
Key Recovery Attack against Secret-prefix Edon-R

Gaëtan Leurent

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

Gaetan.Leurent@ens.fr

Abstract. Edon-R is a SHA-3 candidate. In this paper we show that using Edon-R as
a MAC with the secret prefix construction is unsafe. Our attack requires 2 queries, 25n/8

computations, and negligible memory.
This does not directly contradict the security claims of Edon-R or the NIST requirements
for SHA-3, but we believe it shows a strong weakness in the design.
Key words: Hash functions, SHA-3, Edon-R, MAC, secret prefix, key recovery

1 Description of Edon-R

Edon-R is a wide-pipe iterative design, based on a compression function R, with a final trunca-
tion T . The Edon-R family is based on two main designs: Edon-R256 uses 32-bits words, while
Edon-R512 uses 64-bit words. The compression function is based on a quasi-group operation ∗,
which take two inputs X and Y in (Fw

2 )8 (i.e. 8 w-bit words) and compute one output in (Fw
2 )8.

It can be described as:

X ∗ Y = π1(π2(X) + π3(Y ))
= π1(π2(X)) + π1(π3(Y ))
= Q0(R0(P0(X))) +Q1(R1(P1(Y )))

where

– + is a component-wise addition modulo 2w (w is the word size);
– π1, π2, π3 are the permutations used in the description of Edon-R, we rewrite then with Qi,
Ri and Pi;

– P0 and P1 are linear over Z8
2w ;

– R0 and R1 are component-wise rotations of w-bit words;
– Q0 and Q1 are linear over (Fw

2 )8;
– We identify Z8

2w and (Fw
2 )8 with the natural mapping.

between them.
Note that quasi-group operation is very easy to invert.
The compression function takes as input 16w bits of message (M (i)

0 andM (i)
1 ) and 16w bits of

chaining value (H(i)
0 and H(i)

1 ) and produces 16w of new chaining value (H(i+1)
0 and H(i+1)

1 ). The
full compression function is described in Figure 1, where the symbol � denotes different quasi-
group operations based on ∗, with some permutations of the inputs. For more details, see [2].

1



M
(i)
0 M

(i)
1

�

X
(1)
0 M

(i)
1

�

X
(1)
0 X

(1)
1

�H
(i)
1

X
(2)
0 X

(1)
1

�

X
(2)
0 X

(2)
1

�H
(i)
0

X
(3)
0 X

(2)
1

�

X
(3)
0 X

(3)
1

�

H
(i+1)
0 X

(3)
1

�

H
(i+1)
0 H

(i+1)
1

Fig. 1. Edon-R compression function.

2 Previous analysis of Edon-R

Previous work [3,4] have shown various weaknesses of the compression function:

– given M (i)
0 , M (i)

1 , H(i+1)
0 and H(i+1)

1 , it is easy to compute H(i)
0 and H(i)

1 ;
– given H(i)

0 , H(i)
1 , M (i)

0 , and H(i+1)
0 , it is easy to compute M (i)

1 , and H(i+1)
1 ;

– given H(i+1)
1 , H(i)

0 and M (i)
0 , we can find a value of H(i)

1 , H(i+1)
0 , and M (i)

1 with 2n/2 opera-
tions.

These results can be used to mount various attacks on the hash function:

– We can apply generic attacks against single-pipe hash functions: multi-collisions, second
preimages on long message, fixed points, ...

2



– There is a preimage attack with complexity 22n/3 and 22n/3 memory.

The preimage attack requires less computations than a generic attack, but the machine to carry
out this attack might be more expensive than a machine to perform a parallel brute force, so it
is unclear whether this should be considered as an attack.

However, these results show that the compression function of Edon-R is quite weak, and the
security of Edon-R can’t be based on a security proof of the Merkle-Damgård mode.

3 Secret-prefix MAC

We assume that Edon-R is used as a MAC with the secret-prefix construction: MACk(M) =
Edon-R(k‖M). This kind of construction is used in some old protocols, like RFC2069 [1]. We
assume that the key is padded to a full block, so that this construction is equivalent to using a
secret IV (H(0)

0 , H
(0)
1 ), and our attack will recover this secret IV. Note that this is not the case

in RFC2069, and we cannot use our key-recovery attack in this situation.
It is well known that this construction is weak, because length extension attacks can be used

for forgeries, but the key is not expected to leak. Moreover, Edon-R is a double-pipe design, so
the length extension issue does not apply. In fact, this construction is secure if the hash function
is double-pipe and the compression function is modeled as a random oracle.

4 Our Results

Our work shows that

– given M (i)
0 , M (i)

1 , H(i)
1 and H(i+1)

1 , we can compute H(i)
0 and H(i+1)

0 with 25n/8 operations.

This can be used to recover the key if Edon-R is used as a MAC with the secret-prefix construc-
tion. Our attack makes only two queries and needs 25n/8 computations with negligible memory.
It can easily be parallelized. This attack is the first attack on Edon-R to clearly beat parallel
generic attacks. Our attack uses two related messages M and M ′ such that pad(M) is a prefix
of pad(M ′) and pad(M ′) is one block longer than pad(M).

5 Key Recovery

We will make two calls to the MAC, with two related messages, such that after the padding step,
the second message is a suffix of the first one.

H
(0)
1

H
(0)
0

M
(0)
1

M
(0)
0

R
H

(1)
1

H
(1)
0 T

H
(1)
1

H
(0)
1

H
(0)
0

M
(0)
1

M
(0)
0

R
H

(1)
1

H
(1)
0

M
(1)
1

M
(1)
0

R
H

(2)
1

H
(2)
0 T

H
(2)
1

3



Then, we target the second compression function, and we have:

– M
(1)
0 , M (1)

1 are known;
– H

(1)
1 is known;

– H
(2)
1 is known.

We will show how to recover H(1)
0 . Then H(0)

0 and H(0)
1 can easily be recovered from H

(1)
0 , H

(1)
1

andM (0)
0 ,M

(0)
1 . Since there are 8w unknown bits in the input of the compression function (H(i)

0 )
and we know 8w bits of the output of the compression function (H(i+1)

1 ), we expect one solution
on average. In this setting, a preimage attack will be able to recover the value of H(i)

0 and not
merely a value that gives the same output.

If we look at the description of the compression function [2], we have:

H
(i+1)
1 = Hi+1

0 ∗X3
1

= (M (i)
0 ∗X

(3)
0 ) ∗ (X(2)

1 ∗X(3)
0 )

= (π1(π2(M
(i)
0 )) + π1(π3(X

(3)
0 ))) ∗ (π1(π2(X

(2)
1 )) + π1(π3(X

(3)
0 ))

= (U + C0) ∗ (U + C1)

where U = π1(π3(X
(3)
0 )) is unknown, and C0 = π1(π2(M

(i)
0 )), C1 = π1(π2(X

(2)
1 )) are known

constants.
If we are able to solve the equation H = (U + C0) ∗ (U + C1) where U is the unknown, then

we can recover X(3)
0 from U , and this will give us H(1)

0 .

6 Solving the equation H = (U + C0) ∗ (U + C1)

The main step of the attack is to solve the equation

H = (U + C0) ∗ (U + C1)
= Q0(R0(P0(U + C0))) +Q1(R1(P1(U + C1)))

More precisely, P0, P1 are defined by the following matrices over Z232 (i.e the sums are modular
additions):

P0 =



1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 1
0 0 1 1 1 1 1 0


P1 =



1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1


We will use three vectors U0, U1, U2 in the kernels of some submatrices of P0 and P1:

U0 =
[

0 0 0 0 0 0 1 −1
]

U1 =
[

2 2 2 2 231 − 3 231 − 3 0 231 − 1
]

U2 =
[

1 0 0 0 231 − 1 231 0 231
]

4



Then we have (the stars represent any non-zero value):

P0 · U0 =
[
∗ ∗ 0 0 ∗ 0 0 ∗

]
P1 · U0 =

[
∗ ∗ 0 0 0 0 0 0

]
P0 · U1 =

[
∗ ∗ 0 0 ∗ 0 0 ∗

]
P1 · U1 =

[
∗ ∗ ∗ 0 0 ∗ 0 0

]
P0 · U2 =

[
0 0 0 0 ∗ 0 ∗ ∗

]
P1 · U2 =

[
∗ ∗ ∗ ∗ 0 ∗ 0 0

]
Q0, Q1 are defined by the following matrices over F8

2 (i.e the sums are exclusive or):

Q0 =



1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0


Q1 =



1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1


Due to the positions of the zeros in Pi · Uj , we have, for all α, β ∈ Z232 :

Q0(R0(P0(X + αU0)))⊕Q0(R0(P0(X))) =
[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
Q0(R0(P0(X + αU1)))⊕Q0(R0(P0(X))) =

[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
Q0(R0(P0(X + αU2)))⊕Q0(R0(P0(X))) =

[
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]
Q1(R1(P1(Y + βU0)))⊕Q1(R1(P1(Y ))) =

[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
Q1(R1(P1(Y + βU1)))⊕Q1(R1(P1(Y ))) =

[
∗ ∗ ∗ ∗ ∗ 0 ∗ 0

]
Q1(R1(P1(Y + βU2)))⊕Q1(R1(P1(Y ))) =

[
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]
This proves that the vectors U0, U1, U2 do not affect some of the output words:

(X + αU0) ∗ (Y + βU0)⊕X ∗ Y =
[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
(1)

(X + αU1) ∗ (Y + βU1)⊕X ∗ Y =
[
∗ ∗ ∗ ∗ ∗ 0 ∗ 0

]
(2)

(X + αU2) ∗ (Y + βU2)⊕X ∗ Y =
[
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]
(3)

This is a very important part of the attack, so let us explain into more detail what equation (3)
means. Using notations similar to the one from [2], the last output word of X ∗ Y is computed
as:

(X ∗ Y )[7] = (T [2]
X ⊕ T

[3]
X ⊕ T

[5]
X ) + (T [4]

Y ⊕ T
[6]
Y ⊕ T

[7]
Y )

where

T
[2]
X = (X [0] +X [1] +X [4] +X [6] +X [7]) ≪ 8

T
[3]
X = (X [2] +X [3] +X [5] +X [6] +X [7]) ≪ 13

T
[5]
X = (X [0] +X [2] +X [3] +X [4] +X [5]) ≪ 22

T
[4]
Y = (Y [0] + Y [1] + Y [3] + Y [4] + Y [5]) ≪ 15

T
[6]
Y = (Y [1] + Y [2] + Y [5] + Y [6] + Y [7]) ≪ 25

T
[7]
Y = (Y [0] + Y [3] + Y [4] + Y [6] + Y [7]) ≪ 27

5



We now consider X ′ = X + αU2 and Y ′ = Y + βU2:

(X ′ ∗ Y ′)[7] = (T ′[2]
X ⊕ T ′[3]

X ⊕ T ′[5]
X ) + (T ′[4]

Y ⊕ T ′[6]
Y ⊕ T ′[7]

Y )

where

T ′[2]
X = (X [0] + α+X [1] +X [4] + α(231 − 1) +X [6] +X [7] + α231) ≪ 8

T ′[3]
X = (X [2] +X [3] +X [5] + α231 +X [6] +X [7] + α231) ≪ 13

T ′[5]
X = (X [0] + α+X [2] +X [3] +X [4] + α(231 − 1) +X [5] + α231) ≪ 22

T ′[4]
Y = (Y [0] + β + Y [1] + Y [3] + Y [4] + β(231 − 1) + Y [5] + β231) ≪ 15

T ′[6]
Y = (Y [1] + Y [2] + Y [5] + β231 + Y [6] + Y [7] + β231) ≪ 25

T ′[7]
Y = (Y [0] + β + Y [3] + Y [4] + β(231 − 1) + Y [6] + Y [7] + β231) ≪ 27

We see that the α and β terms cancels out:

T
[2]
X = T ′[2]

X T
[3]
X = T ′[3]

X T
[5]
X = T ′[5]

X

T
[4]
Y = T ′[4]

Y T
[6]
Y = T ′[6]

Y T
[7]
Y = T ′[7]

Y

and as a consequence
(X ′ ∗ Y ′)[7] = (X ∗ Y )[7]

This works because U2 was chosen in the kernel of the linear forms that define T [2]
X , T [3]

X , T [5]
X ,

T
[4]
Y , T [6]

Y , and T [7]
Y . Similarly, U1 is in the kernel of the linear forms involved in the computation of

(X ∗Y )[5,7] and U0 is in the kernel of the linear forms involved in the computation of (X ∗Y )[5,6,7].
Thanks to this property, we can do an exhaustive search with early abort. We extend

U0, U1, U2 into a basis U0, U1, ...U7 of Z8
232 , and we will represent U in this basis: U =

∑7
i=0 αiUi.

We define V = (U + C0) ∗ (U + C1). Due to the properties of U0, U1, U2, we know that:

– α0 has no effect on V [5], V [6] and V [7];
– α1 has no effect on V [5] and V [7];
– α2 has no effect on V [7].

The full algorithm is given by Algorithm 1 and is quite simple. We first iterate over α3, α4, ...α7

and we filter the elements such that V = (U +C0)∗ (U +C1) matches H on the last coordinates.
If it does not match, we don’t need to iterate over α0, α1, α2 because this wont modify V [7], so
we can abort this branch. For the choices that match, we iterate over α2 and check V [5]. If it
matches H [5], we iterate over α1 and check V [6]. If it matches H [5], we can then iterate over α0.

The time complexity is 25w = 25n/8:

– the first loop is executed 25w times;
– each matching reduces the number of candidates to 24w;
– each subsequent loop raises the number of candidates to 25w.

The memory requirement are negligible because we do not need to store a list a candidate, we
just iterate over a set and filter out the candidates as they come.

Once we have recovered U = π1(π3(X
(3)
0 )), it is easy to invert the permutations and recover

X
(3)
0 . From that we find H

(i)
0 by inverting a quasi-group operation, and we have all the vari-

ables of the compression function. We can then recover the key H(0)
0 , H

(0)
1 by inverting the first

compression function (it is easy when the output and the message are known)

6



Algorithm 1 Solving H = (U + C0) ∗ (U + C1)
Input: C0, C1, H
Output: U
1: for all α3, α4, ...α7 ∈ Z232 do
2: U ←

P7
i=3 αiUi

3: V ← (U + C0) ∗ (U + C1)
4: if V [7] = H [7] then
5: for all α2 ∈ Z232 do
6: U ←

P7
i=2 αiUi

7: V ← (U + C0) ∗ (U + C1)
8: if V [5] = H [5] then
9: for all α1 ∈ Z232 do
10: U ←

P7
i=1 αiUi

11: V ← (U + C0) ∗ (U + C1)
12: if V [6] = H [6] then
13: for all α0 ∈ Z232 do
14: U ←

P7
i=0 αiUi

15: V ← (U + C0) ∗ (U + C1)
16: if V = H then
17: U is a solution

References

1. Franks, J. and Hallam-Baker, P. and Hostetler, J. and Leach, P. and Luotonen, A. and Sink, E. and
Stewart, L.: RFC2069: An extension to HTTP: Digest access authentication. Internet RFCs (1997)

2. Gligoroski, D., Ødegård, R.S., Mihova, M., Knapskog, S.J., Kocarev, L., Drápal, A., Klima, V.:
Cryptographic Hash Function EDON-R. Submission to NIST (2008)

3. Khovratovich, D., Nikolić, I., Weinmann, R.P.: Cryptanalysis of Edon-R. Available online (2008)
4. Klima, V.: Multicollisions of EDON-R hash function and other observations. Available online (2008)

7


	Key Recovery Attack against Secret-prefix Edon-R
	Gaëtan Leurent

