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Abstract. Two-party Secure Function Evaluation (SFE) is a very useful crypto-
graphic tool which allows two parties to evaluate a function known to both parties
on their private (secret) inputs. Some applications with sophisticated privacy needs
require the function to be known only to one party and kept private (hidden) from
the other one. However, existing solutions for SFE of private functions (PF-SFE)
deploy Universal Circuits (UC) and are still very ine�cient in practice.
In this paper we bridge the gap between SFE and PF-SFE with SFE of what we call
semi-private functions (SPF-SFE), i.e., one function out of a given class of functions
is evaluated without revealing which one.
We present a general framework for SPF-SFE allowing a �ne-grained trade-o� and
tuning between SFE and PF-SFE covering both extremes. In our framework, semi-
private functions can be composed from several privately programmable blocks (PPB)
which can be programmed with one function out of a class of functions. The frame-
work allows e�cient and secure embedding of constants into the resulting circuit
to improve performance. To demonstrate practicability of the framework we have
implemented a compiler for SPF-SFE based on the Fairplay SFE framework.
SPF-SFE is su�cient for many practically relevant privacy-preserving applications,
such as privacy-preserving credit checking which can be implemented using our frame-
work and compiler as described in the paper.

Key words: SFE of semi-private functions, Yao's protocol, topology, optimization,
compiler, privacy

1 Introduction

Two-party Secure Function Evaluation (SFE) is an important and wide area of cryptographic
research (see, e.g., [Yao86,LP04,MNPS04,AHL05,Kol05,LP07,KS08a,LPS08]). It allows two
parties to securely evaluate a common function on their private inputs without involving a
trusted third party. The function is represented as a boolean circuit and evaluated based
on a garbled version of the circuit which is created by one party (constructor Bob) and
evaluated by the other party (evaluator Alice). Usually SFE hides the intermediate results
but - as the function is known to both parties - not the structure (topology) of the function.

In practice, however, a variety of business models require privacy properties beyond the
secrecy of parties' input data to additionally keep the evaluated function private. The under-
lying business motivations vary from commercial incentives (e.g., protection of intellectual
property) to pure security requirements to reduce the probability of credential forgery or to
make insider attacks obsolete. Typical use cases are client-server applications where a user
Alice inputs her private data x (hidden to Bob), the server Bob inputs his private func-
tion f (hidden to Alice), and the protocol outputs f(x) to both parties such that neither
party gain any information about the other party's input. Prominent examples are privacy-
preserving trust negotiation schemes [FAL04,FLA06,FAL06], credit checking [FAZ05], or
data classi�cation using neural networks [SS08,OPB07,PCB+08].

? The second author was supported by the European Union under FP6 project SPEED.
?? The third author was supported by the European Union under FP7 project CACE.



2 A. Paus, A.-R. Sadeghi, T. Schneider

To allow SFE of a private function, called PF-SFE [KS08b], a universal circuit (UC)
[Val76,KS08b,SS08] is evaluated that simulates the function, and entirely hides the structure
of their circuit representation. UCs require a huge overhead of O(k log k) [Val76], O(k log2 k)
[KS08b], respectively O(k2) [SS08] additional gates, where k is the number of gates of the
simulated circuit.

Fairplay [MNPS04], a state-of-the art implementation of SFE, can evaluate functions
consisting of millions of gates whereas in FairplayPF [KS08b], a recent implementation for
PF-SFE, functions are restricted to a few thousand gates only due to the huge overhead for
evaluating UC. Hence, a better trade-o� between maximal performance (SFE) and maximal
privacy of the evaluated function (PF-SFE) is desired. For many practically relevant appli-
cations (e.g., those mentioned above) it is su�cient that functions are only partly private,
what we call semi-private functions (SPF). Basically, these applications re�ect the follow-
ing scenario: A user Alice has private data x, and a service provider Bob has a semi-private
function f ∈ F as input, where F represents a given class of functions. At the end of the
protocol, Alice obtains f(x) but not which speci�c f was evaluated and Bob obtains no
information on x. This problem, called secure function evaluation of semi-private functions
(SPF-SFE), can be reduced to Yao's protocol where circuit's topology is revealed to the
evaluator and only the functionality of the gates of the circuit is hidden. The evaluator sees
the circuit topology but can only guess which functionality each part of the circuit might
evaluate. We concentrate on relaxed-security model, i.e., security against malicious evalua-
tor Alice and semi-honest (honest-but-curious) constructor Bob. This model is widely used
in current cryptographic literature [NP99,AIR01,LL07] and well-justi�ed in many practical
applications where performance is crucial and constructor Bob can be assumed to behave
semi-honestly by means of legal contracts or possible loss of reputation.

While SPF-SFE based on Yao's protocol has been proposed as building block in many
applications (e.g., [FAL04,FAZ05,FLA06,FAL06,SS08]), we give the �rst uni�ed theory for
SPF-SFE. Extending and improving previously known techniques we present a general theo-
retical framework for SPF-SFE together with a compiler to automatically generate SPF-SFE
protocols for practical applications.

Related Work. The idea of constructing circuits for a special class of functions and eval-
uating them e�ciently with Yao's protocol in the relaxed security model have been used
in several sub-protocols [FAL04,FAZ05,FLA06,FAL06,KS08b,SS08]. Frikken et al. call the
respective building blocks oblivious gates/circuits where evaluator does not know the func-
tion that each gate/circuit computes. However, they only mention the existence of several
useful topologies like binary trees, comparison circuits, or universal circuits together with
their asymptotic size, but do not give explicit constructions. We extend their basic ideas
into a generic framework and provide a wide class of functional blocks, each with a concrete
e�cient implementation (topology, programming, and exact size), that can be arbitrarily
combined to represent semi-private functions in many practical applications.

Existing frameworks for secure computation based on Yao's protocol are the Fairplay SFE
system [MNPS04] with a proposed extension to the malicious model [LPS08] and another
extension to private functions with UCs (PF-SFE), called FairplayPF [KS08b]. The Fairplay
compiler includes an optimizer that optimizes on the basis of the high-level Secure Function
Description Language (SFDL) using peek-hole optimization, duplicate code removal, and
dead code elimination. In contrast to this, our proposed optimization algorithm for constant
inputs optimizes on the lower abstraction level of circuits and can also be applied to further
optimize the output of circuits generated with the Fairplay compiler.
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Our Contribution & Outline. We propose a general framework together with a compiler
for e�cient secure function evaluation of semi-private functions (SPF-SFE) in the relaxed-
security model. Some of our contributions are of independent interest:

� In �2 we describe how common SFE can be extended with building blocks that we
call Privately Programmable Blocks (PPB) to allow practical secure evaluation of semi-
private functions (SPF-SFE). A privately programmable block (�4) consists of a �xed
topology of several programmable gates (with a small number of inputs) and can be
programmed to evaluate di�erent functions out of a class of functions. The evaluator
learns how the blocks are connected (topology) but not with which of the functions of
their corresponding class of functions the blocks are programmed. Hence parts of the
function are hidden from the evaluator while the topology is still revealed. In �5 we show
how to design e�cient constructions for PPBs that also allow to securely incorporate
private constants into PPBs and give concrete constructions that are of special inter-
est for practical applications. In particular we present e�cient PPB constructions for
arithmetic operations, i.e., adding or subtracting two numbers/a number and a private
constant, compare two numbers/a number and a private constant, multiply a number
with a private constant, as well as boolean operations (�B). Also switching functions,
e.g., permutation and selection blocks, as well as universal circuits from [KS08b] �t into
this concept. The resulting SPF-SFE protocol is as e�cient as plain SFE (both in the
relaxed-security model) while providing function privacy at the same time.

� In �8 we present an optimization algorithm that incorporates constant inputs into the
circuit resulting in a circuit with less inputs and smaller size having a topology which
is independent of the values of the constant inputs. Besides the well known propagation
of constant inputs, our algorithm additionally eliminates resulting gates with one input
by incorporating them into surrounding gates which results in smaller circuit size. The
proposed optimization algorithm applies no cryptographic modi�cation of circuits and
hence is of independent interest. This optimization can be used in combination with
Yao's SFE protocol in the relaxed-security scenario where constant inputs might be
public values known to both parties as well as the inputs of circuit constructor Bob.

� In order to allow usage of SPF-SFE in many practical applications we present a general
compiler framework for secure evaluation of semi-private functions, called FairplaySPF,
based on the well known Fairplay SFE system [MNPS04] as described in �6. Our new Se-
cure Programmable Block Description Language (SPBDL) allows to specify the topology
of interconnected programmable blocks together with their corresponding private pro-
gramming. A compiler automatically compiles SPBDL descriptions to circuits described
in Fairplay's Secure Hardware Description Language (SHDL). After incorporating Bob's
inputs into the circuit with the optimization algorithm presented in �8, the circuit can
securely be evaluated with the SPF-SFE protocol while hiding the programming. Also
a universal circuit (UC) that is evaluated in PF-SFE (cf. [KS08b]) can be seen as a
privately programmable block that is programmed with a private circuit (speci�ed in
SHDL). By incorporating UCs as programmable blocks into SPBDL, our framework
becomes a general purpose framework capable of expressing SFE, SPF-SFE as well as
PF-SFE and also arbitrary combinations of them where only sensitive parts of the func-
tion's structure are hidden as shown in the example in �7. This allows a �ne-grained
trade-o� between performance and privacy of the evaluated function.

� Our framework and compiler can be applied (combining SPF-SFE and PF-SFE) to im-
plement and improve e�ciency of several applications such as privacy-preserving credit
checking [FAZ05], blinded policy evaluation [FAL04,FLA06,FAL06], or secure data clas-
si�cation [SS08]. In �7 of this paper we concentrate on privacy-preserving credit checking.
Usually, before getting a loan from a bank a person has to reveal a substantial amount of
private information. This information has to satisfy certain criteria that are de�ned by
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the bank. We show how SPF-SFE can be used to securely evaluate the trustworthiness of
a borrower while ensuring that (i) the privacy of his input is preserved and (ii) nothing
is revealed about the criteria of the bank used for credit checking. Instead of using a
UC for the whole function as in PF-SFE we reveal the topology of the trivial part of the
function (e.g., comparing attributes with thresholds) and only hide the sensitive part
in a UC, which is much more e�cient. The description of the function in SPBDL can
automatically be compiled into SHDL code with our compiler. This can be obliviously
evaluated in a one-round protocol.

2 Yao's Protocol and Semi-Private Functions

Yao's Protocol. In the following, we concentrate on Yao's protocol [Yao86] for SFE. Yao's
protocol is often called garbled circuit protocol as a garbled version of the (boolean) circuit
representing the function is created by one party (constructor Bob) and evaluated by the
other party (evaluator Alice) as described in the following. For each wire of the circuit,
Bob uses two random bit strings (garbled values) that are assigned to the corresponding
values 0 and 1, respectively. Note, that the garbled values do not reveal to which value they
correspond as they are chosen randomly. Bob sends only the garbled values corresponding to
his inputs (garbled inputs) to Alice. For Alice's inputs, Bob uses 1-out-of-2 oblivious transfer
(OT) to send Alice only the garbled values corresponding to her inputs without Bob learning
which strings she gets. Additionally, for each gate Gi of the circuit, Bob creates and sends to
Alice a garbled table Ti with the following property: given garbled values for Gi's inputs, Ti

allows to recover only the garbled value of the corresponding output of Gi and nothing else.
Afterwards, Alice uses the received garbled values of the input wires and garbled tables Ti to
evaluate the garbled circuit gate by gate. The output wires of the circuit are not garbled (or
the mappings from garbled values to values 0 and 1 are published by Bob), thus Alice learns
(only) the output of the circuit, but no plain values of internal wires (only garbled values).
Correctness and security against semi-honest adversaries of Yao's protocol are proven in
[LP04]. It is easy to show that Yao's protocol is even secure against malicious Alice, i.e.
relaxed secure, as the only message Alice sends to Bob is within OT protocol where Alice
is unable to cheat assuming security of OT protocol against malicious adversaries [FAL06,
Appendix A]. An e�cient relaxed secure OT protocol is given for example in [AIR01].

Yao's protocol is the kernel of existing implementations of SFE protocols [MNPS04,LPS08]
which also extend it to be secure against malicious constructor Bob via cut-and-choose, e.g.,
multiple circuits are garbled, correctness of some of them is veri�ed by revealing all garbled
input values (called open) and the remaining ones are evaluated. As justi�ed in the intro-
duction, we concentrate on the plain Yao's protocol (secure against semi-honest Bob and
potentially malicious Alice) where only one circuit is evaluated and no circuits are opened.

Yao's Protocol for Semi-Private Functions. Observe, in Yao's protocol the garbled
tables Ti consist of symmetric encryptions of the garbled output value using the correspond-
ing garbled input values as keys. Alice can use these garbled input values to decrypt exactly
the one garbled output value corresponding to these keys. All other garbled output values,
i.e., entries of the garbled function table remain hidden from Alice and hence she cannot
determine the type of the gate. The only information Alice learns about the function in
Yao's protocol is the topology of the circuit, i.e., the way the di�erent gates are connected
and how many inputs each gate has.

When Alice obtains a garbled circuit from Bob, she can guess from its topology what
functionality the circuit evaluates, e.g., chains of 3-input gates might be an integer com-
parison circuit. This can be exploited constructively by Bob to keep parts of the function
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private, we call this a semi-private function, as follows. Bob composes his intended func-
tionality from blocks with a �xed topology that can evaluate di�erent functionalities each,
called privately programmable blocks (PPBs) as explained in �4. The maximum amount of
information Alice can gain from the topology of each PPB is the set of functionalities the
PPB might compute but not the speci�c functionality of this PPB chosen privately by Bob.

From combining these two arguments follows that evaluation of a circuit, composed
out of several PPBs representing the semi-honest function, with Yao's protocol is a secure
protocol for SPF-SFE.

Additionally, (semi-honest) Bob can incorporate his input values into the circuit before
garbling the circuit if they are already known at that time. In �8 we give an algorithm for
e�cient optimization of circuits for Bob's (constant) inputs together with an example. The
optimization only depends on the topology of the original circuit but not on Bob's input
values and hence the optimized circuit does not reveal more information on Bob's input
values than the original circuit. After this optimization, Bob no longer needs to transfer the
garbled values corresponding to his input values and also the size of the circuit is reduced
(resulting in less communication and computation). The bottom part of Fig. 8 contains the
high-level overview of SPF-SFE protocol including this optimization.

3 De�nitions and Preliminaries

Let x ∈ [0, 2`) be an unsigned `-bit integer value and x = (x1, .., x`), xi ∈ {0, 1} its

corresponding representation as bit vector, i.e., x =
∑`

i=1 xi2i−1. The length of x is |x| = `.
We draw a (single) wire with one-bit value as . As usual, multi wire X with `-bit

value x is drawn as and consists of ` wires indexed by X[i], i = 1, .., ` with values xi.
A gate G with degree d has d inputs and one output. It is the implementation of a boolean

function g : {0, 1}d → {0, 1}. As special case, a constant gate has no inputs (d = 0) and
outputs a constant value. The size of a gate G, denoted by |G|, is the number of function
table entries needed to implement the gate, namely |G| = 2d. A gate with e > 0 outputs
can easily be combined from e gates with one output resulting in size e · 2d.

We consider acyclic circuits consisting of connected gates with arbitrary fan-out, i.e.,
the output of each gate can be used as input to arbitrary many gates. The size of a circuit,
denoted by |C|, is the sum of the sizes of its gates. Note, communication and computation
complexity of e�cient SFE protocols is linear in the size of the circuit.

A block Bu
v is a sub-circuit with u inputs in1, .., inu and v outputs out1, .., outv. Bu

v

computes function fB : {0, 1}u → {0, 1}v mapping input values to output values. Blocks
consist of connected gates and other sub-blocks. Size of block B, denoted by |B|, is the sum
of the sizes of its sub-elements.

A programmable gate (PG) is a gate with an unspeci�ed function table. Programming
it is done by providing a speci�c function table with 2d entries (one entry for each input
combination). The concept of PGs corresponds to a universal circuit for simulating a single
gate in Valiant's UC construction [Val76]. As described in the previous section, in SPF-SFE
evaluator Alice is not able to extract the corresponding function table (program) from PG.

Analogously, a programmable block (PB) is a block consisting of programmable gates or
programmable sub-blocks. It is programmed by programming each of its sub-elements. As
described before, in SPF-SFE evaluator Alice is unable to extract the program from PB.

4 Privately Programmable Blocks

In this section we present our new concept of Privately Programmable Blocks (PPB) for
constructing semi-private functions. Using our e�cient PPB constructions given in �5 with
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the SPF-SFE protocol of �2 allows to preserve the privacy of the function while the protocol
remains as e�cient as SFE protocol.

De�nition. A Privately Programmable Block (PPB) is a programmable block which can
be programmed to compute any function f of a given class of functions F (e.g., F =
{ADD, SUB}) with a corresponding program pf (e.g., f = ADD). We write PPB f for a
PPB which is programmed to compute f .

∀f ∈ F ,∀(in1, .., inu) ∈ {0, 1}u : PPB f (in1, .., inu) = f(in1, .., inu).

As explained in �2 before, in SPF-SFE the function to be evaluated is composed of several
PPBs. Evaluator Alice learns how the PPBs are connected (topology), but the programming
of the PPBs remains to be private information of constructor Bob (that's why PPBs are
called privately programmable). Alice can infer from the topology of a PPB at most the
class of possible functionalities F but not the speci�c functionality f chosen by Bob. Hence,
from Alice's point of view the PPB can compute one functionality from F and the amount
of information hidden inside the PPB is log2 |F| bits. For a semi-private function which is
composed from multiple programmable blocks PPB1 , ..,PPBn , the program of each PPB
can be combined with any programming of the other PPBs and hence the maximum (as some
combinations might not make sense depending on the application) amount of information
hidden in the semi-private function is log2(|F1| · .. · |Fn|) =

∑n
i=1 log2 |Fi| bits. Clearly, if this

is not large enough (i.e., if number of PPBs n or number of possible functionalities of PPBs
|Fi| is small), evaluator Alice might just guess the correct function with high probability or
probe the system via exhaustive search which must be prohibited by other means.

Universal Circuits (UC) indeed are special PPBs that can be programmed to compute
an arbitrary function. UCk is capable of simulating any function corresponding to a circuit
with up to k gates with two inputs each. UCs provide full privacy of the evaluated function
as the topology is hidden entirely. However, they cause a huge overhead by increasing the
size of the evaluated circuit by O(k log k) [Val76], O(k log2 k) [KS08b], or O(k2) [SS08]
additional gates which is often intolerable in practice. Evaluating a UC programmed with a
private function known by constructor Bob with a SFE protocol is called Secure Evaluation
of Private Functions (PF-SFE). By combining the PPBs presented in this paper with UCs,
users can �nd a �ne-grained trade-o� between e�cient PPB constructions for semi-private
functions (SPF-SFE) and less e�cient UC constructions for completely private functions
(PF-SFE) as explained in �7.

Simple PPB Construction. A straight-forward implementation of a PPB for a class of
n arbitrary functionalities F = {f1, f2, .., fn} can directly be derived from the de�nition of
PPB as shown in Fig. 1(a). Each functionality fi is computed by circuit Ci and an n : 1
multiplexer (MUX) which is programmed to select the intended output. The MUX block
can be constructed from v parallel selection blocks Sn

1 (as de�ned in [KS08b]) for each of
the v outputs that can be programmed to select any of their n inputs as outputs.

If the program pf is known by Bob beforehand it can directly be incorporated into the
circuit as described in �8. After optimization, each of the v selection blocks consists of a chain
of n− 1 programmable 2-input gates programmable to select either their left or right input
as output each [KS08b]. Size of this construction is

∣∣PPBsimple
∣∣ = 4v(n− 1) +

∑n
i=1 |Ci|.

E�cient PPB Constructions. E�cient PPB constructions can be obtained by choosing
special classes of functionalities having circuits with exactly the same topology. This allows
to re-use the same circuit C for the di�erent functionalities fi as shown in Fig. 1(b). For
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...

(a) Simple PPB construction (b) E�cient PPB construction

Fig. 1. PPB constructions

instance, the topology of an adder is the same as that of a subtractor and hence for F =
{ADD, SUB} the same topology can be used (cf. �5.1 for a detailed description of this PPB).
Based on the intended functionality f ∈ F , the sub-elements of C are programmed di�erently
while the topology is the same. The size is

∣∣PPBefficient
∣∣ = |C| = |Ci| �

∣∣PPBsimple
∣∣.

When incorporating a private constant c into a PPB, the value of the constant can not be
extracted from PPB's topology and hence is hidden from evaluator in SPF-SFE protocol, e.g.,
circuits to add/subtract an input with a s-bit constant c have the same topology. To sim-
plify notation, we parametrize the class of possible functionalities with parameter c and write
Fc = {f1c, .., fnc} for F = {f1|c=0, .., f1|c=2s−1, f2|c=0, .., f2|c=2s−1, . . . , fn|c=0, .., fn|c=2s−1},
e.g., Fc = {ADDc, SUBc} in the example given above (a detailed description of this PPB
is given in �5.2). The amount of information hidden inside a PPB is

log2 |F| = log2 |Fc|+ |c| = log2(n) + sbits. (1)

Graphical Notation. In the following we use the uniform graphical notation shown in
Fig. 2 to specify the interface of PPBs. For a not programmed PPB (Fig. 2(a)), the lower
right corner contains the class Fc of functions with which it can be programmed and the
upper right corner contains an (optional) c to denote whether the block also hides an s-bit
constant c. A programmed PPB (Fig. 2(b)) additionally contains the speci�c functionality
fc in the lower right corner (fc ∈ Fc) and the speci�c value κ of the constant c in the upper
right corner (c = κ). If the PPB does not hide a constant c, we write f respectively f ∈ F
and leave the upper right corner empty. For PPBs that compute arithmetic expressions, the
input is grouped into inputs x and y and the output is called z.

(a) not programmed PPB (b) programmed PPB

Fig. 2. Uniform graphical notation for PPBs
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5 Practical E�cient PPB Constructions

In this section we show how to construct several e�cient PPBs that are useful in practical
applications (cf. �7). All these building blocks are implemented in our framework for practical
SPF-SFE described in �6. We concentrate on PPBs for arithmetic operations here, i.e.,
addition or subtraction �5.1 (with private constant �5.2), comparison �5.3 (with private
constant �5.4), multiplication with private constant �5.5. PPBs for boolean operations on
bitvectors �B.1 (with private constant �B.2) are given in �B. Our SPF-SFE framework also
provides PPBs for Switching Functions (i.e., permutation and selection blocks) and Universal
Circuits for which we refer to the de�nitions, descriptions, and constructions in [KS08b]. A
list of e�cient PPB constructions implemented in our framework is given in �A.

The main idea underlying the e�cient PPB constructions presented in this paper is to
combine functionalities that have structurally equivalent recursive de�nitions that directly
translate into programmable gates of equivalent topologies. For instance, to compare whether
two m-bit numbers x and y of bitlength m are greater or equal is de�ned recursively as

(x ≥ y) ⇔
(
(xm > ym) ∨

(
(xm = ym) ∧ ((xm−1, .., x1) ≥ (ym−1, .., y1))

))
.

Whether two numbers are less or equal is de�ned recursively as

(x ≤ y) ⇔
(
(xm < ym) ∨

(
(xm = ym) ∧ ((xm−1, .., x1) ≤ (ym−1, .., y1))

))
which is structurally equivalent and hence translates into the same topology (cf. Fig. 5(b)).

For each PPB we give the Interface specifying the functionality of the block, its number
of outputs and the di�erent possibilities for programming. The Implementation describes the
topology of the corresponding e�cient PPB construction, how to program it, and its size.
The inputs are called x, y and the potential private constant c, where |x| = m, |y| = n,
and |c| = s. To simplify presentation we assume w.l.o.g. m = n, respectively m = s in
the following descriptions. The other cases can easily be derived from these by padding
the shorter input with zeros and optimizing constant inputs afterwards as described in �8.
Recall, that evaluator Alice can neither extract the chosen function f(c) ∈ F(c), nor the
value of the possibly embedded private constant c ∈ {0, 1}s, from the topology of any PPB.
Recall, the amount of information hidden inside the PPB is given by equation (1).

5.1 PPB:ADD/SUB - add or subtract two numbers

{                   }

(a) Interface

...

(b) Topology

Fig. 3. PPB:ADD/SUB

Interface (Fig. 3(a)). PPBADD/SUB implements z = f(x, y) = x± y, where |z| = m + 1.
The class of functions is F = {ADD, SUB}.
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Implementation (Fig. 3(b)). The topology of PPBADD/SUB is the well known structure
for adders consisting of a chain of m programmable gates PGi (full adders) with inputs carry-
in ti−1, xi, yi and outputs carry-out ti, sum zi. The constant t0 can be directly incorporated
into block PG1. In case f = ADD, PGi is programmed to compute zi = xi ⊕ yi ⊕ ti−1 and
ti = (xi ∧ yi)∨ (xi ∧ ti−1)∨ (yi ∧ ti−1) with t0 = 0. In case f = SUB, y is converted to two's
complement - PGi is programmed with zi = xi ⊕ yi ⊕ ti−1 and ti = (xi ∧ yi) ∨ (xi ∧ ti−1) ∨
(yi ∧ ti−1) with t0 = 1. The size is

∣∣PPBADD/SUB

∣∣ = 2 · ((m− 1) · 23 + 22) = 16m− 8.

5.2 PPB:ADDc/SUBc - add or subtract number with private constant

(a) Interface

...

(b) Topology

Fig. 4. PPB:ADDc/SUBc

Interface (Fig. 4(a)). PPBADDc/SUBc implements z = fc(x) = x± c, where c is a private
constant hidden inside PPB and |z| = m + 1. Class of functions is Fc = {ADDc, SUBc}.

Implementation (Fig. 4(b)). Topology of PPBADDc/SUBc is exactly the same as that of
PPBADD/SUB described in the previous section, however, each programmable gate PGi has
no input for yi which is replaced by the private constant ci. Also the programming is exactly
the same as for PPBADD/SUB with private constant ci instead of input yi. This block has

size
∣∣PPBADDc/SUBc

∣∣ = 2 · ((m− 1) · 22 + 21) = 8m− 4.

5.3 PPB:COMP - compare two numbers

(a) Interface

...

(b) Topology

Fig. 5. PPB:COMP

Interface (Fig. 5(a)). PPBCOMP implements z = f(x, y) = x ./ y, where ./ ∈ {<,>,=
,≤,≥, 6=} and |z| = 1. The corresponding class of functions is F = {L,G, E,LE, GE,NE}.
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Implementation (Fig. 5(b)). Topology of PPBCOMP consists of a chain of m pro-
grammable gates PGi (full comparers) with input bits xi, yi, and carry-in ti−1 and output
carry-out ti. The output of PPBCOMP is z = tm and the �rst carry t0 = 1 can be directly
incorporated into PG1. The carry ti propagates whether for the i least signi�cant bits
x<i = x mod 2i and y<i = y mod 2i the corresponding relation is ful�lled (ti = 1) or not
(ti = 0). In the following we describe the programming for the cases =, ≤, and ≥; the corre-
sponding cases 6=, >, and < can be easily derived from this by negating output tm in PGm. In
case f = E, PGi is programmed to compute ti = (xi = yi)∧ (x<i = y<i) = (xi = yi)∧ ti−1.
Analogously, in case f = LE, PGi computes ti = (xi < yi) ∨ [(xi = yi) ∧ ti−1] and in
case f = GE, PGi computes ti = (xi > yi) ∨ [(xi = yi) ∧ ti−1]. This block has size
|PPBCOMP | = (m− 1) · 23 + 22 = 8m− 4.

5.4 PPB:COMPc - compare number with private constant

(a) Interface

...

(b) Topology

Fig. 6. PPB:COMPc

Interface (Fig. 6(a)). PPBCOMPc implements z = fc(x) = x ./ c, where ./ ∈ {<,>,=
,≤,≥, 6=}, c is a private constant hidden inside PPB, and |z| = 1. The corresponding class
of functions is Fc = {Lc, Gc, Ec, LEc, GEc, NEc}.

Implementation (Fig. 6(b)). Topology of PPBCOMPc is exactly the same as that of
PPBCOMP described in the previous section, however, each programmable gate PGi has
no input for yi which is replaced by the internal constant ci. Also the programming is
exactly the same as for PPBCOMP with constant ci instead of input yi. This block has size
|PPBCOMPc | = (m− 1) · 22 + 21 = 4m− 2.

5.5 PPB:MULc - multiply number with private constant

Interface (Fig. 7(a)). PPBMULc multiplies input x with private constant c hidden inside
PPB, i.e., z = fc(x) = x · c, where |z| = s + m. The class of functions is Fc = {MULc}.

Implementation (Fig. 7(c)). PPBMULc is implemented according to the �school method�
for multiplication, i.e., adding up the bitwise multiplications of ci and x shifted corresponding
to the position: x · c =

∑s
i=1 2i−1(ci · x). This results in the topology shown in Fig. 7(c), a

matrix of s rows and m columns of programmable gates PGi,j (Fig. 7(b)), where the carry
inputs in the �rst row and last column are set to zero and built into the corresponding outer
gates PGi,j : t0,j = di,0 = 0. The programmable gates in each row i have exactly the same
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(a) Interface

(b) PGi,j

...

...

...

... ......

...

...

... ...

(c) Topology

Fig. 7. PPB:MULc

topology as an adder (cf. Fig. 3(b)) that can be programmed to add to the shifted sum of

the previous rows di−1 =
∑i−1

i=1 2i−1(ci ·x) either the value of x in case ci = 1 or zero in case
ci = 0, i.e., di = 2di−1 + ci · x. Each programmable gate PGi,j is programmed to compute
ti,j = (cixi ∧ di,j−1) ∨ (cixi ∧ ti−1,j) ∨ (di,j−1 ∧ ti−1,j) and di,j = cixi ⊕ di,j−1 ⊕ ti−1,j . This
block has size |PPBMULc | = 2 ·(23(m−1)(s−1)+22(m+s−2)+21) = 16ms−8(m+s)+4.

6 FairplaySPF - a General Framework for SPF-SFE

We have implemented a general framework for secure evaluation of semi-private functions
(SPF-SFE) called FairplaySPF by extending Fairplay SFE framework [MNPS04], both writ-
ten in JAVA. 1 Fairplay provides two languages: The high-level Secure Function Description
Language (SFDL) allows users to specify the functionality to be computed with elements
known from other high-level hardware description languages like VHDL or Verilog (e.g.,
variables, arrays, procedures, arithmetic- and logic expressions, control structures, etc.).
Fairplay optimizes the function described in SFDL and automatically transforms it into
a boolean circuit described in Fairplay's low-level Secure Hardware Description Language
(SHDL). This language consists of wires, input wires, gates, and output gates only. Using
the SHDL circuit as input for both parties, Alice and Bob invoke their respective programs
of the Fairplay runtime environment to execute the two-party SFE protocol. These programs
evaluate the function on their respective private inputs over a TCP connection.

FairplaySPF Framework. In FairplaySPF, we extend the Fairplay framework [MNPS04]
to secure evaluation of semi-private functions that are known to Bob only. The work�ow of
FairplaySPF framework described in the following is visualized in Fig. 8.

Bob composes his semi-private function from several available privately programmable
blocks (as described in �5) in our newly designed Secure Programmable Block Description
Language (SPBDL) explained later in this section. Our FairplaySPF compiler automati-
cally translates this SPBDL program into an SHDL circuit. Alternatively, SHDL circuits

1 The FairplaySPF framework will be available for download soon.
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Fig. 8. Architecture of FairplaySPF Framework
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that are generated by the original Fairplay compiler from SFDL descriptions can be used.
Bob's private input data is automatically incorporated into the SHDL circuit and optimized
afterwards by FairplaySPF circuit optimizer as described in �8 resulting in an optimized
SHDL circuit. This optimized SHDL circuit (containing the combination of Bob's semi-
private function and his private data) is evaluated by FairplaySPF runtime environment
(RE) which is only a slight modi�cation of Fairplay RE for semi-private functions: In Fair-
playSPF RE only Bob inputs the SHDL circuit but not Alice. The topology of the circuit
(but without the types of the gates) is sent to Alice and afterwards the SPF-SFE protocol
(as described in �2) is executed between Alice and Bob over a TCP connection.

Secure Programmable Block Description Language (SPBDL). Our new SPBDL
language allows to easily specify semi-private functions by combining di�erent PPBs. SPBDL
extends the basic functionality of SHDL to input wires (input), multi-wires (vector),
privately programmable blocks (block), programmable gates (gate), and output wires
(output). The formal syntax speci�cation of SPBDL in Extended Backus-Naur Form (EBNF)
is given in �C. In the following, we brie�y describe the semantics of SPBDL. Please see Fig. 9
for an example SPBDL description of a semi-private function. As in SHDL, each line of a
SPBDL program starts with a line number beginning with 0. In following lines, this number
refers to the output of the element de�ned in this line. Line comments start with //.

In the beginning of a SPBDL program, inputs are de�ned as input Player [w], where
Player de�nes from which party the input is given (alice or bob). The optional parameter
[w] speci�es that the input consists of w bits (default is w = 1 if omitted).

Afterwards, three kinds of elements can be speci�ed - gate, vector, and block:
A programmable gate is de�ned as gate in [ Wires ] p [ Bits ], where Wires is its
(space-separated) list of inputs and Bits is the programming of its function table.
A list of Wires can be grouped into a vector with vector [ Wires ]. The single wires of a
vector can be accessed via Vector.Index, e.g., 4.2 denotes the second wire of vector 4.
A PPB is de�ned as block [Btype] out v in [ Vects ] p [ Bprog ], where Btype is
the type of the PPB (e.g., addsub for PPBADD/SUB described in �5.1), v speci�es that its
output is a vector of v bits, and Vects is the list of input vectors. The programming of the
PPB speci�ed in Bprog depends on the type of the PPB Btype. All types of PPBs Btype
and corresponding programming parameters Bprog available in SPBDL are given in �C.

Finally, outputs are de�ned as output Player Vect, where Player de�nes which party
obtains the output (alice or bob) and Vect is the vector to be output.

7 Applications

Many applications can be reduced to Secure Evaluation of Semi-Private Functions (SPF-
SFE) for which our general framework presented in this paper can be used. Examples
are Blinded Policy Evaluation [FAL04,FLA06,FAL06], Privacy-Preserving Credit Checking
[FAZ05], or provably secure evaluation of private Neural Networks [SS08,OPB07,PCB+08].

In the following we concentrate on privacy-preserving credit checking [FAZ05] which
demonstrates how the evaluated function can be partitioned into semi-private and private
parts which are both supported by our framework.

Privacy-Preserving Credit Checking. Typically, before granting a loan from a lender
(Bob), the credit worthiness of the borrower (Alice) is checked to have the con�dence that
she will be able to pay it back later. The borrower is asked for her credit report that contains
a large amount of private information including for example gender, age, income, salary, or
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other sensitive information like how many trade lines she owns, the number of overdrafts, or
the number of late payments. However, revealing this data should be avoided as the lender
may not always be a credible organization or, even worse, dishonest employees (so called
insiders) could sell such private information on customers to third parties.

Additionally, the evaluation criteria of the lender are highly sensitive information that
must be protected as revelation of these may cause loss of intellectually property or loss of
repudiation for the lender.

As suggested by Frikken et al. [FAZ05], this scenario can be reduced to SPF-SFE, where
Alice inputs her private credit report and Bob evaluates his semi-private function that checks
if the credit report ful�lls his criteria. To ensure that Alice inputs correct data into the SPF-
SFE protocol, the authors describe how to replace the oblivious transfer step by a Credit
Report Agency, i.e., a trusted third party, that checks and accredits Alice's inputs instead.

Fig. 9. Example for Privacy-Preserving Credit Checking

Bob's semi-private credit checking function can be expressed in our framework for SPF-
SFE as shown in the tiny example of Fig. 9 which is due to space limitations not intended
to give the complete solution but merely to show the main concepts. The upper part of
the circuit performs some obvious computation on Alice's data, e.g., compare her age with
a private constant, or combine this result with her gender. The sensitive information in
this part of the function are the private constants, e.g., grant credit only to female persons
(gender = 1) that are younger than 65 (age < 65), which are hidden from Alice, whereas
the obvious topology can safely be revealed.

The highly sensitive part of the functionality that combines these results depending on
the amount of credit requested (credit_req) is hidden entirely from Alice within the univer-
sal circuit UC. This PPB can be programmed to compute any functionality computable by
a circuit of up to k = 50 gates with arbitrary topology. The speci�c functionality intended
by Bob is the SHDL circuit described in f.shdl, which can automatically be generated from
a high-level description in SFDL with Fairplay compiler.

This example shows how our framework for SPF-SFE can be used to implement an
application-speci�c, reasonable tradeo� between e�ciency while revealing irrelevant infor-
mation (SPF-SFE with PPBs) and complete function privacy (PF-SFE with UC).

Comparison of SPF-SFE and PF-SFE. Revealing the topology of obvious parts of the
functionality while hiding the sensitive parts in a UC results in a smaller circuit as UC
overhead can be substantially reduced due to less simulated gates k and less inputs into UC.
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This reduced size of the evaluated circuit directly translates into corresponding speedups in
any implementation of the underlying SPF-SFE protocol.

A) Gates hidden in UC, k 25 50 100 200

B) Gates extracted, 14/(k + 14) 35.9% 21.9% 12.3% 6.5%

C) UC overhead in PF-SFE (UC type) 1, 861 (M3) 3, 720 (M3) 8, 264 (M3) 19, 419 (M3)

D) UC overhead in SPF-SFE (UC type) 850 (M1) 2, 571 (M3) 6, 797 (M3) 17, 542 (M3)

E) Improvement SPF-SFE vs. PF-SFE 1, 011 (54.3%) 1, 149 (30.9%) 1, 467 (17.8%) 1, 877 (9.7%)

Table 1. Improved UC Overhead in the Example of Fig. 9

As concrete example, Table 1 shows the number of gates that can be saved in the privacy-
preserving credit checking example of Fig. 9 compared to hiding the functionality entirely
in a UC in PF-SFE. For di�erent maximum size k (row A) of the part of the functionality
which is hidden in UC we give the achieved performance improvements when extracting
the obvious part of the functionality into the upper part of the circuit (COMPc blocks and
BOOL block in Fig. 9). In our example, these blocks consist of 14 gates, i.e., row B contains
the fraction of the functionality which is revealed: 14/(k + 14). Row C shows how many
gates are needed to hide the whole functionality of 14 + k gates in a UC with 24 inputs (for
credit_req, age, and gender) using the most e�cient UC construction of [SS08] which is
denoted in parentheses. Row D shows how many gates are needed to implement the UC in
our mixed approach as shown in Fig. 9, where UC has 18 inputs and simulates k gates. The
resulting improvements compared to the PF-SFE solution (row E) supersedes the fraction
of the gates extracted (row B) as the number of inputs into UC is also reduced.

8 Optimization of Circuits with Constant Inputs

We describe a general optimization algorithm that incorporates constant inputs into a block
(sub-circuit) B. The topology of the resulting optimized block Bopt is independent of the
values of the constant inputs and its number of inputs and size are smaller, i.e., the number
of gates respectively their degree is reduced as shown in Fig. 10. Besides the well known
propagation of constant inputs (step 1), our algorithm additionally eliminates resulting gates
with one input by incorporating them into surrounding gates (steps 2 and 3) which results
in smaller circuit size. The optimization algorithm is a non-cryptographic transformation of
circuits and hence of independent interest. As outlined in �2, one possible application is to
use this optimization to improve Yao's protocol. In this application, constant inputs might
be public constant values known to both parties as well as the private inputs of (semi-honest)
circuit constructor Bob (if known at the time of construction of the garbled circuit).

Terminology. The following terminology is visualized in Fig. 10(a). Assume the gates Gi,
i = 1, .., n of a block B are numbered in topological order, i.e., gate Gi has no inputs that
are outputs of gates with larger index Gj>i. Otherwise, this order can be obtained e�ciently
via topological sorting in O(n).

An output gate is a gate whose output is also an output of B. Similarly, an input gate
is a gate, which has at least one input that is also an input of B. For gate Gi, pred(Gi)
denotes the set of its predecessors, i.e., gates whose output is an input into Gi. Analogously,
succ(Gi) denotes the set of Gi's successors, i.e., gates having the output of Gi as input. The
fan-out of a gate Gi is the number of its successors, i.e., fanout(Gi) = #succ(Gi).
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(a) block with constant inputs in3 and in7 (b) optimized block produced by Algorithm 1

Fig. 10. Example for circuit optimization

Optimization. We refer to the running example of Fig. 10 that optimizes a block B with
constant inputs in3 and in7 in the following description of Algorithm 1.

Algorithm 1: Optimize block B with constant inputs

Input: Block B of gates G1, .., Gn in topological order
Output: Optimized block Bopt

begin
# Eliminate constant inputs1

forall constant inputs cj with constant value vj that are not outputs of B do
forall gates Gi having cj as ki-th input do

eliminateConstInput(Gi, ki, vj)

# Eliminate non-output gates with one input2

forall non-output gates Gi with di = 1 do
integrateInSucc(Gi)

# Eliminate output gates with one input3

forall output gates Gi with di = 1 do
let {Gp} = pred(Gi)
if Gi is not input gate and fanout(Gp) = 1 then

integrateInPred(Gi,Gp)

end

Step 1 - Eliminate constant inputs. The �rst step of Algorithm 1 eliminates all constant
inputs cj , j = 1, .., c of block B with respective constant value vj ∈ {0, 1}. For all gates Gi

with degree di having cj as ki-th input, eliminateConstInput(Gi, ki, vj) is called that
eliminates the corresponding input of Gi. Only the lines of the function table of Gi with
value vj in the ki-th position are used while the other entries are eliminated, i.e., the modi-
�ed gate G′

i computes g′i(in1, .., inki−1, inki+1, .., indi) = gi(in1, .., inki−1, vj , inki+1, .., indi).
|Gi| shrinks by a factor of two for each of its constant inputs. Let #ci denote the number
of constants of the di inputs of Gi, then |G′

i| = 2di−#ci after Step 1 of Algorithm 1 has
eliminated all constant inputs. To obtain an e�cient implementation of Algorithm 1 it is
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crucial that eliminateConstInput() does not copy the entire function table of a gate Gi

for each elimination of a constant input as this would result in runtime O(#ci · |Gi|) for each
gate. Instead, the constant inputs are marked �rst in runtime O(#ci) and afterwards all con-
stant inputs are eliminated simultaneously in runtime O(|Gi|) by copying the corresponding
elements of the function table. This results in runtime O(|Gi|) per gate.

Possibly resulting constant gates G′
i with d′i = 0 are propagated into its successors by

recursively calling eliminateConstInput(Gs, ks, gi(vj)) for all Gs ∈ succ(G′
i) having G′

i

as ks-th input. If constant gate G′
i is not an output gate it is eliminated afterwards.

In the running example of Fig. 10, constant input in3 is input into gate G1 whose size
is reduced by half when eliminating the second input (k1 = 2). The resulting gate G′

1

has one non-constant input in2 and hence no further optimization is performed. The other
constant input in7 is input into G3 which is optimized into a constant gate G′

3 by eliminating
the constant input. Hence, eliminateConstInput() is called recursively for successor G5

and G′
3 is eliminated. Similarly to G3, gate G5 is also reduced to a constant gate G′

5 and
eliminateConstInput() is called for successor G7 which eliminates its second input. As
the output of G′

5 is also output of B it is not eliminated and remains as constant gate Gd.
After the optimizations in Step 1, there might be gates Gi with only one input. The

next two steps of Algorithm 1 try to remove these gates by replacing them with wires and
incorporating their functionalities into their successors (Step 2) or predecessors (Step 3).

Step 2 - Eliminate non-output gates with one input. The second step of Algorithm 1 elim-
inates non-output gates with d = 1. The functionality of each one-input gate Gi which
is not an output gate is incorporated into its successors Gs ∈ succ(Gi) by the function
integrateInSucc(Gi). This function eliminates Gi by replacing it with a wire and incorpo-
rating the functionality of gi into the function tables of all its successors Gs ∈ succ(Gi): Let
the output of Gi be the k-th input of Gs and d the degree of Gs. Then, the modi�ed gate
G′

s computes g′s(in1, .., ink, .., ind) = gs(in1, .., gi(ink), .., ind). Note that, independent of the
functionality gi, the resulting gate G′

s has the same size as Gs but additionally incorporates
the functionality of gi while not revealing any additional information on it. As in Step 1,
the function tables of gates are not directly modi�ed but �rst all needed modi�cations are
marked and then done simultaneously to get runtime in O(|Gi|) per gate.

In the running example of Fig. 10, Step 2 eliminates G1 by replacing it with a wire and
modifying the function table of G6 correspondingly. Analogously, gate G′

7 which only has
one input from G2 left after the optimizations performed in Step 1 is replaced by a wire.
The function tables of its successors G9 → Gb and G10 → Gc are modi�ed correspondingly.

Step 3 - Eliminate output gates with one input. The third step of Algorithm 1 tries to
eliminate output gates with d = 1. The functionality of each output gate Gi with one input
is incorporated into its predecessor Gp. This is only possible if Gi is the only successor of
Gp, i.e., fanout(Gp) = 1. In this case, function integrateInPred(Gi,Gp) is called which
eliminates gate Gi by replacing it with a wire and incorporates its functionality into gate
Gp with d inputs. The modi�ed gate G′

p computes g′p(in1, .., ind) = gi(gp(in1, .., ind)). As in
Step 2, this optimization step is independent of the functionality gi and the resulting gate
G′

p has the same size as Gp but additionally incorporates the functionality of gi while not
revealing any additional information on it.

In the running example of Fig. 10, Step 3 eliminates G8 by replacing it with a wire and
modifying the function table of G6 → Ga correspondingly. In contrast to this, gate Gc cannot
be incorporated into its predecessor G2 as Gc is not its only successor (fanout(G2) = 2). The
optimized block Bopt produced by Algorithm 1 is shown in Fig. 10(b). It has size |Bopt| = 21
which is less than 62% of the size of the original block |B| = 34.
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Correctness, e�ciency and security of Algorithm 1 are summarized in the following theorem.

Theorem 1. Algorithm 1 e�ciently eliminates all c > 0 constant inputs that are not out-
puts of block B in runtime O(|B|). The optimized block Bopt has smaller size and computes
the same functionality as B. The topology of Bopt does not reveal anything about the values
of the constant inputs.

Proof. Let n denote the number of gates of B in the following.

1. Termination: Algorithm 1 always terminates as all loops are upper bounded and the
recursive call of eliminateConstInput() in Step 1 terminates if Gi has no successors.

2. E�ciency: Step 1 of Algorithm 1 �rst marks all gates with constant inputs in runtime
O(c · n) ⊆ O(|B|). Afterwards, the marked constant inputs are eliminated in O(|B|).
Step 2 also needs at most O(|B|) operations for elimination of gate Gi, marking and
incorporating the functionality of Gi into the succeeding gates and analogously Step 3
runs in O(|B|) as well. Hence, the overall runtime of Algorithm 1 is in O(|B|).

3. All constant inputs that are not outputs are eliminated: Step 1 of Algorithm 1 eliminates
all constant inputs that are not outputs of B by incorporating them into the input gates
Gi in eliminateConstInput().

4. Size is reduced: As c > 0 there is at least one constant input which is not output of B
and therefore must be input of at least one gate G (otherwise the circuit would not be
connected). The size of G is reduced by eliminateConstInput() in Step 1. As all other
optimizations never increase the size of the block its size is strictly reduced: |Bopt| � |B|.

5. Functional equivalence: None of the optimizations performed in Algorithm 1 changes the
functionality of B as they incorporate the values of constant inputs that are not outputs
(Step 1) respectively gates with one input (Step 2 and Step 3) into the functionality
of surrounding gates. The functionality bopt computed by optimized block Bopt with u′

non-constant inputs is identical to the functionality b′ computed by original block B with
constant input values set: ∀(in′1, .., in′u′) ∈ {0, 1}u′

: bopt(in′1, .., in
′
u′) = b′(in′1, .., in

′
u′).

6. Topology does not reveal values of constant inputs: All optimizations performed in Al-
gorithm 1 change the topology (i.e., remove gates or reduce the size of function tables
by reducing the number of inputs) independently of the values vj of the constant inputs.
Only the contents of the modi�ed function tables depend on the values vj . Hence, the
resulting topology of the optimized block Bopt does not depend on the values vj and
therefore Bopt does not reveal anything about vj .

This concludes the proof of Theorem 1. ut

9 Conclusion

Exploiting Yao's protocol to additionally hide parts of the evaluated function f as described
in this paper is as e�cient as Yao's plain SFE protocol. Hence, SPF-SFE is much more
e�cient than PF-SFE whose practicability is restricted (due to large overhead caused by
UC). In many practical applications full hiding of f is not necessary at all as shown in �7:
Obvious parts of the topology can safely be revealed while the sensitive parts are still hidden
in a (much smaller) UC.

Our FairplaySPF compiler extends the well-known Fairplay SFE framework [MNPS04]
with capabilities to easily describe semi-private functions with our new Secure Programmable
Block Description Language SPDL, compile and optimize them into circuits which can e�-
ciently be evaluated with an SPF-SFE protocol based on Yao's protocol.
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In principle, the ideas of SPF-SFE using PPBs can be extended to malicious, respectively
covert constructor Bob as well by using SFE protocols that apply cut-and-choose technique
[MNPS04,LP07,LPS08], respectively [AL07,GMS08] instead. The opening phase reveals the
gate types and hence Bob's inputs can not be incorporated into the circuit and PPBs require
additional inputs by Bob to select the intended functionality which results in larger circuits.

Acknowledgements. We would like to thank Vladimir Kolesnikov and anonymous review-
ers of ACNS'09 for helpful comments on the paper.
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A Privately Programmable Blocks Provided by SPBDL

{                   }

(a) addsub (5.1) (b) addsubc (5.2) (c) comp (5.3) (d) compc (5.4)

(e) mulc (5.5) (f) bool (B.1) (g) boolc (B.2) (h) uc [KS08b]

(i) sel [KS08b] (j) perm [KS08b] (k) yblock [KS08b] (l) xblock [KS08b]
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B E�cient Privately Programmable Blocks for Boolean Functions

B.1 PPB:BOOL - boolean combination of input bits

(m) Interface

...

(n) Topology

Fig. 11. PPB:BOOL

Interface (Fig. 11(m)). PPBBOOL combines u boolean inputs in1, .., inu with function

out = f(in1, .., inu) =
u⊙

i=1

ini, where
⊙

∈ {
∧

,
∨

,
⊕

,
∧

,
∨

,
⊕
} and |out| = 1. The corre-

sponding class of functions is F = {AND, OR, XOR, NAND, NOR,XNOR}.

Implementation (Fig. 11(n)). Topology of PPBBOOL is a chain of u− 1 programmable
gates PGi, i = 1, .., u − 1 with input bits ini+1, carry-in ti−1, and output ti. The output
of PPBBOOL is out = tu−1 and the �rst carry-in is t0 = in1. The carry ti contains the
intermediate result from combining the lower i + 1 input bits in<i+1 = in mod 2i+1 with
the corresponding operation. In the following we describe the programming for the cases
AND, OR, and XOR; the corresponding cases NAND, NOR, and XNOR can be easily
derived from this by negating output tu−1 in PGu−1. In case f = AND, PGi is programmed
to compute an AND gate ti = ini+1∧ti−1. The cases f = OR and f = XOR are constructed
analogously. This block has size |PPBBOOL| = (u− 1) · 22 = 4u− 4.

B.2 PPB:BOOLc - boolean combination of input and private constant

(a) Interface (b) Topology

Fig. 12. PPB:BOOLc

Interface (Fig. 12(a)). PPBBOOLc computes bitwise boolean combination of input in
with private constant c, i.e., out = fc(in) = in � c, where � ∈ {∧,∨,⊕,∧,∨,⊕} and
|out| = u. The class of functions is Fc = {ANDc, ORc, XORc, NANDc, NORc, XNORc}.



22 A. Paus, A.-R. Sadeghi, T. Schneider

Implementation (Fig. 12(b)). Topology of PPBBOOLc consists of u programmable gates
PGi in parallel with input bit ini and output outi that combine the corresponding input
bit ini and the private constant ci. In case fc = ANDc, PGi is programmed to compute
outi = ini ∧ ci. The other cases are similar. This block has size |PPBBOOLc | = u · 21 = 2u.

C EBNF of Secure Programmable Block De�nition Language
(SPBDL)

Program ::= {Input} {Element} {Output};

Input ::= Line 'input' Player [ '[' Positive ']' ];

Element ::= Gate | Block | Vector;

Gate ::= Line 'gate' 'in' '[' {Wire} ']' 'p' '[' {Bit} ']';

Block ::= Line 'block' '[' Btype ']' 'out' Positive 'in' '[' {Vect} ']'

'p' '[' Bprog ']';

Vector ::= Line 'vector' '[' {Wire} ']';

Output ::= Line 'output' Player Vect;

Btype ::= 'addsub' | 'addsubc' | 'mulc' | 'comp' | 'compc' |

'bool' | 'boolc' | 'yblock' | 'xblock' | 'sel' | 'perm' | 'uc';

Bprog ::= Paddsub | Paddubc | Pmulc | Pcomp | Pcompc |

Pbool | Pboolc | Pyblock | Pxblock | Psel | Pperm | Puc;

Paddsub ::= 'ADD' | 'SUB';

Paddsubc ::= Paddsub Const [ ConstLen ];

Pmulc ::= Const [ ConstLen ];

Pcomp ::= 'L' | 'G' | 'E' | 'LE' | 'GE' | 'NE';

Pcompc ::= Pcomp Const [ ConstLen ];

Pbool ::= 'AND' |'OR' | 'XOR' | 'NAND'| 'NOR'| 'XNOR';

Pboolc ::= Pbool Const;

Pyblock ::= 'L' | 'R';

Pxblock ::= 'H' | 'X';

Psel ::= Unsigned {Unsigned};

Pperm ::= Unsigned {Unsigned};

Puc ::= Unsigned <File>;

Line ::= Unsigned;

Const := Unsigned;

ConstLen ::= Positive;

Vect ::= Line;

Wire ::= Line | Line '.' Unsigned;

Player ::= 'alice' | 'bob'

Bit ::= '0'|'1';

Digit ::= '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9';

Unsigned ::= Digit {Digit};

Positive ::= ('1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9') {Digit};
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