
1 
 

 

 

 

 

 

On the Complexity of Integer Factorization 

N. A. Carella, February 2009.  

 

 

 

 

Abstract:  This note presents a deterministic integer factorization algorithm based on a system of polynomials 
equations. This technique exploits a new idea in the construction of irreducible polynomials with parametized 
roots, and recent advances in polynomial lattices reduction methods. The main result establishes a new 
deterministic time complexity bench mark. 
 
 
 
 
 
1 Introduction 

This note presents a deterministic integer factorization algorithm based on a system of polynomials equations. 
This technique combines a new irreducible polynomials construction technique and recent advances in lattice 
reduction methods to obtain a new result. The main result establishes a new deterministic time complexity 
bench mark. Background materials in the theory of integer factorization are given in [CE], [CP], [LA], [MZ], 
[RL], [S], [W], and similar sources. 
 
The second section recalls the known results on the time complexity of integer factorization. It continues with 
the main contributions, Lemma 3 and Theorem 5, and concludes with an algorithm and a detailed analysis of the 
coefficients of the polynomial in Section 3.  
 
 

2 Main Contributions 

This work builds on the earlier successful applications of the theory of polynomials equations and lattice 
reduction methods to integer factorization.  
 
Previous Results 

The previous works claim the followings. 
 
Theorem 1.   ([CR])   If the log2(N)/4 least significant bits of a factor p of N are known, then the factorization of 
the integer N = pq, p < q < 2p, has deterministic logarithmic time complexity 0),)((log >cNO c  constant. 
 
In the Summer of 2007 this result was improved to the following.  
 
Theorem 2.   ([C])   Let N = pq, p < q < 2p. If the (1/6)log2(N) most significant bits of a factor p are known, 
then the factorization of N has deterministic logarithmic time complexity 0),)((log >cNO c  constant. 
 
Note. The standard term polynomial time has been replaced with the more descriptive term logarithmic time. 
This is patterned after the closely related term exponential time. 
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Construction of Irreducible Polynomials 

The height of a polynomial ∑
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,,),,(  ∈ �[x,y,z] of maximum degree deg(f) = d in the 

variables x, y and z is given by the expression || f(x,y,z) ||∞ = max{ | ai,j,k | : 0 ≤ i, j, k ≤ d }. 
 
Lemma 3.   Let α, β > 0 be a pair of parameters, and let N = pq be a composite integer such that p = O(Nα) and 

q = O(N1− α). Then there exists an irreducible polynomial f(x, y, z) = c4xy + c3x + c2y + c1z + c0 ∈ �[x, y, z] with 
the following properties. 
 
(i) The polynomial f(x, y, z ) has a small integer root (x0, y0, z0) where 0 ≤ | x0 | ≤ X ≤ Nα, 0 ≤ | y0 | ≤ Y ≤ N1−α, 
and 0 ≤ | z0 | ≤ Z ≤ O((log N)B), B > 0 constant.  
(ii) The factors of N can be written as p = mx0 + c and q = ny0 + d, where the moduli n and m (possibly 
relatively prime) are of size O((log N)A), A > 0 constant.  
(iii) The height of f(xX, yY, zZ) satisfies the inequality || f(xX, yY, zZ) ||∞ ≥ N1+β. 
(iv) The polynomial can be generated in deterministic logarithmic time 0),)((log >cNO c  constant. 
 
Proof: Let n and m be (possibly relatively prime) moduli of sizes O((log N)A),  and let k = O(Nβ)  be an integer, 
with A > 0 and β > 0 constants. Next rewrite the equation f(x, y) = xy – N as an equation of three variables  
 

   f(x, y, z) = (mx + c)(ny + d)(kz + e) − rN  =  c4xy + c3x + c2y + c1z + c0,                                   (1) 
 
where 1 ≤ c, d < O((log N)A),  and r = kz0 + e is prime (or nearly prime) with | z0 | ≤ Z ≤ O((log N)B). The 
coefficients ci are obtained after a selective replacement of the known variable z = z0, see Section 3 for more 
details. Clearly this is an irreducible polynomial over the integers and of height || f(xX, yY, zZ) ||∞ ≥ rN  + O(N) = 
O(N1+β), and has a small integral root 0 ≤ | x0 | < Nα, 0 ≤ | y0 | < N1−α, 0 ≤ | z0 | < O((log N)B).                             ■ 
 
Apparently, it is a very difficult proof for those that have not seem it before. Nevertheless, it is an elementary 
transformation/deformation of the most important polynomial f(x, y) = xy – N in integer factorization.   
 
The basic algorithm of Lemma 3 is sketched below, it is designed to work in tandem with Algorithm II, also 
note that the data m, n, c, d can be either inputted or internally generated. 
 

Algorithm I 
Input: α, β > 0, and N = pq such that p = O(Nα). 
Output: f(x, y, z) = c4xy + c3x + c2y + c1z + c0 and m, n, c, d. 
1. Set T = (log N)A, A > 1, and generate a pair of primes or nearly primes moduli n and m < T. 
2. Generate a prime r = kz0 + e (or nearly prime) with k = O(Nβ) and | z0 | ≤ Z ≤ O((log N)B). 
3. Select a pair c < m, and d < n. 
4. Compute the coefficients of the irreducible polynomial fc,d(x, y, z) = c4xy + c3x + c2y + c1z + c0. 
5. Return f(x, y, z) = fc,d(x, y, z). 
 
Algebraically Independent Polynomials  

Although the technique of Lemma 3 can generate one or more irreducible polynomials, these polynomials are 
not algebraically independent. Accordingly, lattice reduction method is utilized to generate another 
algebraically independent polynomial. Further, since the third variable is known or its value is very small and 
can be determined by brute force search, just one additional algebraically independent polynomial is required.  
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Theorem 4.   ([ER])  Let f(x, y, z) = c4xy + c3x + c2 y + c1z + c0 ∈ �[x, y, z] be an irreducible polynomial of 
height || f(xX,yY,zZ) ||∞ = W and with a small integer root (x0, y0, z0) such that | x0 | < X, | y0 | < Y and | z0 | < Z. 
Suppose that the inequality 
 

ετττττ −+++++ < 323236333 2

WZYX ,                                                              (2) 
 
where τ > 0 is a lattice parameter, holds. Then there exists a pair of linearly independent polynomials f1(x, y, z) 
and f2(x, y, z) not multiple of f(x, y, z), with a common root. Furthermore, the polynomials are generated in 
deterministic logarithm time.  
 
The complete analysis of this and other special cases of polynomials in three and four variables and the 
corresponding polynomials bases of the polynomials lattices are given in [ER], and [JM].  
 
The two polynomials f1(x, y, z) and f2(x, y, z) are linearly independent, but not guaranteed to be algebraically 
independent. However, the two pairs of polynomials f(x, y, z), f1(x, y, z) and f(x, y, z), f2(x, y, z) are guaranteed to 
be algebraically independent. Recent advances in the construction of three algebraically independent 
polynomials are discussed in [BA]. 
 
The Main Result 

In the last decades the techniques of the theory of polynomials equations and lattice reduction methods have 
emerged as powerful tools in the theory of integer factorization. 
 

Theorem 5.   The factorization of a composite integer N ∈ � has deterministic logarithmic time complexity 
0),)((log >cNO c  constant. 

 
Proof: Without loss in generality, let N = pq be a balanced integer, p < q < 2p. Put α = 1/2, and let β = 1/2 + γ 
for some γ > 0, and fix a pair of moduli n, m = O((log N)A), where A > 0 is a constant. Then it is clear that the 
integer N has its factors in some residue classes  
 

p = mx + c     and     q = ny + d,                                                                 (3) 
 
where 0 ≤ | c |, | d | < O((log N)A). At most O((log N)2A) pairs (c, d) has to be tested to determine the correct 
residues classes (3) of the factors. Given the correct pair (c, d), there exists an irreducible polynomial 
 

f(x, y, z) = c4xy + c3x + c2y + c1z + c0                                                             (4) 
 

over the integers �, which has a small integer solution (x0, y0, z0) such that  
 

p = mx0 + c     and     q = ny0 + d,                                                                (5) 
 
where 0 ≤ | x0 |, | y0 | < N1/2 = Nα and 0 ≤ | z0 | ≤ O((log N)B), B > 0 constant, see Lemma 3. Moreover, the height 
satisfies the inequality W = || f(xX, yY, zZ)) ||∞ ≥ N

1+β ≥ N
3/2+γ. Now by Theorem 4, there exists another 

algebraically independent polynomial g(x, y, z) that shares the same root (x0, y0, z0) and it can be determined 
using lattice reduction techniques whenever the inequality  
 

ετττττ −+++++ < 323236333 2

WZYX ,                                                                   (6) 
 
holds. Replacing X < N1/2, Y < N1/2, Z < O(Nδ) and N3/2+γ ≤ W in (6) returns 
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ετετγδτττττττ −+−++++++++++ ≤≤< 32)32)(2/3()32(2/32/933236333 22

WNNZYX ,                          (7) 
 
where δ > 0 is an arbitrarily small number, and all the relevant constants has been omitted. These data in turn 
imply that (6) and (7) holds if and only if  
 

γ
ετ

εδττ
<

−+

+++

32

2/3)32(2/3 2

                                                            (8) 

 
holds. Further, since there is almost no restriction on the parameter γ > 0, for example, γ = 1/4 or 1/3 or 1/2, etc 
is feasible, the previous inequalities (6), (7) and (8) hold for any appropriate choice of γ.  
 
Ergo the solution (x, y, z) = (x0, y0, z0) of the system of equations  
 

f(x, y, z) = 0, g(x, y, z) = 0, 
 
can be recovered by means of resultants or Grobner bases calculations. Specifically, computing the roots of the 
polynomials 
 

r1(x) = Resy(f(x, y, z0), g(x, y, z0))     and     r2(y) = Resx(f(x, y, z0), g(x, y, z0)),                       (9) 
 
where z0 is known. Next observe that and each of these algorithms above has logarithmic time complexity. In 
particular, the running time of the entire algorithm is dominated by at most O((log N)2A) lattice reduction steps, 
one for each pairs (c, d). Thus, the overall time complexity of the integer factorization algorithm is deterministic 
logarithmic time 0),)((log >cNO c  constant.                                                      Quod erat demonstrandum      ■ 
 
The choice of parameter α > 0 assumes a priori knowledge on the sizes of the factors p = Nα and q = N1− α of N 

= pq. Furthermore, since the subset of balanced integers � = { N = pq : p < q < ap, with p, q primes } is the 
most important case in integer factorization, it was set to α = 1/2. Balanced integers are the most difficult to 
factor. However, the probability of an arbitrary integer of being balanced is negligible. Indeed, the subset of 

balanced integers has zero density in the set of integers. More precisely, it has cardinality �(x) = #{ N = pq ≤ x : 
p < q < ap } = c0x/log(x)2, c0 = c0(a) constant, see [DM]. 
 
Numerical experiments will have to be performed to determine the best choices of the parameters β = 1/2 + γ 
and τ > 0. The first controls the height of the polynomial f(x, y, z) and the second is part of the lattice basis, see 
Theorem 4.  
 
The last algorithm below encodes the basic procedure of Theorem 5. In step 2.1, the data m, n, c, d is passed on 
to Algorithm I. 
 
Algorithm II 
Input: N = pq, and α, β > 0 such that p = O(Nα). 
Output: p, q. 
1. Set T = (log N)A, A > 0, and select a pair of primes or nearly prime moduli n and m < T. 
2. For c, d < T do 
2.1 Construct an irreducible polynomial fc,d(x, y, z) = c4xy + c3x + c2y + c1z + c0 such that  0 ≤ | x0 | ≤  Nα, 0 ≤ | y0 
| ≤ N1−α, and 0 ≤ | z0 | ≤ O((log N)B), B > 0 constant, see Lemma 3 and Algorithm I. 
2.2 Construct an algebraically independent polynomial gc,d(x, y, z), see Theorem 4. 
2.3 Compute the root (x0, y0, z0) of the system of equations f(x, y, z) = 0, g(x, y, z) = 0, using resultants or 
Groebner bases methods, here z0 is known. 
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2.4 Compute the potential factors pc,d = mx0 + c and qc,d = ny0 + d. 
2.5. If 1 < gcd(pc,d, N) < N or 1 < gcd(qc,d, N) < N, then halt. 
3. Return p = pc,d, and q = N/pc,d or q = qc,d, and p = N/qc,d. 
 
Ultimately an algorithm that accepts an arbitrary integer and internally generates all its parameters seems to be 
feasible in the near future. 
 
3 The Polynomial and its Coefficients 

Let n and m be (possibly relatively prime) moduli of sizes O((log N)A), A > 0 constant. Let r = kz0 + e ≥ Nβ > 
N

1/2 be a prime (or nearly prime), where k > N1/2 is a prime, | z0 | ≤ O((log N)B), and β > 1/2 is a constant. 
Multiplying the three linear factors returns the polynomial equation 
 
(mx + c)(ny + d)(kz + e) − rN = kmnxyz + emnxy + dkmxz + demx + cknyz + ceny + dcdkz + cde − rN  
                                               = (kz0 + e)mnxy + (kz0 + e)dmx + (kz0 + e)kny + cdkz + cde + − rN                    (10) 
                                               = c4xy + c3x + c2y + c1z + c0, 
                                               = f(x, y, z),                                                            
 
where a selective replacement of the known variable z = z0 was used. The coefficients are  
 

c0 = cde − rN,  c1 = cdk,   c2 = knr,  c3 = dmr,  c4 = mnr,  
 
where 0 ≤ c < m and 0 ≤ d < n, and 0 < e < k < r. By construction, the largest possible prime factors of the 
coefficients c0, …, c4, are k and r. But since  
 

c0 ≡ cde − rN mod k,   c1 ≡ cdk ≡ 0 mod k,   c2 ≡ knr ≡ 0 mod k, 

c3 ≡ dmr � 0 mod k,   c4 ≡ mnr � 0 mod k,                 
 
and  

c0 ≡ cde � 0 mod r,   c1 ≡ cdk � 0 mod r,   c2 ≡ knr ≡ 0 mod r, 

c3 ≡ dmr ≡ 0 mod r,   c4 ≡ mnr ≡ 0 mod r,                 
 
the coefficients are relative prime or nearly relative prime. More precisely, gcd(c0, …, c4) ≤ mn = O((log N)A+B) 
holds. This ensures that the height of the polynomial satisfies  
 

|| f(xX, yY, zZ) ||∞ ≥ | c0/mn | ≥ (rN + O(Nβ+ε))/mn = O(N1+β−ε), 
 
where ε > 0 is an arbitrarily small number. 
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