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Abstract

The search of efficient constructions of ideal secret sharing schemes for families of non-
threshold access structures that may have useful applications has attracted a lot of attention.
Several proposals have been made for access structures with hierarchical properties, in which
the participants are distributed into levels that are hierarchically ordered.

Here, we study hierarchical secret sharing in all generality by providing a natural definition
for the family of the hierarchical access structures. Specifically, an access structure is said to
be hierarchical if every two participants can be compared according to the following natural
hierarchical order: whenever a participant in a qualified subset is substituted by a hierarchically
superior participant, the new subset is still qualified.

We present a complete characterization of the ideal hierarchical access structures, that is,
the ones admitting an ideal secret sharing scheme. We use the well known connection between
ideal secret sharing and matroids and, in particular, the fact the every ideal access structure is
a matroid port. In addition, we use recent results on ideal multipartite access structures and
the connection between multipartite matroids and discrete polymatroids. We prove that every
ideal hierarchical access structure is the port of a representable matroid and, more specifically,
we prove that every ideal structure in this family admits ideal linear secret sharing schemes
over fields of all characteristics. This generalizes previous results on weighted threshold access
structures. Finally, we use our results to find a new characterization of the ideal weighted
threshold access structures that is more precise than the existing one.

Key words. Secret sharing, Ideal secret sharing schemes, Hierarchical secret sharing, Weighted
threshold secret sharing, Multipartite secret sharing, Multipartite matroids, Discrete polyma-
troids.

1 Introduction

A secret sharing scheme is a method to distribute shares of a secret value among a set of partic-
ipants. Only the qualified subsets of participants can recover the secret value from their shares,
while the unqualified subsets do not obtain any information about the secret value. The qualified
subsets form the access structure of the scheme, which is a monotone increasing family of subsets
of participants. Only unconditionally secure perfect secret sharing schemes are considered in this
paper.
∗The authors’ work was partially supported by the Spanish Ministry of Education and Science under project

TSI2006-02731.
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Secret sharing was independently introduced by Shamir [32] and Blakley [5] in 1979. They
presented two different methods to construct secret sharing schemes for threshold access structures,
whose qualified subsets are those with at least some given number of participants. These schemes
are ideal , that is, the length of every share is the same as the length of the secret, which is the best
possible situation [17].

There exist scenarios in which non-threshold secret sharing schemes are required because, for
instance, some participants should be more powerful than others. The first attempt to overcome the
limitation of threshold access structures was made by Shamir in his seminal work [32] by proposing
a simple modification of the threshold scheme. Namely, every participant receives as its share a
certain number of shares from a threshold scheme, according to its position in the hierarchy. In
this way a scheme for a weighted threshold access structure is obtained. That is, every participant
has a weight (a positive integer) and a set is qualified if and only if its weight sum is at least a
given threshold. This new scheme is not ideal because the shares have in general greater length
than the secret.

Every access structure admits a secret sharing scheme [3, 15], but in general the shares must be
longer than the secret [8, 10]. Very little is known about the optimal length of the shares in secret
sharing schemes for general access structures, and there is a wide gap between the best known
general lower and upper bounds.

Because of that, the construction of ideal secret sharing schemes for families of access structures
that may have interesting applications is worth considering. This line of work was initiated by
Simmons [33], who proposed two families of access structures, the multilevel and the compartmented
ones, and conjectured them to admit ideal secret sharing schemes. Brickell [6] proposed a general
method, based on linear algebra, to construct ideal secret sharing schemes for access structures
that are not necessarily threshold, and he applied it to the construction of particular ideal secret
sharing schemes proving the conjecture by Simmons. The multilevel and compartmented access
structures are multipartite, which means that the participants are divided into several parts (levels
or compartments) and all participants in the same part play an equivalent role in the structure.
By using different kinds of polynomial interpolation, Tassa [35], and Tassa and Dyn [36] proposed
constructions of ideal secret sharing schemes for several families of multipartite access structures,
some of them with hierarchical properties. These constructions are based on the general linear
algebra method by Brickell [6], but they provide schemes for the multilevel and compartmented
access structures that are simpler and more efficient than the particular ones proposed in [6] for those
structures. Other constructions of ideal multipartite secret sharing schemes have been presented
in [25]. All these constructions require that the set of possible values of the secret is of a certain
size. The optimization of this parameter have been considered in [4, 12] for very particular families
of hierarchical access structures.

Another line of work is the characterization of the ideal access structures, that is, the ones
admitting an ideal secret sharing scheme. This is an important and long-standing open problem
in secret sharing. Brickell and Davenport [7] proved that every ideal secret sharing scheme defines
a matroid. Actually, this matroid is univocally determined by the access structure of the scheme.
This implies a necessary condition for an access structure to be ideal. Namely, every ideal access
structure is a matroid port . A sufficient condition is obtained from the method to construct ideal
secret sharing schemes by Brickell [6]: the ports of representable matroids are ideal access structures.
Seymour [31] proved that the necessary condition is not sufficient, while the sufficient condition is
not necessary because of the counterexample given by Simonis and Ashikhmin [34]. The results
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in [7] have been generalized in [19] by proving that, if all shares in a secret sharing scheme are
shorter than 3/2 times the secret value, then its access structure is a matroid port. At this point,
the remaining open question about the characterization of ideal access structures is determining
the matroids that can be defined from ideal secret sharing schemes. Some important results, ideas
and techniques to solve this question have been given by Matúš [21, 22].

In addition to the search of general results, several authors studied this open problem for partic-
ular families of access structures. Some of them deal with families of multipartite access structures.
Beimel, Tassa and Weinreb [1] presented a characterization of the ideal weighted threshold access
structures that generalizes the partial results in [23, 28]. Another important result about weighted
threshold access structures have been obtained recently by Beimel and Weinreb [2]. They prove
that all such access structures admit secret sharing schemes in which the size of the shares is
quasi-polynomial in the number of users. A complete characterization of the ideal bipartite access
structures was given in [28], and related results were given independently in [24, 26]. Partial results
on the characterization of the ideal tripartite access structures appeared in [9, 13], and this ques-
tion was solved in [11]. In every one of these families, all matroid ports are ports of representable
matroids, and hence, all ideal access structures are vector space access structures, that is, they
admit an ideal linear secret sharing scheme constructed by the method proposed by Brickell [6].

The characterization of the ideal tripartite access structures in [11] was obtained actually from
the much more general results about ideal multipartite access structures in that paper. Pointing
out the close connection between multipartite matroids and discrete polymatroids (a combinatorial
object introduced by Herzog and Hibi [14]), and the use for the first time in secret sharing of these
concepts are among the main contributions in [11]. The basic definitions and facts about discrete
polymatroids and the main results in [11] are recalled in Section 6.

In this paper we continue and, in some way, culminate the line of research of those previous
works by answering to the following question: what hierarchical access structures admit an ideal
secret sharing scheme?

First of all, we formalize the concept of hierarchical access structure by introducing in Section 3
a natural definition for it. Basically, if a participant in a qualified subset is substituted by a
hierarchically superior participant, the new subset must be still qualified. An access structure is
hierarchical if, for any two given participants, one of them is hierarchically superior to the other.
According to this definition, the family of the hierarchical access structures contains the multilevel
access structures [6, 33], the hierarchical threshold access structures studied by Tassa [35] and by
Tassa and Dyn [36], and also the weighted threshold access structures that were first considered by
Shamir [32] and studied in [1, 2, 23, 28].

Duality and minors of access structures are fundamental concepts in secret sharing, as they are
in matroid theory. Several important classes of access structures are closed by duality and minors,
as for instance, matroid ports or K -vector space access structures. Similarly to multipartite and
weighted threshold access structures, the family of the hierarchical access structures is closed by
duality and minors.

Our main result is Theorem 9.2, which provides a complete characterization of the ideal hier-
archical access structures. In particular, we prove that all hierarchical matroid ports are ports of
representable matroids. By combining this with the results in [19], we obtain the following theorem.

Theorem 1.1. Let Γ be a hierarchical access structure. The following properties are equivalent:

1. Γ admits a vector space secret sharing scheme over every large enough finite field.
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2. Γ is ideal.

3. Γ admits a secret sharing scheme in which the length of every share is less than 3/2 times the
length of the secret value.

4. Γ is a matroid port.

This generalizes the analogous statement that holds for weighted threshold access structures
as a consequence of the results in [1, 19]. Actually, as an application of our results, we present
in Section 10 a new characterization of the ideal weighted threshold access structure that is more
precise than the one given by Beimel, Tassa and Weinreb [1]. In addition, our results make it
possible to solve an open problem proposed by Tassa [35].

The proofs of our results strongly rely on the connection between matroids and ideal secret shar-
ing schemes discovered by Brickell and Davenport [7]. Moreover, since hierarchical access structures
are in particular multipartite, the results and techniques in [11] about the characterization of ideal
multipartite access structures are extremely useful in achieving our results. In particular, discrete
polymatroids play a fundamental role in our proofs. Another important tool is the geometric rep-
resentation introduced in [11, 28] for multipartite access structures, which is adapted in Section 4
to the hierarchical case by introducing the notion of access structures that are stable under some
set of translations. By using this representation, every hierarchical access structure with m levels
can be determined from the partition into levels and a set of points in Zm, the so-called H-minimal
points of the structure. Our characterization of the ideal hierarchical access structures is given in
terms of some properties of the H-minimal points that can be efficiently checked. By using our
results, given a hierarchical access structure that is described by its H-minimal points, one can
efficiently determine whether it is ideal or not. If the access structure is described by its minimal
qualified subsets, it is easy to determine the H-minimal points. If the access structure is described
in another way, one has to find the H-minimal points, but this can be done efficiently most of the
times. This is the case, for instance, of weighted threshold access structures that are determined
by the weights and the threshold.

2 Ideal Secret Sharing Schemes and Matroids

We recall in this section some facts about the connection between ideal secret sharing schemes and
matroids that is derived from the results by Brickell [6] and by Brickell and Davenport [7]. See [19],
for instance, for more information on these topics.

We begin by describing the method by Brickell [6] to construct ideal secret sharing schemes.
Let C be an [n+ 1, k]-linear code over a finite field K and let M be a generator matrix of C, that
is, a k × (n + 1) matrix over K whose rows span C. Such a code defines an ideal secret sharing
scheme on a set P = {p1, . . . , pn} of participants. Specifically, every random choice of a codeword
(s0, s1, . . . , sn) ∈ C corresponds to a distribution of shares for the secret value s0 ∈ K, in which
si ∈ K is the share of the participant pi. Such an ideal scheme is called a K-vector space secret
sharing scheme and its access structures is called a K-vector space access structure. It is easy to
check that a set A ⊆ P is in the access structure Γ of this scheme if and only if the column of
M with index 0 is a linear combination of the columns whose indices correspond to the players
in A. Therefore, if Q = P ∪ {p0} and M is the representable matroid with ground set Q and rank
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function r that is defined by the columns of the matrix M , then

Γ = Γp0(M) = {A ⊆ P : r(A ∪ {p0}) = r(A)}.

That is, Γ is the port of the matroid M at the point p0. Consequently, a sufficient condition for
an access structure to be ideal is obtained. Namely, the ports of representable matroids are ideal
access structures. Actually, they coincide with the vector space access structures.

Brickell and Davenport [7] proved that this sufficient condition is not very far from being
necessary. Specifically, they proved that every ideal secret sharing scheme on a set P of participants
determines a matroidM with ground set Q = P ∪{p0} such that the access structure of the scheme
is Γp0(M). Therefore, a necessary condition for an access structure to be ideal is obtained: every
ideal access structure is a matroid port.

With a slightly different definition, matroid ports were introduced by Lehman [18] to solve
the Shannon switching game in 1964, much before secret sharing was invented by Shamir [32] and
Blakley [5] in 1979. A forbidden minor characterization of matroid ports was given by Seymour [30].
Even though the results in [6, 7] deal with matroid ports, this terminology was not used in those
and many other subsequent works on secret sharing. The old results on matroid ports in [18, 30]
were rediscovered for secret sharing by Mart́ı-Farré and Padró [19], who used them to generalize
the result by Brickell and Davenport by proving that, if all shares in a secret sharing scheme are
shorter than 3/2 times the secret, then its access structure is a matroid port.

3 Hierarchical Access Structures

We present here a natural definition for the family of the hierarchical access structures, which em-
braces all possible situations in which there is a hierarchy on the set of participants. For instance,
the weighted threshold access structures and the hierarchical threshold access structures [35] are
contained in this new family. Hierarchical access structures are in particular multipartite. There-
fore, we can take advantage of the results and techniques in [11] about the characterization of ideal
multipartite access structures.

Let Γ be an access structure on a set P of participants. We say that the participant p ∈ P is
hierarchically superior to the participant q ∈ P , and we write q � p, if A∪{p} ∈ Γ for every subset
A ⊆ P r {p, q} with A ∪ {q} ∈ Γ. An access structure is said to be hierarchical if all participants
are hierarchically related, that is, for every pair of participants p, q ∈ P , either q � p or p � q. If
p � q and q � p, we say that these two participants are hierarchically equivalent . Clearly, this is an
equivalence relation, and the hierarchical relation � induces an order on the set of the equivalence
classes. Observe that an access structure is hierarchical if and only if this is a total order.

For a set P , a sequence Π = (P1, . . . , Pm) of subsets of P is called here a partition of P if
P = P1 ∪ · · · ∪ Pm and Pi ∩ Pj = ∅ whenever i 6= j. Observe that some of the parts may be empty.
An access structure Γ is said to be Π-partite if every pair of participants in the same part Pi are
hierarchically equivalent. A different but equivalent definition for this concept is given in [11]. If m
is the number of parts in Π, such structures are called m-partite access structures. The participants
that are not in any minimal qualified subset are called redundant . An m-partite access structure
is said to be strictly m-partite if there are no redundant participants, all parts are nonempty, and
participants in different parts are not hierarchically equivalent.

A Π-partite access structure is said to be Π-hierarchical if q � p for every pair of participants
p ∈ Pi and q ∈ Pj with i < j. That is, the participants in the first level are hierarchically superior
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to those in the second level and so on. Obviously, an access structure is hierarchical if and only if
it is Π-hierarchical for some partition Π of the set of participants. The term m-hierarchical access
structure applies to every Π-hierarchical access structure with |Π| = m.

4 A Geometric Representation of Hierarchical Access Structures

In this section we recall the geometric representation for multipartite access structures that was in-
troduced in [11, 28]. This representation is adapted to hierarchical access structures by introducing
the new concept of stabilizers of multipartite access structures.

We notate Z+ and Z− for the sets of the non-negative and the non-positive integers, respectively,
while Z∗+ and Z∗− denote, respectively, the sets of the positive and the negative integers. For any
u ∈ Zm, we write ui for its i-th coordinate, that is, u = (u1, . . . , um). If u, v ∈ Zm, we write u ≤ v
if ui ≤ vi for every 1 ≤ i ≤ m, and we write u < v if u ≤ v and u 6= v.

For each partition Π = (P1, . . . , Pm) of the set P , we consider a mapping Π: P(P ) → Zm
+

defined by Π(A) = (|A ∩ P1|, . . . , |A ∩ Pm|) ∈ Zm
+ . We write p = Π(P ) = (|P1|, . . . , |Pm|) and

P = Π(P(P )) = {u ∈ Zm
+ : u ≤ p}.

For a Π-partite access structure Γ ⊆ P(P ), consider Π(Γ) = {Π(A) : A ∈ Γ} ⊆ P. Observe that
A ∈ Γ if and only if Π(A) ∈ Π(Γ), so Γ is univocally represented by the set of points Π(Γ) ⊆ P.
By an abuse of notation, we will use Γ to denote both a Π-partite access structure on P and the
corresponding set Π(Γ) of points in P.

Let Γ be a Π-partite access structure on P . If two points u, v ∈ P are such that u ≤ v and
u ∈ Γ, then v ∈ Γ. This is due to the fact that Γ is a monotone increasing family of subsets.
Therefore, Γ ⊆ P is determined by the family min Γ ⊆ P of its minimal points. We are using here
an abuse of notation as well, because min Γ denotes also the family of minimal subsets of the access
structure Γ.

A set V ⊆ Zm is called a stabilizer if V is closed by sums, and Zm
+ ⊆ V , and V ∩Zm

− = {0}. For
a stabilizer V ⊆ Zm, we define the binary relation ≤V in Zm by u ≤V v if and only if v − u ∈ V .
Since 0 ∈ V and V is closed by sums, this binary relation is reflexive and transitive. It is an order
if and only if V ∩ (−V ) = {0}.

For a stabilizer V ⊆ Zm and an m-partite access structure Γ ⊆ P ⊆ Zm
+ , we say that Γ is

V -stable if (Γ + V ) ∩ P = Γ. If ≤V is an order, that is, if V ∩ (−V ) = {0}, we can consider
the minimal points in Γ according to the order ≤V , which are called the V -minimal points of Γ.
Clearly, if V ∩ (−V ) = {0}, a V -stable multipartite access structure is completely determined by
its V -minimal points.

Obviously, every m-partite access structure is Zm
+ -stable. In the following we present a stabilizer

that characterizes the m-hierarchical access structures. For i = 1, . . . ,m, we notate ei for the i-th
vector of the canonical basis of Rm, and we take vi = ei − ei+1 for i = 1, . . . ,m− 1 and vm = em.
For a vector u = (u1, . . . , um) ∈ Rm, we notate ûi =

∑i
j=1 uj for i = 1, . . . ,m. Clearly, (v1, . . . ,vm)

is a basis of Rm and (û1, . . . , ûm) are the components of the vector u ∈ Rm in this basis, that is,
u =

∑m
i=1 ûivi. Consider

Hm = {u ∈ Zm : ûi ≥ 0 for every i = 1, . . . ,m} ⊆ Zm

and also the subset Gm ⊆ Hm of the vectors u ∈ Hm such that ûm = 0. Usually the subindex
in Hm or Gm is clear from the context and it will be omitted. Clearly, H is a stabilizer and
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H ∩ (−H) = {0}. Observe that v ≤H u if and only if v̂i ≤ ûi for every i = 1, . . . ,m. In addition,
an m-partite access structure is m-hierarchical if and only if it is H-stable. Consequently, every
hierarchical access structure is determined by its family of H-minimal points, that we call minH Γ.
Lemma 4.1 will be very useful in our study of hierarchical access structures.

Lemma 4.1. If x, y ∈ Zm
+ are such that y−x ∈ H, then there exists v ∈ G such that 0 ≤ x+v ≤ y.

In particular, if Γ is an m-hierarchical access structure and y ∈ min Γ, then there exists x ∈ minH Γ
such that y − x ∈ G.

Proof. The proof is by induction on m. The result is trivial for m = 1. Assume that m > 1. For
a vector x ∈ Zm, we notate x = (x̃, xm) with x̃ ∈ Zm−1. If x, y ∈ Zm

+ are such that y − x ∈ H,
then ỹ − x̃ ∈ Hm−1. By the induction hypothesis, there exists ṽ ∈ Gm−1 such that 0 ≤ x̃+ ṽ ≤ ỹ.
If xm ≤ ym, the vector v = (ṽ, 0) ∈ Gm is such that 0 ≤ x + v ≤ y. If xm > ym, then the vector
w = (0, . . . , 0, xm − ym, ym − xm) is such that w ∈ Gm and x′ = x+w ≥ 0. Since y − x′ ∈ Hm and
x′m = ym, there exists v′ ∈ Gm such that 0 ≤ x′ + v′ ≤ y. Finally, v = v′ + w ∈ Gm is such that
0 ≤ x+ v ≤ y. If Γ is an m-hierarchical access structure and y ∈ min Γ, there exists an H-minimal
point x ∈ minH Γ such that x ≤H y. Then there exists v ∈ G such that 0 ≤ x+ v ≤ y, and hence
x+ v ∈ P. Since x+ v ∈ Γ and y is a minimal point of Γ, we have that y = x+ v.

For a vector w ∈ Rm
+ r {0} such that w1 ≥ w2 ≥ · · · ≥ wm, consider the stabilizer

W (w) = {v ∈ Zm : w · v ≥ 0}.

If a Π-partite access structure Γ is W (w)-stable, then Γ is the weighted threshold access structure
defined by the weights (w1, . . . , wm) and the threshold t = min{w · u : u ∈ Γ}. Moreover, Γ is
Π-hierarchical. This implies that every weighted threshold access structure is hierarchical.

Example 4.2. Brickell [6] showed how to construct ideal secret sharing schemes for the multilevel
structures proposed by Simmons [33]. These structures are of the form

Γ = {A ⊆ P : |A ∩ (∪i
j=1Pj)| ≥ ti for every i = 1, . . . ,m}.

for some monotone increasing sequence of integers 0 < t1 < . . . < tm. Clearly, if the number of
participants in every level is large enough, Γ is a Π-hierarchical access structure with only one
H-minimal point: (t1, t2 − t1, . . . , tm − tm−1).

Example 4.3. Another hierarchical threshold access structure was proposed by Tassa [35]. Given
integers 0 < t1 < . . . < tm, the access structure is defined as

Γ = {A ⊆ P : |A ∩ (∪i
j=1Pj)| ≥ ti for some i = 1, . . . ,m}.

In this case, if the number of participants in each level is large enough, the access structure Γ is
Π-hierarchical and its family of H-minimal points is minH Γ = {t1e1, . . . , tmem}.

5 Operations on Hierarchical Access Structures

Duality and minors of access structures are fundamental concepts in secret sharing, as they are in
matroid theory. Several important classes of access structures are closed by duality and minors, as
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for instance, matroid ports or K -vector space access structures. The dual of an access structure
Γ on a set P is the access structure on the same set defined by Γ∗ = {A ⊆ P : P r A /∈ Γ}.
It is not difficult to prove that Γ is Π-partite if and only if Γ∗ is so. For a subset B ⊆ P , we
define the access structures Γ\B and Γ/B on the set P r B by Γ\B = {A ⊆ P r B : A ∈ Γ}
and Γ/B = {A ⊆ P r B : A ∪ B ∈ Γ}. Every access structure that can be obtained from Γ
by repeatedly applying the operations \ and / is called a minor of Γ. If Π = (P1, . . . , Pm) is a
partition of P and Γ is a Π-partite access structure, then the minors Γ\B and Γ/B are (Π\B)-
partite access structures, where Π\B = (P1 r B, . . . , Pm r B), a partition of P r B. If Π(B) = b,
then the geometric representations of these access structures are Γ\B = {x ≤ p− b : x ∈ Γ} and
Γ/B = {x ≤ p− b : x+ b ∈ Γ}.

Proposition 5.1. Let V ⊆ Zm be a stabilizer. Then the class of the V -stable m-partite access struc-
tures is minor-closed and duality-closed. In particular, this holds for the classes of the hierarchical
and the weighted threshold access structures.

Proof. Let Γ be a V -stable m-partite access structure. Consider a point u ∈ P with u ∈ Γ∗ and a
vector v ∈ V such that u+ v ∈ P. Then p− u /∈ Γ, and hence p− u− v = p− (u+ v) /∈ Γ because
Γ is V -stable. This implies that u+ v ∈ Γ∗.

Consider now the minors Γ\B and Γ/B for some B ⊆ P , and take b = Π(B). Consider vectors
0 ≤ u ≤ p− b and v ∈ V such that 0 ≤ u+ v ≤ p− b. If u ∈ Γ\B, then u ∈ Γ. This implies that
u+ v ∈ Γ and hence u+ v ∈ Γ\B. If u ∈ Γ/B, then u+ b ∈ Γ and hence u+ v + b ∈ Γ. Therefore,
u+ v ∈ Γ/B.

Let P ′ and P ′′ be two disjoint sets and let Γ′ and Γ′′ be access structures on P ′ and P ′′,
respectively. The composition of Γ′ and Γ′′ over p ∈ P ′ is denoted by Γ′[Γ′′; p] and is defined as the
access structure on the set of participants P = P ′ ∪ P ′′ r {p} that is formed by all subsets A ⊆ P
such that A ∩ P ′ ∈ Γ′ and all subsets A ⊆ P such that (A ∪ {p}) ∩ P ′ ∈ Γ′ and A ∩ P ′′ ∈ Γ′′.
The composition of matroid ports is a matroid port, and the same applies to K -vector space
access structures. A proof for these facts can be found in [20]. The access structures that can be
expressed as the composition of two access structures on sets with at least two participants are
called decomposable.

Suppose that Γ′ is (P1, . . . , Pr)-partite and Γ′′ is (Pr+1, . . . , Pr+s)-partite, and take p ∈ Pr. Then
the composition Γ′[Γ′′; p] is (P ′1, . . . , P

′
r+s)-partite, where P ′r = Pr r {p} and P ′i = Pi for i 6= r. If Γ′

and Γ′′ are hierarchical and p ∈ Pr then Γ′[Γ′′; p] is also hierarchical. Observe that the composition
is made over a participant in the lowest level of Γ′.

6 Multipartite Matroid Ports and Discrete Polymatroids

The aim of this and the following sections is to present and to prove our main result, Theorem 9.2,
which is a complete characterization of the ideal hierarchical access structures in terms of the
properties of their H-minimal points. First we recall here some facts about discrete polymatroids
and we show the connection between these combinatorial objects and multipartite matroids and
their ports. Since all ideal access structures are matroid ports, we obtain in this way some necessary
conditions for a hierarchical access structure to be ideal in Section 7. Finally, in Sections 8 and 9
we show that these necessary conditions are also sufficient.
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Multipartite matroid ports are ports of multipartite matroids, and those matroids are closely
related to discrete polymatroids, a combinatorial object that was introduced by Herzog and Hibi
[14] to study some problems in commutative algebra. We recall here some definitions and basic
facts about discrete polymatroids and multipartite matroids, the relation between these two com-
binatorial objects, and their connections to the characterization of multipartite access structures.
More information about these concepts can be found in [11, 14].

We need to introduce some notation before defining discrete polymatroids. Consider a finite
set J . For every two points u = (ui)i∈J and v = (vi)i∈J in ZJ , the point w = u ∨ v is defined by
wi = max{ui, vi} for every i ∈ J . As before, we write u ≤ v if ui ≤ vi for every i ∈ J . The modulus
of a point u ∈ ZJ is |u| =

∑
i∈J ui. For every subset X ⊆ J , we notate u(X) = (ui)i∈X ∈ ZX and

|u(X)| =
∑

i∈X ui. A discrete polymatroid with ground set J is a nonempty finite set of points
D ⊆ ZJ

+ satisfying the following properties.

1. If u ∈ D and v ∈ ZJ
+ is such that v ≤ u, then v ∈ D, and

2. for every pair of points u, v ∈ D with |u| < |v|, there exists w ∈ D with u < w ≤ u ∨ v.

A basis of a discrete polymatroid D is a maximal element in D, that is, a point u ∈ D such that
there does not exist any v ∈ D with u < v. Similarly to matroids, all bases have the same modulus,
and discrete polymatroids are completely determined by their bases. Moreover, a nonempty set
B ⊆ ZJ

+ is the family of bases of a discrete polymatroid if and only if it satisfies the following
exchange condition.

• For every u ∈ B and v ∈ B with ui > vi, there exists j ∈ J such that uj < vj and u−ei+ej ∈ B,
where ei ∈ ZJ is such that ei

k = 0 if i 6= k and ei
i = 1.

The mapping h : P(J)→ Z defined by h(X) = max{|u(X)| : u ∈ D} for every X ⊆ J is called
the rank function of the discrete polymatroid D. A discrete polymatroid is completely determined
by its rank function. So we will write D = (J, h) to denote the discrete polymatroid with ground
set J and rank function h. A mapping h : P(J)→ Z is the rank function of a discrete polymatroid
with ground set J if and only if

1. h(∅) = 0, and

2. h is monotone increasing : if X ⊆ Y ⊆ J , then h(X) ≤ h(Y ), and

3. h is submodular : if X,Y ⊆ J , then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

We say that a discrete polymatroid D′ = (J ′, h′) is an extension of a discrete polymatroid
D = (J, h) if J ⊆ J ′ and h′(A) = h(A) for all A ⊆ J . Since h′ is an extension of h, both will be
usually denoted by h. For a discrete polymatroid D with ground set J and a subset X ⊆ J , we
define the discrete polymatroid D(X) with ground set X by D(X) = {u(X) : u ∈ D} ⊆ ZX

+ . We
consider the set of points B(D, X) ⊆ ZJ

+ such that u ∈ B(D, X) if and only if u(X) is a basis of
D(X) and ui = 0 for every i ∈ J rX. Observe that D is an extension of D(X) for all X ⊆ J .

For a partition Π = (Q1, . . . , Qm) of the ground set Q, a matroid M = (Q, r) is said to be
Π-partite if every permutation σ on Q such that σ(Qi) = Qi for i = 1, . . . ,m is an automorphism
of M. From now on, we notate Jm = {1, . . . ,m} and J ′m = {0, 1, . . . ,m} for every positive
integer m. Then the function h : P(Jm)→ Z defined by h(X) = r(

⋃
i∈X Qi) is the rank function of

9



a discrete polymatroid D(M) = (Jm, h). Reciprocally, for every discrete polymatroid D = (Jm, h)
with h({i}) ≤ |Qi| for i ∈ Jm, there exists a unique Π-partite matroid M with D(M) = D.

Consider a partition Π = (P1, . . . , Pm) of a set P and the partition Π0 = ({p0}, P1, . . . , Pm) of
the set Q = P ∪ {p0}. A connected matroid port Γ = Γp0(M) on P is Π-partite if and only if the
matroid M is Π0-partite. Therefore, multipartite matroids, and hence discrete polymatroids, are
fundamental in the characterization of ideal multipartite access structures. These connections are
in the core of the results in [11]. In particular, we present next a characterization of multipartite
matroid ports in terms of discrete polymatroids that was proved in [11] and will be extremely useful
for our purposes.

Consider a Π-partite matroid port Γ = Γp0(M) and the associated discrete polymatroid D′ =
D(M) = (J ′m, h). The Π-partite matroid port Γ is completely determined by the partition Π and
the discrete polymatroid D′ and we write Γ = Γ0(D′). As a consequence of this fact, the following
characterization of multipartite matroid ports is proved in [11].

Theorem 6.1 ([11]). Let Π = (P1, . . . , Pm) be a partition of a set P and let Γ be an Π-partite
access structure on P . Then Γ is a matroid port if and only if there exists a discrete polymatroid
D′ = (J ′m, h) with h({0}) = 1 and h({i}) ≤ |Pi| such that

min Γ = min {u ∈ B(D, X) : X ⊆ Jm is such that h(X) = h(X ∪ {0})} ,

where D = D′(Jm) = (Jm, h).

Since every ideal access structure is a matroid port, Theorem 6.1 provides a necessary condition
for a multipartite access structure to be ideal. Several necessary conditions for a hierarchical access
structure to be ideal will be deduced from this result in Section 7.

On the other hand, sufficient conditions can be obtained from the fact that the ports of linearly
representable matroids are ideal access structures. We present in Theorem 6.2 an interesting result
from [11] connecting the linear representations of multipartite matroids to the ones of discrete
polymatroids. This result is used in Section 8 to find sufficient conditions for a hierarchical access
structure to be ideal.

Let E be a vector space with finite dimension over a finite field K and, for every i ∈ J , consider
a vector subspace Vi ⊆ E. It is not difficult to check that the mapping h : P(J) → Z defined by
h(X) = dim(

∑
i∈X Vi) is the rank function of a discrete polymatroid D = (J, h). The discrete

polymatroids that can be defined in this way are said to be K -linearly representable.

Theorem 6.2 ([11]). For every large enough field K , an m-partite matroid M is K -linearly rep-
resentable if and only if its associated discrete polymatroid D(M) = (Jm, h) is K -linearly repre-
sentable.

7 Hierarchical Matroid Ports

In this section, we use the connection between discrete polymatroids and multipartite matroid ports
that is discussed in Section 6 to find necessary conditions for hierarchical access structures to be
matroid ports. We prove first some technical lemmas that apply to every discrete polymatroid.
Specifical results on discrete polymatroids associated to hierarchical matroid ports will be given
afterwards.
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Lemma 7.1. Consider a discrete polymatroid D = (Jm, h), a subset A ⊆ Jm, and a point y ∈ Zm
+

that is H-minimal in B(D, A). Then y is the H-minimum point of B(D, A), that is, y ≤H x for
every x ∈ B(D, A).

Proof. We prove that B(D, A) ⊆ y+H. Suppose that, on the contrary, R = B(D, A) r (y+H) 6= ∅
and consider a point x ∈ R that is H-minimal in R. Let i ∈ A be the smallest index with xi 6= yi.
If xi < yi, there exists j ∈ A with j > i such that xj > yj and z = y + ej − ei ∈ B(D, A). Observe
that y − z ∈ G r {0}, a contradiction with the fact that y is H-minimal in B(D, A). If xi > yi,
there exists j ∈ A with j > i such that xj < yj and u = x+ej−ei ∈ B(D, A). Then u /∈ R because
x is H-minimal in R, and hence u ∈ y + G. This implies that x − y = (x − u) + (u − y) ∈ G, a
contradiction.

For every i, j ∈ Z we notate [i, j] = {i, i+1, . . . , j} if i < j, while [i, i] = {i} and [i, j] = ∅ if i > j.
Let D = (Jm, h) be a discrete polymatroid. For every i ∈ Jm, consider the point yi = yi(D) ∈ Zm

+

defined by yi
j = h([j, i])− h([j + 1, i]). Observe that

∑i
j=s y

i
j = h([s, i]) for every s ∈ [1, i].

Lemma 7.2. For every i = 1, . . . ,m, the point yi(D) is the H-minimum of B(D, [1, i]).

Proof. By Lemma 7.1, it is enough to prove that yi(D) is an H-minimal point of B(D, [1, i]). We
prove first that yi = yi(D) ∈ B(D, [1, i]). Take A ⊆ [1, i] and, for j ∈ [1, i], consider Aj = A ∩ [j, i].
Then

|yi(A)| =
∑
j∈A

yi
j =

∑
j∈A

(h([j, i])− h([j + 1, i])) ≤
∑
j∈A

(h(Aj)− h(Aj+1)) = h(A).

The inequality holds because Aj+1 = Aj ∩ [j + 1, i] and [j, i] = Aj ∪ [j + 1, i]. Since yi
j = 0 for all

j > i, this implies that yi ∈ D for all i ∈ Jm. Moreover, yi ∈ B(D, [1, i]) because |yi| = h([1, i]).
We prove next that yi is H-minimal in B(D, [1, i]). If not, there exists v ∈ G r {0} such that
u = yi − v ∈ B(D, [1, i]). Observe that vj = 0 or all j > i. Clearly, there exists s ∈ [1, i] for
which

∑s−1
j=1 vj > 0, and hence

∑i
j=s vj < 0. Then |u([s, i])| =

∑i
j=s uj >

∑i
j=s y

i
j = h([s, i]), a

contradiction with the assumption that u ∈ B(D, [1, i]).

Lemma 7.3. If 1 ≤ j ≤ i < m, then yi
j ≥ y

i+1
j .

Proof. Since h is submodular, yi+1
j = h([j, i+1])−h([j+1, i+1]) ≤ h([j, i])−h([j+1, i]) = yi

j .

For the remaining of this section, we assume that Γ is a Π-hierarchical matroid port, where
Π = (P1, . . . , Pm) is an m-partition of the set of participants P . Recall that we notate p = Π(P )
and P = Π(P(P )) ⊆ Zm

+ . In addition, we assume that the access structure Γ is connected , that
is, that every participant is in a minimal qualified subset or, equivalently, for every i ∈ Jm, there
is a minimal point x ∈ min Γ such that xi > 0. Consider the discrete polymatroid D′ = (J ′m, h)
such that Γ = Γ0(D′), and the discrete polymatroid D = D′(Jm) = (Jm, h). Since Γ is connected,
h({i}) > 0 for all i ∈ Jm, and hence yi

i > 0. Consider ∆(Γ) = {supp(x) : x ∈ Γ} ⊆ P(Jm).
Observe that ∆(Γ) = {A ⊆ Jm : h(A∪{0}) = h(A)} by Theorem 6.1. For every x ∈ Zm

+ , we notate
supp(x) = {i ∈ Jm : xi 6= 0} ⊆ Jm. Take m(x) = max(supp(x)) and M(x) = {1, . . . ,m(x)}.

Lemma 7.4. If x ∈ P is a minimal point of Γ, then x ∈ B(D,M(x)).
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Proof. From Theorem 6.1, x ∈ B(D, A) for some subset A ⊆ M(x). We are going to prove that
x ∈ B(D,M(x)) by checking that h(A) = h(M(x)). Specifically, we prove that h(A ∪ {j}) = h(A)
for every j ∈M(x)rA. Consider j ∈M(x)rA and the point x′ = x+ej−em(x) ∈ P. Observe that
x′ ∈ Γ because x′ − x ∈ H. Applying Theorem 6.1 again, there exist C ⊆ A ∪ {j} with C ∈ ∆(Γ)
and a point u ∈ B(D, C) such that x′ ≥ u. If uj = 0, then u < x, but this is not possible because
x ∈ min Γ. Thus, uj = 1 and j ∈ C. Since h is submodular, h(A∪{j})+h(Cr{j}) ≤ h(A)+h(C).
Therefore, h(A ∪ {j}) = h(A) if h(C) = h(C r {j}). Suppose now that h(C r {j}) ≤ h(C) − 1.
Observe that h(C r {j}) ≥ |u(C r {j})| = |u(C)| − 1 = h(C) − 1 because u ∈ B(D, C). Hence,
h(C r {j}) = h(C)− 1 and u− ej ∈ B(D, C r {j}). Observe that u− ej /∈ Γ because u− ej < x
and x ∈ min Γ. Thus, C r {j} /∈ ∆(Γ) and h((C r {j}) ∪ {0}) = h(C r {j}) + 1 = h(C). The
submodularity of h implies that

h(A∪{j, 0}) +h(C) = h(A∪{j, 0}) +h((Cr{j})∪{0}) ≤ h(A∪{0}) +h(C ∪{0}) = h(A) +h(C).

Therefore, h(A ∪ {j}) = h(A).

Lemma 7.5. If x ∈ P is an H-minimal point of Γ, then x = ym(x)(D).

Proof. From Lemma 7.4, x ∈ B(D,M(x)) and, since B(D,M(x)) ⊆ Γ by Theorem 6.1, x is H-
minimal in B(D,M(x)). By Lemmas 7.1 and 7.2, this implies that x = ym(x)(D).

Lemma 7.6. If x, y ∈ P are two different H-minimal points of Γ, then m(x) 6= m(y). Moreover,
if m(x) < m(y), then |x| < |y|.

Proof. It is obvious from Lemma 7.5 that m(x) 6= m(y) if x 6= y. Observe that |x| = h(M(x)) and
|y| = h(M(y)), and hence |x| ≤ |y| if m(x) < m(y). If |x| = |y|, then x ∈ B(D,M(y)) ⊆ y +H and
x− y ∈ H, a contradiction.

Lemma 7.7. If x, y ∈ minH Γ are such that m(x) < m(y), then xi ≥ yi for all i = 1, . . . ,m(x).

Proof. A direct consequence of Lemmas 7.3 and 7.5.

Lemma 7.8. Let x, y ∈ P be two different H-minimal points of Γ with m(x) < m(y) such that
there is not any H-minimal point z with m(x) < m(z) < m(y). If xi > yi for some i ∈ [1,m(x)−1],
then |Pj | = xj for all j ∈ [i+ 1,m(x)].

Proof. Suppose that xi > yi and xj < |Pj | for some i, j with 1 ≤ i < j ≤ m(x). Since yk ≤ xk for
all k = 1, . . . ,m(x) and |y| > |x|, there exists a point y′ ∈ (y +G) ∩P such that

• y′k = yk for all 1 ≤ k < j, and

• y′j = xj + 1, and

• y′k = xk for all j < k ≤ m(x).

Clearly y′ ∈ Γ, but y′ /∈ min Γ because |y([j,m(x)])| > |x([j,m(x)])| = h([j,m(x)]), and hence
y′ /∈ D. Therefore, there exists z′ ∈ min Γ such that z′ < y′, and by Lemma 4.1 there exists
z ∈ minH Γ such that z′ − z ∈ G. By Lemma 7.6, m(z) < m(y) because |z| = |z′| < |y′| = |y|.
Clearly, m(z) ≥ i because z < y if m(z) < i. If m(z) ≤ m(x), then zk ≥ xk for all k = 1, . . . ,m(z)
by Lemma 7.7, a contradiction with zi ≤ y′i = yi < xi. Therefore, there exists an H-minimal point
z such that m(x) < m(z) < m(y).
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8 A Family of Ideal Hierarchical Access Structures

Observe that Lemmas 7.6, 7.7, and 7.8 in previous section provide necessary conditions for a Π-
hierarchical access structure to be a matroid port, and hence to be ideal, in terms of the properties
of its H-minimal points. A sufficient condition is given in this section by constructing a new family
of hierarchical vector space secret sharing schemes. Specifically, we present a family of linearly
representable discrete polymatroids and we prove that the multipartite access structures that are
obtained from them are actually hierarchical. In addition, they are vector space access structures
by Theorem 6.2.

Consider a finite field K and a pair of integer vectors a = (a0, . . . , am) ∈ Zm+1
+ and b =

(b0, . . . , bm) ∈ Zm+1
+ such that

• a0 = a1 = b0 = 1, and

• ai ≤ ai+1 ≤ bi ≤ bi+1 for every i = 0, . . .m− 1.

Take d = bm and consider a basis {e1, . . . , ed} of Kd and, for every i = 1, . . . ,m, consider the
subspace Vi = 〈eai , . . . , ebi〉 ⊆ Kd. Let D′ = D′(a,b) = (J ′m, h) be the discrete polymatroid that
is linearly represented by the subspaces V0, V1, . . . , Vm. Observe that the rank function h of D′ is
such that h(A) = | ∪i∈A [ai, bi]| for all A ⊆ J ′m. In particular, h([j, i]) = |[aj , bi]| = bi − aj + 1
whenever 0 ≤ j ≤ i ≤ m, and hence h({0}) = 1. Therefore, for every set of players P and for
every m-partition Π = (P1, . . . , Pm) of P such that |Pi| ≥ h({i}) = bi − ai + 1, we can consider the
Π-partite matroid port Γ = Γ0(D′) that is determined as in Theorem 6.1. Since D′ is K-linearly
representable for every finite field K, we have from Theorem 6.2 that Γ is a K-vector space access
structure for every large enough finite field K. We prove in the following that Γ is actually a
Π-hierarchical access structure.

Consider the discrete polymatroid D = D(a,b) = D′(Jm) = (Jm, h) and, for i = 1, . . . ,m, the
points yi = yi(D) ∈ Zm

+ . Observe that yi
j = h([j, i]) − h([j + 1, i]) = aj+1 − aj if j < i while

yi
i = bi − ai + 1. Therefore,

yi = (a2 − a1, . . . , ai − ai−1, bi − ai + 1, 0, . . . , 0).

In the following lemma, we present a characterization of the families of points (yi(D))1≤i≤m corre-
sponding to discrete polymatroids of the form D = D(a,b). This and the following lemmas in this
section are proved in Appendix ??.

Lemma 8.1. The points y1, . . . , ym ∈ Zm
+ are of the form yi = yi(D(a,b)) for some a,b ∈ Zm+1

+

in the above conditions if and only if

• m(yi) = i for every i = 1, . . . ,m, and

• |yi| ≤ |yi+1| and yi
i > yi+1

i for every i = 1, . . . ,m− 1, and

• yi
j = yi+1

j if 1 ≤ j < i ≤ m− 1.

Proof. Clearly, the points of the form yi = yi(D(a,b)) satisfy the required conditions. We prove
now the converse. Given points y1, . . . , ym ∈ Zm

+ satisfying the conditions in the statement, consider
a = (a0, . . . , am) and b = (b0, . . . , bm) defined as follows:
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• a0 = a1 = b0 = 1,

• ai =
∑i−1

j=1 y
i
j + 1 for all i = 1, . . . ,m,

• bi =
∑i

j=1 y
i
j for all i = 1, . . . ,m.

Clearly a,b ∈ Zm+1
+ , and ai+1 − ai = yi+1

i ≥ 0 and bi = |yi| ≤ |yi+1| = bi+1. In addition,
bi − ai+1 = yi

i − y
i+1
i − 1 ≥ 0. Finally observe that yi = (a2 − a1, . . . , ai − ai−1, bi − ai + 1, 0, . . . , 0)

for all i = 1, . . . ,m.

Lemma 8.2. If h(A) < h([min(A),max(A)]), then there exists s ∈ [min(A),max(A)]rA such that
h(A) = h(A ∩ [1, s]) + h(A ∩ [s+ 1,m]).

Proof. Consider s ∈ [min(A),max(A)] rA such that h(A∪ {s}) > h(A) and define A1 = A∩ [1, s],
and A2 = A ∩ [s + 1,m], and B = ∪i∈A[ai, bi]. Then there exists t ∈ [as, bs] such that t /∈ B, and
hence h(A) = |B ∩ [1, t− 1]|+ |B ∩ [t+ 1,m]| = h(A1) + h(A2).

Lemma 8.3. If x ∈ min Γ, then x ∈ B(D,M(x)).

Proof. Take A = supp(x). Clearly, x ∈ B(D,M(x)) if h(A) = h(M(x)). Suppose that h(A) <
h(M(x)). Observe that h(A ∪ {0}) = h(A) because A ∈ ∆(Γ), and hence amin(A) = 1. Then the
subset A′ = A ∪ [1,min(A)] is such that h(A′) = h(A). By applying Lemma 8.2 to A′, there exists
s ∈ [1,m(x)]rA′ such that h(A′) = h(A′∩ [1, s])+h(A′∩ [s+1,m]). Consider A1 = A′∩ [1, s]. Since
|x(B)| ≤ h(B) for all B ⊆ Jm and |x| = h(A) = h(A′), we have that |x(A1)| = h(A1), and hence
x′ =

∑
i∈A1

xiei ∈ B(D, A1). Then x′ ∈ Γ because A1 ∈ ∆(Γ), a contradiction with x ∈ min Γ.

Lemma 8.4. The access structure Γ is Π-hierarchical.

Proof. It is enough to prove that x+vi ∈ Γ if x ∈ Γ and x+vi ∈ P (recall that, for i = 1, . . . ,m−1,
we notate vi = ei − ei+1 ∈ G). First, we argue that we can assume x ∈ min Γ. Consider z ∈ min Γ
with z ≤ x. If zi+1 = 0 and x + vi ∈ P, then z ≤ x + vi, and hence x + vi ∈ Γ. If zi+1 > 0, then
z + vi ∈ P, and x+ vi ∈ Γ if z + vi ∈ Γ because z + vi ≤ x+ vi.

Let x ∈ min Γ be such that y = x + vi ∈ P. Then s = m(x) > i and x ∈ B(D, [1, s]). Clearly,
y ∈ Γ if y ∈ B(D, [1, s]). Suppose that y /∈ B(D, [1, s]). We assert that, in this situation, there
exists t ∈ [1, i] such that

∑i
j=t yj > h([t, i]). Since y /∈ B(D,M(x)), there exists A ⊆ [1, s] such that

|y(A)| > h(A) and that is minimal with this property. It is clear that i ∈ A and i + 1 /∈ A. Take
t = min(A) and t′ = max(A). If h(A) < h([t, t′]), there exists by Lemma 8.2 a value k ∈ [t, t′] r A
such that h(A) = h(A1)+h(A2), where A1 = A∩[t, k] and A2 = A∩[k+1, t′]. Then, |y(A`)| > h(A`)
if i ∈ A`, a contradiction with the election of A. Therefore, h(A) = h([t, t′]) and t′ = i because
|y([t, t′])| > h([t, t′]). This proves our assertion.

Observe that

h([1, i]) =
i∑

j=1

yi
j =

t−1∑
j=1

yi
j + h([t, i]) =

t−1∑
j=1

ys
j + h([t, i]).

In addition,
∑t−1

j=1(xj − ys
j ) ≥ 0 because x ∈ B(D, [1, s]) ⊆ ys +G. Therefore,

h([1, i]) ≤
t−1∑
j=1

xj + h([t, i]) <
t−1∑
j=1

yj +
i∑

j=t

yj = |y([1, i])|.
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Clearly, this implies that |y([1, i])| = h([1, i]) + 1. Then |x([1, i])| = |y([1, i])| − 1 = h([1, i]), and
hence x′ =

∑i
j=1 xjej ∈ B(D, [1, i]) and x′ ∈ Γ. But this is a contradiction with the fact that

x ∈ min Γ. Therefore, y ∈ B(D, [1, s]) and y ∈ Γ.

Lemma 8.5. A point x ∈ P is H-minimal in Γ if and only if x = yi with i = m or i < m and
|yi| < |yi+1|.

Proof. From Lemma 7.5, minH Γ ⊆ {y1, . . . , ym}, and hence minH Γ = minH{y1, . . . , ym}. Take
i, j ∈ Jm with i < j. Then ŷi

k − ŷj
k = 0 if 1 ≤ k < i, while ŷi

i − ŷj
i = yi

i − yj
i > 0, and

ŷi
k − ŷ

j
k ≥ |y

i| − |yj | = ŷi
m − ŷ

j
m if i+ 1 ≤ k ≤ m. Therefore, yj − yi /∈ H while yi − yj ∈ H if and

only if |yi| = |yj |.

The next proposition summarizes the results in this section.

Proposition 8.6. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ be a Π-hierarchical
access structure on P . Let x1, . . . , xr ∈ Zm

+ be the H-minimal points of Γ and define mi =
max(supp(xi)). Suppose that the following properties are satisfied.

1. If i < j, then mi < mj and xi
k = xj

k for all k = 1, . . . ,mi − 1.

2. If mj−1 < i ≤ mj, then |Pi| ≥
∑mj

`=i x
j
`.

Then Γ is ideal and, moreover, it admits a K-vector space secret sharing scheme for every large
enough finite field K.

Proof. Consider the points y1, . . . , ym ∈ P defined as follows: if mj−1 < i ≤ mj , then

• yi
k = xj

k for every k = 1, . . . , i, and

• yi
i =

∑mj

`=i x
j
` , and

• yi
k = 0 for every k = i+ 1, . . . ,m.

Observe that xj
mj > xj+1

mj because xj ≤ xj+1 otherwise. With that in mind, it is not difficult to
check that the points y1, . . . , ym ∈ Zm

+ satisfy the conditions in Lemma 8.1, and hence there exists
a discrete polymatroid of the form D = D(a,b) such that yi = yi(D) for every i = 1, . . . ,m. In
addition, from the previous results, Γ0(D) is a Π-hierarchical access structure with minH Γ0(D) =
minH{y1, . . . , ym} = {x1, . . . , xr}. Therefore, Γ = Γ0(D) and, since D is linearly representable over
every finite field, Γ is a K-vector space access structure if K is large enough.

9 A Characterization of Ideal Hierarchical Access Structures

By using the results in Sections 7 and 8, we present here a complete characterization of ideal
hierarchical access structures. Moreover, we prove that every ideal hierarchical access structure
is a K-vector space access structure for every large enough finite field K. The next result is a
consequence of Proposition 8.6 and the necessary conditions for a hierarchical access structure to
be ideal given in Section 7. It provides a characterization of hierarchical access structures in which
the number of participants in every hierarchical level is large enough in relation to the H-minimal
points.
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Theorem 9.1. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ be a Π-hierarchical
access structure on P with minH Γ = {x1, . . . , xr}. For j = 1, . . . , r, consider mj = max(supp(xj))
and suppose that |Pmj | > xj

mj . Then Γ is ideal if and only if

1. mi 6= mj if i 6= j, and

2. if mi < mj, then xi
k = xj

k for all k = 1, . . . ,mi − 1.

Moreover, in this situation Γ is a K-vector space access structure for every large enough field K.

Proof. The conditions are necessary because of the results in Section 7. We prove now that they
are also sufficient. Suppose that the H-minimal points of Γ are ordered in such a way that mi < mj

if i < j. Consider a set P̃ ⊇ P and an m-partition Π̃ = (P̃1, . . . , P̃m) of P̃ such that P̃i ⊇ Pi for
all i = 1, . . . ,m and |P̃i| ≥

∑mj

`=i x
j
` if mj−1 < i ≤ mj . Let Γ̃ be the Π̃-hierarchical access structure

with minH Γ̃ = {x1, . . . , xr}. By Proposition 8.6, Γ̃ is a K-vector space access structure for every
large enough field K. Observe that ((xj +H)∩ P̃)∩P = (xj +H)∩P for every j = 1, . . . , r. This
implies that the access structure Γ is a minor of Γ̃. Specifically, Γ = Γ̃\(P̃ r P ).

Finally, we present our complete characterization of ideal hierarchical access structures in terms
of the properties of the H-minimal points. Actually, we prove that a hierarchical access structure
is ideal if and only if it is a minor of an access structure in the family that is presented in Section 8.
Therefore every ideal hierarchical access structure is a K-vector access structure for all large enough
finite fields K, and this proves Theorem 1.1.

Theorem 9.2. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ be a Π-hierarchical
access structure on P with minH Γ = {x1, . . . , xr}. Consider mj = max(supp(xj)) and suppose that
the H-minimal points are ordered in such a way that mj ≤ mj+1. Then Γ is ideal if and only if

1. mj < mj+1 and |xj | < |xj+1| for all j = 1, . . . , r − 1, and

2. xj
i ≥ x

j+1
i if 1 ≤ j ≤ r − 1 and 1 ≤ i ≤ mj, and

3. if xj
i > xr

i for some 1 ≤ j < r and 1 ≤ i < mj, then |Pk| = xj
k for all k = i+ 1, . . . ,mj.

Proof. As before, the results in Section 7 imply that the given conditions are necessary. Suppose
that the conditions are satisfied. Take x̃r = xr, and for j = 1, . . . , r− 1 consider the point x̃j ∈ Zm

+

defined by

• x̃j
i = xr

i if 1 ≤ i ≤ mj − 1, and

• x̃j
mj = xj

mj +
∑mj−1

k=1 (xj
k − x

r
k), and

• x̃j
i = 0 if mj + 1 ≤ i ≤ m.

As we did in the proof of Theorem 9.1, we extend the set P of participants to a larger one. Consider
a set P̃ ⊇ P and an m-partition Π̃ = (P̃1, . . . , P̃m) of P̃ such that P̃i ⊇ Pi for all i = 1, . . . ,m
and |Pi| ≥

∑mj

`=i x̃
j
` if mj−1 < i ≤ mj . Let Γ̃ be the Π̃-hierarchical access structure on P̃ with

minH Γ̃ = {x̃1, . . . , x̃r}. It is not difficult to check that Γ̃ satisfies the conditions in Proposition 8.6,
and hence it is a K-vector space access structure for every large enough field K. Consider the
discrete polymatroid D̃′ = (J ′m, h̃) associated to Γ̃ and take D̃ = D̃′(Jm) = (Jm, h̃).
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The proof is concluded by checking that Γ is a minor of Γ̃. Specifically, we prove that

Γ = ({x1, . . . , xr}+H) ∩P = ({x̃1, . . . , x̃r}+H) ∩P = Γ̃ ∩P,

which implies that Γ = Γ̃\(P̃rP ). Observe that xj−x̃j ∈ G, and hence Γ ⊆ Γ̃∩P. For j = 1, . . . , r,
consider Aj = (x̃j +G)∩P. Clearly, it is enough to prove that Aj ⊆ Γ for all j = 1, . . . , r. Suppose
that, on the contrary, there exists j = 1, . . . , r such that Aj 6⊆ Γ while Ak ⊆ Γ for all k = 1, . . . , j−1.

Suppose that xj /∈ B(D̃, [1,mj ]). Then xj /∈ min Γ̃ and, since xj ∈ Γ̃, there exists z ∈ min Γ̃
with z < xj . By Lemma 4.1, there exists an H-minimal point x of Γ̃ such that z − x ∈ G, and
hence |x| = |z| < |xj |. This is impossible if j = 1. If j > 1, then x = x̃k for some k < j, and hence
z ∈ Ak ⊆ Γ. Clearly, z ∈ min Γ and, by applying Lemma 4.1 again, z − xk ∈ G. This implies that
xj − xk = (xj − z) + (z − xk) ∈ H, a contradiction. Therefore, xj ∈ B(D̃, [1,mj ]).

Consider R = Aj r Γ and consider a point y ∈ R that is H-minimal in R. We assert that
y ∈ B(D̃, [1,mj ]). If not, y ∈ Γ̃ but y /∈ min Γ̃. By repeating the previous argument, j > 1 and
y − xk ∈ H for some k < j. Since y /∈ Γ, we reached a contradiction that proves our assertion.

Let i ∈ Jm be the smallest value such that yi 6= xj
i . If yi < xj

i , there exists ` with i+1 ≤ ` ≤ mj

such that y` > xj
` . Since y − x̃j ∈ G, it follows that |x̃j([1, i])| ≤ |y([1, i])| < |xj([1, i])|, and hence

xr
s = x̃j

s < xj
s for some s with 1 ≤ s ≤ i. This implies that xj

` = |P`| and y` ≤ xj
` because y ∈ P,

a contradiction. If yi > xj
i , then y` < xj

` and y′ = y − ei + e` ∈ B(D̃, [1,mj ]) ∩ P for some ` with
i+ 1 ≤ ` ≤ mj . Since y− y′ ∈ G and and y is an H-minimal point in R, it follows that y′ /∈ R, and
hence y′ ∈ Γ, a contradiction with y /∈ Γ.

Example 9.3. Let Γ be the weighted theshold access structure defined by the vector of weights
w = (7, 5, 4, 3) and the threshold T = 13 on the set of participants P = P1 ∪ P2 ∪ P3 ∪ P4 with
|Pi| = 4 for all i = 1, . . . , 4. The H-minimal points of Γ are x1 = (2, 0, 0, 0), x2 = (0, 1, 2, 0), and
x3 = (0, 0, 1, 3). Since x2

2 > x3
2 and |P3| > x2

3, it follows from Theorem 9.2 that Γ is not ideal.

Example 9.4. Let P = P1∪P2∪P3∪P4 be a set of participants and t1 < t2 < t3 < t4 some positive
integers. Consider a 4-partite hierarchical scheme on P in which all authorized subsets must have
at least one participant from P1, and also must have t1 participants in P1, or t2 in P1 ∪ P2, or t3
in P1 ∪ P2 ∪ P3, or t4 in P . The access structure of this scheme, Γ, is a minor of Γ′, the access
structure whose H-minimal points are (1, 0, 0, t4), (1, 0, t3, 0), (1, t2, 0, 0) and (t1, 0, 0, 0). Since Γ′

is ideal by Proposition 8.6, Γ is ideal.

The access structures described in Example 4.2 with and Example 4.3 are ideal. If Γ is a
hierarchical access structure with just one H-minimal point (t1, t2− t1, . . . , tm− tm−1), it is ideal by
Proposition 8.6. The vector subspaces V0, . . . , Vm that represent the polymatroid associated to Γ
satisfy Vm ⊆ . . . ⊆ V1, V0 ⊆ V1, and V0 * Vi for i = 2, . . . ,m. If Γ is a hierarchical access structure
with minH Γ = {t1e1, . . . , tmem}, then Γ is also ideal and the vector subspaces V0, . . . , Vm satisfy
V0 ⊆ V1 ⊆ . . . ⊆ Vm.

Tassa [35] proposed an open problem on hierarchical access structures that can be solved by
using our results. For a set of participants P = P1 ∪ · · · ∪ Pm, he asked for which sequence of
integers 0 < k1 < · · · < km and for which ` ∈ {1, . . . ,m}, the access structure defined as follows is
ideal

Γ` =
⋃

A∈{1,...,m}, |A|=`

x ∈ P :
i∑

j=1

xj ≥ ki for all i ∈ A
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We assume that the access structure is strictly m-partite. In particular, we assume that
∑i

j=1 |Pi| ≥
ki for all i = 1, . . . ,m.

Corollary 9.5. The access structure Γ` is ideal if and only if ` = 1 or ` = m.

Proof. Let Π = (P ′1, . . . , P
′
m) be a partition of a set P ′ ⊃ P with P ′i ⊃ Pi and |P ′i | > ki for all

i = 1, . . . ,m. For every subset A = {i1, . . . , i`} ⊂ [1,m] with ij < ij+1 for j = 1, . . . , `− 1, consider
the vector vA defined as

• vA
i1

= ki1

• vA
ij

= kij − kij−1 for j = 2, . . . , `

• vA
j = 0 for all j /∈ A

Define wA as the H-minimal point of (vA +H)∩P, which is not empty by hypothesis, that satisfies
m(wA) = i`. Let Γ′` be the Π-partite access structure whose set of H-minimal points is {vA : A ⊂
[1,m] and |A| = `}. Observe that Γ` = Γ′` ∩ P = ({wA : A ⊂ [1,m] and |A| = `} + H) ∩ P. By
Theorem 9.1, if ` = 1 or ` = m then Γ′` is ideal and hence Γ` is so.

Suppose that ` 6= 1,m. If there exist two subsets A,A′ of size ` with wA 6= wA′ but m(wA) =
m(wA′), then Γ` is not ideal by Theorem 9.2. If not, then we claim that Γ is not strictly m-
partite. Define w̃t = w[m−`−t+1,m−t] for every t = 0, . . . ,m− `. Taking into account that for every
1 ≤ i ≤ m−`−t, w̃t = wA for A = [m−`−t+1,m−t]∪{i}r{m−t−1}, it follows

∑i
j=1 w̃

t
j = ki for

t = 0, . . . ,m− ` and i = 1, . . . ,m− t. Hence w̃t = v[1,...,m−t]. Since w̃t ≥ w̃t−1 for t = 1, . . . ,m− `,
then minH Γ = {w̃m−`+1}, and so the participants in the parts m− `+ 2, . . . ,m are not relevant in
the structure.

10 Ideal Weighted Threshold Access Structures

By using our characterization of ideal hierarchical access structures, we present in this section a
characterization of ideal weighted threshold access structures that is more precise than the one
given by Beimel, Tassa and Weinreb [1]. As was noticed in [1], such an ideal structure can be the
composition smaller ideal weighted threshold access structures. Because of that, we focus on the
indecomposable structures in this family.

First, we describe several families of ideal weighted threshold access structures, and then we
prove in Theorem 10.1 that every indecomposable ideal weighted threshold access structure must
be in one of these families.

The (t, n)-threshold access structures form the first of those families. Of course, they are
ideal weighted threshold access structures. We consider as well three families of ideal bipartite
hierarchical access structures, that is, ideal Π-hierarchical access structures for some partition
Π = (P1, P2) of the set of participants.

B1 This family consists of the access structures with minH Γ = {(x1, x2)}, where 0 < x1 < |P1|
and 0 < x2 = |P2| − 1. We affirm that every member of B1 is a weighted threshold access
structure with weight vector

w = (w1, w2) =
(

1 +
1

x1 + x2
, 1− x1

x2(x1 + x2)

)
18



and threshold T = x1 + x2. Observe that the H-maximal non-authorized points of Γ ∈ B
are u = (x1 − 1, x2 + 1) and u′ = (t, x2 + x1 − 1− t), where t = min{|P1|, x2 + x1 − 1}. Our
affirmation is proved by checking that (x1, x2) · w ≥ T while u · w < T and u′ · w < T .

B2 The family B2 is formed by the access structures with minH(Γ) = {(x1, 0), (0, x1+1)} for some
integer x1 > 1. Those structures are defined by the weights w = (w1, w2) = (1, 1− 1/(x1 + 1))
and the threshold T = x1, because u = (x1 − 1, 1) is the only H-maximal non-authorized
point of Γ, and x · w ≥ T for every x ∈ minH Γ while u · w < T

B3 This is the family of the access structures with minH Γ = {(y1 + y2 − 1, 0), (y1, y2)}, where
y1 > 0, y2 > 2, and |P2| ≤ y2 ≤ |P2| + 1. In this case we have weighted threshold access
structures with w = (w1, w2) = (1, 1− 1/y2) and T = y1 + y2− 1. This is proved as before by
taking into account the H-maximal non-authorized points of Γ are u = (y1 + y2 − 2, 1) and
u′ = (y1 − 1, y2 + 1) (the second point only if |P2| = y2 + 1).

In addition we consider three families of ideal tripartite hierarchical access structures.

T1 This family consists of the structures with minH Γ = {(x1, 0, 0), (0, y2, y3)}, where 0 < y2 <
|P2| and 1 < y3 = |P3| − 1, and x1 = y2 + y3− 1. By taking into account that the H-maximal
non-authorized points of Γ are u = (x1 − 1, 1, 0) and u′ = (y2 − 1, 0, y3 + 1), one can prove
that every Γ ∈ T1 is a weighted threshold access structure with

w =
(

1, 1− 1
(y3 + 1)(y2 + y3)

, 1− 1
y3

+
y2

y3(y3 + 1)(y2 + y3)

)
and T = x1.

T2 We consider in this case the structures such that minH Γ = {(x1, 0, 0), (y1, y2, y3)} with 0 <
y2 = |P2| and 1 < y3 = |P3| − 1, and x1 = y1 + y2 + y3 − 1. The H-maximal non-qualified
points of those access structures are u = (x1 − 1, 1, 0) and u′ = (y1 + y2 − 1, 0, y3 + 1). As
before, we can check that the weights

w =
(

1, 1− 1
(y3 + 1)(y1 + y2 + y3)

, 1− 1
y3

+
y1 + y2

y3(y3 + 1)(y1 + y2 + y3)

)
and the threshold T = x1 determine Γ.

T3 Finally, the family T3 contains the access structures with minH Γ = {(x1, x2, 0), (y1, y2, y3)},
where 0 < y1 < x1, and 1 < y3 = |P3|, and 0 < x2 = y2+1 = |P2|, and x1+x2 = y1+y2+y3−1.
In this case we can consider the threshold T = x1 + x2 and the weight vector

w =
(

1 +
1

(x1 + x2)2
, 1− x1

x2(x1 + x2)2
, 1− 1

x1 − y1 + 2

(
1 +

x2y1 − x1(x2 − 1)
x2(x1 + x2)2

))
.

Observe that the H-maximal non-authorized points of Γ are u = (x1 + x2 − 1, 0, 1) and
u′ = (y1 − 1, x2, x1 − y1 + 2).

At this point, we can state the result that provides our characterization of the ideal weighted
threshold access structures.
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Theorem 10.1. A weighted threshold access structure is ideal if and only if

1. it is a threshold access structure, or

2. it is a bipartite access structure in one of the families B1, B2 or B3, or

3. it is a tripartite access structure in one of the families T1, T2 or T3, or

4. it is a composition of smaller ideal weighted threshold access structures.

The rest of this section is devoted to the proof this theorem, which is divided into several
partial results. We assume that Γ is an ideal Π-hierarchical access structure for some partition
Π = (P1, . . . , Pm) of the set P of participants. Consider the set minH Γ = {x1, . . . , xr} of the
H-minimal points of Γ. As before, we assume that mj < mj+1, where mj = max(supp(xj)). We
begin by proving some technical lemmas.

Lemma 10.2. If there exists i ∈ Jm such that xj
i = 0 for all j = 1, . . . , r, then Γ is not strictly

m-partite.

Proof. If i = m, it is clear that the participants in Pm are redundant. If i < m it is enough to
prove that the participants in Pi are equivalent to the ones in Pi+1. Consider x ∈ min Γ such that
x′ = x − ei + ei+1 = x − vi ∈ P. Consider an H-minimal point y with u = x − y ∈ G. Then
ûi−ûi−1 = ui = xi−yi = xi > 0, and hence ûi > 0. Therefore, u−vi ∈ H and x′ = y+u−vi ∈ Γ.

Lemma 10.3. If there exist j ∈ {2, . . . , r} and i ∈ Jm such that mj−1 + 1 < i ≤ mj and xk
i = |Pi|

for all k = i, . . . , r, then Γ is not strictly m-partite.

Proof. We claim that, in this situation, the participants in Pi−1 and those in Pi are hierarchically
equivalent. Consider x ∈ min Γ such that x′ = x − ei−1 + ei = x − vi−1 ∈ P. This implies that
xi < |Pi| Consider an H-minimal point y with u = x − y ∈ G. Observe that m(y) ≥ i because
mj−1 < i − 1. Then ûi − ûi−1 = ui = xi − yi = xi − |Pi| < 0, and hence ûi−1 > 0. Therefore,
u− vi−1 ∈ H and x′ = y + u− vi−1 ∈ Γ.

Lemma 10.4. If r ≥ 2 and there exist j ∈ {1, . . . , r − 1} and i ∈ [1,mj ] such that xj([1,mj ]) =
xk([1,mj ]) + ei for all k = j + 1, . . . , r, then Γ is decomposable.

Proof. Suppose first that i = mj . Consider p /∈ P and define P ′i = Pi ∪ {p}. Consider as well the
points yj = xj([1,mj ]) + ei, and yk = xk([1,mj ]) for 1 ≤ k < j, and zk = xk([mj + 1,m]) for j <
k ≤ r. Let Γ1 be the (P1, . . . , Pi−1, P

′
i )-hierarchical access structure with minH Γ1 = {y1, . . . , yj},

and let Γ2 be the (Pi+1, . . . , Pm)-hierarchical access structure with minH Γ2 = {zj+1, . . . , zr}. It is
easy to check that Γ = Γ1[Γ2; p].

Suppose now that i < mj . In this case, xj
k = |Pk| for all k = i + 1, . . . ,mj by Theorem 9.2.

Consider the point yj = xj([1,mj ]) + emj − ei, and the points yk = xk([1,mj ]) for all 1 ≤ k < j
and zk = xk([mj + 1,m]) for all j < k ≤ r. Consider Γ1 and Γ2 defined as in the previous case and
observe that Γ = Γ1[Γ2; p].

Lemma 10.5. If m ≥ 2 and xj
1 = |P1| for all j = 1, . . . , r, then Γ is decomposable.

Proof. Consider p /∈ P and P ′1 = P1∪{p}, and the points zj = xj([2,m]) for all j = 1, . . . , r. Let Γ1

be the (x1
1 + 1, x1

1 + 1)-threshold access structure on P ′1 and let Γ2 be the (P2, . . . , Pm)-hierarchical
access structure with minH Γ2 = {z1, . . . , zr}. Then Γ = Γ1[Γ2; p].
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Lemma 10.6. If m ≥ 2 and Γ is indecomposable, then xr
m > 1

Proof. Suppose that mr−1 < m − 1 and xr
m = 1. Consider p /∈ P and define P ′m−1 = Pm−1 ∪ {p},

and the points yj = xj([1,m− 1]) for 1 ≤ j ≤ m. Let Γ1 be the (P1, . . . , Pm−2, P
′
m−1)-hierarchical

access structure with minH Γ1 = {y1, . . . , yr} and let Γ2 the (1, |Pm|)-threshold access structure on
Pm. One can check that Γ = Γ1[Γ2; p]. If mr−1 = m− 1, then xr

m > 1 by Theorem 9.2.

We can now proceed to prove Theorem 10.1 by considering several cases depending on the
number m of levels in the structure. Recall that a weighted threshold access structure with weight
vector w = (w1, . . . , wm) ∈ Rm

+ , where w1 > · · · > wm > 0, is W -stable for W = W (w) = {v ∈
Zm : v · w ≥ 0}. The fact that W ∪ (−W ) = Zm will be very useful in our discussion.

The case m = 1 clearly corresponds to the threshold access structures. We discuss in Proposi-
tion 10.7 the case m = 2, that is, the characterization of ideal weighted threshold access structures
with two weights. Actually, this was previously solved in [28, 29], but we are only interested in the
indecomposable ones. The case m ≥ 3 is analyzed in Propositions 10.8, 10.10 and 10.12.

Proposition 10.7. Every ideal indecomposable weighted threshold access structure that is strictly
bipartite is in one of the families B1, B2 or B3.

Proof. Let Γ be an ideal indecomposable weighted threshold access structure with weight vector
w = (w1, w2) ∈ R2. Suppose that minH Γ = {(x1, x2)}. Taking into account Lemmas 10.2, 10.3
and 10.5, it is clear that 0 < x1 < |P1| and 1 < x2 < |P2|. If |P2| ≥ x2 + 2, then (x1, x2) + (−1, 2) ∈
PrΓ, which implies that (−1, 2) /∈ W , and hence (1,−2) ∈ W . But (x1, x2) + (1,−2) ∈ PrΓ,
a contradiction implying that |P2| = x2 + 1. Then Γ ∈ B1 in this case. Suppose now that
minH Γ = {(x1, 0), (y1, y2)}. Since y2 ≥ 2 by Lemma 10.6 and x1 − y1 ≥ 2 by Lemma 10.4,
(y1, y2)+(1,−2) ∈ PrΓ, so (1,−2) /∈W and w1 < 2w2. In addition, w1 > (y2 +y1−x1)w2 because
(x1, x2) + (−1, y2 + y1−x1) ∈ PrΓ. This implies that x1 = y2 + y1− 1. If y1 = 0 then y2 = x1 + 1,
and hence Γ ∈ B2. Suppose that y1 > 0. If |P2| ≥ y2 + 2, then (y1, y2) + (−1, 2) ∈ PrΓ, which
implies that (−1, 2) /∈ W , and hence (1,−2) ∈ W . But (y1, y2) + (1,−2) ∈ PrΓ, a contradiction
implying that |P2| ≤ y2 + 1. Then Γ ∈ B3. This concludes the proof because, by Theorem 9.2, all
possible cases for ideal hierarchical bipartite access structures have been analyzed.

Proposition 10.8. Let Γ be an ideal indecomposable weighted threshold access structure. If Γ is
strictly m-partite with m ≥ 3, then r = |minH(Γ)| = 2.

Proof. Let Γ be an ideal indecomposable weighted threshold access structure with weight vector
w ∈ Rm

+ . Suppose that r = 1. From Lemmas 10.2, 10.3 and 10.5, 0 < x1
i < |Pi| for all i = 1, . . . ,m.

This implies that the points x1 + (e1 − e2 − em) and x1 − (e1 − e2 − em) are in PrΓ, and hence
the vector e1 − e2 − em is not in W nor in −W , a contradiction.

Suppose that r ≥ 3. Define x = xr−2, y = xr−1, z = xr, i = mr−2, and j = mr−1. By
Theorem 9.2, x′ = x − ei + ej + em ∈ PrΓ because |x′([1,mk])| < |xk| for all k = 1, . . . , r. Thus
−ei + ej + em /∈W and so wi > wj + wm.

Suppose that zi < |Pi| and define the point z′ = z + ei − 2em, which is in P by Lemma 10.5.
We claim that z′ /∈ Γ. Observe that z′ − xk /∈ H for all k = 1, . . . , r − 2 because z′([1,mk]) =
z([1,mk]) < xk([1,mk]). Moreover, z′ − z /∈ H because |z′| < |z|. Suppose now that z′ − x ∈ H. In
this case it is clear that |z′([1, i])| ≥ |x([1, i])|. By Theorem 9.2, |x([1, i])| = |z([1, i])|+1 = |z′([1, i])|.
Since zi < |Pi|, by applying Theorem 9.2 again it follows x([1, i]) = z([1, i]) + ei. Observe that
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y([1, i]) = z([1, i]) because x([1, i]) > y([1, i]). By Lemma 10.4, this is a contradiction. Therefore,
z′−x /∈ H. We prove now that z′−y /∈ H. On the contrary, |z′([1, j])| = |y([1, j])|. If yj > zj , then
y([1, j]) = z([1, j])+ej , a contradiction by Lemma 10.4. If yj = zj then there exists by Theorem 9.2
a value k ∈ {1, . . . , j − 1} for which yk = zk + 1, y` = z` = |P`| for all ` = k + 1, . . . , j, and y` = z`
for all ` = 1, . . . , k− 1, a contradiction by Lemma 10.4. Therefore z′ ∈ PrΓ, and hence wi < 2wm,
a contradiction.

Suppose that zi = |Pi|. By Theorem 9.2 there exists k ∈ {1, . . . , i − 1} for which xk > zk and
|P`| = z` = x` for all ` = k + 1, . . . , i. Define z′ = z + ek − 2em. Analogously to the previous case,
z′ ∈ PrΓ. Therefore, wk < 2wm, a contradiction.

Lemma 10.9. Let Γ be an ideal weighted threshold access structure that is strictly m-partite and
indecomposable. If r = 2 and m1 > 1, then x2

1 > 0.

Proof. Suppose that x2
1 = 0. By Lemma 10.2, x1

1 > 0 and, as consequence of Theorem 9.2, x1
` = |P`|

for all ` = 2, . . . ,m1. Then observe that participants in P1 and P2 are hierarchically equivalent, and
hence Γ is (P1∪P2, P3, . . . , Pm)-partite with H-minimal points (xi

1 +xi
2, x

i
3, . . . , x

i
m) for i = 1, 2.

Proposition 10.10. Every ideal indecomposable weighted threshold access structure that is strictly
tripartite is in one of the families T1, T2 or T3.

Proof. Let Γ be an ideal indecomposable weighted threshold access structure with vector of weights
w ∈ R3

+. Assume that Γ is strictly tripartite. By Proposition 10.8, Γ has exactly two minimal points.
Suppose that minH Γ = {x, y} = {(x1, 0, 0), (y1, y2, y3)}. Taking into account Lemmas 10.2,

10.3, and 10.5, it is clear that 0 < y2 and 1 < y3 < |P3|. By Lemma 10.4, x1 > y1 + 1, which
implies that y + (1,−1,−1) ∈ PrΓ. Hence (1,−1,−1) /∈ W and so w1 < w2 + w3. Suppose that
y2 = |P2|. If |P3| > y3 + 1, then y + (0,−1, 2) ∈ PrΓ and so w2 > 2w3. But w1 < 2w3 because
y + (1, 0,−2) ∈ PrΓ, a contradiction. Therefore, |P3| = y3 + 1 and Γ is in T2. Now suppose
that y2 < |P2|. In this case y + (0, 1,−2) ∈ PrΓ. If |P3| > y3 + 1, then y + (0,−1, 2) ∈ PrΓ, a
contradiction implying that |P3| = y3 + 1. If y1 > 0, then y + (−1, 1, 1) ∈ PrΓ, a contradiction.
Consequently, y1 = 0 and Γ is in T1.

Suppose that minH Γ = {x, y} = {(x1, x2, 0), (y1, y2, y3)} with x2 > 0. Observe that y3 ≥ 2 by
Lemma 10.6. Suppose, for the sake of contradiction, that x1 = y1. Taking into account Lemmas 10.4
and 10.5, it is clear that x2 ≥ y2 +2 and x1 < |P1|. In this case, both y+(1, 0,−2) and y+(−1, 2, 0)
are in PrΓ, a contradiction. Hence x1 > y1. As a consequence of Theorem 9.2, x2 = |P2| and so
x2 > y2 by Lemma 10.3. Note that y1 > 0 by Lemma 10.9. Since y + (1, 0,−2) ∈ PrΓ, w1 < 2w3.
If |x| < |y| − 1, then x + (−1, 0, 2) ∈ PrΓ and so w1 > 2w3, a contradiction. Hence |x| = |y| − 1.
If y3 < |P3| then y + (−1, 1, 1) ∈ PrΓ and so w1 > w2 + w3, a contradiction implying y3 = |P3|.
Observe that x2 = y2 + 1, because if x2 > y2 + 1 then y+ (−1, 2, 0) ∈ PrΓ and hence w1 > 2w2, a
contradiction. Therefore, Γ is in T3.

This concludes the proof because, by Theorem 9.2, all possible tripartite hierarchical ideal access
structures have been analyzed.

Lemma 10.11. Let Γ be an ideal weighted threshold access structure that is strictly m-partite and
indecomposable. If r = 2, then |x1([1,m1])| > |x2([1,m1])|+ 1.

Proof. From Theorem 9.2, x1([1,m1]) > x2([1,m1]), and if |x1([1,m1])| = |x2([1,m1])| + 1, then
there exists 1 ≤ i ≤ m1 for which x1([1,m1]) = x2([1,m1])+ei, which contradicts Lemma 10.4.
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Proposition 10.12. If an ideal weighted threshold access structure is strictly m-partite with m > 3,
then it is decomposable.

Proof. Let Γ be an ideal weighted threshold access structure that is strictly m-partite with m > 3.
By Proposition 10.8, it has exactly two H-minimal points, that we call x and y, with m(x) < m(y).
Define i = m(x) and observe that m(y) = m.

Suppose that m − i = 1 and x1 = y1. Since i ≥ 3, by Lemmas 10.2, 10.3, and 10.5 we obtain
that xj > 0 and yj < |Pj | for all j = 1, 2, 3. Thus both x + e1 − e2 − e3 and y − e1 + e2 + e3 are
in PrΓ, a contradiction. Now suppose that m− i = 1 and x1 > y1. By Theorem 9.2, xj = |Pj | for
all j = 2, . . . , i, and by Lemma 10.3, y2 < |P2| and y3 < |P3|. As a consequence of Lemma 10.9 we
obtain that y1 > 0, and by following an analogous reasoning, we obtain that y2 > 0. Hence both
y − e1 + e2 + e3 and y + e1 − e2 − em are in PrΓ, which implies that w3 < wm, a contradiction.
Therefore m− i > 1.

Now suppose that m−i ≥ 2 and i > 1. By Lemmas 10.3 and 10.5, y2 < |P2| and 1 < ym < |Pm|.
Suppose that x1 = y1. It is clear that y1 > 0 by Lemma 10.2, so taking into account Lemmas 10.11
and 10.5 we obtain that both y+ e1− 2em and y− e1 + e2 + em are in PrΓ, a contradiction. Now
suppose that x1 > y1. In this case, y1 > 0 by Lemma 10.9, and xj = |Pj | for all j = 2, . . . , i by
Theorem 9.2. As a consequence of Lemma 10.11, both y+ e1− em−1− em and y− e1 + em−1 + em

are in PrΓ, a contradiction.
Finally, suppose that i = 1. By Lemmas 10.2, 10.3, and 10.4 we obtain that x1−y1 ≥ 2, ym−j > 0

for j = 0, 1, 2, and ym−j < |Pm−j | for j = 0, 1. Both y+ e1− em−1− em and y− em−2 + em−1 + em

are in PrΓ, a contradiction.

References

[1] A. Beimel, T. Tassa, E. Weinreb. Characterizing Ideal Weighted Threshold Secret Sharing.
SIAM J. Discrete Math. 22 (2008) 360–397.

[2] A. Beimel, E. Weinreb. Monotone Circuits for Monotone Weighted Threshold Functions. In-
formation Processing Letters 97 (2006) 12–18.

[3] J. Benaloh, J. Leichter. Generalized secret sharing and monotone functions. Advances in Cryp-
tology, CRYPTO’88. Lecture Notes in Comput. Sci. 403 (1990) 27–35.

[4] A. Beutelspacher, F. Wettl. On 2-level secret sharing. Des. Codes Cryptogr. 3 (1993) 127–134.

[5] G.R. Blakley, Safeguarding cryptographic keys. AFIPS Conference Proceedings. 48 (1979)
313–317.

[6] E.F. Brickell. Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput. 9
(1989) 105–113.

[7] E.F. Brickell, D.M. Davenport. On the classification of ideal secret sharing schemes. J. Cryp-
tology 4 (1991) 123–134.

[8] R.M. Capocelli, A. De Santis, L. Gargano, U. Vaccaro. On the size of shares of secret sharing
schemes. J. Cryptology 6 (1993) 157–168.

23



[9] M.J. Collins. A Note on Ideal Tripartite Access Structures. Cryptology ePrint Archive, Report
2002/193, http://eprint.iacr.org/2002/193.

[10] L. Csirmaz. The size of a share must be large. J. Cryptology 10 (1997) 223–231.
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