have studied poly(log N) time factorization strategy when two integers
N1, N2 (of same size) are given where N1 = p1q1 and N2 = p2q2 and p1, p2 share certain
amount of LSBs or MSBs. The results either extend or improve the problem presented in [9].
Our technique does not immediately extend the following generalized problems studied in [9].

1. Our strategy is hard to extend with more than two integers, i.e., when one considers that
N1, N2, . . . , Nk are available such that N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk and all the
pi’s share t many MSBs. This is because, the idea presented in Theorem 1 exploits the
fact that p2 − p1 is small. It is not clear how to extend the idea when pj − pi is small in
general. Similar bottleneck exists when we consider sharing of LSBs too.

2. Our idea does not work when one considers that pi, qi are of same bit-size. The bound
presented in Theorem 1 does not accommodate this case. Even if we consider that some
information regarding qi’s are available, that also does not help much. This is because,
under such information the structure of the polynomial f ′ in Theorem 1 changes and
more number of monomials arrive, that prevents to achieve a good bound.

Still, we like to point out that the problem of factorization with two integers N1, N2 in this
domain is harder than the case of factorization with more than two integers N1, N2, . . . , Nk.
For the case of two integers, we present results that could not be achieved earlier.

The strategy presented in [9] used lattice dimension 2 only for the case with two integers
N1, N2 and it is also not immediate whether similar technique can be extended with higher
lattice dimensions. However, our strategy allows to exploit larger lattice dimensions and thus
during experiments we get better results as lattice dimension increases.
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