
A New Lattice for Implicit Factoring

Yanbin Pan and Yingpu Deng
Key Laboratory of Mathematics Mechanization

Academy of Mathematics and Systems Science,Chinese Academy of Sciences
Beijing 100190, China

{panyanbin,dengyp}@amss.ac.cn

2009.3.20

Abstract

In PKC 2009, Alexander May and Maike Ritzenhofen[7] proposed an in-
genious lattice-based method to factor the RSA moduli N1 = p1q1 with the
help of the oracle which outputs N2 = p2q2, where p1 and p2 share the t least
significant bits and t is large enough when we query it with N1. They also
showed that when asking k− 1 queries for RSA moduli with α-bit qi, they can
improve the bound on t to t ≥ k

k−1α. In this paper, we propose a new lattice for
implicit factoring in polynomial time, and t can be a little smaller than in [7].
Moreover, we also give a method in which the bound on t can also be improved
to t ≥ k

k−1 (α − 1 + 1
2 log k+3

k ) but with just only one query. Moreover we can
show that our method reduces the running time of the implicit factoring for
balanced RSA moduli much efficiently and makes it practical.

Keywords: Implicit Factoring, Lattice, RSA moduli

1 Introduction

Although after the invention of the public key cryptosystem RSA[12], factoring large
integers becomes more and more important and many efforts including the Quadratic
Sieve [10], the Elliptic Curve Method[4] and the Number Field Sieve[5] are made
to improve the factorization complexity, there still have not been a polynomial
factorization algorithm on classical computing model while Shor[13] has showed
there exists a polynomial time algorithm for factorization on quantum computing
platforms.

In classical domain, Rivest and Shamir[11] showed that N = pq can be factored
efficiently with an oracle that outputs 3

5 log p most significant bits of p at Eurocrypt
1985. Later at Eurocrypt 1996, Coppersmith[2] improved the bound to 1

2 log p.

1



In PKC 2009, Alexander May and Maike Ritzenhofen[7] proposed an ingenious
lattice-based method to factor the RSA moduli with the help of an oracle. Consid-
ering the RSA moduli N1 = p1q1, they can factor N1 efficiently if the oracle outputs
N2 = p2q2, where p1, p2 share t least significant bits and t is large enough. More pre-
cisely, let q1, q2 be α-bit prime numbers, then if t > 2(α + 1), they can find q1, q2 in
polynomial time. To further improve upon the bound on t, they make k−1 queries,
and prove that if t ≥ k

k−1α, they can factor N1 efficiently under some assumption.
In their paper, they also proposed an algorithm to factor balanced RSA moduli with
k− 1 queries and 2

n
4 guesses, where N1 is an n-bit number. However, 2

n
4 guesses is

too large to make the algorithm practical and by Coppersmith’s method[3], we can
also directly factor N1 with 2

n
4 guesses without the oracle’s help.

In this paper, we propose another lattice-based algorithm which at least has the
advantages below:

• We also reach the bound k
k−1α but just using only one query, this can be

realized more easily in the real life.

• The vector we will find in our lattice is shorter than the one in [7]. By the
Gaussian Heuristic and experiences, our vector can be found more easily.

• For the balanced RSA moduli, our algorithm uses just only one query and 2
n
2k

guesses, which make our algorithm practical. This shows that the oracle does
help us to factor N1.

The paper is organized as follows. In Section 2, we give some results we need.
In Section 3, we give our new 2 − dimensional lattice with one query. In Section
4, we present a k − dimensional version to improve the bound on t. At last, we
give the method to factor the balanced RSA moduli with the help of the oracle in
Section 5.

2 Preliminaries

An integer lattice L is a discrete additive subgroup of Zn and can be also defined
as below:
Definition of Lattice: Let b1, b2 · · · , bd ∈ Zn be linearly independent vectors, the
lattice L spanned by them is

L = {
d∑

i=1

aibi|ai ∈ Z}

2



B =

 b1
...
bd

 is called the basis of L.

A lattice is full rank if d = n. If L is full rank, the determinant det(L) is equal
to the absolute value of determinant of the basis B.

Denote ‖v‖ the Euclidean l2-norm of a vector v and λ1(L) the length of the
shortest vector in the lattice L. The Minkowski’s Theorem[9] tells us λ1(L) ≤√

ndet(L)
1
n where L is an n − dimensional lattice. Moreover, by the Gaussian

Heuristic, λ1(L) ≈
√

n
2πedet(L)

1
n for an n − dimensional random lattice L, and

experiences tell us the smaller
‖v‖√

n
2πedet(L)

1
n

, the more easily we can find v in

practice.
We can use Gaussian reduction algorithm to find the shortest vector v in polyno-

mial time and the information on Gaussian reduction algorithm can be found in [8].
To find a short vector in a n− dimensional lattice L, we can use LLL algorithm[6]
to find v ∈ L, such that ‖v‖ ≤ 2

n−1
4 det(L)

1
n in polynomial time.

LLL algorithm is used by Coppersmith[3] to find the factorization of N = pq in
polynomial time if we know the low order n

4 bits of p where N is an n-bit number.

3 The New Lattice for Implicit Factoring

To factor N1 = p1q1, we get N2 after one query with the oracle, where N2 = p2q2,
p1, p2 share the t least significant bits and q1, q2 are α-bit prime as assumed in [7].

As in [7], let p1 = p + 2tp̄1 and p2 = p + 2tp̄2, so

N1 = pq1 + 2tp̄1q1

N2 = pq2 + 2tp̄2q2

Reducing the two equations modulo 2t, we get

N1 = pq1 mod 2t

N2 = pq2 mod 2t

Eliminating p from the two equations, May and Ritzenhofen[7] get the linear equa-
tion

(N−1
1 N2)q1 − q2 = 0 mod 2t

and proves that the set of the solutions of the equation above is a lattice LMR

spanned by the row vectors of the basis matrix

BL =
(

1 N−1
1 N2

0 2t

)
3



So the vector qMR = (q1, q2) ∈ LMR, if ‖qMR‖ is small enough, they can find q1 by
Gaussian reduction algorithm.

Here we use a new lattice as below instead of LMR. Assume q1 < q2(Notice that
this can’t hold forever, we give a short comment in the remark on the case q1 > q2

and we can compute gcd(N1, N2) if q1 = q2), we subtract N1 from N2

N1 = pq1 mod 2t

N2 −N1 = p(q2 − q1) mod 2t

Since N1 is an odd number, we can eliminate p and get

N−1
1 (N2 −N1)q1 − (q2 − q1) = 0 mod 2t

As in [7], it can be also easily checked that the set of solutions

L = {(x1, x2) ∈ Z2|N−1
1 (N2 −N1)x1 − x2 = 0 mod 2t}

forms a lattice Lnew spanned by the rows of the basis matrix

Bnew =
(

1 N−1
1 (N2 −N1)

0 2t

)
Notice that the vector qnew = (q1, q2 − q1) ∈ Lnew and q1 ≤ 2α, q2 − q1 ≤ 2α−1,

so we can get a similar theorem as Theorem 5 in [7].

Theorem 1. Let N1 = p1q1, N2 = p2q2 be two different RSA moduli with α-bit qi,
and q1 < q2. Suppose that p1, p2 share at least t > 2α + 1 bits. Then N1, N2 can be
factored in quadratic time by running Gaussian reduction on Lnew.

Using the lattice Lnew, we can reduce the numbers of the sharing bits by 1.

Remark 1. If q1 > q2, we can construct a new lattice L′new spanned by the rows of
matrix

B′new =
(

1 N−1
2 (N1 −N2)

0 2t

)
Notice that q′new = (q2, q1 − q2) ∈ L′new and ‖q′new‖ < ‖qMR‖, so we can also find
q′new and so q2 by Theorem 1, then q1 = N−1

2 N1 mod 2t.
Another question is we don’t know whether q1 < q2 or not, so we run Gaussian

reduction on the two lattice Lnew and L′new, if any of them successes, then we can
factor N1.

Notice that for any unimodular matrix U =
(

a b
c d

)
, either aN1 + bN2 or

cN1 + dN2 is odd. Suppose not, they are both even, then either a, b are even or are

4



odd, so are c, d. Moreover, so are ad, bc, hence ad − bc is even, which contradicts
the fact ad− bc = 1. We assume aN1 + bN2 is odd, then we can construct a lattice

spanned by the row vectors of the matrix
(

1 (aN1 + bN2)−1cN1 + dN2

0 2t

)
which

contains the vector q = (aq1 + bq2, cq1 + dq1), if q is short enough, then we may
improve the bound on t.

4 Improving the Bound on t

To further improve upon the bound on t, we needn’t query the oracle more than
once, we can do it just with only one query.

Assume q1 < q2, Let the k − dimensional lattice Lk
new be the one spanned by

the rows of the matrix below:

Bk
new =


1 N−1

1 (N2 −N1) N−1
1 (N2 −N1) · · · N−1

1 (N2 −N1)
0 2t 0 · · · 0
0 0 2t · · · 0
...

...
...

. . .
...

0 0 0 · · · 2t


k×k

Notice that the vector qk
new = (q1, q2 − q1, q2 − q1, · · · , q2 − q1) ∈ L and ‖qk

new‖ ≤√
k + 32α−1, if qk

new is indeed the shortest vector in L, then by Minkowski’s Theorem,
we have

‖qk
new‖ ≤

√
k2

k−1
k

t

Let √
k + 32α−1 ≤

√
k2

k−1
k

t

which implies that

t ≥ k

k − 1
(α− 1 +

1
2

log
k + 3

k
)

This also give us a good suggestion for the choice of k, if t is large enough, we can
choose small k to reduce the running time and improve the success probability, if t
is small, we have to choose large k.

Similar to Assumption 6 in [7], we can also assume that if t ≥ k

k − 1
(α − 1 +

1
2 log

k + 3
k

), then q′new may be a shortest vector in L.

5



Comparing with the lattice Lk
MR in [7] spanned by the rows of the matrix

Bk
MR =


1 N−1

1 N2 N−1
1 N3 · · · N−1

1 Nk

0 2t 0 · · · 0
0 0 2t · · · 0
...

...
...

. . .
...

0 0 0 · · · 2t


k×k

and the vector qk
MR = (q1, q2, · · · , qk), we find that we just use only one query, but

the bound on t can be improved to a lower bound. Notice that by the Gaussian
Heuristic, we have

λ1(Lk
MR) ≈ λ1(Lk

new) ≈
√

k

2πe
2

k−1
k

t

However, ‖qk
new‖ < ‖qk

MR‖, since q2−q1 < 2α−1 ≤ qi, then
‖qk

new‖√
k

2πe
2

k−1
k

t

<
‖qk

MR‖√
k

2πe
2

k−1
k

t

,

so the experience tells us qk
new can be found more efficiently than qk

MR in practice.
Next we present a case in which Assumption 6 in [7] is not true, but our as-

sumption may have a little more advantage. To ensure Assumption 6, we show that
k can’t be too large.
Claim: Let t = α+ t0 where t0 ≥ 0, and choose k0 ∈ R such that 1

2 log k0− k0
k0−1α+

α− 1 = t0, then for k ≥ k0, Assumption 6 is not true.

Proof. Let f(x) = 1
2 log x − x

x−1α + α − 1, notice that f(x) is a strictly monotonic
increasing function, and f(2) < 0, limx→+∞ f(x) = +∞, so for any t0 ≥ 0, we can
find k0 such f(k0) = t0.

for any k ≥ k0, let t = k
k−1α + t′ where 0 ≤ t′ < t0, so f(k) ≥ f(k0) > t′, i.e.

1
2 log k − k

k−1α + α− 1 > t′, this implies that

t =
k

k − 1
α + t′ <

1
2

log(k) + α− 1

which can also be written as

2t <
√

k2α−1 ≤ ‖qk
MR‖

So the vector (0, 2t, 0, · · · , 0) is shorter than qk
MR.

Notice that the proof uses the fact that ‖qk
MR‖ ≥

√
k2α−1. Since qk

new is shorter
than qk

MR, hence has much lower bound, so our assumption may be true for larger
k.

6



Remark 2. To increase the success rate and reduce the running time, we can use
a simple strategy. In the process of LLL algorithm, once we get a new basis vector
q = (x1, x2, · · · , xk), we compute gcd(x1, N1) and halt when we get q1. If q1 > q2,
then we can use the similar method in Remark 1.

5 Implicit Factoring of Balanced RSA Moduli

The most attractive advantage of our method is decreasing the running time for
balanced RSA moduli much efficiently and making the implicit factoring of balanced
RSA moduli practical.

Let Ni = piqi such that pi and qi have bitsize n
2 each for i = 1, 2. As in [7], we

assume t = n
4 to minimize the time complexity. We first choose k ∈ Z, such that

it is possible to solve the CVP on a k − dimensional lattice in a reasonable time.
Let β = bk−1

k tc. Then we can split qi (mod 2t) into 2β q̄i + xi (mod 2t) for i = 1, 2.
So the number of the bits of xi is at most β. Suppose x1 < x2, and in Section 3 we
have

N−1
1 (N2 −N1)q1 − (q2 − q1) = 0 mod 2t

So we have

N−1
1 (N2 −N1)x1 − (x2 − x1) = 2β(q̄2 − q̄1 −N−1

1 (N2 −N1)q̄1) mod 2t

Let c = 2β(q̄2 − q̄1 − N−1
1 (N2 − N1)q̄1), and we guess q̄1, q̄2, since the size of q̄i is

at most t − β, so we must guess roughly n
2k bits, which is much less than n

4 in [7].
For any pair (q̄1, q̄2 − q̄1) we guess, we compute the corresponding c, and define the
lattice Lbal spanned by the rows of the following basis matrix

Bbal =


1 N−1

1 (N2 −N1) N−1
1 (N2 −N1) · · · N−1

1 (N2 −N1)
0 2t 0 · · · 0
0 0 2t · · · 0
...

...
...

. . .
...

0 0 0 · · · 2t


k×k

Denote cbal the target vector (0, c, c, · · · , c) and notice that the vector qbal = (x1, x2−
x1 + c, x2 − x1 + c, · · · , x2 − x1 + c) ∈ Lbal, , then

‖qbal − cbal‖ = ‖(x1, x2 − x1, x2 − x1, · · · , x2 − x1)‖ ≤
√

k2β ≤
√

k2
(k−1)n

4k

So we also make the assumption, that qbal is the closest vector to cbal in Lbal. Under
the assumption, since k is fixed, then we can use a polynomial time algorithm to
find qbal hence get x1(see Blömer[1]). So we find the least n

4 bits of q1 (i.e. q1 mod

7



2t) by combining q̄1 and x1. Then by using Coppersmith’s method[3], we can find
the complete q1.

Denote TIMEcvp the running time of getting qbal and TIMEcop the running
time of Coppersmith’s method , then in the worst case, we can use our method to
get q1 in 2

n
2k (TIMEcvp + TIMEcop) instead of 2

n
4 (TIMEcvp + TIMEcop) which is

needed when using the original method in [7].
Since TIMEcvp+TIMEcop is bounded by a polynomial in (k!,max(log N1, log N2)),

the number of the guesses must be the most important factor to decide whether a
method is practical or not. For example, if n = 1000 and k = 50, then we only try
1024 guesses which is practical, but not 2250 which is impossible to realize nowadays.

Remark 3. Obviously, a parallel strategy can give us great help to find q1 .

References

[1] J. Blömer, Closest Vectors, Successive Minima, and Dual HKZ-bases of
Lattices, ICALP 2000, Lecture Notes in Computer Science, Volume 1853,
Springer-Verlag, pp.248-259, 2000

[2] D.Coppersmith: Finding a Small Root of a Bivariate Integer Equation,
Factoring with High Bits Known, Advances in Cryptology (Eurocrypt 96),
Lecture Notes in Computer Science, Volume 1070, pp. 178-189, Springer-
Verlag, 1996

[3] D. Coppersmith: Small solutions to polynomial equations and low expo-
nent vulnerabilities, Journal of Cryptology, Volume 10(4), pp. 223-260,
1997

[4] H. W. Jr. Lenstra: Factoring Integers with Elliptic Curves, Ann. Math.
126, pp. 649-673, 1987

[5] A. K. Lenstra, H. W. Jr. Lenstra: The Development of the Number Field
Sieve, Springer-Verlag, 1993

[6] A. K. Lenstra, H. W. Lenstra, and L. Lovász: Factoring polynomials with
rational coefficients, Mathematische Annalen, Volume 261, pp. 513-534,
1982

[7] A. May and M. Ritzenhofen: Implicit Factoring: On Polynomial Time
Factoring Given Only an Implicit Hint. In Proc. of PKC 2009, volume
5443 of LNCS, pages 1-14. Springer Berlin / Heidelberg

8



[8] C. D. Meyer: Matrix Analysis and Applied Linear Algebra, Cambridge
University Press, 2000

[9] H. Minkowski: Geometrie der Zahlen, Teubner-Verlag, 1896

[10] C.Pomerance: The Quadratic Sieve Factoring Algorithm. In Advances in
Cryptology (Eurocrypt 84), Lecture Notes in Computer Science, Volume
209, pp. 169-182, Springer-Verlag, 1985.

[11] R. Rivest, A.Shamir: Efficient Factoring Based on Partial Information,
In Advances in Cryptology (Eurocrypt 85), Lecture Notes in Computer
Science, Volume 219 , pp. 31-34, Springer-Verlag, 1986

[12] R.Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems, Communications of the ACM, Vol-
ume 21(2), pp. 120-126, 1978

[13] P. Shor: Algorithms for Quantum Computation: Discrete Logarithms and
Factoring, Proceedings 35th Annual Symposium on Foundations of Com-
puter Science, Santa Fe, NM, IEEE Computer Science Press pp. 124-134,
1994

9


