
Algorithms to solve massively under-defined systems
of multivariate quadratic equations

Yasufumi Hashimoto ∗

Abstract

It is well known that the problem to solve a set of randomly chosen multivariate
quadratic equations over a finite field is NP-hard. However, when the number of
variables is much larger than the number of equations, it is not necessarily difficult
to solve equations. In fact, when n ≥ m(m + 1) (n,m are the numbers of variables
and equations respectively) and the field is of even characteristic, there is an algo-
rithm to solve equations in polynomial time (see [Kipnis et al, Eurocrypt’99] and
also [Courtois et al, PKC’02]). In the present paper, we give two algorithms to solve
quadratic equations; one is for the case of n ≥ (about) m2 − 2m3/2 + 2m and the
other is for the case of n ≥ m(m + 1)/2 + 1. The first algorithm solves equations
over any finite field in polynomial time. The second algorithm requires exponential
time operations. However, the number of required variables is much smaller than
that in the first one, and the complexity is much less than the exhaustive search.
As an application, we propose an analysis of the unbalanced oil and vinegar sig-
nature scheme (UOV) with a parameter suggested in [Kipnis et al, Eurocrypt’99].
This analysis is more effective than known attacks in [Courtois et al, PKC’02] and
[Faugére and Perret, SCC’08], and shows that the UOV with such a parameter is
not secure at all.

1 Introduction

It is well known that the problem to solve a set of randomly chosen multivariate quadratic
equations over a finite field is NP-hard. Then the cryptosystems based on multivariate
quadratic equations (Matsumoto-Imai, HEF, UOV, STS, TTM and so on, see e.g. [5],
[9] and their references) have been expected to be secure against the quantum attacks.
However, not all quadratic equations are difficult to be solved while the problem itself is
NP-hard. In fact, some of such cryptosystems were already broken and some others of
them are weaker than expected when they were proposed. Thus it is important to study

∗Partially supported by JSPS Grant-in-Aid for Young Scientists (B) no. 20740027.
Keywords. under-defined multivariate quadratic equations, the oil and vinegar signature scheme

1



2 Y. Hashimoto

which quadratic equations are solved easily and how to characterize its difficulty for the
practical use of quadratic equations in cryptology.

For this topic, there has been several works in the view of the relation between the
numbers of variables and equations. In fact, Courtois et al. ([2] and [3]) have studied
how to solve the equations when m is much larger than n (where m,n are the numbers
of equations and variables respectively). On the other hand, Kipnis et al. [6] studied the
case when n is much larger than m. In fact, they found an algorithm to solve quadratic
equations when n ≥ m(m + 1) and the characteristic of the field is even. Note that
the characteristic is odd, their algorithm requires the complexity O(2m × (polynomial)).
Although Courtois et al. [1] modified it more effectively for odd characteristic cases, its
modification requires much more variables.

In the present paper, we give two algorithms to solve quadratic equation when n
is sufficiently larger than m. The first algorithm solves equations over any finite field in
polynomial time when n ≥ (about) m2−2m3/2 +2m. The number of variables required in
this algorithm is less than that in [6], and this works in polynomial time both for even and
odd characteristic fields. The second algorithm solves equations for n ≥ m(m + 1)/2 + 1.
The complexity of the second algorithm is roughly estimated by O(2m) or O(3m). While
it is in exponential time, it is much better than the exhaustive search, especially for large
order fields, and furthermore the number of required variables is much less than that in
the first algorithm.

As an application, we use our first algorithm to attack the unbalanced oil and vinegar
signature scheme (UOV) with the parameters suggested in [6]. Our attack is more effec-
tively than several known attack by Courtois et al. [1] and Faugére-Perret [4], and the
UOV with such a parameter is not secure at all.

2 Notations

Throughout this paper, we use the following notations.

q: a power of prime.
k: a finite field of order q.
n,m ≥ 1: integers.
x = (x1, · · · , xn) ∈ kn.
x̃ = (x0, x1, · · · , xn) ∈ kn+1.
fl(x) ∈ k (1 ≤ l ≤ m): a quadratic form of x.
f̃l(x̃) ∈ k (1 ≤ l ≤ m): the homogeneous quadratic form of x̃ such that f̃l(1, x1, · · · , xn) =
fl(x1, · · · , xn).
Ui : kn → kn: an invertible linear map such that xi 7→ a1x1 + · · ·+anxn for a1, · · · , an ∈ k
(ai 6= 0) and xj 7→ xj for j 6= i.
Ũi : kn+1 → kn+1: an invertible linear map such that xi 7→ a0x0 + a1x1 + · · · + anxn for
a0, a1, · · · , an ∈ k (ai 6= 0) and xj 7→ xj for j 6= i.



Algorithms to solve under-defined quadratic equations 3

3 Kipnis-Patarin-Goubin’s algorithm for n ≥ m(m+1)

In this section, we give an algorithm proposed by Kipnis-Patarin-Goubin [6] to solve m
quadratic equations with n variables for n > m(m + 1).

First, find U2 such that the coefficients of x1x2 in f1(U2x), · · · , fm(U2x) are zero. This

requires to solve m linear equations with n variables. Put f
(2)
l (x) := fl(U2x). Next, find U3

such that the coefficients of x1x3, x2x3 in f
(1)
1 (U3x), · · · , f

(1)
m (U3x) are zero. This requires

to solve 2m linear equations with n variables. Put f
(3)
l (x) := f

(2)
l (U3x). Recursively, find

U4, · · · , Um such that the coefficients of xixj (1 ≤ i < j ≤ m) in all polynomials are zero.
Such computations require to solve at most m(m− 1) linear equations of n variables.

Put U := Um · · ·U3U2 and gl(x) := fl(Ux). Then the coefficients of xixj (1 ≤ i <
j ≤ m) in gl(x) are zero. Take xm+1, · · · , xn ∈ k such that g1(x), · · · , gm(x) are written
by linear combinations of x2

1, · · · , x2
m and constants. Finding such xm+1, · · · , xn requires

to solve m2 linear equations of n −m variables. Since gl(x)’s are linear combinations of
x2

1, · · · , x2
m and constants, the problem to solve f1(x) = 0, · · · , fm(x) = 0 is reduced that

to solve x2
1 = (const), · · · , x2

m = (const).
When q is even, all elements of k have square roots. Then the algorithm works in

polynomial time. When q is odd, almost half elements of k have square roots. Then the
algorithm requires roughly 2m × (polynomial) operations.

Note that Courtois et al. modified this algorithm for odd characteristic k under the
assumptions that 240-times operations is feasible and that n ≥ 2m/7(m + 1). See [1] for
the detail.

4 Solving quadratic equations for n ≥ (about) m2 −
2m3/2 + 2m

In this section, we propose an algorithm to solve equations for n ≥ (about) m2− 2m3/2 +
2m. For the algorithm, we first prepare the following elementary fact.

Fact 1. Let U = (uij)0≤i,j≤n be an invertible matrix over k. If U satisfies that u00 6= 0
and the coefficient of x2

0 of f̃i(Ux) is zero for 1 ≤ l ≤ n, then (u−1
00 u10, · · · , u−1

00 un0) is a
solution of f1(x) = 0, · · · , fm(x) = 0.

Then the target of this algorithm to find such a transform U . We also prepare the
following two algorithms.

Algorithm A.
Aim. Let g(x) be a quadratic form of x ∈ kn. Find an invertible linear transform U such
that the coefficients of xixj for i + j ≤ n in g(Ux) are zero.
Step 1. Find U1 such that the coefficients of x1xi (1 ≤ i ≤ n − 1) in g(U1x) are zero.
This requires to solve n− 2 homogeneous linear equations and a homogeneous quadratic
equation with n variables. Put g(1)(x) := g(U1x).
Step 2. Find U2 such that the coefficients of x2xi (1 ≤ i ≤ n − 2) in g(U2x) are zero.
This requires to solve n− 3 homogeneous linear equations and a homogeneous quadratic



4 Y. Hashimoto

equation with n− 1 variables. Put g(2)(x) := g(1)(U2x).
Recursively, find U3 such that the coefficients of x3xi (1 ≤ i ≤ n− 3) are zero, U4 such

that the coefficients of x4xi (1 ≤ i ≤ n − 4) are zero and so on. Then one can find an
invertible transform U : kn → kn such that the coefficients of xixj (1 ≤ i, j ≤ n, i+j ≤ n)
in g(Ux) are zero.

Algorithm B.
Aim. Let 1 ≤ M,L ≤ n/2 be integers and g1(x), · · · , gM(x) quadratic forms of x ∈ kn.
Find an invertible linear U : kn → kn such that the coefficients of xixj for 1 ≤ i, j ≤ L in
g1(x), · · · , gM(x) are zero when

M ≤





⌊n− L

L− 1

⌋
, n ≤ L2 − L,

L− 1, L2 − L + 1 ≤ n ≤ L2,

L, n ≥ L2 + 1.

Step 1. Find an invertible linear map V1 : kn → kn such that the coefficients of xixj (1 ≤
i, j ≤ L) in g1(V1x) are zero. This can be done by Algorithm A. Put g

(1)
l (x) := gl(V1x).

In Step2, we want to find V2 such that the coefficients of xixj (1 ≤ i, j ≤ L) in g
(1)
1 (V2x)

and g
(1)
2 (V2x) are zero, and in Step 3, we want to find V3 such that the coefficients of

xixj (1 ≤ i, j ≤ L) in g
(2)
1 (V3x), g

(2)
2 (V3x), g

(2)
3 (V3x) are zero, and so on. To consider

recursively, we assume that, until Step N − 1, we can find V ′ such that the coefficients
of xixj (1 ≤ i, j ≤ L) in g1(V

′x), · · · , gN−1(V
′x) are zero. Put g

(N−1)
l (x) := gl(V

′x). We
will describe how to find an invertible VN such that the coefficients of xixj (1 ≤ i, j ≤ L)

in g
(N−1)
1 (VNx), · · · , g

(N−1)
N (VNx) are zero in Step N .

Step N .
N – 0. Using Algorithm A, find an invertible linear map W1 : kL → kL such that the coef-

ficients of xixj (1 ≤ i, j ≤ L, i+ j ≤ L) in g
(N−1)
N (W̃1x) are zero (where W̃1 :=

(
W1

I

)
).

Note that the coefficients of xixj (1 ≤ i, j ≤ L) in g
(N−1)
1 (W̃1x), · · · , g

(N−1)
N−1 (W̃1x) are zero.

Put g
(N−1,1)
l (x) := g

(N−1)
l (W̃1x).

N – 1. Find UL such that the coefficients of xixj (1 ≤ i, j ≤ L) in g
(N−1,1)
l (ULx) for

1 ≤ l ≤ N − 1 and of x1xL in g
(N−1,1)
N (ULx) are zero. This requires to solve (L− 1)(N −

1) homogeneous linear equations of (xL+1, · · · , xn), a homogeneous linear equation of
(xL, · · · , xn) and N − 1 homogeneous quadratic equations written by

L∑
i=1

xi ×
(
linear form of (xL+1, · · · , xn)

)
+

(
quadratic form of (xL+1, · · · , xn)

)
= 0.

It is easy to see that, when N ≤ L and (L − 1)(N − 1) + 1 < n − L, such equations
can be solved by the linear operations. After finding such UL, find an invertible linear
map W2 : kL−1 → kL−1 such that the coefficients of xixj (1 ≤ i, j ≤ L, i + j ≤ L + 1)



Algorithms to solve under-defined quadratic equations 5

in g
(N−1,1)
N (W̃2ULx) are zero (where W̃2 =




1
W2

I


) by using Algorithm A. Put

g
(N−1,2)
l (x) := g

(N−1,1)
l (W̃2ULx).

N – 2. Find UL such that the coefficients of xixj (1 ≤ i, j ≤ L) in g
(N−1,2)
l (ULx) for

1 ≤ l ≤ N − 1 and of x1xL, x2xL in g
(N−1,2)
N (ULx) are zero. This requires to solve

(L− 1)(N − 1)+1 homogeneous linear equations of (xL+1, · · · , xn), a homogeneous linear
equation of (xL, · · · , xn) and N − 1 homogeneous quadratic equations written by

L∑
i=1

xi ×
(
linear form of (xL+1, · · · , xn)

)
+

(
quadratic form of (xL+1, · · · , xn)

)
= 0.

It is easy to see that, when N ≤ L and (L−1)(N−1)+2 < n−L, this can be solved by the
linear operations. After finding such UL, find an invertible linear map W3 : kL−2 → kL−2

such that the coefficients of xixj (1 ≤ i, j ≤ L, i+ j ≤ L + 2) in g
(N−1,2)
N (W̃3ULx) are zero

(where W̃3 =




I2

W3

I


). Put g

(N−1,3)
l (x) := g

(N−1,2)
l (W̃3ULx).

After that, find UL and W4 such that the coefficients of xixj for 1 ≤ i, j ≤ L, i + j ≤
L + 3 in g

(N−1,3)
N (W̃4ULx) and xixj for 1 ≤ i, j ≤ L in g

(N−1,3)
l (W̃4ULx) (1 ≤ l ≤ N − 1)

are zero. And find UL and W5 similarly. Continue such operations until we will find
an invertible linear V ′

N : kn → kn such that the coefficients of xixj (1 ≤ i, j ≤ L) in

g
(N−1)
1 (V ′

Nx), · · · , g
(N−1)
N−1 (V ′

Nx) and the coefficients of xixj (1 ≤ i, j ≤ L, (i, j) 6= (m,m))

in g
(N−1)
N (V ′

Nx) are zero. After putting g
(N−1,L−1)
l (x) := g

(N−1)
l (V ′

Nx), find UL such that

xixj (1 ≤ i, j ≤ L) in g
(N−1,L−1)
1 (V ′

Nx), · · · , g
(N−1,L−1)
N (V ′

Nx). This requires to solve (L −
1)N homogeneous linear equation of (xL+1, xn), N − 1 homogeneous quadratic equations
written by

L∑
i=1

xi ×
(
linear form of (xL+1, · · · , xn)

)
+

(
quadratic form of (xL+1, · · · , xn)

)
= 0

and a homogeneous quadratic equation written by

x2
L +

L∑
i=1

xi ×
(
linear form of (xL+1, · · · , xn)

)
+

(
quadratic form of (xL+1, · · · , xn)

)
= 0.

To solve them, we need (L− 1)N ≤ n−L+1, N ≤ L or (L− 1)N ≤ n−L, N ≤ L− 1,
namely

N ≤





⌊n− L

L− 1

⌋
, n ≤ L2 − L,

L− 1, L2 − L + 1 ≤ n ≤ L2,

L, n ≥ L2 + 1.



6 Y. Hashimoto

Thus we can get an invertible U such that the coefficients of the coefficients of xixj

(1 ≤ i, j ≤ L) in gl(Ux) for

1 ≤ l ≤





⌊n− L

L− 1

⌋
, n ≤ L2 − L,

L− 1, L2 − L + 1 ≤ n ≤ L2,

L, n ≥ L2 + 1.

It is easy to see that the complexity of this algorithm is O
(
nw+1

)
where 2 ≤ w < 3 is the

exponent of the Gaussian reduction to solve linear equations.

Based on two algorithms above, we give an algorithm to solve quadratic equations for
n ≥ (about) m2 − 2m3/2 + 2m

Algorithm 1.
Aim. Find a solution x ∈ kn of the equations f1(x) = 0, · · · , fm(x) = 0.
Step 1. Choose N1 <

√
n + 1 and put

M1 := min
(⌊n + 1

2

⌋
,
⌊n−N1 + 1

N1 − 1

⌋)

Using Algorithm B, find and invertible linear map V1 : kn+1 → kn+1 such that the
coefficients of xixj (0 ≤ i, j ≤ M1 − 1) in f̃l(V1x̃) for 1 ≤ l ≤ N1 are zero. Put f̃

(1)
l (x̃) :=

f̃l(V1x̃).
Step 2. Choose N2 <

√
M1 and put

M2 := min
(⌊M2

2

⌋
,
⌊M1 −N2 + 1

N2 − 1

⌋)
.

Using Algorithm B, find an invertible linear map V2 : kM1 → kM1 such that the coefficients
of xixj (0 ≤ i, j ≤ M2 − 1) in f̃l(Ṽ2x̃) for N1 + 1 ≤ l ≤ N1 + N2 are zero (where

Ṽ2 :=

(
V2

I

)
). Put f̃

(2)
l (x̃) := f̃

(1)
l (Ṽ2x̃).

Continuing such operations until Mt = 1, we can get an invertible linear map U =
(uij)0≤i,j≤n such that the coefficients of x2

0 in f̃l(Ux̃) for 1 ≤ l ≤ N1+N2+· · ·+Nt are zero.
From Fact 1, we see that this algorithm solves the equations when m ≤ N1 + · · ·+ Nt ∼
n1/2 + n1/4 + · · · , namely n ≥ about m2 − 2m3/2 + 2m. Note that the complexity of this
algorithm is O

(
Nw+1

0

)
.

Remark that, for a fixed number of variables, the number of equations solved by this
algorithm depends on the choice of N1, N2, · · · . Consider the case of n = 49 (n + 1 = 50)
for example. When we put (N1,M1) = (7, 7), (N2,M2) = (2, 3) and (N3,M3) = (1, 1),
we can solve 10 equations. However, when we put (N1,M1) = (3, 23), (N2,M2) = (3, 10),
(N3.M3) = (2, 5), (N4,M4) = (2, 2) and (N5, M5) = (1, 1), we can solve 11 equations. The
following is the table of the number of variables required to solve m equations.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · ·
n 1 3 4 7 9 12 18 22 28 40 48 60 77 88 100 121 140 · · ·



Algorithms to solve under-defined quadratic equations 7

5 Solving quadratic equations for n ≥ m(m + 1)/2 + 1

In this section, we propose an algorithm to solve equations for n ≥ m(m + 1)/2 + 1. The
algorithm is as follows.

Algorithm 2.
Aim. Find a solution x ∈ kn of the equations f1(x) = 0, · · · , fm(x) = 0.

Step 1. Find Ũ0 such that the coefficient of x2
0 in f̃(Ũ0x̃) is zero. This requires to solve a

homogeneous quadratic equation of n + 1 variables. Then this is valid when when n ≥ 2.
Put f̃

(1)
l (x) := f̃l(Ũ0x̃).

Step 2. Find Ũ1 such that the coefficients of x0x1 and x2
1 in f̃

(1)
1 (Ũ1x̃) and the coefficient

of x0x1 in f̃
(1)
2 (Ũ1x̃) are zero. This requires to solve two homogeneous linear equations

and a homogeneous quadratic equation of n + 1 variables. Then we need n ≥ 4. Put
f̃

(1,1)
l (x̃) := f̃

(1)
l (Ũ1x̃). If there is a solution z2 ∈ k of f̃

(1,1)
2 (1, z2, 0, · · · , 0) = 0, denote by

V2 :=




1 0
z2 1

I


 and put f̃

(2)
l (x̃) := f̃

(1,1)
l (V2x̃). If there are no such z2, take another Ũ1

and repeat until such z2 ∈ k appears. It is easy to see that the coefficients of x2
0, x0x1, x

2
1

in f̃
(2)
1 (x̃) and x2

0 in f̃
(2)
2 (x̃) are zero. Note that Step 1 and Step 2 solves 2 equations of at

least 4 variables.
Step 3. Find Ũ1 such that the coefficients of x0x1 and x2

1 in f̃
(2)
1 (Ũ1x̃), f̃

(2)
2 (Ũ1x̃) and

the coefficient of x0x1 in f̃
(2)
3 (Ũ1x̃) are zero. This requires to solve 3 homogeneous linear

equations and 2 homogeneous quadratic equations of n + 1 variables. When n ≥ 7, this
can be done by Step 1 and Step 2. Put f̃

(2,1)
l (x̃) := f̃

(2)
l (Ũ1x̃). If there is a solution z3 ∈ k

of f̃
(2,1)
3 (1, z3, 0, · · · , 0) = 0, denote by V3 :=




1 0
z3 1

I


 and put f̃

(3)
l (x̃) := f̃

(2,1)
l (V3x̃).

If there are no such z3, take another U1 and repeat until such z3 ∈ k appears. It is easy
to see that the coefficients of x2

0, x0x1, x
2
1 in f̃

(3)
1 (x̃) and f̃

(3)
2 (x̃) and x2

0 in f̃
(3)
3 (x̃) are zero.

Note that Step 1 to Step 3 solves 3 equations of at least 7 variables.
We now suppose that, until Step N − 1, we can find an invertible linear map U ′ :

kn+1 → kn+1 such that the coefficients of x2
0, x0x1, x

2
1 in f̃1(U

′x̃), · · · , f̃N−2(U
′x̃) and of x2

0

in f̃N−1(U
′x̃) are zero when n ≥ N(N − 1)/2 + 1. This also means that Step 1 to Step

N − 1 solves N − 1 quadratic equations of at least n ≥ N(N − 1)/2 + 1 variables. Put

f̃
(N−1)
l (x̃) := f̃l(U

′x̃).

Step N . Find Ũ1 such that the coefficients of x0x1 and x2
1 in f̃

(N−1)
l (Ũ1x̃) for 1 ≤ l ≤ N−1

and the coefficient of x0x1 in f̃
(N−1)
N (Ũ1x̃) are zero. This requires to solve N homogeneous

linear equations and N − 1 homogeneous quadratic equations of n + 1 variables. If n ≥
N(N +1)/2+1, this can be done by Step 1 to Step N−1. Put f̃

(N−1,1)
l (x̃) := f̃

(N−1)
l (Ũ1x̃).

If there is a solution zN ∈ k of f̃
(N−1,1)
N (1, zN , 0, · · · , 0) = 0, denote by VN :=




1 0
zN 1

I




and put f̃
(N)
l (x̃) := f̃

(N−1,1)
l (VN x̃). If there are no such zN , take another U1 and repeat



8 Y. Hashimoto

until such zN ∈ k appears. It is easy to see that the coefficients of x2
0, x0x1, x

2
1 in f̃

(N)
l (x̃)

for 1 ≤ l ≤ N − 1 and x2
0 in f̃

(N)
N (x̃) are zero. Note Step 1 to Step N solves N equations

of at least N(N + 1)/2 + 1 variables.
Thus we see that, if n ≥ m(m + 1)/2 + 1, we can solve quadratic equations.
We now estimate the complexity of this algorithm. Let cN be the complexity in the

N -th step. For simplicity, assume that one computes U1 once if q is even and twice if q is
odd in all steps, because the probability that univariate quadratic equation has a solution
is almost 1 if q is even and 1/2 if q is odd. Since N -th step requires to solve N − 1 linear
equations and N − 1 quadratic equations, we see that

cN =

{
c1 + c2 + · · ·+ cN−1 + (polyn), (2 | q),
2(c1 + c2 + · · ·+ cN−1) + (polyn), (2 - q).

Thus we see that cN = O(2N) when q is even and cN = O(3N) when q is odd. Since the
complexity of this algorithm is c1 + · · ·+ cm, we can roughly estimate the complexity by
O(2m) when q is even and O(3m) when q is odd.

Remark that, when we use Algorithm 1 instead of Step 1 to Step 12 in Algorithm 2,
we can solve equations for m ≥ 12 and n ≥ m(m + 1)/2 − 18. While its complexity is
about O(2m) or O(3m), its practical computational task will be much less than that of
the original Algorithm 2.

6 Analysis of UOV

The unbalanced oil and vinegar signature scheme (UOV, see [8] and [6]) is one of signature
schemes based on multivariate quadratic equations. According to [7] and [6], UOV can
be broken if n ≤ 2m or qn−2m is small. Thus, for UOV, n should be sufficiently larger
than 2m. The authors of [6] suggested UOV with q = 24,m = 16 and n = 48 or 64.

To break UOV with such parameters, we use the algorithms proposed in Section 4.
Assume that the complexity of Algorithm B is n3.5. The attack is as follows.

The case of n = 64.
Step 1. Use Algorithm B to find V1 : k65 → k65 such that the coefficients of xixj (0 ≤
i, j ≤ 30) in f̃1(V1x̃), f̃2(V1x̃), f̃3(V1x̃) are zero. The complexity in this step is 643.5. Put

x(1) := (x0, · · · , x30) and f
(1)
l (x(1)) := f̃l

(
V1(x0, · · · , x30, 0, · · · , 0)

)
. Since f

(1)
1 (x(1)) = 0,

f
(1)
2 (x(1)) = 0 and f

(1)
3 (x(1)) = 0 for any x(1), we see that the problem to solve equations

with (n,m) = (64, 16) is reduced to the problem to find x(1) = (1, x1, · · · , x30) satisfying

f
(1)
4 (x(1)) = 0, · · · , f

(1)
16 (x(1)) = 0.

Step 2. Use Algorithm B to find V2 : k31 → k31 such that the coefficients of xixj

(0 ≤ i, j ≤ 13) in f
(1)
4 (V2x

(1)), f
(1)
5 (V2x

(1)), f
(1)
6 (V2x

(1)) are zero. The complexity in this

step is 313.5. Put x(2) := (x0, · · · , x13) and f
(2)
l (x(2)) := f

(1)
l

(
V2(x0, · · · , x13, 0, · · · , 0)

)
.

Since f
(2)
4 (x(2)) = 0, f

(2)
5 (x(2)) = 0 and f

(2)
6 (x(2)) = 0 for any x(2), we see that the

problem to solve equations with (n,m) = (30, 13) is reduced to the problem to find

x(2) = (1, x1, · · · , x14) satisfying f
(2)
7 (x(2)) = 0, · · · , f

(2)
16 (x(2)) = 0.



Algorithms to solve under-defined quadratic equations 9

Step 3. Use Algorithm B to find V3 : k14 → k14 such that the coefficients of xixj

(0 ≤ i, j ≤ 4) in f
(2)
7 (V3x

(2)), f
(2)
8 (V3x

(2)), f
(2)
9 (V3x

(2)) are zero. The complexity in this

step is 143.5. Put x(3) := (x0, · · · , x4) and f
(3)
l (x(3)) := f

(2)
l

(
V3(x0, · · · , x4, 0, · · · , 0)

)
.

Since f
(3)
7 (x(3)) = 0, f

(3)
8 (x(3)) = 0 and f

(3)
9 (x(3)) = 0 for any x(3), we see that the

problem to solve equations with (n,m) = (13, 10) is reduced to the problem to find

x(3) = (1, x1, · · · , x4) satisfying f
(3)
10 (x(3)) = 0, · · · , f

(3)
16 (x(3)) = 0 if there exists a solution.

Step 4. Use Algorithm 1 to find x(3) = (1, x1, · · · , x4) such that f
(3)
10 (x(3)) = 0, f

(3)
11 (x(3)) =

0 and f
(3)
12 (x(3)) = 0. The complexity is about 53.5 = 210.5. If f

(3)
13 (x(3)) = 0 is not satisfied,

try Algorithm 1 again and repeat it until the solution x(3) of f
(3)
10 (x(3)) = 0, f

(3)
11 (x(3)) = 0

and f
(3)
12 (x(3)) = 0 will be also a solution of f

(3)
13 (x(3)) = 0. Since the probability that y

satisfies such a condition is roughly q−1, the complexity in this step is about 24 × 53.5.
Note that Step 1 to 4 find a solution x ∈ kn of f1(x) = 0, · · · , f13(x) = 0. If f14(x) = 0,

f15(x) = 0, f16(x) = 0 are not satisfied, try Step 3 and Step 4 again and repeat it until
the solution of f1(x) = 0, · · · , f13(x) = 0 will be a solution of f14(x) = 0, f15(x) = 0 and
f16(x) = 0. Since the probability that x satisfies such a condition is roughly q−3, we see
that the complexity of this attack is about

643.5 + 313.5 + 212 × (143.5 + 24 × 53.5) ∼ 225.9.

The case of n = 48.
Step 1. Use Algorithm B to find V1 : k49 → k49 such that the coefficients of xixj (0 ≤
i, j ≤ 22) in f̃1(V1x̃), f̃2(V1x̃), f̃3(V1x̃) are zero. The complexity in this step is 493.5. Put

x(1) := (x0, · · · , x22) and f
(1)
l (x(1)) := f̃l

(
V1(x0, · · · , x22, 0, · · · , 0)

)
. Since f

(1)
1 (x(1)) = 0,

f
(1)
2 (x(1)) = 0 and f

(1)
3 (x(1)) = 0 for any x(1), we see that the problem to solve equations

with (n,m) = (48, 16) is reduced to the problem to find x(1) = (1, x1, · · · , x22) satisfying

f
(1)
4 (x(1)) = 0, · · · , f

(1)
16 (x(1)) = 0.

Step 2. Use Algorithm B to find V2 : k23 → k23 such that the coefficients of xixj

(0 ≤ i, j ≤ 9) in f
(1)
4 (V2x

(1)), f
(1)
5 (V2x

(1)), f
(1)
6 (V2x

(1)) are zero. The complexity in this

step is 233.5. Put x(2) := (x0, · · · , x9) and f
(2)
l (x(2)) := f

(1)
l

(
V2(x0, · · · , x9, 0, · · · , 0)

)
.

Since f
(2)
4 (x(2)) = 0, f

(2)
5 (x(2)) = 0 and f

(2)
6 (x(2)) = 0 for any x(2), we see that the

problem to solve equations with (n,m) = (22, 13) is reduced to the problem to find

x(2) = (1, x1, · · · , x9) satisfying f
(2)
7 (x(2)) = 0, · · · , f

(2)
16 (x(2)) = 0 if there exists a solution.

Step 3. Use Algorithm B to find V3 : k10 → k10 such that the coefficients of xixj

(0 ≤ i, j ≤ 4) in f
(2)
7 (V3x

(2)), f
(2)
8 (V3x

(2)) are zero. The complexity in this step is 103.5. Put

x(3) := (x0, · · · , x4) and f
(3)
l (x(3)) := f

(2)
l

(
V3(x0, · · · , x4, 0, · · · , 0)

)
. Since f

(3)
7 (x(3)) = 0

and f
(3)
8 (x(3)) = 0 for any x(3), we see that the problem to solve equations with (n,m) =

(9, 10) is reduced to the problem to find x(3) = (1, x1, · · · , x4) satisfying f
(3)
9 (x(3)) =

0, · · · , f
(3)
16 (x(3)) = 0 if there exists a solution.

Step 4. Use Algorithm 1 to find x(3) = (1, x1, · · · , x4) such that f
(3)
9 (x(3)) = 0, f

(3)
10 (x(3)) =

0 and f
(3)
11 (x(3)) = 0. The complexity is about 53.5 = 210.5. If f

(3)
12 (x(3)) = 0 is not satisfied,

try Algorithm 1 again and repeat it until the solution x(3) of f
(3)
9 (x(3)) = 0, f

(3)
10 (x(3)) = 0



10 Y. Hashimoto

and f
(3)
11 (x(3)) = 0 will be also a solution of f

(3)
12 (x(3)) = 0. Since the probability that y

satisfies such a condition is roughly q−1, the complexity in this step is about 24 × 53.5.
Note that Step 1 to 4 find a solution x ∈ kn of f1(x) = 0, · · · , f12(x) = 0. If f13(x) = 0,

f14(x) = 0, f15(x) = 0 are not satisfied, try Step 3 and Step 4 again and repeat it until
the solution of f1(x) = 0, · · · , f12(x) = 0 will be a solution of f13(x) = 0, f14(x) = 0 and
f15(x) = 0. Note that the probability that x satisfies such a condition is roughly q−3.

If such x does not satisfies f16(x) = 0, try choose another parameter in Step 2, try
Step 3 and 4 again and repeat it until the solution of f1(x) = 0, · · · , f15(x) = 0 will be a
solution of f16(x) = 0. Since the probability that x satisfies such a condition is roughly
q−1, we see that the complexity of this attack is about

493.5 + 24 × (233.5 + 212 × (103.5 + 24 × 53.5) ∼ 228.9.

We now summarize the complexities of our attack proposed in this section and other
known attacks in the table below. From this table, we see that our attack is much better
than the others and the UOV with such parameters are not secure at all.

(q, m, n) (24, 16, 48) (24, 16, 64)
exhaustive 264 264

Courtois et al. [1] 246 242

Faugére-Perret [4] 240.5 240.5

Our attack 228.9 225.9

7 Conclusion

In this paper, we propose two algorithms to solve massively under-defined systems of
quadratic equations and give an analysis of UOV with the parameter suggested in [6]
as an application. It is obvious that the cryptosystems based on quadratic equations
with n À m is not good for the efficiency. Also the work in [6] and our work show that
such cryptosystems are not good also for the security. Of course, in most multivariate
public key cryptosystems, n is not much larger than m (see [5], [9] and their references).
However, our algorithm might be able to be improved in the future, or might help some
experimental attacks (e.g. the Gröbner basis attacks and the XL algorithms) to be more
effectively. Thus we claim that it is important to establish better algorithms and to study
the lower bound of n such that a set of m equations is solved effectively.

References

[1] N. Courtois, L. Goubin, W. Meier and J. Tacier, Solving underdefined systems of
multivariate quadratic equations, PKC’02, LNCS 2274, pp.211–227.

[2] N. Courtois, A. Klimov, J. Patarin and A. Shamir, Efficient algorithms for solving
overdefined systems of multivariate polynomial equations, Eurocrypt’00, LNCS 1807,
pp.392–407.



Algorithms to solve under-defined quadratic equations 11

[3] N. Courtois and J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations, Asiacrypt’02, LNCS 2501, pp. 267–287.

[4] J. Faugére and L. Perret, On the security of UOV, Proceedings of SCC’08, pp.103–109.

[5] J. Ding, J. Gower and D. Schmidt, Multivariate public key cryptosystems, Advances
in Information Security, Springer, 2006.

[6] A. Kipnis, J. Patarin and L. Goubin, Unbalanced Oil and Vinegar Signature Schemes,
Eurocrypt’99, LNCS 1592 (1999), pp. 206–222, extended in citeseer/231623.html,
2003-06-11.

[7] A. Kipnis and A. Shamir, Cryptanalysis of the Oil and Vinegar signature scheme,
Crypto’98, LNCS 1462 (1998), pp. 257–267.

[8] J. Patarin, The Oil and Vinegar algorithm for signatures, Dagstuhl Workshop on
Cryptography, 1997.

[9] S. Tsujii, T. Kaneko, K. Tadaki and M. Gotaishi, Design Policy of MPKC based on
Piece in Hand Concept (in Japanese), IEICE Technical Report 108 (2008), pp.15–22.

HASHIMOTO, Yasufumi
Institute of Systems, Information Technologies and Nanotechnologies,
7F 2-1-22, Momochihama, Fukuoka 814-0001, JAPAN
e-mail:hasimoto@isit.or.jp


