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Abstract

We introduce a new lower bound on the key length in an almost universal hash function
by using combinatorial analysis. At the same time, we use the well-studied relation between
almost universal hashes and error-correcting codes introduced by Johansson et al. in 1993 to
derive another similar bound which turns out to be not as tight as we had expected. To the
best of our knowledge, this is the first time when combinatorial analysis yields a better universal
hash bound than the use of the relation, and we will explain the reason why. We then compare
the new bound against known bounds of this and other families of universal hashes and discover
an important value of hash collision probability, which not only represents a threshold in the
behaviour of bounds but also quantifies the Wegman-Carter effect.

1 Introduction and contribution

Universal hash function H with parameters (ε, r,K, b) was introduced by Carter and Wegman [9,
35]. Each family, which is indexed by a r-bit key k, consists of 2r hash functions mapping a message
representable by K bits into a b-bit hash output: H (r, K, b) = {hk() : {0, 1}K → {0, 1}b|k ∈ [0, 2r)}.

In this paper we use combinatorial analysis to introduce a new bound, termed the combinatorial
bound, for an ε-almost universal hash function (ε-AU). This result tells us the lower bound on the
bitlength of the hash key with respect to a fixed amount of information we want to hash, the hash
output bitlength and the hash collision probability ε.

Although there has been much work in this area, most researchers concentrate on bounds for an
ε-almost strongly universal hash function (ε-ASU , a more restrictive version of ε-AU as can be seen
in their definitions below). This is because a much-used mechanism in practice, called MAC, make
use of an ε-ASU [29, 30, 17, 18, 12, 16, 35, 9, 2]. We however believe that there is a similar potential
for AU . For example, a new class of authentication schemes, based on new concepts of trust derived
from human actions and interactions, has been recently proposed to replace PKI and passwords in
pervasive computing environments [28, 34, 10, 23, 24, 25, 33, 21]. Some of these protocols make use
of a new cryptographic digest function introduced in [23, 24], with similar security properties and
purposes to an AU . In these protocols, digest or hash keys are always random and fresh in each
protocol session, and so a substitution attack, which relies of the reuse of a hash key for multiple
messages, is irrelevant. Hence, what we require is a protection against hash collision attacks (AU)
as opposed to substitution attacks (ASU).

Moreover, since universal hash keys in MAC are often large, one reuses a single secret key for
multiple messages as mentioned above. This opens the way for key recovery and universal forgery
attacks which exploit weak key properties or partial information on a secret key; such attacks have
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been recently reported by Handschuh and Preneel [13]. Avoiding reusing keys would render most
key recovery attacks useless, and so it is desirable to construct universal hashes with short keys,
which in turn generate the need to calculate the lower bound of universal hash key length.

We are aware of a relation between almost universal hash functions and error-correcting codes
discovered by Johansson et al. [15], which implies that every bound of coding theory potentially
corresponds to another bound on universal hashes, and vice versa. Consequently, we will show how
to use the Singleton bound to derive a different AU -bound which turns out to be not as tight as
we had expected. To the best of our knowledge, this is the first time when combinatorial analysis
yields a better universal hash bound than the use of the relation. However, when we convert the
combinatorial AU -bound into parameters in coding theory it is perhaps surprising to discover that
the result is no better than Singleton bound.

In comparing the combinatorial AU -bound to Stinson’s AU -bound [29, 30], we discover the
significance of the value (1+ b

K−b)2
−b: as ε increases beyond the threshold, our bound is tighter than

Stinson’s AU -bound. Subsequently this threshold value will be shown to have the same theoretical
significance in relationships between known bounds for almost XOR and almost strongly universal
hash functions. What this illustrates is a behaviour of any universal hash functions, known as
the “Wegman-Carter effect” in the literature [7, 20], previously reported in [15, 16] by Johansson,
Kabatianskii and Smeets: if ε exceeds 2−b (the theoretical minimum1) by an arbitrarily small
positive value, then the total number of messages, that can be authenticated, grows exponentially
with the number of keys provided, but if ε = 2−b it only grows linearly. However, while these authors
only demonstrate this behaviour asymptotically, we are able to quantify it using the threshold value.

We end this paper by proving the optimality of polynomial hashing over finite field [8, 15, 32] in
building AU , AXU and ASU , i.e. they meet the combinatorial AU -bound, AXU - and ASU -bounds
with equality. This therefore improves on the proof of asymptotic optimality of polynomial hashing
as an ASU given by Johansson et al. [15].

In our work, we also introduce a new bound for an ε-AXU . The bound is derived from Kaba-
tianskii’s ASU -bound [16] and a connection between ASU and AXU [35, 11]. For this reason, we
suspect that this has been known to the community. However, the bound has never been published,
and moreover rigorously analysed in relation to other known bounds. We will show that the bound
is met with equality in the second version of polynomial hashing.

2 Notations and definitions of universal hash functions

In this paper, all formulas are expressed in terms of bitlengths2 of hash keys, input messages and
hash output instead of the cardinalities of the sets of these parameters (2r, 2K and 2b) as in other
papers. The advantage of the notation will become clear when we explain why combinatorial
analysis yields better bounds than the use of coding theory bounds in Section 3.2.

Let us recall the definitions of a number of families of universal hash functions. Here ε, which
is sometimes written as 2θ−b = γ2−b, is referred to as the collision, differential or interpolation
probability associated with ε-AU , ε-AXU or ε-ASU , respectively.3 In all following definitions, we

1In practice, the minimum collision probability of an AU is 2K−2b

2K+b−2b , which is less than 2−b. This occurs in an

optimally universal hash scheme introduced by Sarwate [26].
2In practice, it is often the case that r, K and b are integers.
3The terms collision, differential and interpolation probabilities were introduced by Bernstein in the appendix

of [4] to distinguish the differences between these families of universal hash functions.
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look at the probability of some condition being met, e.g. hash collision, as the key k varies uniformly
over its domain: Prk[].

An ε-almost universal hash function, ε-AU (r,K, b) [9, 29]
H is an ε-AU iff for all different messages m and m′:
Prk[hk(m) = hk(m′)] ≤ ε

An ε-almost XOR universal hash function, ε-AXU (r,K, b) [17, 18, 29]
H is an ε-AXU iff for every pair of distinct messages (m, m′) and
any ω ∈ {0, 1}b: Prk[hk(m)⊕ hk(m′) = ω] ≤ ε

An ε-almost strongly universal hash function, ε-ASU (r, K, b) [35, 29]
(a) For every message m and hash output y: Prk[hk(m) = y] ≤ 2−b.
(b) For every pair of distinct messages (m,m′) and for every pair
of hash outputs (y, y′): Prk[hk(m) = y, hk(m′) = y′] ≤ ε2−b

All universal hash functions discussed to date are pairwise, since we look at their properties in
relation to two different messages. We will see that the combinatorial bound, and its proof, can
be easily adapted to a more general version of AU , termed a l-wise ε-AUl, and therefore we give
the definition below. We argue that not only is this of theoretical interest to study ε-AUl, but also
useful in many applications, such as in the new family of authentication protocols discussed in the
introduction, where the intruder attempts to fool parties into accepting different versions of a piece
of data that the protocol seeks to ensure they agree on. It is therefore desirable that we consider
the possibility of a hash collision w.r.t more than two different input messages. However, unless
indicated, our work presented in this paper always refers to pairwise universal hash functions.

A l-wise ε-almost universal hash function, ε-AUl (r,K, b)
H is an ε-AUl iff for any l different messages {m1, . . . , ml}:
Prk[hk(m1) = · · · = hk(ml)] ≤ ε

We assume the input message bitlength K is significantly greater than the hash bitlength b. When-
ever we use the term log X, we refer to the logarithm of base 2 to simplify the notation.

3 Bounds for almost universal hash functions

In this section, we first derive a new bound of an AU using combinatorial analysis.
We then use Singleton bound [1] to derive another AU -bound. Although several bounds in cod-

ing theory have been converted into equivalent bounds for universal hashes, e.g. Plotkin bound [30]
or Johnson bound [16], to the best of our knowledge, Singleton bound has not been used.

It is perhaps interesting to discover the combinatorial AU -bound is tighter (greater) than the
one derived from Singleton bound when K is not a multiple of b, and both K and b are integers.
When K is a multiple of b they are equivalent.

3.1 Combinatorial AU-bound

Theorem 1 If there exists an ε-AU (r, K, b) then r ≥ log
(
ε−1 b(K − 1)/bc

)
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The following proof makes use of the pigeon-hole principle: given two positive integers n and m
with n > m, if n items are put into m pigeon-holes then at least one pigeon-hole must contain more
than or equal to dn/me items.

Proof For any key k1, there exists a hash value h1 such that there are at least 2K−b different
messages all hashing to h1 under the same key k1, thanks to the pigeon-hole principle. For any
choice of k2 other than k1, there will also be a collection of at least 2K−2b of these messages that
all map to some hash value h2, which can be equal to h1, under k2. And if we continue this process
repeatedly, in the end, this will result in at least two distinct messages mapping to the same values
under c = b(K − 1)/bc different keys4 out of 2r all possible key-values.

We now can deduce that if a family of hash functions is ε-almost universal then b(K − 1)/bc
must be smaller than or equal to ε portion of the key space: ε2r ≥ b(K − 1)/bc, which means that
r ≥ log(ε−1b(K − 1)/bc)

The distinction between this formula and what one gets by removing the −1 will become important
in distinguishing AU from AXU and ASU in the sections to come. This result can be interpreted
alternatively as follows: given the security parameter ε, the bitlengths of the key and the hash
output, it yields an upper bound on the length of the information we are hashing: K < b+1+ εb2r.

The proof of the combinatorial bound for a pairwise ε-AU2 can be adapted to derive the cor-
responding bound for a l-wise ε-AUl. Instead of leaving 2 different messages after c iterations as
shown in the proof of Theorem 1, we need to leave l messages, and hence number of iterations c is
upgraded to b(K − log l)/bc. This leads to the following theorem.

Theorem 2 If there exists a l-wise ε-AUl (r,K, b) then r ≥ log
(
ε−1 b(K − log l)/bc

)
This is slightly lower than the combinatorial bound, since the likelihood of l different messages
hashing to the same value is smaller than pairwise. Although there has been some study of l-wise
almost strongly universal hash functions by Stinson [31] and Kurosawa et al. [19], as far as we are
aware, this is the first result on l-wise almost universal hash functions.

We end this section with another observation: there is no limit on message length K relative
to b and r in both our pairwise and l-wise combinatorial AU -bounds, which makes them more
attractive than a similar ASU -bound proposed by Kabatianskii et al. [16], as will be discussed in
the sections to come.

3.2 Error-correcting codes and almost universal hash functions

While the connection between almost universal hashes and error-correcting codes (i.e. see The-
orem 3), which was first observed by Johansson et al. [15], has been used by many reseachers
to derive tight bounds on universal hashes [29, 30, 16], the following comparative analysis will
demonstrate that the strategy does not always give the best answer.

Let (n, T, d, q) be a q-ary error-correcting code, where n is the number of symbols in each
code-word, T is the total number of codewords, and the minimum Hamming distance is d.

Theorem 3 [15, 6, 30]. If there exists an ε-AU (r,K, b), then there exists an (n = 2r, T =
2K , d = 2r − 2rε, q = 2b) code. Conversely, if there exists an (n, T, d, q) code, then there exists an
(ε = 1− d/n)-AU (r = log n,K = log T, b = log q).

4The reason why we use K − 1 instead of K is because we want to have at least 2K−b((K−1)/b) = 21 = 2 different
messages left after c such iterations.
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Using the connection, we can derive another AU -bound from Singleton bound.

Singleton bound [1]: given an (n, T, d, q) code then qn−d+1 ≥ T .

Theorem 4 Another bound on an ε-AU (r,K, b), which is derived from Singleton bound, is: r ≥
log

(
ε−1 (K/b− 1)

)
Proof Using Theorem 3, construct an (n = 2r, T = 2K , d = 2r − 2rε, q = 2b) code from the univer-
sal hash funcation ε-AU (r,K, b). This code must satisfy Singleton bound, so we obtain:

qn−d+1 ≥ T

2b(ε2r+1) ≥ 2K

r ≥ log
(
ε−1 (K/b− 1)

)
When K is a multiple of b, this is equivalent to the combinatorial AU -bound in Theorem 1.

In contrast, when K is not a multiple of b, and both K and b are integers, then the combinatorial
AU -bound is tighter (or greater) than the one derived in Theorem 4, since b(K − 1)/bc > K/b− 1.

We also discover that, a set of parameters (ε, r,K, b), where K is not a multiple of b, which
achieves equality in the bound derived in Theorem 4 cannot be converted into an (n, T, d, q) code
whose values of both n and d are integers.5 Hence, it is impossible to construct an AU with the
set of parameters, i.e. the bound derived from Singleton bound in Theorem 4 is not tight as shown
in the following example and Table 1.

Let K = 3, b = 2 and ε = 1/2, the AU -bound defined in Theorem 4 gives r ≥ log
(
ε−1 (K/b− 1)

)
=

0, which is not tight because it is impossible to construct such an AU with a single key, i.e. zero
bit. The combinatorial AU -bound, on the other hand, gives r ≥ log

(
ε−1 b(K − 1)/bc

)
= 1 corre-

sponding to an (ε = 1/2)-AU (r = 1,K = 3, b = 2) or an (n = 2, T = 8, d = 1, q = 4) code.
Since any AU -bound is also a bound on error correcting codes, one might question: does the

combinatorial AU -bound give rise to a new bound in coding theory which is tighter than Singleton
bound? It is however perhaphs suprising to discover when we convert the combinatorial bound into
parameters in coding, it becomes Singleton bound as demonstrated below.

• When K = tb + b′ and b′ ∈ [1, b], where t is an integer. The combinatorial AU -bound is
equivalent to: t = b(K − 1)/bc ≤ ε2r = n− d, and so T = 2tb+b′ ≤ qn−d+1.

• When K = tb + b′ and 0 < b′ < 1: b(K − 1)/bc = t − 1. The combinatorial AU -bound is
equivalent to T ≤ 2b′qn−d+1, which is not as tight as Singleton bound.

4 The significance of the threshold value of ε

Having discovered the combinatorial AU -bound, we are going to compare it with other bounds
for not only ε-AU but also ε-AXU and ε-ASU to understand the significance and contribution of
our result. This comparative analysis will be given in the following order: Stinson’s AU -bound in

5Assume K = tb + b′ where 0 < b′ < b and t is an integer. If equality in the bound derived in Theorem 4 is
achieved, we have: n − d = 2rε = t − 1 + b′/b. Since b′/b is not an integer, both n and d cannot be integer at the
same time.
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m1 m2 m3 m4 m5 m6 m7 m8

k1 1 2 3 4 1 2 3 4
k1 2 3 4 1 3 4 1 2

Table 1: A construction of an (ε = 1/2)-AU (1, 3, 2), in which there are 2r = 2 hash keys {k1, k2}
and 2K = 8 input messages {m1, . . . ,m8}. The range of a hash output is [1,2b = 4].

Section 4.1, and in Section 4.2 we study two ASU -bounds of Gemmell and Naor, and Kabatianskii
et al., and AXU -bounds.

This study leads us to discover the significance of the value ε = (1 + b
K−b)2

−b which represents
an important threshold in the behaviour of bounds, quantifying the Wegman-Carter effect. We
also introduce a new AXU -bound derived from the ASU -bound of Kabatianskii et al. [16] and a
connection between AXU and ASU that was introduced by Wegman and Carter [35].

We end this section with Table 2 that captures the interesting relationships w.r.t the thresh-
old value between the combinatorial AU -bound, Kabatianskii’s ASU -bound, the AXU -variant of
Kabatianskii’s bound, and Stinson’s bounds for AU , AXU and ASU .

4.1 Comparison between the combinatorial and other AU-bounds

Stinson’s AU -bound [29] is as follows: 2r ≥ 2K(2b−1)
2K(ε2b−1)+22b(1−ε)

. When ε = 2−b, this is much tighter
than ours for then it gives r ≥ K − b, which means that the key bitlength grows at least linearly
with the message bitlength. In contrast, as we increase ε to 21−b then setting r = b satisfies the
bound, i.e. the key needs be no longer than the bitlength of the hash.

To explain the reason for the dramatic collapse, we present a different way to interpret the
formula when ε = γ2−b > 2−b, which is the same as γ > 1.

2r ≥ 2K(2b − 1)
2K(γ − 1) + 22b(1− γ2−b)

=
2b − 1

(γ − 1) + 22b−K(1− γ2−b)

Note that since both terms in the denominator of the right-hand form are positive for γ > 1, with
the second one converging to 0 as K increases, no matter how big K gets it can never prove a
stronger lower abound on r than

r > log
2b

γ − 1
= b + log

1
γ − 1

In other words, while the combinatorial bound grows in proportion to log K, this bound is essentially
constant as K increases. Hence there comes a point as K and ε increase where Stinson’s bound
becomes weaker than the combinatorial one. In order to locate that point, we find the value of ε
above which ours is greater than Stinson’s. To simplify the calculation, we will round up our bound
from (2r ≥ ε−1b(K−1)/bc) to (2r ≥ K

εb ). This gives a very good approximation to the crucial value.

K

εb
>

2K
(
2b − 1

)
2K (ε2b − 1) + 22b(1− ε)

ε >
K2K −K22b

K2K+b −K22b − b2K+b + b2K
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Since 22b � 2K � 2K+b, the above can be approximated as follows:

ε >
K2K

K2K+b − b2K+b
=

K

(K − b)2b
=

(
1 +

b

K − b

)
2−b

From now on, we will refer to this value of ε as the threshold value. The result demonstrates that
Stinson’s AU -bound can only be tight within a very short range of ε, since K is always assumed to
be significantly bigger than b. Moreover, the difference between the threshold value and 2−b, i.e.

b
(K−b)2b , can be made as small as we want. This leads us to conclude that if ε exceeds 2−b by an
arbitrarily small positive value, then the message bitlength grows at most exponentially with the
key bitlength as demonstrated in the combinatorial AU -bound, but if ε = 2−b it will grow at most
linearly as shown in Stinson’s AU -bound.

This conclusion has also been derived from a relation between almost strongly universal hash
functions and codes correcting independent errors in the work of Johansson et al. [15, 16]. However,
it is not clear to us how we can derive the same threshold value of ε from the asymptotic behaviour.
As a consequence, our approach of deriving the result quantitatively demonstrates three further
important points:

1. If we fix the bitlengths of an input message and a hash output, then Stinson’s AU -bound is
still useful when 2−b < ε <

(
1 + b

K−b

)
2−b, more information can be found in Table 2.

2. Given any value of ε which exceeds 2−b by an arbitrarily small positive value, we can determine
the threshold of input messages’ bitlength (K ≥ b+ b

2bε−1
) above which the message bitlength

can apparently start to grow exponentially with the key bitlength, i.e. the combinatorial
AU -bound gives a better estimate than Stinson’s AU -bound.

3. The threshold value of ε, perhaps surprisingly, has the same theoretical importance when we
visit different ASU - and AXU -bounds in Appendix A. See Table 2 for more information.

4.2 Comparison between the combinatorial AU-bound and known ASU- and
AXU-bounds

Having compared our result to AU -bounds, we turn our attention to ASU - and AXU -bounds.
There are a number of existing ASU -bounds, introduced by Gemmell and Naor [12], and Kaba-
tianskii et al. [16], that have similar form to our AU -bound. Since ASU is more restrictive than
AU , intuitively we would expect that the number of bits required for the key in AU should be
smaller than in ASU w.r.t the same set of parameters (ε,K, b). This analysis is reflected by the
following two comparisons:

• Our AU -bound, r ≥ log
(
ε−1b(K − 1)/bc

)
, is smaller than Kabatianskii’s ASU -bound, r ≥

b + log(ε−1bK/bc), by at least b bits.6

6Kabatianskii’s ASU -bound, Theorem 15 of [16], is valid when K < b
√

2r−b+1(1− 2−b)− b/2, which is equivalent

to: r > b + 2 log(K/b + 1/2) + log 2b

2(2b−1)
. In order for the bound to be met with equality, the bound must be itself

greater than b + 2 log(K/b + 1/2) + log 2b

2(2b−1)
. This is satisfied when K < 2b

ε
− b, yielding a very large K in practice

when the hash length is in the range from 80 to 160 bits.
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• The difference between our AU -bound and Gemmell-Naor’s ASU -bound,7 r ≥ log K +
2 log ε−1 − log log ε−1, gets very near to b when θ � b: log ε−1 + log b

log ε−1 = b− θ + log b
b−θ

The above comparisons imply that the difference between AU - and ASU -bounds on the key length
may be very near, or equal, to b bits w.r.t the same set of parameters (ε,K, b). Coincidentally, it is
known that if there exists an ε-AXU (r,K, b) which is uniformly distributed,8 then it can be used
to construct an ε-ASU (r + b, K, b), thanks to the work of Wegman and Carter [35]. This can be
summarised by the following theorem, adapted from Lemma 1 of [11] by Etzel, Patel and Ramzan.

Theorem 5 [35, 11]. Let H = {hk() : {0, 1}K −→ {0, 1}b|k ∈ [0, 2r)} be an ε-almost XOR
universal hash function. Moreover, suppose H is also uniformly distributed. Then H ′ = {h′k,b′() :
{0, 1}K −→ {0, 1}b|k ∈ [0, 2r), b′ ∈ [0, 2b)}, defined by h′k,b′(m) = hk(m) ⊕ b′ where b′ is a b-bit
random number, is an ε-almost strongly universal hash function.

This means that if we apply Theorem 5 to Kabatianskii’s ASU -bound, r ≥ b + log(ε−1bK/bc), the
corresponding AXU -bound will be r ≥ log(ε−1bK/bc). We therefore term this the AXU -variant of
Kabatianskii’s bound, illustrated by the following theorem.

Theorem 6 If there exists an ε-AXU (r,K, b) then r ≥ log(ε−1bK/bc)

As pointed out in footnote 6 and [16], there is a condition for the validity of Kabatianskii’s ASU -
bound, and therefore the same condition should apply to the AXU -variant of Kabatianskii’s bound:9

K < b
√

2r+1(1− 2−b)− b/2.
The theorem also leads us to believe that ε-AU -bound may be shorter than ε-AXU -bound for

some set of parameters (ε,K, b), i.e. when K is a multiple of b. This argument is consistent with
the formal definitions, since ε-AXU is a stronger definition of ε-AU .

An example, showing the correctness of the argument, is given when we set ε = 2−b, Stin-
son’s AU -bound yields K − b bits compared to K, derived from Stinson’s AXU -bound (2r ≥

2K(2b−1)
2bε(2K−1)+2b−2K ) [30]. We will see again that this comparative analysis is justified for larger values
of ε when we visit constructions based on polynomial hashing over finite fields in Section 5.

We note that Stinson’s bounds for AXU and ASU have similar forms to his AU -bound. Fur-
thermore, the same similarity in form holds between Kabatianskii’s ASU -bound, the AXU -variant
of Kabatianskii’s bound and our AU -bound. Owing to this symmetry, we assert that the threshold
value of ε has the same significance in the relationships between the two versions of ASU -bound,
and of AXU -bound respectively, as can be demonstrated in Appendix A.

5 The optimality of polynomial hashing as AU , AXU and ASU

Polynomial hashing over finite fields was independently introduced by Boer [8], Johansson et al.
[15], and Taylor [32]. Subsequently, many research authors such as Shoup [27], Nevelsteen and
Preneel [22], and Bernstein [5], report on several efficient implementations of polynomial hashing.

7We note that the bound was reported in the paper of Gemmell and Noar [12] (Section 5.1). However, it was
noted there that the bound was actually introduced by Noga Alon through private communication.

8A universal class H (r, K, b) of hash functions is uniformly distributed iff for every pair of a message and a hash
value (m, y), as the key k varies uniformly over its range: Prk[hk(m) = y] ≤ 2−b.

9The exponent inside the square root operator is r + 1 instead of r − b + 1 as in the original formula because the
key bitlength of an ε-AXU in this case is exactly b bits shorter than in an ε-ASU .
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ε <
(
1 + b

K−b

)
2−b ε >

(
1 + b

K−b

)
2−b

Stinson’s bound [29, 30] Combinatorial bound
New, Theorem 1, Section 3.1

ε-AU log
(

2K(2b−1)
2K(ε2b−1)+22b(1−ε)

)
log (ε−1b(K − 1)/bc)

New, Theorems 4, Section 3.2
(from Singleton bound in coding theory)

log K−b
εb

Stinson’s bound [30] AXU -variant of Kabatianskii’s bound
New, Theorem 6, Section 4.1

ε-AXU log
(

2K(2b−1)
2bε(2K−1)+2b−2K

)
log (ε−1bK/bc)

Stinson’s bound [29, 30] Kabatianskii’s bound [16]
ε-ASU b + log (ε−1bK/bc)

log
(
1 + 2K(2b−1)2

2bε(2K−1)+2b−2K

)
Gemmell and Noar’s bound [12]
log K + 2 log ε−1 − log log ε−1

Table 2: Classification of different lower bounds on the key length r for AU , AXU and ASU with
respect to the threshold value of ε:

(
1 + b

K−b

)
2−b.
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To the best of our knowledge, polynomial hashing as an authentication code (ASU) has only
been proved to be asymptotically optimal by Johansson et al. [15]. In their paper, the authors
used polynomials to construct an (ε = t

2b )-ASU(r = 2b, K = tb, b), where t is an integer, and they
proved that for t fixed and b →∞ then 2K = 2tb is asymptotically the upper bound on the number
of messages that can be securely authenticated.

Improving on the result, we will show that three familiar and slightly different versions of
polynomial hashing (AU , AXU , and ASU) are optimal, because they meet the combinatorial AU -
bound, the AXU -variant of Kabatianskii’s bound, and respectively Kabatianskii’s ASU -bound with
equality. The last of these three constructions is also the one introduced by Johansson et al. [15].

Fix some positive integer t. Let the set of all messages be {m = 〈m1, . . . , mt〉; mi ∈ Fq}, here
b = log q and the message bitlength is K = tb = t log q.

In the first version of polynomial hashing, each message m will form a polynomial m(x) of
degree less than t over Fq. For any key k ∈ Fq, the hash of the message m with respect to the key
k is equivalent to m(k) over Fq. This implies that bitlengths of the key and the hash output are
equal to each other, i.e. log q = b = r.

hk(m) = m(k) = m1 + m2k + m3k
2 + · · ·+ mtk

t−1

If we fix two different messages A and B = A + m,10 then a hash collision is equivalent to:
0 = hk(A) + hk(B) = A(k) + B(k) = m(k). Since the polynomial m(k) is of degree up to (t − 1),
there are at most t−1 different roots out of total q possible values of key k causing a hash collision.
This therefore implies that ε = (t− 1)q−1 = b(K − 1)/bc 2−r. Here the equality between t− 1 and
b(K − 1)/bc holds because K is a multiple of b. From this, we derive that r = log

(
ε−1 b(K − 1)/bc

)
.

The construction above is not an AXU because if we set ω = A1 + B1 and for all i ∈ (1, t]:
Ai = Bi = 0, then even though A and B are different messages, we always have:

Prk[hk(A) + hk(B) = ω] = Prk[A1 + B1 = ω] = 1

On the other hand, if we let the message m form a polynomial m(x) of degree up to t over Fq, then
we can get around this problem completely. In the second version of polynomial hashing, we have

hk(m) = m(k) = m1k + m2k
2 + · · ·+ mtk

t

Since the degree of this polynomial is up to t, a similar calculation leads us to conclude that this
forms an (ε = t/q)-AXU . And if we substitute this value of ε into the AXU -variant of Kabatianskii’s
bound, we obtain equality: log(ε−1bK/bc) = log q = r.

As pointed out in Section 4.2 and [16], the AXU -variant of Kabatianskii’s bound has been
only proved to be valid when K = bt < b

√
2r+1(1− 2−b) − b/2, which can be approximated to

t < 2(b+1)/2−1/2 when r = b in polynomial hashing. We note, however, that constructions based on
polynomial hashing can meet this bound for all integer values of t over the wider range [1, q = 2b).

Since we can construct an (ε = t
2b )-AXU (r = b, K = tb, b) that meets the AXU -variant of

Kabatianskii’s bound with equality, using Theorem 5 we can construct an (ε = t
2b )-ASU (r =

2b,K = tb, b), which was originally introduced by Johansson et al. [15]. For any pair of keys
(k, s) ∈ F2

q :
hk,s(m) = s + m(k) = s + m1k + m2k

2 + · · ·+ mtk
t

This meets Kabatianskii’s ASU -bound (r ≥ b + log
(
ε−1bK/bc

)
) with equality, and therefore is

optimal.
10Addition and subtraction are the same thing in the finite field Fq.
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6 Conclusions and future research

In this paper, we have derived a new AU -bound combinatorically, which is tighter than another AU -
bound derived from Singleton bound. To the best of our knowledge, this is the first time when one
demonstrates that: the use of the connection between universal hash functions and error-correcting
codes does not always give a tight bound on universal hashes.

This work hopefully will open the ways for re-examming many existing bounds on universal
hashes which have been derived from bounds of error-correcting codes (ECC-bounds) or other
combinatorial objects such as difference matrices, orthogonal arrays, and balanced incomplete block
design [30]. As we have shown, there are subclasses of some universal hashes which cannot be
transformed into equivalent codes that achieve equality in the ECC-bounds from which AU or
ASU -bounds are derived. As a consequence, the AU or ASU -bounds are not tight since equality
is not achievable in these subclasses of universal hashes. In the cases, combinatorial analysis might
produce better bounds.

In addition, we quantify the (asymptotic) Wegman-Carter effect with respect to the threshold
value of ε that represents a threshold in behaviours of bounds of AU , AXU , and ASU .

We have illustrated, in the l-wise variant of the combinatorial bound, how the inclusion of
further parameters can capture wider range of security properties. It is therefore of interest to
construct universal hash functions that meet our combinatorial bound on ε-AUl for l > 2 with
equality.
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A The threshold value in relation to AXU and ASU

The following calculation, which will locate the value of ε above which Kabatianskii’s ASU -bound
becomes better than Stinson’s ASU -bound, will demonstrate that the threshold value of ε has the
same significance in the relationships between Stinson’s and Kabatianskii’s ASU -bound.11

11Since the constant 1 in Stinson’s ASU -bound (2r ≥ 1 + 2K(2b−1)2

2bε(2K−1)+2b−2K ) is very small compared to 2r, we will

ignore it in subsequent analysis to simplify the calculation. In addition, we will round up Kabatianskii’s ASU -bound

from 2r ≥ 2b

ε
bK/bc to 2r ≥ 2bK

εb
.

13



K2b

εb
≥ 2K(2b − 1)2

2bε(2K − 1) + 2b − 2K

ε ≥ K2b+K −K22b

K22b+K −K22b − b22b+K + b2b+K+1 − b2K

Since 22b � 2K � 2K+b the above can be approximated as follows:

ε >
K2b+K

K22b+K − b22b+K
=

K

(K − b)2b
=

(
1 +

b

K − b

)
2−b

A similar calculation also leads us to conclude that Stinson’s AXU -bound is overtaken by the
AXU -variant of Kabatianskii’s bound at the threshold value of ε.12

12On the one hand, ε >
(
1 + b

K−b

)
2−b is the same as K > b

ε2b−1
+ b. On the other hand, Kabatianskii’s bound

and its AXU -variant are valid when K < 2b
ε
− b. Consequently, in order for these to make sense, we require

2b
ε
− b > b

ε2b−1
+ b, which is the same as ε > 2

2b+1−1
. This is true, since ε >

(
1 + b

K−b

)
2−b > 2

2b+1−1
, which is

equivalent to b2b+1 > K, derived from the condition of Kabatianskii’s ASU -bound.
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