
Algorithms to solve massively under-defined systems of
multivariate quadratic equations

Yasufumi Hashimoto ∗

Abstract

It is well known that the problem to solve a set of randomly chosen multivariate
quadratic equations over a finite field is NP-hard. However, when the number of
variables is much larger than the number of equations, it is not necessarily difficult
to solve equations. In fact, when n ≥ m(m+1) (n,m are the numbers of variables and
equations respectively) and the field is of even characteristic, there is an algorithm
to solve equations in polynomial time (see [Kipnis et al, Eurocrypt’99] and also
[Courtois et al, PKC’02]). In the present paper, we give two algorithms to solve
quadratic equations; one is for the case of n ≥ (about) m2 − 2m3/2 + 2m and the
other is for the case of n ≥ m(m+1)/2+1. The first algorithm solves equations over
any finite field in polynomial time. The second algorithm requires exponential time
operations. However, the number of required variables is much smaller than that in
the first one, and the complexity is much less than the exhaustive search.

1 Introduction

It is well known that the problem to solve a set of randomly chosen multivariate quadratic
equations over a finite field is NP-hard. Then the cryptosystems based on multivariate
quadratic equations (Matsumoto-Imai, HEF, UOV, STS, TTM and so on, see e.g. [5],
[7] and their references) have been expected to be secure against the quantum attacks.
However, not all quadratic equations are difficult to be solved while the problem itself is
NP-hard. In fact, some of such cryptosystems were already broken and some others of
them are weaker than expected when they were proposed. Thus it is important to study
which quadratic equations are solved easily and how to characterize its difficulty for the
practical use of quadratic equations in cryptology.

For this topic, there has been several works in the view of the relation between the
numbers of variables and equations. In fact, Courtois et al. ([2] and [3]) have studied
how to solve the equations when m is much larger than n (where m,n are the numbers

∗Partially supported by JSPS Grant-in-Aid for Young Scientists (B) no. 20740027.
Keywords. under-defined multivariate quadratic equations

1



2 Y. Hashimoto

of equations and variables respectively). On the other hand, Kipnis et al. [6] studied the
case when n is much larger than m. In fact, they found an algorithm to solve quadratic
equations when n ≥ m(m + 1) and the characteristic of the field is even. Note that
the characteristic is odd, their algorithm requires the complexity O(2m × (polynomial)).
Although Courtois et al. [1] modified it more effectively for odd characteristic cases, its
modification requires much more variables.

In the present paper, we give two algorithms to solve quadratic equation when n is
sufficiently larger than m. The first algorithm solves equations over any finite field in
polynomial time when n ≥ (about) m2− 2m3/2 +2m. The number of variables required in
this algorithm is less than that in [6], and this works in polynomial time both for even and
odd characteristic fields. The second algorithm solves equations for n ≥ m(m + 1)/2 + 1.
The complexity of the second algorithm is roughly estimated by O(2m) or O(3m). While
it is in exponential time, it is much better than the exhaustive search, especially for large
order fields, and furthermore the number of required variables is much less than that in
the first algorithm.

2 Preparations

2.1 Notations

Throughout this paper, we use the following notations.

q: a power of prime.
k: a finite field of order q.
n,m ≥ 1: integers.
x = (x1, · · · , xn)t ∈ kn.
x̃ = (x0, x1, · · · , xn)t ∈ kn+1.
fl(x) ∈ k (1 ≤ l ≤ m): a quadratic form of x.
f̃l(x̃) ∈ k (1 ≤ l ≤ m): the homogeneous quadratic form of x̃ such that f̃l(1, x1, · · · , xn) =
fl(x1, · · · , xn).
ei := (0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0) ∈ kn (1 ≤ i ≤ n).

ẽi := (0, · · · , 0︸ ︷︷ ︸
i

, 1, 0, · · · , 0) ∈ kn+1 (0 ≤ i ≤ n).

ai = (a1i, · · · , ani)
t ∈ kn (1 ≤ i ≤ n): a vector with aii 6= 0.

ãi = (ã0i, · · · , ãni)
t ∈ kn+1 (0 ≤ i ≤ n): a vector with ãii 6= 0.

Ui := (e1, · · · , ei−1, ai, ei+1, · · · , en): an invertible linear map such that xi 7→ a1ix1 + · · · +
anixn and xj 7→ xj for j 6= i.
Ũi := (ẽ0, · · · , ẽi−1, ãi, ẽi+1, · · · , ẽn): an invertible linear map such that x̃i 7→ ã0ix̃0+ ã1ix̃1+
· · ·+ ãnix̃n and x̃j 7→ x̃j for j 6= i.
Ω(n): the complexity of the Gaussian elimination to solve n linear equations.



Algorithms to solve under-defined quadratic equations 3

2.2 Elementary facts

For convenience, we prepare the following elementary facts in the undergraduate linear
algebra.

Fact 1. Let g(x) :=
∑

1≤i,j≤n gijxixj be a homogeneous quadratic form of x = (x1, · · · , xn)t

over k (gij ∈ k) and G = (Gij)1≤i,j≤n an n× n matrix over k (Gij ∈ k) with gii = Gii and
gij = Gij + Gji for i 6= j. Then g(x) = xtGx.

Fact 2. Let G,U be n× n matrices and u1, · · · , un ∈ kn the column vectors in U , namely
U = (u1, · · · , un). Then the ij-entry of U tGU is ut

iGuj.

Fact 1 and 2 yield the following fact.

Fact 3. Let g(x), G be as in Fact 1 and Ui as in Section 2.1. Denote by g(Ulx) =∑
1≤i,j≤x g

(l)
ij xixj. Then we have g

(l)
ll = at

lGal = g(ul), g
(l)
il = et

iGal + at
lGei (i 6= l) and

g
(l)
ij = gij (i, j 6= l).

3 Kipnis-Patarin-Goubin’s algorithm for n ≥ m(m + 1)

In this section, we give an algorithm proposed by Kipnis-Patarin-Goubin [6] to solve m
quadratic equations with n variables for n > m(m + 1).
Step 1. Find U2 such that the coefficients of x1x2 in f1(U2x), · · · , fm(U2x) are zero.
According to Fact 3, we see that this requires to solve m homogeneous linear equations
with n variables.
Step 2. Put f

(2)
l (x) := fl(U2x). Find U3 such that the coefficients of x1x3, x2x3 in

f
(2)
1 (U3x), · · · , f

(2)
m (U3x) are zero. Similarly, this requires to solve 2m homogeneous linear

equations with n variables.
Step 3. Put f

(3)
l (x) := f

(2)
l (U3x). Find U4 such that the coefficients of x1x4, x2x4, x3x4 in

f
(3)
1 (U4x), · · · , f

(3)
m (U4x) are zero. This requires to solve 3m homogeneous linear equations

with n variables.
Continue similar computations.

Step m−1. f
(m−1)
l (x) := f

(m−2)
l (Um−1x). Find Um such that the coefficients of x1xm, x2xm,

· · · , xm−1xm in f
(m)
1 (Umx), · · · , f

(m)
m (Umx) are zero. This requires to solve m(m − 1) ho-

mogeneous linear equations with n variables.
Note that, until Step m − 1, we have to solve at most m(m − 1) homogeneous linear

equations of n variables. Then we need n > m(m− 1) at this time.
Step m. Put gl(x) := fl(U2U3 · · ·Umx). The coefficients of xixj (1 ≤ i < j ≤ m) in
gl(x) are zero. Substitute values into xm+1, · · · , xn such that g1(x), g2(x), · · · , gm(x) are
linear combinations of x2

1, · · · , x2
m and constants, without the monomials x1, · · · , xm. To

find such xm+1, · · · , xn, we have to solve m2 linear equations of n−m variables. Then we
need n−m > m2, namely n ≥ m(m + 1).
Step m + 1. Since gl(x)’s are linear combinations of x2

1, · · · , x2
m and constants, reduce the

problem solving gl(x) = 0 for 1 ≤ l ≤ m to the problem solving x2
1 = (const), · · · , x2

m =
(const) by linear operations.



4 Y. Hashimoto

After finding the square roots of them, we can find a solution of given equations. When
q is even, this algorithm will give a solution in polynomial time since any element of k
has a square root. On the other hand when q is odd, this will require 2m × (polynomial)
operations in average because almost half elements of k do not have square roots.

Note that Courtois et al. modified this algorithm for odd characteristic k. The complex-
ity of the modified version is about 240times(polynomial), however the number of required
variables is n ≥ 2m/7(m + 1). See [1] for the detail of its modification.

4 Solving quadratic equations for n ≥ (about) m2 −
2m3/2 + 2m

In this section, we propose an algorithm to solve equations for n ≥ (about) m2−2m3/2+2m.
For the algorithm, we first prepare the following elementary fact.

Fact 4. Let U = (uij)0≤i,j≤n be an invertible matrix over k. If U satisfies that u00 6= 0
and the coefficient of x2

0 of f̃l(Ux̃) are zero for 1 ≤ l ≤ n, then (u−1
00 u10, · · · , u−1

00 un0) is a
solution of f1(x) = 0, · · · , fm(x) = 0.

This follows immediately from Fact 1 and 2. Then, instead solving the equation, we
will give an algorithm to find such U in this section.

Before it, we prepare the following two algorithms.

Algorithm A.
Aim. Let g(x) be a quadratic form x = (x1, · · · , xn)t ∈ kn. Find an invertible linear
transformU : kn → kn such that the coefficients of xixj (i + j ≤ n) in g(Ux) are zero.
Step 1. Find U1 such that the coefficients of x2

1 is zero. Due to Fact 3, we see that this
requires to solve a quadratic homogeneous equation of (a11, · · · , an1).
Step 2. Put g(1)(x) := g(U1x). Find U2 such that the coefficients of x1x2, x2

2 in g(1)(U2x)
are zero. Similarly, this requires to solve a homogeneous linear equation of (a22, · · · , an2)
and a homogeneous quadratic equation of (a12, · · · , an2).
Step 3. Put g(3)(x) := g(2)(U2x). Find U3 such that the coefficients of x1x3, x2x3, x2

3 in
g(2)(U3x) are zero. Similarly, this requires to solve two homogeneous linear equation of
(a33, · · · , an3) and a homogeneous quadratic equation of (a13, · · · , an3).

Continue such operations until the coefficient o xixj for 1 ≤ i, j ≤ bm/2c are reduced to
be zero. Note that, to do so, we need to solve at most bm/2c homogeneous linear equations
of m + 1− bm/2c variables and a homogeneous quadratic equation. Then we see that the
complexity of this algorithm until Step bm/2c is less than bm/2cΩ(bm/2c).

Put V : kn → kn be the linear transform such that the coefficients of xixj (i, j ≤ bm/2c)
in g(V x) are zero, and denote by g(bm/2c)(x) := g(V x).
Step bm/2c+1. Find Ubm/2c+1 such that the coefficients of x1xbm/2c+1, · · · , xbm/2c−1xbm/2c+1

in g(bm/2c)(Ubm/2c+1x) are zero. This requires to solve bm/2c− 1 homogeneous linear equa-
tions of (abm/2c+1,bm/2c+1, · · · , am,bm/2c+1).
Step bm/2c+ 2. Put g(bm/2c+1)(x) := g(bm/2c)(x)(Ubm/2c+1x). Find Ubm/2c+2 such that the
coefficients of x1xbm/2c+2, · · · , xbm/2c−2xbm/2c+2 in g(bm/2c+1)(Ubm/2c+2x) are zero. This re-



Algorithms to solve under-defined quadratic equations 5

quires to solve bm/2c−2 homogeneous linear equations of (abm/2c+2,bm/2c+2, · · · , am,bm/2c+2).
Continuing similar operations, we can find a linear transform U as in Aim. After Step

bm/2c + 1, we need to solve at most bm/2c − 1 linear equations. Then the complexity
after Step bm/2c + 1 is less than bm/2cΩ(bm/2c). Therefore the total complexity of this
algorithm is less than mΩ(bm/2c).
Algorithm B.
Aim. Let n, L,M ≥ 1 be integers with L ≤ n/2,

M ≤





⌊n− L

L− 1

⌋
, n ≤ L2 − L,

L− 1, L2 − L + 1 ≤ n ≤ L2,

L, n ≥ L2 + 1,

and g1(x), · · · , gM(x) quadratic forms of x = (x1, · · · , xn)t. Find an invertible linear trans-
form U : kn → kn such that the coefficients of xixj (1 ≤ i, j ≤ L) in g1(x), · · · , gM(x) are
zero.
Step1. Find an invertible linear transform V1 : kn → kn such that the coefficients of xixj

(1 ≤ i, j ≤ L) in g1(V1x) are zero. This can be done by Algorithm A. Put g
(1)
l := gl(V1x).

In Step2, we want to find V2 such that the coefficients of xixj (1 ≤ i, j ≤ L) in

g
(1)
1 (V2x) and g

(1)
2 (V2x) are zero, we want to find V3 in Step 3 such that the coefficients

of xixj (1 ≤ i, j ≤ L) in g
(2)
1 (V3x), g

(2)
2 (V3x), g

(2)
3 (V3x) are zero and so on. To consider

recursively, we assume that we can find V ′ such that the coefficients of xixj (1 ≤ i, j ≤ L) in
g1(V

′x), · · · , gN−1(V
′x) are zero until Step N−1. We will describe how to find an invertible

VN such that the coefficients of xixj (1 ≤ i, j ≤ L) in g
(N−1)
1 (VNx), · · · , g

(N−1)
N (VNx) are

zero in Step N .

Step N .
Substep N – 1. Using Algorithm A, find an invertible linear map W1 : kL → kL such
that the coefficients of xixj (1 ≤ i, j ≤ L, i+ j ≤ L) in g

(N−1)
N (W̃1x) are zero, where W̃1 :=(

W1

I

)
. Note that the coefficients of xixj (1 ≤ i, j ≤ L) in g

(N−1)
1 (W̃1x), · · · , g

(N−1)
N−1 (W̃1x)

are zero. and the complexity is less than LΩ(bL/2c). Put h
(N−1)
l (x) := g

(N−1)
l (W̃1x). Next,

find UL such that the coefficients of xixj (1 ≤ i, j ≤ L) in h
(N−1,1)
l (ULx) for 1 ≤ l ≤ N − 1

and of x1xL in h
(N−1,1)
N (ULx) are zero. Due to Fact 3, we see that this requires to solve

(a) (L− 1)(N − 1) homogeneous linear equations of (aL+1,L, · · · , an,L),
(b) 1 homogeneous linear equation of (aL,L, · · · , an,L),
(c) N − 1 homogeneous quadratic equations of (a1,L, · · · , an,L) in the forms

L∑
i=1

ai,L ×
(
linear form of (aL+1,L, · · · , an,L)

)
+

(
quadratic form of (aL+1,L, · · · , an,L

)
= 0.

In order to solve the equations (a),(b) and (c), first solve (a) and find aL+1,L, · · · , an,L. Then
aL,L is automatically determined by (b). Substituting such values to (c), the quadratic



6 Y. Hashimoto

equations (c) become N − 1 linear equation of (a1,L, · · · , aL−1,L). Thus we can claim that
when n − L > (L − 1)(N − 1) and L ≥ N , this substep works with the complexity less

than LΩ(bL/2c) + Ω((L− 1)(N − 1)) + Ω(L− 1). Put g
(N−1,1)
l (x) := h

(N−1)
l (ULx).

Substep N–2. Using Algorithm A, find an invertible linear map W2 : kL−1 → kL−1 such
that the coefficients of xixj (1 ≤ i, j ≤ L, i + j ≤ L + 1) in g

(N−1,1)
N (W̃2x) are zero, where

W̃2 =




1
W2

I


. This requires the complexity less than (L − 1)Ω(b(L − 1)/2c). Put

h
(N−1,1)
l (x) := g

(N−1,1)
l (W̃2x). Next, find UL such that the coefficients of xixj (1 ≤ i, j ≤ L)

in g
(N−1,2)
l (ULx) for 1 ≤ l ≤ N−1 and of x1xL, x2xL in g

(N−1,2)
N (ULx) are zero. Finding such

UL requires to solve (a) (L−1)(N−1)+1 homogeneous linear equations of (aL+1,L, · · · , an,L),
(b) 1 homogeneous linear equation of (aL,L, · · · , an,L),
(c) N − 1 homogeneous quadratic equations of (a1,L, · · · , an,L) in the forms

L∑
i=1

ai,L ×
(
linear form of (aL+1,L, · · · , an,L)

)
+

(
quadratic form of (aL+1,L, · · · , an,L

)
= 0.

Similar to the previous substep, one can solve (a), (b) and (c) when n−L > (L−1)(N−1)+1
and L ≥ N and the complexity in this substep is less than (L− 1)Ω(b(L− 1)/2c)+Ω((L−
1)(N − 1) + 1) + Ω(L− 1). Put g

(N−1,2)
l (x) := h

(N−1,1)
l (ULx).

Similarly in Substep N–3, one reduces the coefficients of xixj with i+j = n+2, i, j ≤ L

and the coefficient of x3xL in g
(N−1,2)
l (x) to be zero. Continue such operations and suppose

that we can find a linear transform V until Substep N – L− 1 such that the coefficients of
xixj (i, j ≤ L) in g

(N−1)
1 (V x), · · · , g

(N−1)
N−1 (V x) and the coefficients of xixj (i, j ≤ L) except

x2
L in g

(N−1)
N (V x) are zero Put g

(N−1,L−1)
l (x) := g

(N−1)
l (V x).

Substep N – L. Find UL such that the coefficients of xixj (i, j ≤ L) in g
(N−1,L−1)
1 (ULx),

· · · , g
(N−1,L−1)
N (ULx) are zero. According to Fact 3, we see that this requires to solve

(a) (L− 1)N homogeneous linear equations of (aL+1,L, · · · , an,L),
(b) N − 1 homogeneous quadratic equations of (a1,L, · · · , an,L) in the forms

L∑
i=1

ai,L ×
(
linear form of (aL+1,L, · · · , an,L)

)
+

(
quadratic form of (aL+1,L, · · · , an,L

)
= 0,

(c) a homogeneous quadratic equation of (a1,L, · · · , an,L) in the form

x2
L +

L∑
i=1

ai,L ×
(
linear form of (aL+1,L, · · · , an,L)

)

+
(
quadratic form of (aL+1,L, · · · , an,L)

)
= 0,

When n − L > (L − 1)N , we can find a non-trivial solution of (a). Putting it into
(b), we can reduce the quadratic equations (b) to linear equations. If N ≤ L, express
a1,L, · · · , aL−1,L by linear combinations of aL,L and constants. Substitute them into (c)



Algorithms to solve under-defined quadratic equations 7

and solve the quadratic equation of aL,L. If it does not have solutions, change the choice
of (aL+1,L, · · · , an,L) or go back to the previous substep and try again until the non-trivial
aL,L is found. Then a solution of (a), (b) and (c) will be found. On the other hand, when
n − L = (L − 1)N , the solution of (a) is trivial, namely aL+1,L = · · · = an,L = 0. This
means that (b) and (c) become homogeneous equations of (a1,L, · · · , aL,L). Then N < L
is necessary. Thus, in this step, we need the condition that N < (n− L)/(L− 1), N ≤ L
or N = (n− L)/(L− 1), N < L, namely

N ≤





⌊n− L

L− 1

⌋
, n ≤ L2 − L,

L− 1, L2 − L + 1 ≤ n ≤ L2,

L, n ≥ L2 + 1.

Note that the complexity in this substep is Ω((L−1)N)+Ω(N−1), and the total complexity
in Step N is less than L(LΩ(bL/2c)+Ω((L−1)N)+Ω(N−1)). Summing this from N = 1
to M , we see that the complexity of Algorithm B is less than

ML (LΩ(bL/2c) + Ω((L− 1)M) + Ω(M − 1))

<n (LΩ(bL/2c) + Ω(n−M) + Ω(M − 1)) ∼ O (nΩ(n)) .

Since Ω(n) ¿ n3, we can claim that this algorithm works in polynomial time.

Based on Algorithm B, we give an algorithm to solve quadratic equations for n ≥
(about) m2 − 2m3/2 + 2m

Algorithm 1.
Aim. Find a solution x ∈ kn of the equations f1(x) = 0, · · · , fm(x) = 0.
Step 1. Put L0 := n + 1 and choose M1 <

√
L0. Put

L1 := min

(⌊
L0

2

⌋
,

⌊
n + M1

M1 + 1

⌋)
.

Using Algorithm B, find an invertible linear map V1 : kL0 → kL0 such that the coefficients
of xixj (0 ≤ i, j ≤ L1 − 1) in f̃1(V1x̃), · · · , f̃M1(V1x̃) are zero. Put f̃

(1)
l (x̃) := f̃l(V1x̃).

Step 2. Choose M2 <
√

L1. Put

L2 := min

(⌊
L1

2

⌋
,

⌊
n + M2

M2 + 1

⌋)
.

Using Algorithm B, find an invertible linear map V2 : kL1 → kL1 such that the coefficients

of xixj (0 ≤ i, j ≤ L2−1) in f̃
(1)
M1+1(Ṽ2x̃), · · · , f̃M1+M2(Ṽ2x̃) are zero, where Ṽ2 :=

(
V2

I

)
.

Put f̃
(2)
l (x̃) := f̃

(1)
l (Ṽ2x̃).

Continuing such operations until Lt = 1, we can get an invertible linear map U =
(uij)0≤i,j≤n such that the coefficients of x2

0 in f̃l(Ux̃) for 1 ≤ l ≤ M1+M2+· · ·+Mt are zero.
From Fact 4, we see that this algorithm solves the equations when m ≤ M1 + · · · + Mt ∼



8 Y. Hashimoto

n1/2 + n1/4 + · · · , namely n ≥ about m2 − 2m3/2 + 2m. The complexity of this algorithm
is less than O(n4) + O(n2) + O(n) + · · · ∼ O(n4). Then Algorithm 1 works in polynomial
time.

The following is the table of the number of variables required to solve m equations.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · ·
n 1 3 4 9 12 16 20 25 36 49 64 81 90 100 121 144 156 · · ·

5 Solving quadratic equations for n ≥ m(m + 1)/2 + 1

In this section, we propose an algorithm to solve equations for n ≥ m(m + 1)/2 + 1. The
algorithm is as follows.

Algorithm 2.
Aim. Find a solution x ∈ kn of the equations f1(x) = 0, · · · , fm(x) = 0.

Step 1. Find Ũ0 such that the coefficient of x2
0 in f̃1(Ũ0x̃) is zero. This requires to solve

a homogeneous quadratic equation of n + 1 variables. Then this can be done when n ≥ 2.
Put f̃

(1)
l (x) := f̃l(Ũ0x̃).

Step 2. Find Ũ1 such that the coefficients of x0x1 and x2
1 in f̃

(1)
1 (Ũ1x̃) and the coefficient

of x0x1 in f̃
(1)
2 (Ũ1x̃) are zero. This requires to solve two homogeneous linear equations and

a homogeneous quadratic equation of n + 1 variables. Then we need n ≥ 2 + 2 = 4. Put
f̃

(1,1)
l (x̃) := f̃

(1)
l (Ũ1x̃). If there is a solution z2 ∈ k of f̃

(1,1)
2 (1, z2, 0, · · · , 0) = 0, denote by

V2 :=




1 0
z2 1

I


 and put f̃

(2)
l (x̃) := f̃

(1,1)
l (V2x̃). If there are no such z2, take another Ũ1

and repeat until such z2 ∈ k appears. It is easy to see that the coefficients of x2
0, x0x1, x

2
1

in f̃
(2)
1 (x̃) and x2

0 in f̃
(2)
2 (x̃) are zero. Note that Step 1 and 2 solves 2 equations of at least

4 variables.
Step 3. Find Ũ1 such that the coefficients of x0x1 and x2

1 in f̃
(2)
1 (Ũ1x̃), f̃

(2)
2 (Ũ1x̃) and

the coefficient of x0x1 in f̃
(2)
3 (Ũ1x̃) are zero. This requires to solve 3 homogeneous linear

equations and 2 homogeneous quadratic equations of n + 1 variables. When n ≥ 3 + 4,
this can be done by Step 1 and 2. Put f̃

(2,1)
l (x̃) := f̃

(2)
l (Ũ1x̃). If there is a solution z3 ∈ k

of f̃
(2,1)
3 (1, z3, 0, · · · , 0) = 0, denote by V3 :=




1 0
z3 1

I


 and put f̃

(3)
l (x̃) := f̃

(2,1)
l (V3x̃). If

there are no such z3, take another Ũ1 and repeat until such z3 ∈ k appears. It is easy to
see that the coefficients of x2

0, x0x1, x
2
1 in f̃

(3)
1 (x̃), f̃

(3)
2 (x̃) and x2

0 in f̃
(3)
3 (x̃) are zero. Note

that Step 1 to 3 solves 3 equations of at least 7 variables.
To consider recursively, suppose that, until Step N − 1, we can find an invertible linear

map U ′ : kn+1 → kn+1 such that the coefficients of x2
0, x0x1, x

2
1 in f̃1(U

′x̃), · · · , f̃N−2(U
′x̃)

and of x2
0 in f̃N−1(U

′x̃) are zero when n ≥ N(N − 1)/2 + 1. This also means that Step 1
to N − 1 solves N − 1 quadratic equations of at least n ≥ N(N − 1)/2 + 1 variables. Put

f̃
(N−1)
l (x̃) := f̃l(U

′x̃).



Algorithms to solve under-defined quadratic equations 9

Step N . Find Ũ1 such that the coefficients of x0x1 and x2
1 in f̃

(N−1)
1 (Ũ1x̃), · · · , f̃

(N−1)
N−1 (Ũ1x̃)

and the coefficient of x0x1 in f̃
(N−1)
N (Ũ1x̃) are zero. This requires to solve N homogeneous

linear equations and N − 1 homogeneous quadratic equations of n + 1 variables. If n ≥
N(N + 1)/2 + 1, this can be done by Step 1 to N − 1. Put f̃

(N−1,1)
l (x̃) := f̃

(N−1)
l (Ũ1x̃). If

there is a solution zN ∈ k of f̃
(N−1,1)
N (1, zN , 0, · · · , 0) = 0, denote by VN :=




1 0
zN 1

I




and put f̃
(N)
l (x̃) := f̃

(N−1,1)
l (VN x̃). If there are no such zN , take another Ũ1 and repeat

until such zN ∈ k appears. It is easy to see that the coefficients of x2
0, x0x1, x

2
1 in f̃

(N)
l (x̃)

for 1 ≤ l ≤ N − 1 and x2
0 in f̃

(N)
N (x̃) are zero. Note that Step 1 to N solves N equations

of at least N(N + 1)/2 + 1 variables.
Thus we can claim that Algorithm 2 solves quadratic equations when n ≥ m(m+1)/2+

1.
We now estimate the complexity of this algorithm. Let cN be the complexity in the

N -th step. For simplicity, assume that one computes Ũ1 once if q is even and twice if q is
odd in all steps, because the probability that univariate quadratic equation has a solution
is almost 1 if q is even and 1/2 if q is odd. Since the N -th step requires to solve N − 1
linear equations and N − 1 quadratic equations, we have

cN =

{
c1 + c2 + · · ·+ cN−1 + (polyn), (2 | q),
2(c1 + c2 + · · ·+ cN−1) + (polyn), (2 - q).

Then cN = O(2N) when q is even and cN = O(3N) when q is odd. Since the complexity of
this algorithm is c1 + · · · + cm, we can roughly estimate the complexity by O(2m) when q
is even and O(3m) when q is odd.

6 Solving equations over small fields

In Section 4 and 5, we propose algorithms to solve equations for general finite fields.
When q is not very bigger than n and m, one can solve equations effectively by combining
Algorithm B and the exhaustive search if n is smaller than as described in the table at
the end of Section 4. As examples, we describe how to solve quadratic equations with
(q, m, n) = (16, 64, 16) and (16, 48, 16), which are used for UOV suggested in [6]. For our
convenience to estimate the complexities roughly, suppose that the complexity of Algorithm
B is n(n−M)3/3 since Ω(n) ∼ n3/3 for the classical Gaussian elimination.

6.1 Solving equations of (q, m, n) = (16, 64, 16).

Step 1. Use Algorithm B to find V1 : k65 → k65 such that the coefficients of xixj (0 ≤
i, j ≤ 7) in f̃1(V1x̃), · · · , f̃8(V1x̃) are zero. The complexity in this step is 65 × 573/3. Put

x(1) := (x0, · · · , x7)
t and f

(1)
l (x(1)) := f̃l

(
V1(x0, · · · , x7, 0, · · · , 0)t

)
. By the choice of V1, we

see that f
(1)
1 (x(1)) = · · · = f

(1)
8 (x(1)) = 0 for any x(1).



10 Y. Hashimoto

Step 2. Use Algorithm B to find V2 : k8 → k8 such that the coefficients of xixj (0 ≤
i, j ≤ 2) in f

(1)
9 (V2x

(1)), f
(1)
10 (V2x

(1)) are zero. The complexity in this step is 8× 54/3. Put

x(2) := (x0, x1, x2)
t and f

(2)
l (x(2)) := f

(1)
l

(
V2(x0, x1, x2, 0, · · · , 0)t

)
. By the choice of V2, we

see that f
(2)
9 (x(2)) = f

(2)
10 (x(2)) = 0 for any x(2).

Step 3. Find x(2) = (1, x1, x2)
t such that f

(2)
11 (x(2)) = 0. This can be done by the algorithm

to find a square root. After that check whether f
(2)
12 (x(2)) = 0 for the same x(2). If so, go

to the next step, and if not, change x(2) until f
(2)
12 (x(2)) = 0. Since the probability that

f
(2)
12 (x(2)) = 0 for randomly chosen x(2) is about q−1, the complexity in this step is roughly

log q × q = 25.

Step 4. Check whether f
(2)
13 (x(2)) = f

(2)
14 (x(2)) = f

(2)
15 (x(2)) = 0. If so, go to the next

step, and if not, go back to Step 2. Since the probability that f
(2)
13 (x(2)) = f

(2)
14 (x(2)) =

f
(2)
15 (x(2)) = 0 is q−3, one may repeat it q3 = 212 times on average.

Step 5. Check whether f
(2)
16 (x(2)) = 0. If so, go to the next step, and if not, go back to

Step 1. Since the probability that f
(2)
16 (x(2)) = 0 is q−1, one may repeat it q = 24 times on

average.

We finally note that the complexity of this approach is about

24 × (
65× 573/3 + 212 × (

8× 54/3 + 25
)) ∼ 226.4.

6.2 Solving equations of (q, m, n) = (16, 48, 16).

Step 1. Use Algorithm B to find V1 : k49 → k49 such that the coefficients of xixj (0 ≤
i, j ≤ 6) in f̃1(V1x̃), · · · , f̃6(V1x̃) are zero. The complexity in this step is 49 × 423/3. Put

x(1) := (x0, · · · , x6)
t and f

(1)
l (x(1)) := f̃l

(
V1(x0, · · · , x6, 0, · · · , 0)t

)
. By the choice of V1, we

see that f
(1)
1 (x(1)) = · · · = f

(1)
6 (x(1)) = 0 for any x(1).

Step 2. Use Algorithm B to find V2 : k7 → k7 such that the coefficients of xixj (0 ≤
i, j ≤ 2) in f

(1)
7 (V2x

(1)), f
(1)
8 (V2x

(1)) are zero. The complexity in this step is 7× 44/3. Put

x(2) := (x0, x1, x2)
t and f

(2)
l (x(2)) := f

(1)
l

(
V2(x0, x1, x2, 0, · · · , 0)t

)
. By the choice of V2, we

see that f
(2)
7 (x(2)) = f

(2)
8 (x(2)) = 0 for any x(2).

Step 3. Find x(2) = (1, x1, x2)
t such that f

(2)
9 (x(2)) = 0. This can be done by the algorithm

to find a square root. After that chichi whether f
(2)
10 (x(2)) = 0 for the same x(2). If so, go

to the next step, and if not, change x(2) until f
(2)
10 (x(2)) = 0. Since the probability that

f
(2)
10 (x(2)) = 0 for randomly chosen x(2) is about q−1, the complexity in this step is roughly

log q × q = 25.

Step 4. Check whether f
(2)
11 (x(2)) = f

(2)
12 (x(2)) = 0. If so, go to the next step, and if not,

go back to Step 2. Since the probability that f
(2)
11 (x(2)) = f

(2)
12 (x(2)) = 0 is q−2, one may

repeat it q2 = 28 times on average.

Step 5. Check whether f
(2)
13 (x(2)) = · · · = f

(2)
16 (x(2)) = 0. If so, go to the next step, and if

not, go back to Step 1. Since the probability that f
(2)
13 (x(2)) = · · · = f

(2)
16 (x(2)) = 0 is q−4,

one may repeat it q = 216 times on average.



Algorithms to solve under-defined quadratic equations 11

We finally note that the complexity of this approach is about

216 × (
49× 423/3 + 28 × (

7× 43/3 + 25
)) ∼ 236.4.

We note that the complexity to solve the equations with (q,m, n) = (16, 64, 16) and
(16, 48, 16) have been studied in [1] and [4] to analyze the security of UOV with such
parameters. The following table summarizes the complexities of the attacks by [1], [4] and
our approach.

(q, n, m) (16, 48, 16) (16, 64, 16)
exhaustive 264 264

Courtois et al. [1] 246 242

Faugére-Perret [4] 240.5 240.5

Our attack 236.4 226.4

7 Conclusion

In the present paper, we propose two algorithms to solve quadratic equations when n is
much larger than m. Though we reduce the required n compared to the works in [6] and [1],
it is still too large to attack against most cryptosystems based on multivariate quadratic
equations. Then it is important to improve our algorithms and to study theoretically the
lower bound of n such that m equations can be solved in polynomial (or effective) time.

References

[1] N. Courtois, L. Goubin, W. Meier and J. Tacier, Solving underdefined systems of mul-
tivariate quadratic equations, PKC’02, LNCS 2274, pp.211–227.

[2] N. Courtois, A. Klimov, J. Patarin and A. Shamir, Efficient algorithms for solving
overdefined systems of multivariate polynomial equations, Eurocrypt’00, LNCS 1807,
pp.392–407.

[3] N. Courtois and J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations, Asiacrypt’02, LNCS 2501, pp. 267–287.

[4] J. Faugére and L. Perret, On the security of UOV, Proceedings of SCC’08, pp.103–109.

[5] J. Ding, J. Gower and D. Schmidt, Multivariate public key cryptosystems, Advances in
Information Security, Springer, 2006.

[6] A. Kipnis, J. Patarin and L. Goubin, Unbalanced Oil and Vinegar Signature Schemes,
Eurocrypt’99, LNCS 1592 (1999), pp. 206–222, extended in citeseer/ 231623.html,
2003-06-11.



12 Y. Hashimoto

[7] S. Tsujii, T. Kaneko, K. Tadaki and M. Gotaishi, Design Policy of MPKC based on
Piece in Hand Concept (in Japanese), IEICE Technical Report 108 (2008), pp.15–22.

HASHIMOTO, Yasufumi
Institute of Systems, Information Technologies and Nanotechnologies,
7F 2-1-22, Momochihama, Fukuoka 814-0001, JAPAN
e-mail:hasimoto@isit.or.jp


