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Abstract. The increased functionality of EPC Class1 Gen2 (EPCGen2)
is making this standard a de facto specification for inexpensive tags in
the RFID industry. Recently three EPCGen2 compliant protocols that
address security issues were proposed in the literature. In this paper we
analyze these protocols and show that they are not secure and subject to
replay/impersonation and statistical analysis attacks. We then propose
an EPCGen2 compliant RFID protocol that uses the numbers drawn
from synchronized pseudorandom number generators (RNG) to provide
secure tag identification and session unlinkability. This protocol is opti-
mistic and its security reduces to the (cryptographic) pseudorandomness
of the RNGs supported by EPCGen2.
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1 Introduction

Radio Frequency Identification (RFID) is a promising new technology that is
widely deployed for supply-chain and inventory management, retail operations
and more generally for automatic identification. The advantage of RFID over
barcode technology is that it is wireless and does not require direct line-of-sight
reading. Furthermore, RFID readers can interrogate tags at greater distances,
faster and concurrently.

One of the most important advantages of RFID technology is that tags have
read/write capability, allowing stored tag information to be altered dynamically.
Typically an RFID system consists of tags, one or more readers, and a backend
server. The communication channel between the reader and the backend server
is assumed to be secure while the wireless channel between the reader and the
tag is assumed to be insecure.

To promote the adoption of RFID technology and to support interoperability,
EPCGlobal [11] and the International Organization for Standards (ISO) [13] have



been actively engaged in defining standards for tags, readers, and the communi-
cation protocols. A recently ratified standard is EPC Class 1 Gen 2 (EPCGen2).
This defines a platform for the interoperability of RFID protocols, by support-
ing efficient tag reading, flexible bandwidth use, multiple read/write capabilities
and basic reliability guarantees, provided by an on-chip 16-bit Pseudo-random
Number Generator (RNG) and a 16-bit Cyclic Redundancy Code (CRC16).
EPCGen2 is designed to strike a balance between cost and functionality, with
little attention paid to security.

In this paper we are concerned with the security of EPCGen2 compliant pro-
tocols. Clearly one has to take into account the additional cost for introducing
security into systems with restricted capability. It is important therefore to em-
ploy lightweight cryptographic protocols that are compatible with the existing
standardized specifications. Several RFID authentication protocols that address
security issues using cryptographic mechanisms have been proposed in the lit-
erature. Most of these use hash functions [20, 18, 24, 2, 9, 22, 10, 17], which are
beyond the capability of most low-cost tags and are not supported by EPC-
Gen2. Some protocols use pseudorandom number generators (RNG) [24, 14, 5, 4,
23, 3], a mechanism that is supported by EPCGen2, but these are not optimized
for EPCGen2 compliance. One can also use the RNG supported by EPCGen2 as
a pseudorandom function (PRF) (as in [3, 12]) to link challenge-response flows,
however it is not clear if such protocols are vulnerable to related key attacks [3].

The research literature for RFID security is extensive. We refrain from a
detailed review, and refer the reader to a comprehensive repository available
online at [1]. Recently three RFID authentication protocols specifically designed
for compliance with EPCGen2 have been proposed [7, 19, 21]. These combine the
CRC-16 of the EPCGen2 standard with its 16-bit RNG to hash, randomize and
link protocol flows, and to prevent cloning, impersonation and denial of service
attacks. In this paper we analyze these protocols and show that they do not
achieve their security goals. One may argue that, because the EPCGen2 standard
supports only a very basic RNG, any RFID protocol that complies with this
standard is potentially vulnerable, for example to ciphertext-only attacks that
exhaust the range of the components of protocol flows. While this is certainly
the case, such attacks may be checked by using additional keying material and
by constraining the application (e.g., the life-time of tags). We contend that
there is scope for securing low cost devices. Obviously, the level of security may
not be sufficient for sensitive applications. However there are many low cost
applications where there is no alternative.

The rest of this paper is organized as follows. Section 2 introduces the EPC-
Gen2 standard focusing on security issues. Section 3 analyzes three recently pro-
posed EPCGen2 protocols. In Section 4 we propose a novel EPCGen2 compliant
protocol that provides tag identification and session unlinkability. In Section 5
we define a security framework for Radio Frequency Identification, and show
that our protocol is secure in this framework.
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2 The EPCGen2 standard

EPC Global UHF Class 1 Gen 2, commonly known as the EPCGen2, was ap-
proved in 2004, and ratified by ISO as an amendment to the 18000-6 stan-
dard in 2006. This standard defines the physical and logical requirements for
a passive-backscatter, Interrogator-talks-first (ITF), radio-frequency identifica-
tion (RFID) system operating in the 860 MHz - 960 MHz frequency range. The
EPCGen2 standard defines a protocol with two layers, the physical and the
Tag-identification layer, which specify the physical interactions, the operating
procedures and commands, and the collision arbitration scheme used to identify
a Tag in a multiple-Tag environment.

The system comprises Interrogators, also known as Readers, and Tags. Below
we briefly summarize the EPCGen2 requirements.

1. Physical Layer
– Communications are half-duplex, meaning that Interrogators and Tags

cannot talk simultaneously.
– An Interrogator transmits information to a Tag by modulating an RF

signal. Tags are passive, meaning that they receive all of their operating
energy from the Interrogator’s RF waveform, as well as information.

– An Interrogator receives information from a Tag by transmitting a conti-
nuous wave (CW) RF signal to the Tag; the Tag responds only after
being directed to do so by an Interrogator, by modulating the reflection
coefficient of its antenna, thereby backscattering a weak signal.

2. Tag memory is logically separated into four distinct banks
– Reserved memory that contains a 32-bit kill password (KP ) to perma-

nently disable the tag, and a 32-bit access password (AP ) used when the
Interrogator wants to write/read the memory.

– EPC memory that contains the parameters of a CRC16 (16 bits), pro-
tocol control (PC) bits (16 bits), and an electronic product code EPC
that identifies the Tag (32 bits).

– TID memory that contains sufficient information to identify to a Reader
the (custom/optional) features of the tag and tag/vendor specific data.

– User memory that allows user-specific data storage
3. Tag-identification layer

– An Interrogator manages Tag populations using three basic operations:
Select (the operation of choosing a Tag population), Inventory (the op-
eration of identifying Tags) and Access (the operation of reading from
and/or writing to a Tag).

– The Interrogator begins an inventory round by transmitting a Query
command in one of four sessions. An inventory operates in only one ses-
sion at a time, and the Interrogator inventories Tags within that session.

– A random-slotted collision algorithm is used. The Interrogator sends
a parameter Q, that is an integer in the range (0, 15); the Tags load
a random Q-bit number into a slot counter. Tags decrement this slot
counter when they receive a Query, and reply to the Interrogator when
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their counter reaches zero. When the Interrogator detects the reply of a
Tag, it requests its PC, EPC, and CRC16.

– Link cover-coding can be used to obscure information during Reader to
Tag transmissions. To cover-code data (or a password), an Interrogator
first requests a random number from the Tag. Then, the Interrogator
performs a bit-wise XOR of the data with this random number, and
transmits the result (cover coded or ciphertext) to the Tag.

4. Hardware requirements
– A 16-bit Pseudo-Random number generator (RNG).
– A 16-bit Cyclic Redundancy Code.

2.1 The Pseudo-Random Number Generator

A pseudorandom number generator (RNG) is a deterministic function that out-
puts a sequence of numbers that are indistinguishable from random numbers by
using as input a random binary string, called seed. The length of the random
seed must be selected carefully to guarantee that the numbers generated are
pseudorandom. The state of the RNG changes each time that a new random
number is drawn. Although EPCGen2 does not specify any structure for the
RNG, it defines the following randomness criteria.

1. Probability of RN16: The probability that a pseudorandom number RN16
drawn from the RNG has value RN is bounded by:

0.8/216 < Prob(RN16 = RN) < 1.25/216.

2. Drawing identical sequences: For a tag population of up to 10,000 tags,
the probability that any two or more tags simultaneously draw the same
sequence of RN16s is < 0.1%, regardless of when the tags are energized.

3. Next-number prediction: A RN16 drawn from a tag’s RNG is not pre-
dictable with probability better than 0.025%, given the outcomes of all prior
draws.

We refer the reader to the discussion in [3] regarding the strength of EPCGen2
compliant RNGs.

2.2 The 16-bit Cyclic Redundancy Code

Cyclic Redundancy Codes (CRC) are error-detecting codes that check accidental
(non-malicious) errors caused by faults during transmission. To compute the
CRC of a bit string B = (B0, B1, . . . , Bm−1) we first represent it by a polynomial
B(x) = B0+B1x+· · ·+Bm−1x

m−1 over the finite field GF (2), and then compute
its remainder: CRC(B(x)) = (B(x) ·xn) mod g(x), for an appropriate generator
polynomial g(x) of degree n.
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EPCGen2 uses the CRC-CCITT generator: x16 + x12 + x5 + 1, and XORs a
fixed bit pattern to the bitstream to be checked. EPCGen2 specifies the Cyclic
Redundancy Code CRC16 which, for a 16-bit number B is defined by:

CRC(B) = [ B(x) · x16 +
31∑

i=16

xi ] mod g(x) = B(x)x16 mod g(x) + CRC(0),

where CRC(0) =
∑31

16 xi mod g(x) is a fixed polynomial. Since the modulo g(x)
operator is a homomorphism, CRC16 inherits strong linearity aspects. More
specifically, if P , Q are 16-bit numbers, then

CRC(P (x) + Q(x)) = CRC(P (x)) + CRC(Q(x)) + CRC(0). (1)

It follows that the CRC16 of a sequence of numbers can be computed from the
CRC16s of the numbers. Consequently CRC16 by itself will not protect data
against intentional (malicious) alteration. Its functionality is to support strong
error detection particularly with respect to burst errors, not security.

3 Weaknesses recently proposed EPCGen2 compliant
RFID protocols

In this section we consider three recently proposed EPCGen2 compliant pro-
tocols: the Chen-Deng mutual authentication protocol [7], the Quinling-Yiju-
Yonghua minimalist mutual authentication protocol [19], and the Sun-Ting au-
thentication protocol [21]. We show that these protocols fall short of their claimed
security.

In the protocols below we use the following notation: S is the back end server,
R a Reader, T a tag. We assume that S and R are linked with a secure channel,
and for simplicity, only consider the case when the authentication is online.

3.1 Analysis of the Chen-Deng protocol

In the Chen-Deng mutual authentication protocol [7] each tag T shares three
private values with the back end server S: a key K, a nonce N and an EPC
identifier. The tag stores these in non-volatile memory and the server stores
them in a database DB. The protocol has three passes:

1. S ⇒ R → T : query, Rr, a random number, and P = CRC(N ⊕Rr).
T : Check that P is correct. If it is correct,

2. T → R ⇒ S : Rt, a random number, X = (K ⊕ EPC ⊕Rt) and
Y = CRC(N ⊕X ⊕Rt).
S : Check that X, Y are correct. If they are correct,

3. S ⇒ R → T : Mresp, a response message.
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This protocol is clearly subject to a replay attack since the flows from the Reader
R and tag T use independent randomness (and hence are independent). In fact
the adversary needs only one interrogation of T : Rt, X = (K ⊕ EPC ⊕ Rt)
and Y = CRC(N ⊕ X ⊕ Rt), to impersonate the tag by computing a valid
(Ra, X∗, Y ∗), for any random number Ra, as: X∗ = X ⊕ (Rt ⊕Ra), Y ∗ = Y.

3.2 Analysis of the Quinling-Yiju-Yonghua protocol

The Quinling-Yiju-Yonghua protocol is a challenge-response mutual authenti-
cation protocol [19]. Each tag T shares two private 32-bit values with the back
end server S: an access password aPW and a tag identifier TID = TIDh||TIDl,
where TIDh (TIDl) are the high 16-bits (low 16-bits) of TID. T stores these
in non-volatile memory and S stores them in a database DB. The protocol has
three passes.

1. S ⇒ R → T : query, and Rr, a 16-bit random number.
2. T → R ⇒ S : Rt, a 16-bit random number, and M = (Ml||Mh) ⊕ aPW ,

where Ml = CRC(TIDl ⊕Rr ⊕Rt) and Mh = CRC(TIDh ⊕Rr ⊕Rt).
S : Check that M is correct. If so, the tag is accepted as the authorized T ,

3. S ⇒ R → T : N = (Nl||Nh) ⊕ aPW , where Nl = CRC(TIDl ⊕ Rt) and
Nh = CRC(TIDh ⊕Rt).
T : Check that N is correct. If it is, it accepts that R is an authorized reader.

In this protocol the flows from the tag T and ReaderR use combined randomness
and are dependent. Therefore one cannot use an identical flow for a replay attack.
However, because of the strong linearity aspects of CRC16, it is easy for the
adversary to modify the protocol flows from an interrogation of T to get the flow
for a replay attack. Suppose that the adversary is given: Rr, Rt and M from a
previous successful interrogation; and let R∗

r be the 16-bit random challenge of
the Reader for a new interrogation. Then the adversary A can choose any 16-bit
random number, Ra, and compute: A = CRC(Rr ⊕ R∗

r ⊕ Ra) ⊕ CRC(0), and
send a valid response to S:

R∗
t = Rt ⊕Ra , M∗ = M ⊕ (A||A),

since M∗
l = Ml ⊕ A and M∗

h = Mh ⊕ A, by Equations (1). Therefore the tag
T can be cloned after an eavesdropped interrogation. Impersonating the Reader
is even simpler: A does not need a previous interrogation. A sends any value
R∗

r to an authorized tag T to get M∗ from T . Then, A can compute a valid
N∗ = M∗ ⊕ (A′||A′), where A′ = CRC(R∗

r)⊕ CRC(0).

3.3 Analysis of the Sun-Ting Gen2+ protocol

Gen2+ [21] is a four pass mutual authentication protocol. Each tag shares with
the back end server S a random l-word string k (l ≤ 127) called keypool. S stores
the keypool of each tag T together with its EPC and other identifying data in a
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database DB. In the protocol T gets identified by revealing information about
its keypool, which S uses to locate the tag in DB. The keypool of each tag
is updated every 14 successful authentications to prevent cloning attacks. We
briefly describe the protocol.

1. R → T : query
T : Draw a 16-bit pseudorandom number, and use the first 14 bits as 7-bit
addresses, a and b, to mark a segment k[a : b] of the keypool, and the last
two bits to compute a check by XORing the two lsb of the a-th word and
the b-th word. If a ≥ b, the segment k[a : b] contains the words from a to b,
otherwise k[a : b] = k[a : l − 1]||k[0 : b].

2. T → R ⇒ S : a, b, check
S : First compute check for every k ∈ DB, and remove those keypools k with
different check. Then compute the CRC(k[a : b]) of all remaining keypools
in the reduced database DB′, and finally compute the central key ck′, whose
bits are obtained by taking a majority vote in the corresponding positions
of the CRC(k[a : b]) in DB′ (0 dominates 1).

3. S ⇒ R → T : ck′

T : Compute ck = CRC(k[a : b]) for the locally stored keypool and compare
it with ck′: if their Hamming distance is greater than a threshold t (typically
t = 1) do not respond. Otherwise, send the locally stored EPC.

4. T → R : nothing or EPC
S : If there is no response from T then remove from DB′ those keypools k
for which the Hamming distance of CRC(k[a : b]) from ck′ is less or equal to
t, and repeat Step 1.
If the EPC of one of the tags T in DB is received, then T is identified, and
R is considered authentic by the tag.

This protocol is clearly subject to replay attacks because only the tag contributes
to the randomness of protocol flows. The adversary A needs to eavesdrop on
only one tag interrogation to get the required protocol flows. The protocol is
also subject to a more complex statistical attack in which A first eavesdrops on
a number of tag interrogations and then replays the tag flows to the Reader R,
changing adaptively the last challenge. This makes it possible for A to build up
gradually sufficient information about the CRC’s of the words in a tag’s keypool
so as to clone the tag. Below we describe the attack in more detail.

1. A eavesdrops on m < 14 successful interrogations of T (prior to a keypool
update). A stores for every interrogation the values:

([a, b, check]1, ck′1), ([a, b, check]2, ck′2), . . . , ([a, b, check]p, ck′p),

where p is the number of challenges in the interrogation (p ≈ log(T )/log(4),
where T is the total number of tags).

2. A impersonates T and replays all but one of the challenges in each interro-
gation. The last challenge is replaced by [x, x, 00]p, 0 ≤ x ≤ l. R responds
with x′ computed by taking a majority vote on the CRC(k[x : x]) for all
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keypools k in the reduced DB′. Note that repeating the first (p− 1) rounds
guarantees that the target tag is always in DB′. A repeats this step for each
one of the l words of the keypool.

3. A analyzes the collected data. Let n be the number of keypools remaining in
DB′ after the penultimate round (p− 1). A can compute the CRC16 of the
word x in the keypool of T , because of the binary structure of ck′: e.g., when
n = 1 then ck′ = CRC(x) and when n = 2, ck′ is strongly biased with 3/4 of
its bits being 0. The case n = 2 is particularly important because it occurs
with high probability (> 48%, for T = 1000, l = 127, and t = 1). Using this
information it is now possible to compute the CRC(w) of the word w in the
keypool of T .

4. A now impersonates R to T and tries to compute a valid ck′ for a given
[a, b, check]. By exploiting the linearity aspects of CRC16, the CRC16 of an
interval k[a : b] = wa · · ·wb can be computed from the CRC16s of its words:

CRC(k[a : b]) =
b⊕

i=a

CRCi−a+1(wi)⊕
(b−a−1)⊕

1

CRCi(0),

where CRCi is CRC iterated i-times. Note also that there is no bound on
the number of times that A can try to compute a valid ck′, since the number
of challenges in an interrogation is not bounded.

This attack can be modified and enhanced in different ways. For example, A
could use the different tydbit checks sent by the tag to guess the values of the
lsb of different words, or ask for intervals of different length and combine this
with the previous analyzed data. A could also simplify the attack, by trying
to find the CRC of only short block words, and then wait until T asks for an
interval that can be made from these blocks.

4 Gen2Sec: a Secure EPCGen2 compliant RFID protocol

We next consider a novel Radio Frequency Identification protocol, Gen2Sec,
which only uses the RNG supported by EPCGen2 for security.

4.1 The protocol

In our protocol each tag T is identified by drawing consecutive numbers from its
RNG, say gtag. T draws three numbers, RN1, RN2, RN3, and sends RN1 to the
server S as a commitment. If S shares the RNG of the tag (its current state),
and if both RNGs are synchronized, then S can also draw these same numbers.
It can therefore reply to the tag with the challenge RN2. T now sends RN3 as its
response. This third step is also used to keep the RNGs of S and T synchronized.
One more challenge-response round is needed to deal with replay attacks when
these are detected (an alarm triggers this): S then draws and sends the next
number RN4 as challenge and T responds by sending RN5.
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Altogether three numbers are drawn when the adversary is passive and five
when the adversary is active. The security of the protocol is based on the fact
that the random numbers sent by the tag cannot be predicted by the adversary,
and consecutive numbers drawn in each interrogation are pseudorandom. Our
protocol identifies tags (not Readers) and is provably secure. It offers a degree
of privacy (session unlinkability), as we shall see in the following section.

We now describe the protocol in detail. Each tag T shares with the back end
server S an identifier IDtag, its RNG gtag (the state of gtag) and at least one
pseudorandom number (this guarantees synchronization). S stores in a database
for each tag a list of seven numbers, IDtag and gtag:

DB = {RNold
1 , RN cur

1 , RNnext
1 , RN2, RN3, RN cur

4 , RN cur
5 ; IDtag, gtag}.

The lists of DB are doubly indexed by RNnext
1 and RN cur

1 respectively. The tag
T stores in non-volatile memory two pseudorandom numbers, its identifier and
(the seed for) gtag:

(RN1, RN2, IDtag, gtag).

To initialize the values of its variables, the tag draws two successive values
RN1, RN2 from gtag. S draws six successive numbers from the RNG of each
tag and assigns their values to the variable in the tags lists: RN cur

1 , RN2, RN3,
RN cur

4 , RN cur
5 , RNnext

1 (in this order). In the protocol S uses a timer and
an alarm to manage inventories, thwart man-in-the-middle relay attacks (see
Section 5.2) and avoid replay attacks, as well as an update function in which:
RN cur

1 ← RNnext
1 , and the five values RN2, RN3, RN cur

4 , RN cur
5 , RNnext

1 , are
updated by drawing new numbers from gtag.

Gen2Sec Protocol

1. R → T : query

2. T → R ⇒ S : RN1

S : Check in DB
If RN1 = RN cur

1 for an item in DB then:
If RN1 = RNold

1 then set alarm← 1, set timer and broadcast RN2.
Else set RNold

1 ← RN1, set alarm← 0, set timer and broadcast RN2.
If RN1 = RNnext

1 for an item in DB then RNold ← RN1, update,
set alarm← 0, set timer and broadcast RN2.

3. S ⇒ R → T : RN2

T : Check RN2.
If RN2 is valid then draw five successive numbers from gtag and assign them to

the variables RN3, RN4, RN5 (volatile), RN1, RN2, and broadcast RN3.

S: On timeout abort.

4. T → R ⇒ S: RN3

S: Check RN3.
If RN3 is valid for IDtag then:

If alarm = 0 then update and ACCEPT the tag as IDtag.
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Else set RN4 ← RN cur
4 , RN5 ← RN cur

5 , update, and broadcast RN4.
Else abort.

5. S ⇒ R → T : RN4

T : Check RN4.
If it is valid then broadcast RN5.

S: On timeout abort.

6. T → R ⇒ S: RN5

S: Check RN5.
If RN5 is valid for IDtag then ACCEPT the T has identifier IDtag.
Else abort.

This protocol is optimistic in the sense that a tag T need only use three pseu-
dorandom numbers to get identified when the adversary A is passive. T sends
a commitment in Pass 1, S sends a challenge in Pass 2, and T gets identified
in Pass 3. A may try to impersonate T by obtaining the flows RN1, RN2, RN3,
through an offline man-in-the-middle attack (see Section 5.2 for a discussion on
such attacks). However this would cause the Server S to activate the alarm.
When this happens an additional interrogation is needed (Pass 5 and Pass 6). If
A attempts to replay the numbers RN1, RN2, RN3, RN4, RN4, RN5, A will fail
because in the mean time S and T will have updated the locally stored values
of the pseudorandom numbers.

Refreshing the RNG of a tag. We are assuming that it is hard to predict a number
drawn from a tag’s RNG given the outcomes of (all) prior draws—Condition 3,
Section 2.1. If this is an issue then one could refresh the (volatile bits of the) seed
of the RNG with randomness from the Server S. For example, in Pass 3 of the
protocol one could replace RN2 by: (R ⊕ RN2, gtag(R)), where R is a random
string selected by S and gtag(R) the refreshed RNG. To maintain synchrony the
Server S should use the refreshed gtag(R) in the update in Pass 2, and the tag
must update the values RN1, RN2 using the refreshed gtag(R).

In the following section we will discuss the security issues of this protocol in
a formal framework.

5 A security framework for RFID

5.1 RFID deployments

A typical RFID deployment involves tags T , Readers R and a back end Server
S. Tags are wireless transponders that typically have no power of their own
and respond only when they are in an electromagnetical field, while Readers are
transceivers that generate such fields. Readers implement a radio interface to
the tags and a high level interface to a back end server. S is a trusted entity
that processes private tag data. Readers do not store locally any private data.
T , R and S are abstracted as probabilistic Turing machines, although it is

assumed that the tags have severely restrained resources, and the Readers do not
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store any private tag information. This model describes the setting for authorized
parties, who adhere to protocol executions. The adversary is not bound by this
constraint.

5.2 Threat model

We adopt the Byzantine threat model. The adversary A is modeled as a proba-
bilistic Turing machine, and controls the delivery schedule of all communication
channels, and may eavesdrop into, or modify, their contents. A may also instan-
tiate new communication channels and directly interact with honest parties (R
or T ). However the channels that link S, R are assumed to be secure. There
are several general types of adversarial attacks. We list the more important ones
below.

1. Tag disabling. These are availability (DoS) attacks in which the adversary
A causes tags to assume a state from which they can no longer function
properly. Desynchronizing attacks are disabling attacks in which tags become
either temporarily or permanently incapacitated.

2. Tag cloning. These are integrity attacks in which A succeeds in capturing
the identifying data of a tag.

3. Tag tracking. These are privacy attacks in which A can trace tags through
rogue readers.

4. Replay attacks. These are integrity attacks in which A uses a tag’s response
to a Reader’s challenge to impersonate the tag.

5. Offline man-in-the-middle attacks. These are attacks in which a rogue reader
R′ and a rogue tag T ′ interpose between an authorized tag T and Reader R
so that, when R′ challenges T appropriately in T ↔ R′ the data obtained
will leak private information of T when input to T ′ ↔ R⇔ S.

When designing secure RFID protocols one should also take into account attacks
that are excluded from the security model used. Sometimes these attacks may
be prevented by using “out-of-system” protection mechanisms. Of course, it is
preferable to deal with such attacks within the model. Below we list two such
attacks:

– Power analysis attacks (side-channel attacks) [16]. These are attacks in which
the private key of a device is extracted by exploiting either its power con-
sumption when inaccurate/accurate received bits are processed or the vari-
ations in the timing of its energy output.

– Man-in-the-middle relay attacks [8, 15]. These are online attacks in which an
adversarial reader R′ and tag T ′ interpose between T and R so that, the
authentication flow T ↔ R ⇔ S is diverted to a flow T ↔ R′ ↔ T ′ ↔ R⇔
S that authenticates the imposter T ′ using the authentication data of T .

5.3 Security definitions

Definition 1. An RFID protocol is secure if, for any ε > 0, and any adversary
A, we can choose the system parameters such that:
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1. Completeness. If the wireless medium is reliable and if A is passive, an
authorized Reader R will identify any authorized tag T within its range
with probability greater than 1− ε.

2. Soundness. R will identify a rogue tag as an authorized tag with probability
less than ε.

3. Anti-cloning. A rogue reader will succeed in cloning an authorized tag with
probability less than ε.

The security of Radio Frequency Identification mirrors to a large extend the
security of interactive zero-knowledge proofs (IZKP), except that for the RFID
setting: (i) the prover is a tag and has very restricted resources, (ii) the verifier
is the back end server that shares private information with the prover, and (iii)
a certain amount of knowledge is allowed to leak, provided it is not enough for
the adversary to clone tags.

Definition 2. [3] A secure RFID protocol has session-unlinkability if for any
ε > 0 and any adversary we can choose the system parameters, such that: given
any two tag interrogations Int1, Int2 (not necessarily complete, or by authorized
readers), where Int1 takes place before Int2, and a history of earlier interrogations,
the adversary cannot decide with probability better than 0.5 + ε whether these
sessions involve the same tag or not, provided that either:

– The interrogation Int1 completed normally (successfully), or
– An interrogation of the tag involved in Int1 completed successfully after Int1

and before Int2.

5.4 An informal security analysis of Gen2Sec

The EPCGen2 standard specifies a 16-bit RNG bounded by the constraints in
Section 2. In Gen2Sec we propose to use 32-bit RNGs to thwart exhaustive search
attacks and minimize collisions. To get a 32-bit number we could of course draw
two successive numbers from a 16-bit RNG (as is done for cover coding a 32-bit
password). But the resulting number will not exhibit sufficiently strong pseu-
dorandom behavior for security (and will certainly be distinguishable from true
random). To achieve a level of pseudorandomness compatible with the require-
ments of EPCGen2 we therefore must double the seed length of the EPCGen2
PRG. We have:

Theorem 1. Gen2Sec is a secure RFID protocol that guarantees session unlink-
ability provided a cryptographically secure RNG is used.

Proof. We briefly show that Gen2Sec satisfies the security specifications of Defi-
nition 1 and Definition 2 in the Random Oracle model (ROM). In the full version
of this paper we shall show that the specifications are supported in the Universal
Composability framework [6] using the approach in [23].

To prove the security of Gen2Sec in the ROM we must show that an adver-
sary who can access the flows of protocol sessions (as random numbers rather
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than pseudorandom) from authorized Readers and Tags (modeled by stateful
oracles) cannot succeed with probability greater than ε in generating the flows
of a new session that is accepted by the Server. For this purpose we must estab-
lish the following:

Completeness. We have to show that every tag T shares at least one number with
the server S (for synchronization) at all times. This holds because the values of
the stored numbers are updated by T and S with each successful execution. If
the previous execution of the protocol was not disrupted then RN cur

1 = RN1

(in this case one update is needed); otherwise we may get RNnext
1 = RN1 (two

updates are needed). Note that the numbers RN4 and RN5 are used only once.
It follows that an authorized tag T will be identified by the server S. There is a
small probability of error ε, due to collisions.

Soundness. The adversary (a rogue reader) cannot guess the protocol flows be-
cause these are generated by a PRN. There is a small failure probability due to
“lucky” guessing.

Anti-cloning. To clone a tag the adversary must get access to the seed of the
RNG, which is never revealed: only the outputs of the RNG. Again, there is a
small probability ε of guessing correctly some values of RNG.

Session indistinguishability. If for any two tag interrogations Int1, Int2 the first
one completed successfully before the second, or there is an intermediate inter-
rogation that completed successfully, then the tag will have updated the values
of the numbers it stores. ut

Concluding remarks. The EPC standard for Class 1 tags focuses on reliability
and efficiency and supports only a very basic security level. Designing EPCGen2
compliant RFID protocols that are secure is particularly challenging. In this
paper we have shown that three recently proposed EPCGen2 compliant RFID
protocols fail to provide adequate security and are subject to impersonation and
cloning attacks.

We proposed a novel RFID EPCGen2 compliant protocol that uses the num-
bers drawn from synchronized RNGs to provide secure tag identification and
session unlinkability, whose security is reduced to the (cryptographic) pseudo-
randomness of the supported RNGs. The protocol is optimistic in the sense that
when the adversary is passive only two rounds of communication are needed.
When the Reader detects an anomalous flow then an additional round (two
passes) is needed.
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