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Abstract

A leakage-resilient cryptosystem remains secure even if arbitrary information about the
secret key (or possibly other internal state information) is leaked to an adversary. We demon-
strate the first constructions of leakage-resilient signature schemes that remain secure as long
as a bounded amount of information, depending on the length n of the secret key, is leaked.
We show efficient schemes in the random oracle model that handle leakage of up to ( 1

2 − ε) · n
bits of information about the signer’s entire internal state. In the standard model, we show an
inefficient scheme that can handle leakage of up to (1− ε) ·n bits of information about the secret
key, and a one-time signature scheme tolerating arbitrary leakage of n1−ε bits.

1 Introduction

Proofs of security for cryptographic primitives traditionally treat the primitive as a “black box”
which an adversary is able to access in a relatively limited fashion. For example, in the usual
model for proving security of signature schemes an adversary is given the public key and allowed to
request signatures on any messages of its choice, but is unable to get any other information about
the secret key or any internal randomness or state information used during signature generation.

In real-world implementations of cryptographic primitives, on the other hand, an adversary
may be able to recover a significant amount of additional information not captured by standard
security models. Examples include information leaked by side-channel cryptanalysis [21, 22], fault
attacks [8, 6], or timing attacks [7], or even bits of the secret key itself in case this key is improperly
stored or erased [19]. Potentially, schemes can also be attacked when they are implemented using
poor random number generation [27] (which can be viewed as giving the adversary additional
information on the internal state, beyond that which would be available were the output truly
random), or when the same key is used in different contexts (e.g., for decryption and signing).

In the past few years cryptographers have made tremendous progress toward modeling security
in the face of such information leakage [24, 34], and in constructing leakage-resilient cryptosystems
secure even in case such leakage occurs. (There has also been corresponding work on reducing
unwanted leakage by, e.g., building tamper-proof hardware; this is not the focus of our work.)
Most relevant to the current work is a recent series of results [14, 1, 30, 13, 35, 25] showing
cryptosystems that guarantee security even when arbitrary information about the secret key is
leaked, so long as this information is bounded in some way; we discuss this work, along with other
related results, in further detail below. This prior work gives constructions of stream ciphers [14, 30]
(and hence stateful symmetric-key encryption and MACs), symmetric-key encryption schemes [13],
and public-key encryption schemes [1, 35, 25] achieving various notions of leakage resilience.

The prior work just mentioned concentrates primarily on primitives for ensuring secrecy ; the
case of schemes for guaranteeing authenticity has so far been relatively unexplored. Here, we initiate
work in this direction and show the first constructions of signature schemes, and hence stateless
MACs, that remain secure as long as a bounded amount of information about the key (and other
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internal state information) is leaked. We show schemes that are efficient and can be proven secure in
the random oracle model, and also show inefficient, “proof of concept” constructions in the standard
model; the levels of leakage resilience achieved in each case are incomparable. We postpone a more
thorough discussion until after we define leakage resilience in a bit more detail.

1.1 Modeling Leakage Resilience

We provide a brief overview of the framework in which leakage resilience is defined (specialized to
signatures), providing a discussion of previous related work along the way.

At a high level, definitions of leakage resilience take the following form: Begin with a “stan-
dard” security notion (e.g., existential unforgeability under adaptive chosen message attacks [17])
and modify this definition by allowing the adversary to (adaptively) specify a series of leakage
functions f1, . . .. The adversary, in addition to getting whatever other information is specified by
the original security definition, is given the result of applying fi to the secret key and possibly
other internal state of honest party (e.g., the signer). We then require that the adversary’s success
probability — in the case of signature schemes, the probability with which it can output a forged
signature on a previously unsigned message — remain negligible. It should be clear that this is a
a general methodology that can be applied to many different primitives.

The exact model is then determined by the restrictions placed on the leakage function(s) fi.
We may distinguish the following possibilities:

Arbitrary or specific information A first issue to be resolved is whether the {fi} are allowed
to be arbitrary (polynomial-time computable) functions, or whether they are restricted to be in
some more limited class. Early work considered the latter case, for example where adversary is
restricted to learning specific bits of the secret key [10], or the values on specific wires of the circuit
implementing the primitive [20]. More recent work [14, 1, 30, 13, 35, 25] allows arbitrary {fi}.
Total amount of information bounded or unbounded. Let n denote the length of the secret
key. It is clear that if the secret key does not change over time, and the {fi} are allowed to be
arbitrary, meaningful security cannot be obtained if the total length of the leakage — that is, the
outputs of all the {fi} — is n bits or more. (For the case of signatures, the length of the leakage
must also be less than the signature length.) This inherent restriction is used in [1, 35, 25].

One can avoid this restriction, and potentially tolerate an unbounded amount of leakage overall,
if one is willing to allow the secret key to be updated over time; even in this case, one must somehow
limit the amount of leakage between successive key updates. This approach to leakage resilience
was considered in [14, 30] in the context of stateful symmetric-key primitives. Updating the secret
key is reminiscent of work on forward-secure cryptosystems [2, 4, 5, 11], and indeed forward security
can be viewed as a limited form of leakage resilience.

One can also avoid imposing a bound on the leakage by restricting the {fi}, as discussed next.

Computational min-entropy of the secret key. If the leakage is much shorter than the
secret key (as discussed above), then the secret key will have high min-entropy conditioned on the
leakage. This setting is considered in [1, 25, 35], and is also enforced on a per-period basis in the
work of [14, 30] (i.e., the leakage per time period is required to be shorter than the secret key).
More recent work [13, 35] shows schemes that remain secure for certain leakage of arbitrary length,
as long as the secret key remains exponentially hard to compute given the leakage (but even if the
secret key is fully determined by the leakage in an information-theoretic sense). A drawback of
this guarantee is that given some collection of functions {fi} (say, as determined experimentally for
some particular set of side-channel attacks) there is no way to tell, in general, whether they satisfy
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the stated requirement or not. Furthermore, existing results in this direction currently require
super-polynomial hardness assumptions.

Inputs to the leakage functions. A final consideration is the allowed inputs of the leakage
functions. Work of [14, 30] assumes, following [24], that only computation leaks information; this
is modeled by letting each fi take as input only those portions of the secret key that are accessed
during the ith phase of the scheme. Halderman et al. [19], however, show that memory contents can
be leaked even when they are not being accessed. Motivated (in part) by this result, the schemes
of [1, 13, 35, 25] allow the {fi} to take the entire secret key as input at all times.

For the specific primitives considered in [14, 1, 30, 13, 35, 25], the secret key sk is the only
internal state maintained by the party holding the secret key, and so allowing the {fi} to depend
on sk is (almost) the most general choice.1 We observe that for other primitives, and in particular
for signature schemes with randomized signing, there is additional state information that is kept
secret from the adversary in the traditional security definition. The strongest definition of leakage
resilience is thus obtained by allowing the {fi} to depend on all the state information used by the
honest signer during the course of the experiment.

All these variants may be meaningful depending on the particular attacks one is trying to model.
Memory attacks [19, 1], which probe long-term secret information during a time when computation
is not taking place, can be faithfully modeled by allowing the leakage functions to take only sk
as input. On the other hand, side-channel attacks that collect information while computation is
occurring might be more accurately captured by allowing the leakage functions to take as input
only those portions of the internal state that are actively be accessed.

1.2 Our Results

With the preceding discussion in mind, we can now describe our results in further detail. In all
cases, we allow the leakage functions to be arbitrary as long as the total leakage is bounded as some
function of the secret key length n; recall that such a restriction on the leakage is essential if the
secret key is unchanging, as it is in all our schemes.

1. We show a class of efficient, leakage-resilient signature schemes in the random oracle model.
For any constant ε > 0, these schemes tolerate leakage of (1

2 − ε) · n bits that may depend on
the entire state of the signer throughout the course of the experiment.

2. We also show an inefficient construction of a leakage-resilient signature scheme in the standard
model. In this case we can tolerate more leakage — up to (1− ε) · n bits — but restrict the
leakage functions to depend on the secret key (and the randomness used to generate it) only.
(Thus, here we offer protection against the “memory attacks” of [1].)

3. Finally, we show a leakage-resilient one-time signature scheme in the standard model. (The
same idea can also be extended to give a t-time signature scheme.) This scheme is more
efficient than the previous one and, as in the case of our first scheme, tolerates leakage that
may depend on the entire state of the signer throughout the experiment. (In fact, here
signing is deterministic.) This scheme tolerates leakage of n1−ε bits, asymptotically less than
the previous two schemes.

1More generally, one could also allow the {fi} to depend on the randomness used to generate the (public and) secret
key(s); this possibility is mentioned in [25, Section 8.2]. (For the specific schemes considered in [14, 1, 30, 13, 35, 25],
however, this makes no substantive difference.) One could also allow the {fi} to be applied to the state of other
honest parties besides the holder of the secret key, e.g., the sender in a public-key encryption scheme. This issue has
not yet been addressed in any work of which we are aware.
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Our constructions all rely on the same basic idea. Roughly, we consider signature schemes with
the following properties:

• A given public key pk corresponds to a set Spk of exponentially many secret keys. Furthermore,
given (sk, pk) with sk ∈ Spk it remains hard to compute any other sk′ ∈ Spk.

• The “real” secret key sk used by the signer should be computationally indistinguishable
from a random secret key in Spk, even for an adversary who observes signatures on arbitrary
messages of its choice.

• A signature forgery can be used to compute a secret key in Spk.

To prove, informally, that any such signature scheme is leakage resilient, we show how to use an
adversary A attacking the scheme to find distinct sk, sk′ ∈ Spk given (sk, pk) (in violation of the
assumed hardness of doing so). Given (sk, pk), we simply run A on input pk and respond to its
signing queries using the given key sk. Leakage queries can also be answered without any problem
using sk. When the adversary forges a signature, we extract sk′ ∈ Spk; it remains only to show
that sk′ 6= sk with high probability. Let k = log |Spk| be the initial min-entropy of sk conditioned
on pk. As long as the leakage is bounded by α · k bits for some α < 1, with high probability
the min-entropy of sk, conditioned on A’s entire view, is still at least 2. But then sk′ 6= sk with
probability at least 1/2. This concludes the outline of the proof. We remark, however, that getting
the details to work is a bit more subtle for our constructions in the random oracle model.

Some existing signature schemes in the random oracle model already satisfy the requirements
stated above. In particular, these include schemes constructed using the Fiat-Shamir transform [15]
applied to a witness-indistinguishable Σ-protocol where there are an exponential number of wit-
nesses corresponding to a given statement. Concrete examples include the signature schemes of
Okamoto [28] (extending the Schnorr [33] and Guillou-Quisquater [18] schemes) based on the dis-
crete logarithm or RSA assumptions, as well as the signature scheme of Fischlin and Fischlin [16]
(extending the Ong-Schnorr [29] scheme) based on the hardness of factoring.

We are not aware of any existing signature scheme in the standard model that meets our require-
ments. We construct one as follows. Let H be a universal one-way hash function (UOWHF) [26]
mapping n-bit inputs to (εn)-bit outputs. The secret key of the signature scheme is x ∈ {0, 1}n,
and the public key is (y = H(x), pk, r) where pk is a public key for a CPA-secure public-key encryp-
tion scheme, and r is a common reference string for an unbounded simulation-sound NIZK proof
system [32, 12]. A signature on a message m consists of an encryption C ← Encpk(m‖x) of both
m and x, along with a proof π that C is an encryption of m‖x′ with H(x′) = y. Observe that,
with high probability over choice of x, there are exponentially many pre-images of y = H(x) and
hence exponentially many valid secret keys; furthermore, finding another such secret key sk′ 6= sk
requires finding a collision in H.

Our leakage-resilient one-time signature scheme is constructed using a similar idea, applied to
the Lamport one-time signature scheme [23]. That is, the secret key is {(xi,0, xi,1)}k

i=1 and the
public key is {(yi,0, yi,1)}k

i=1 where k is the message length and yi,b = H(xi,b) for H a UOWHF as
above. Once again, there are exponentially many secret keys associated with any public key and
finding any two such keys yields a collision in H.

2 Definitions

We provide a formal definition of leakage resilience for signature schemes. We denote the security
parameter by k, and let ppt stand for “probabilistic polynomial time”.
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Definition 1 A signature scheme is a tuple of ppt algorithms (Gen, Sign, Vrfy) such that:

• Gen is a randomized algorithm that takes as input 1k and outputs (pk, sk), where pk is the
public key and sk is the secret key.

• Sign is a (possibly) randomized algorithm that takes as input the secret key sk, the public
key pk, and a message m, and outputs a signature σ. We denote this by σ ← Signsk(m),
leaving the public key implicit.2

• Vrfy is a deterministic algorithm that takes as input a public key pk, a message m, and a
purported signature σ. It outputs a bit b indicating acceptance or rejection, and we write
this as b := Vrfypk(m,σ).

It is required that for all k, all (pk, sk) output by Gen(1k), and all messages m in the message space,
we have Vrfypk(m,Signsk(m)) = 1. ♦

Our definition of leakage resilience is the standard notion of existential unforgeability under
adaptive chosen-message attacks [17], except that we additionally allow the adversary to specify
arbitrary leakage functions {fi} and obtain the value of the functions applied to the secret key (and
possibly other state information).

Definition 2 Let Π = (Gen, Sign, Vrfy) be a signature scheme, and let λ be a function. Given an
adversary A, define the following experiment parameterized by k:

1. Set state := ∅.
2. Choose r ← {0, 1}∗ and compute (pk, sk) := Gen(1k; r). Set state := state ∪ {r}.
3. Run A(1k, pk). The adversary may then adaptively access a signing oracle Signsk(·) and a

leakage oracle Leakstate(·) that have the following functionality:

• In response to the ith query Signsk(mi), this oracle chooses random ri ← {0, 1}∗, com-
putes σi := Signsk(mi; ri), and returns σi to A. It also sets state := state ∪ {ri}.

• In response to the ith query Leakstate(fi) (where fi is specified as a circuit), this oracle
gives fi(state) to A. (To make the definition meaningful in the random oracle model,
the {fi} are allowed to be oracle circuits that depend on the random oracle H.)

4. At some point, A outputs (m,σ).

We say A succeeds if (1) Vrfypk(m, σ) = 1; (2) m was not previously queried to the Signsk(·) oracle;
and (3) the total output length of all the fi is at most λ(|sk|). We denote the probability of this
event by Pr[Succλ-leakage

A,Π (k)]. We say Π is λ-leakage resilient if Pr[Succλ-leakage
A,Π (k)] is negligible for

every ppt adversary A.
If, in the above experiment, state is not updated after each signing query (and so always contains

only the randomness r used to generate the secret key), we denote the probability of success
by Pr[Succλ-memory

A,Π (k)] and say Π is secure against a λ-memory attacks if Pr[Succλ-memory
A,Π (k)] is

negligible for every ppt adversary A. ♦
Other variations of the definition are possible: state could include only sk (rather than the random
coins r used to generate it), or could include only the most recently used random coins ri. The
definition above reflects the most general notions of leakage/memory attacks.

2Usually, one can assume without loss of generality that the secret key includes whatever portion of the public
key is needed to sign. Since we measure leakage as a function of the secret-key length in this work, however, we seek
to minimize the size of the secret key.
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3 Leakage-Resilient Signatures in the Random Oracle Model

We exemplify the approach described earlier using (a variant of) the Okamoto-Schnorr signature
scheme [33, 28], thus basing security on the discrete logarithm assumption. The same ideas can
also be applied to obtain schemes based on the RSA [18, 28] or factoring [29, 16] assumptions (but
see the remark at the end of this section).

Let G be a group generation algorithm that on input 1k outputs (G, q) where q is a k-bit prime
and G is a cyclic group of order q. We assume group operations in G are efficient, and that elements
of G can be sampled “obliviously”: i.e., there is an efficient algorithm sampG generating random
elements of G with the property that, given g ∈ G, one can sample uniformly from the set of coins
ω for which g := sampG(ω).3 (We leave sampG implicit from now on.)

Our signature scheme is parameterized by an integer `, and is defined as follows:

Key generation: Compute (G, q) ← G(1k) and choose random g1, . . . , g` ← G and random
x1, . . . , x` ← Zq. Set h :=

∏
i g

xi
i . The public key is (G, q, g1, . . . , g`, h) and the secret

key is (x1, . . . , x`). We also assume a random oracle H : {0, 1}∗ → Zq.

Signing: Signatures are perfectly witness-indistinguishable proofs of knowledge of a representa-
tion of h with respect to the basis (g1, . . . , g`), turned into signatures using the Fiat-Shamir
transformation. In detail: to sign message m using secret key (x1, . . . , x`) and public key
(G, q, g1, . . . , g`, h), the signer chooses random r1, . . . , r` ← Zq and computes A :=

∏
i g

ri
i . It

then sets c := H(A,m), and outputs the signature (A, cx1 + r1, . . . , cx` + r`).

Verification: Given a signature (A,α1, . . . , α`) on the message m with respect to the public key
(G, q, g1, . . . , g`, h), compute c := H(A,m) and output 1 iff

∏
i g

αi
i

?= hc ·A.

Before proving security, we formally state the discrete logarithm assumption as well as an
equivalent assumption we will use in our proof.

Definition 3 Let G be as above. We say the discrete logarithm problem is hard for G if the
following is negligible for all ppt algorithms A:

Pr
[
(G, q) ← G(1k); g, h ← G; x ← A(G, q, g, h, ω) : gx = h

]
,

where ω denotes the randomness used to generate G, q, g, h. (Note that by our assumption on
sampG, the coins used to generate g, h are extraneous.) ♦
We stress that the above definition requires hardness to hold even against adversaries given the
randomness used to generate the problem instance. (For concrete G used in practice, this additional
randomness does not seem to make the problem any easier.)

Definition 4 Let G be as above. We say the `-representation problem is hard for G if the following
is negligible for all ppt algorithms A:

Pr

[
(G, q) ← G(1k); g1, . . . , g` ← G;

(x1, . . . , x`), (x′1, . . . , x
′
`) ← A(G, q, g1, . . . , g`, ω)

:
∏

i

gxi
i =

∏

i

g
x′i
i

∧
~x 6= ~x′

]
,

where ω denotes the randomness used to generate G, q, g1, . . . , g`. ♦
Hardness of the discrete logarithm problem for G implies hardness of the `-representation prob-

lem [9, 3] (for any polynomial `). This implication carries over to our setting (where the randomness
used to generate the instance is given to the adversary) given our assumption on sampG.

3This property holds for most concrete examples G used in practice.

6



Theorem 1 If the discrete logarithm problem is hard for G, then for any ε > 0 the signature
scheme above is

(
1
2 − 1

2` − ε
) · n-leakage resilient, where n denotes the length of the secret key.

Thus, for any desired 1 > ε′ > 0, setting ` > 1/ε′ (and taking ε = ε′/2) gives a scheme that is
(1− ε′) · n-leakage resilient.

Proof Let A be a probabilistic polynomial-time adversary attacking the scheme in the sense of
Definition 2. We let qH be a bound on the total number of hash queries asked throughout the entire
experiment; such queries can be made directly by A and can also occur in the course of answering
signing or leakage queries. Denote the success probability of A by δ = δ(k).

We make a number of assumptions about A without loss of generality. First, we assume that
if A outputs (m,σ = (A,α1, . . . , α`)) then (1) A at some point queried H(A, m) and (2) A never
requested a signature on m. Second, for any leakage query Leakstate(fi) we assume fi makes the
same number of H-oracle calls regardless of the value of state (this can always be ensured by adding
dummy queries, as needed).

We construct a probabilistic polynomial-time algorithm B solving the `-representation problem.
Algorithm B proceeds as follows: on input (G, q, g1, . . . , g`, ω), it chooses random x1, . . . , x` and
computes h :=

∏
i g

xi
i . It gives the public key pk = (G, q, g1, . . . , g`, h) to A and runs the entire

experiment of Definition 2, simulating the random oracle for A. Note that B can run the entire
experiment easily since it knows a legitimate secret key (x1, . . . , x`) corresponding to pk.

When A terminates, B examines A’s output (m,σ = (A,α1, . . . , α`)); we call the execution of A
to this point the first run of A. If Vrfypk(m,σ) = 1, then B rewinds to the point in the experiment
where the hash query H(A,m) = c was first made; note that this may occur either as a result of a
direct H-query made by A, or during the course of answering a Leak query. B then chooses a fresh
random value c′ for the result of H(A,m), and re-runs the experiment from that point; we will refer
to the execution of A from this point to termination as the second run of A. During the second
run of A, signing queries are answered using fresh randomness but H-oracle queries are answered
consistently with the first run of A. (I.e., if a hash query is made during the second run of A that
was also made during the first run of A, the same answer chosen during the first run is used during
the second run. Any new hash queries are answered using fresh randomness.) We say B succeeds
if, in this second run, A terminates with output (m,σ′ = (A, α′1, . . . , α

′
`) where σ′ is also a valid

signature on m.
If B succeeds and also c′ 6= c, then B computes (in the standard way [28]) values (x′1, . . . , x

′
`) such

that
∏

i g
x′i
i = h. By definition, B solves the representation problem if (x′1, . . . , x

′
`) 6= (x1, . . . , x`).

The following two claims complete the proof of the theorem.

Claim 1 Pr[B succeeds] ≥ δ2/qH .

Proof Consider all possible states during the execution of A in the experiment of Definition 2
where a new hash query is made, and for any such state i let hi denote the hash query made at
that state. If an execution of A terminates with a valid forgery (m,σ = (A,α1, . . . , α`)), say that
state i is associated with that forgery if hi = (m,A).

For any state i where a new hash query is made, let ai be the probability that this state is
reached in the experiment of Definition 2, where this probability is over the entire specification of
the random oracle H (except for the value of H(hi), which does not affect the probability since the
query hi is being made for the first time in state i) as well as the randomness of A, the randomness
used to generate the public key, and the randomness used to answer any signing queries made up to
that point. For the same state i, let bi be the probability that, starting from state i, the execution
of A terminates with a successful forgery associated with i. This probability is over the value of
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H(hi) and the randomness used to answer any signing queries made after this point. Since every
successful forgery is associated with a unique state of A, we have

∑
i ai · bi = δ, the overall success

probability of A. Furthermore, we have
∑

i ai = E[number of hash queries made by A] ≤ qh.
By construction of B, we have Pr[B succeeds] =

∑
i ai · (bi)2. Using Jensen’s inequality:

∑

i

ai · (bi)2 ≥
∑

i

ai ·
(∑

i ai · bi∑
i ai

)2

≥ δ2

∑
i ai

≥ δ2/qH ,

completing the proof of the claim.

Claim 2 The probability that B solves the representation problem is at least

1
2
·
(
Pr[B succeeds]− 1/q − qH/q2ε`

)
.

Proof When B succeeds, there are two bad events that can prevent B from solving the represen-
tation problem. First, it may be the case that c′ = c; this happens with probability 1/q. Second, it
may be the case that the extracted representation ~x′ = (x′1, . . . , x

′
`) is equal to the original represen-

tation ~x = (x1, . . . , x`). We show that except with probability at most qH/qε`, the min-entropy of
~x conditioned on the two views of A (in the two runs of A) is at least 2; given this, the probability
that ~x′ 6= ~x is at least 1/2 and the claim follows.

Let λ =
(

1
2 − 1

2` − ε
) · ` · log q, an upper bound on the number of leaked bits in each run of A.

The public key pk constrains ~x to lie in an (`−1)-dimensional vector space, and it is well-known [28]
that signature queries do not further constrain ~x. Thus, the min-entropy of ~x conditioned on the
public key and the results of the signature queries is (`−1) · log q bits. The two views of A in its two
runs contain only the following additional information about ~x: at most 2 · λ bits from the leakage
functions (i.e., λ bits in each view), and log qH bits indicating the relevant state associated with
the first forgery (cf. the proof of Claim 1).4 A standard argument thus shows that the probability
that the conditional min-entropy of ~x is less than 2 is at most

(
qH · 22λ

)
· 2−(`−1)·log q ≤ qH · q−2ε`.

The claim follows.

Taking the two claims together, we see that if A succeeds with probability δ then B solves the
representation problem with probability at least

1
2
·
(
δ2/qH − 1/q − qH/q2ε`

)
.

Since qH is polynomial, ε > 0 is a constant, and 1/q is negligible, the above is non-negligible
whenever δ is. This completes the proof of the theorem.

4Note that this information may not be evident from A’s view. For example, consider the leakage query f1 defined
as follows: “if x1 = 0 then query H(A, m) (otherwise do nothing); in any case, return the first bit of x2.” If A (later
queries H(A, m) and) eventually outputs a forgery (A, . . .) on m, then the state associated with this forgery depends
on ~x and cannot be determined solely from the view of A.
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It is an interesting open question to improve the tightness of the security reduction. Although we
expect it to be possible to show an algorithm B′ solving the representation problem with probability
O (

δ − 1/q2ε`
)

(given A with success probability δ), our efforts to prove such a bound have failed.

Remark: Instantiating this approach using factoring-based assumptions. As noted at the
beginning of this section, the same approach as above can also be applied to obtain leakage-resilient
schemes based on the RSA [18, 28] or factoring [29, 16] assumptions. In these cases, however, we
must either (1) restrict the leakage functions to apply only to those values used by the signer
after the key generation phase (i.e., the secret key and all state variables used to sign, but not the
random coins used to generate the secret/public key), or (2) generate the modulus N via oblivious
sampling, leading to a significant loss in efficiency.

4 A Signature Scheme Secure Against Memory Attacks

We construct a signature scheme in the standard model that is secure against memory attacks,
following the intuition described in Section 1.2. Let (GenH ,H) be a UOWHF [26] mapping n-bit
inputs to ε · n-bit outputs for some n = poly(k); we assume that finding second pre-images is hard
even given the randomness used to generate the key. (Several constructions of UOWHFs believed to
have this property are known.) Let (GenE , Enc, Dec) be a CPA-secure, dense5 public-key encryption
scheme; and let (`,P,V,S1,S2) be an unbounded simulation-sound NIZK proof system [12] for the
following language L:

L = {(s, y, pk, m,C) : ∃x, ω s.t. C = Encpk(x; ω) and Hs(x) = y} .

The signature scheme is defined as follows:

Key generation: Choose random x ← {0, 1}n and compute s ← GenH(1k). Obliviously sample
a public key pk for the encryption scheme, and choose a random string r ← {0, 1}`(k). The
public key is (s, y := Hs(x), pk, r) and the secret key is x.

Signing: To sign message m using secret key x and public key (s, y, pk, r), first choose random ω
and compute C ← Encpk(x; ω). Then compute a proof π ← Pr((s, y, pk,m, C), (x, ω)); i.e., a
proof that (s, y, pk,m, C) ∈ L using witness (x, ω). The signature is (C, π).

Verification: Given a signature (C, π) on the message m with respect to the public key (s, y, pk, r),
output 1 iff Vr((s, y, pk, m,C), π) = 1.

Theorem 2 Under the stated assumptions on the components, the signature scheme above is secure
against (1

2 − 2ε) · n-memory attacks.

Proof (Sketch) Let Π denote the scheme given above, and let A be a ppt adversary with
δ = δ(k) def= Pr[Succλ-memory

A,Π (k)]. We consider a sequence of experiments, and let Pri[·] denote the
probability of an event in experiment i. The experiments are defined as follows:

Experiment 0: This is the experiment of Definition 2. Given the public key (s, y, pk, r) defined by
the experiment, let Succ denote the event thatA outputs (m, (C, π)) where Vr((s, y, pk, m, C), π) = 1
and m was never queried to its signing oracle. By assumption, we have Pr0[Succ] = δ.

5This means it is possible to sample a valid public key without knowing the corresponding secret key.
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Experiment 1: We introduce the following differences with respect to the preceding experiment:
when setting up the public key, we now generate r by computing (r, τ) ← S1(1k). Furthermore,
signing queries are now answered as follows: to sign m, generate C as before but compute π as
π ← S2((s, y, pk, m, C), τ).

Define event Succ as in the preceding experiment. By the (adaptive) zero-knowledge property
of (`,P,V,S1,S2), it must be the case that |Pr1[Succ]− Pr0[Succ]| is negligible.

Experiment 2: We modify the preceding experiment in the following way: to answer a signing
query for a message m, compute C ← Encpk(0n) (and then compute π as in Experiment 1).
Defining Succ as in the preceding two experiments, CPA-security of the encryption scheme implies
that |Pr2[Succ]− Pr1[Succ]| is negligible.

Experiment 3: We now change the way the public key is generated. Namely, instead of obliviously
sampling the encryption public key pk we compute it as (pk, sk) ← GenE(1k). Note that this is only
a syntactic change and so Pr3[Succ] = Pr2[Succ]. (This assumes perfect oblivious sampling; if an
obliviously generated public key and a legitimately generated public key are only computationally
indistinguishable, then the probability of Succ can be affected by a negligible amount.)

Given the public key (s, y, pk, r) defined by the experiment, let Ext be the event that A outputs
(m, (C, π)) such that Hs(Decsk(C)) = y. Unbounded simulation soundness of the NIZK proof
system implies that |Pr3[Ext]− Pr3[Succ]| is negligible. (Note that the message m is included in
any statement in the language L, and so if A did not request a signature on m then it was never
given a fake proof of the statement (s, y, pk, m, C).)

To complete the proof, we show that Pr3[Ext] must be negligible. Specifically, consider the
following adversary B finding a second-preimage in the UOWHF: B chooses random x ← {0, 1}n

and is given key s (along with the randomness used to generate s). B then runs Experiment 3
with A. We stress that B can do this with no trouble since B knows a legitimate secret key x
for the public key that it gives to A; thus, in particular, B can answer any leakage queries asked
by A. (Recall further that here we are only concerned with memory attacks where the leakage
functions can be applied to the secret key, and the randomness used to generate it, but not to any
auxiliary state used during signing.) If event Ext occurs when A terminates, then B recovers a value
x′ def= Decsk(C) for which Hs(x′) = y = Hs(x). We know argue that x′ 6= x with high probability.

The only information about x revealed to A in Experiment 3 comes from y and the leakage
queries asked by A, and these total at most ε · n + (1 − 2ε) · n = (1 − ε) · n bits. The probability
that the conditional min-entropy of x is less than 2 is there at most 2(1−ε)n · 2−n = 2−εn. When the
conditional min-entropy of x is at least 2, we have x′ 6= x with probability at least 1

2 . Thus, the
probability that B extracts an x′ as above with x′ 6= x is at least

1
2
· (Pr3[Ext]− 2−εn

)
.

We thus see that if δ = Pr0[Succ] is non-negligible then B violates the security of the UOWHF with
non-negligible probability, a contradiction.

5 A Leakage-Resilient One-Time Signature Scheme

We briefly describe a construction of a leakage-resilient one-time signature scheme in the standard
model. The advantages of this construction with respect to the scheme described in the previous
section is two-fold: first, it is more efficient; second, it is leakage-resilient rather than only secure
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against memory attacks. The disadvantage, besides the fact that it is only a one-time signature
scheme, is that the leakage that can be tolerated is much lower.

Let (GenH ,H) be a UOWHF mapping kc-bit inputs to k-bit outputs for some c > 0. (As before,
we assume H is secure even given the randomness used to generate the key.) Our signature scheme
is a variant on Lamport’s scheme [23], using H as the one-way function. (This same construction
also gives a strong one-time signature scheme based on any one-way function [26, 31].)

Key generation: Choose random xi,0, xi,1 ← {0, 1}kc
for i = 1, . . . , k. Also generate s ←

GenH(1k). Compute yi,b := Hs(xi,b) for i ∈ {1, . . . , k} and b ∈ {0, 1}. The public key is
(s, {yi,b}) and the secret key is {xi,b}.

Signing: The signature on a k-bit message m = m1, . . . ,mk consists of the k values x1,m1 , . . . , xk,mk
.

Verification: Given a signature x1, . . . , xk on the k-bit message m = m1, . . . ,mk with respect to
the public key (s, {yi,b}), output 1 iff yi,mi

?= Hs(xi) for all i.

Theorem 3 If (GenH ,H) is a UOWHF, then the above scheme is a n(c−1)/(c+1)-leakage resilient
one-time signature scheme, where n = 2kc+1 denotes the length of the secret key.

Thus, for any desired 1 > ε > 0, setting c = 2ε−1 − 1 gives a one-time signature scheme that is
n1−ε-leakage resilient.

We omit the proof, which follows the same ideas as those used in the proof of Theorem 2. Note that
the scheme can be extended using cover-free families, in the natural way, to yield a leakage-resilient
t-time signature scheme for any polynomial t.
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