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Instituto de Matemática y F́ısica, Universidad de Talca, Casilla 747, Talca, Chile

(Communicated by the associate editor name)

Abstract. In this article, we deal with fast arithmetic in the Picard group
of hyperelliptic curves of genus 3 over binary fields. We investigate both the

optimal performance curves, where h(x) = 1, and the more general curves

where the degree of h(x) is 1, 2 or 3. For the optimal performance curves, we
provide explicit halving and doubling formulas; not only for the most frequent

case but also for all possible special cases that may occur when performing
arithmetic on the proposed curves. In this situation, we show that halving offers

equivalent performance to that of doubling when computing scalar multiples

(by means of an halve-and-add algorithm) in the divisor class group.
For the other types of curves where halving may give performance gains

(when the group order is twice an odd number), we give explicit halving for-

mulas which outperform the corresponding doubling formulas by about 10 to
20 field multiplications per halving. These savings more than justify the use

of halvings for these curves, making them significantly more efficient than pre-

viously thought. For halving on genus 3 curves there is no previous work
published so far.

1. Introduction

Many cryptographic proctocols take advantage of the difficulty of the discrete
logarithm problem (DLP) to obtain their security. An essential part of these pro-
tocols is therefore the computation of scalar multiples of group elements.

The double-and-add algorithm is essential to the efficiency of cryptosystems
based on elliptic and hyperelliptic curves. This algorithm (and many of its varia-
tions) is based on two basic group operations: the addition of two distinct group
elements and the computation of the double of an element. An alternative that
proved very successful in case of elliptic curves over binary fields is the halve-and-
add algorithm, which relies on the computation of the “half” of a group element (of
odd order), i.e. the computation of a pre-image of the doubling operation [13, 16].

2000 Mathematics Subject Classification: Primary: 94A60, 14Q05; Secondary: 11G20.
Key words and phrases: hyperelliptic curve, genus 3, divisor class, halving, doubling, binary

field, explicit formulas, cryptography.
The authors would like to thank the following organizations for their support: the Fields

Institute in Toronto (Canada), FONDECYT (Chile, grant no. 1070242), the Programa Reticulados

y Ecuaciones (Universidad de Talca), the Danish Research Council for Technology and Production
Sciences (grant no. 274-05-0151) and ECRPYT II.

1 c©200X AIMS-SDU



Given the important savings produced by replacing doublings with halvings for el-
liptic curves, it is natural to ask if similar results can be obtained for hyperellitic
curves over binary fields.

In this paper, we investigate halving and doubling of divisor classes of hyperel-
liptic curves of genus 3 over finite fields of characteristic 2. We present complete
halving and doubling formulas for many interesting curves. We investigate the
optimal-performance case, i.e. we obtain the best operation counts for the explicit
doubling and halving formulas. For these curves, we give a complete case study
for the most frequent case and for all special cases that can occur when doubling
or halving a divisor class. This provides a programmer with everything he needs
for a complete implementation of high-speed scalar multiplication. We also treat
other interesting cases, i.e. curves whose equation has a different form. Those cases
are especially interesting since we gain comparable and sometimes even noticeable
better performance for the halving compared to the appropriate doubling formulas.
For these cases, we give explicit halving formulas for the most common case (the
remaining formulas are available in the appendix).

In a normal double-and-add scalar multiplication, all but an almost insignificant
proportion of the additions and doublings should fall in the most common cases.
One can then implement explicit formulas only for the most common cases, and
use Cantor’s algorithm when a special case occurs. In practice, this approach does
not create any measurable loss in the average performance compared to an imple-
mentation that has explicit formulas for all possible cases. The same is not true
for the halve-and-add algorithm however, because the inverse operation of Cantor’s
doubling algorithm cannot easily be written in terms of polynomials. A halve-and-
add algorithm must therefore contain explicit formulas for all possible cases of the
halving operation.

In this paper, we always work with the Mumford representation of a divisor class
and obtain the different cases depending on the degree of the first polynomial of
the Mumford representation of the inputs and outputs.

The main results of the present paper are:
(1) For those genus 3 curves that give the best performance we provide explicit

doubling formulas for all special cases, and we thereby extend the formulas
which are already published for the most common case only [4, 7, 12].

(2) In the optimal-performance case, we also provide explicit halving formulas for
all possible special cases and therefore allow a complete implementation of
DLP-based cryptosystems on genus 3 curves using halving (and doubling) of
divisor classes.

(3) We look at three more general types of genus 3 hyperelliptic curves and provide
halving formulas that compare extremely well to the best previously known
doubling formulas. It turns out that in those cases halving is always faster. In
some situations halving is almost twice as fast as the corresponding doubling
operation.

The remainder of this paper is structured as follows: Section 2 contains some im-
portant terminology and mathematical background. In this section, we also discuss
the arithmetic of the binary field we are working with, especially the computation
of square roots and traces. Furthermore, we list the different types of curves that
we will treat in this paper, and give the appropriate curve equation for each type.
In Section 3, we discuss the optimal-performance case. We give a complete case
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study for all possible doubling and halving cases. In Section 4, we look at more
general types of curves and give explicit halving formulas for the most common case
for each type of curve.

2. Basic Notations and Preliminaries

In this section, we briefly recall the definitions of hyperelliptic curves, divisor class
groups and the Mumford representation, since we will use these notions throughout
the paper. A comprehensive resource for the mathematics of finite fields is [14]. For
background on hyperelliptic curves we refer the interested reader to [2], from which
the following definitions and notations are taken.

Definition 2.1 (Hyperelliptic curve). Let K be a field and let K be the algebraic
closure of K. A curve C, given by an equation of the form

C : y2 + h(x)y = f(x),

where f ∈ K[x] is a monic polynomial of degree 2g+1 and h ∈ K[x] is a polynomial
of degree at most g, is called an imaginary hyperelliptic curve of genus g over K
if there is no point (x, y) on the curve over K for which both partial derivatives
vanish, i.e. such that 2y + h(x) = 0 and f(x)′ − h(x)′y = 0.

The last condition ensures that the curve is non-singular.

Definition 2.2 (Divisor class group). Given a hyperelliptic curve C of genus g over
a field K, the group of degree 0 divisors of C is denoted by Div0

C . The quotient
group of Div0

C by the group of principal divisors of C is called the divisor class
group of C and is denoted by Pic0

C . It is also called the Picard group of C.1

Theorem 2.3 (Mumford). Let C be a hyperelliptic curve of genus g over an ar-
bitrary field K. Each nontrivial divisor class of C over K can be represented by a
unique pair of polynomials u, v ∈ K[x], where

(1) u is monic,
(2) deg(v) < deg(u) ≤ g,
(3) u | v2 + vh− f .

Note that the last condition will be essential in establishing some of the halving
formulas. A divisor [u, v] that satisfies all the conditions in Theorem 2.3 is called
“reduced”. If all the conditions except deg(u) < g are satisfied, we have a “semi-
reduced” divisor (i.e. the pair of polynomials u and v correspond to a divisor, but
it is not the reduced representative of its class).

Algorithm 1 Cantor’s doubling algorithm for genus 3 HEC in characteristic 2

Input: The divisor class D = [ua, va]

Output: The divisor class [uc, vc] = [2]D

1: d← gcd(ua, h), u0 ← uad
−1, v0 ← va mod u0

2: c← h−1 mod u0, u1 ← u2
0, v1 ← v0 + c(v2

0 + v0h+ f) mod u1

3: if deg(u1) ≤ 3 then

1In this paper we only consider imaginary hyperelliptic curves, i.e. the divisor class group is
isomorphic to the Jacobian (variety) of this curve. Hence we will use the terms Jacobian and

divisor class group synonymously.
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4: uc ← u1, vc ← v1

5: else

6: u2 ← monic
(

f+v1h+v2
1

u1

)
, v2 ← v1 + h mod u2

7: if deg(u2) ≤ 3 then

8: uc ← u2, vc ← v2

9: else

10: uc ← monic
(

f+v2h+v2
2

u2

)
, vc ← v2 + h mod uc

11: end if

12: end if

13: return [uc, vc]

Since our goal is to compute pre-images of the group doubling, we refer to Algo-
rithm 1 for a description of how this operation is performed using Cantor’s algo-
rithm. Our proposed halving and doubling formulas expect the input divisor class
to be in Mumford representation and work directly on the coefficients of the poly-
nomials ua and vc of this representation. The resulting divisor class is also given in
the Mumford form.

2.1. Choice of the field and divisor class halving. Throughout this paper,
we will assume that the field is of the form Fq, where q = 2n and n is not divisible
by 2 or 3. This is mainly due to security concerns, since various versions of the
Weil descent attack could be applied when n admits a factor of 2 or 3 (for example,
see [9, 10, 17]). In fact, for cryptographic applications it is often assumed that n
is a prime. As an added bonus, having n coprime to 6 means that we can take
cube, fifth and seventh roots in the field (since the mappings α 7→ α3, α 7→ α5, and
α 7→ α7 are all isomorphisms as 3, 5 and 7 are coprime to 2n − 1), which allows us
to simplify the curve equations a little more.

In finite fields of characteristic 2, some operations that are computationally hard
in fields of odd characteristic become efficient, in particular the computation of the
square root of a field element. This observation led to the development of halve-
and-add algorithms, a variation of the double-and-add scalar multiplication where
the doubling operation is replaced with a halving (the representation of the scalar is
adjusted accordingly). Such an approach was first used for elliptic curves [13, 16],
and was recently extended to hyperelliptic curves of genus 2 (see [5, 6, 11]). In fact,
some fields have the property that the computation of square roots can be faster
than the computation of squares [1, 8]. It can therefore become a good strategy
to “replace” squares with square roots for curve arithmetic in these fields, and this
is exactly what our halving formulas do. Furthermore, since n will be odd we will
have TR(!1) = 1. In various places, we implicitly take advantage of the identity
TR(α) = TR(α2) to simplify some trace computations.

To count the number of operations, we denote inverses by I, multiplications by
M, squares by S, square roots by SR, traces by TR and half-traces by HT.

2.2. Conditions on the order of the Picard group. We limit ourselves to
curves for which the order of the Jacobian is either odd (h constant) or 2 times
an odd number. This restriction is needed to get a better performance out of the
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halving. Given any hyperelliptic curve, the halve-and-add algorithm allows us to
compute the scalar multiple of a divisor class, given that it is in a (sub)group of
odd order. In this way, the pre-image of the doubling can always be computed
and “becomes” unique (all other pre-images of the doubling have even order). The
group order conditions are due to the following reasons:

(1) To verify that the pre-image is in the subgroup of odd order, we make sure
that it can be halved again as many times as we want. If the group contains
divisors of order 2s, we must ensure that we can halve the pre-image (at least)
s times, which obviously affects the cost of our halving formulas. When s ≥ 2
(i.e. when there are divisors of order 4), the increased work required for this
check becomes too expensive for the halving to be interesting.

(2) The number of pre-images of the halving depends directly on the number of
divisors of order 2 in the group, which in turn depends on the factorization
of h(x). If h(x) has r distinct irreducible factors (multiplicities do not have
an impact here), then we have 2r distinct pre-images of the doubling. Since
we must identify the unique pre-image of odd order, having r > 1 would
force us to choose between four or more reduced divisors, which increases the
algorithmic cost of halving significantly. We will therefore require r to be at
most 1.

Note that if h(x) has r distinct irreducible factors, then the group order is divisible
by (at least) 2r, so asking the group order to be either odd or 2 times an odd number
removes all curves for which h(x) has 2 or 3 distinct irreducible factors.

2.3. Types of curves. We can distinguish the genus 3 hyperelliptic curves in
characteristic 2 according to the degree of h(x) and the form of its factorization
over F2n . We find the following types:

• Type Ia: h(x) is irreducible of degree 3.
• Type Ib: h(x) has degree 3 and is the product of an irreducible polynomial of

degree 2 and a linear factor (r = 2).
• Type Ic: h(x) has degree 3 and is the product of 3 distinct linear factors

(r = 3).
• Type Id: h(x) has degree 3 and is the product of 2 distinct linear factors, one

of which is repeated twice (r = 2).
• Type Ie: h(x) is the cube of a linear factor (degree 3, r = 1).
• Type IIa: h(x) is irreducible of degree 2.
• Type IIb: h(x) has degree 2 and is the product of 2 distinct linear factors

(r = 2).
• Type IIc: h(x) is the square of a linear factor (degree 2, r = 1).
• Type III: h(x) is linear (degree 1).
• Type IV: h(x) is constant (degree 0).

For each type of curve, we can use curve isomorphisms to “simplify” the equation
of the curve. This will be handled in the next subsection.

Due to our condition on the group order, we will limit ourselves to curves of
Types Ia, Ie, IIa, IIc, III and IV. Because of the structure of their 2-torsion group,
curves of Types Ie and IIc have very similar properties (and essentially the same
number of isomorphism classes) as curves of Type III. On the other hand, the higher
degree of h(x) in Type Ie and IIc makes them less efficient than curves of Type III,
so the formulas for these two types of curves are presented only in the appendix.
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2.4. Forms of the curve equations. An imaginary hyperelliptic curve of
genus 3 over F2n is of the form

(1) y2 + h(x)y = f(x),

where h(x) = h3x
3 + h2x

2 + h1x+ h0 6= 0 and f(x) = f7x
7 + f6x

6 + f5x
5 + f4x

4 +
f3x

3 + f2x
2 + f1x+ f0. It is also customary to use isomorphisms to impose that f

be monic, i.e. that f7 = 1, but we will relax this condition for some curves types
as the halving formulas are more efficient if we use isomorphisms to force a specific
coefficient of h(x) to be 1 (which one of the coefficients depends on the curve type).
The effects on the addition formula are described in the appendix. Because of the
ratio between the number of additions and halvings in the scalar multiplication,
the small increase this produces in the addition cost (3 multiplications) becomes
interesting as soon as we can save one or more multiplications in the halving.

Since the coefficients of the curve equation (the coefficients of h and f) have a
direct impact on the computations in Cantor’s algorithm, it is quite natural to use
isomorphisms to obtain an equivalent curve with “simpler” coefficients (i.e. getting
coefficients equal to 0, restricting them to F2 etc.). For the curve (1), the possible
isomorphisms are given by x 7→ αx+β and y 7→ γy+δx3 +εx2 +%x+ζ, where both
α and γ are nonzero. After applying the isomorphisms, the equation is divided by
γ2 to make it monic.

Proposition 1. Given an isomorphism that replaces f2i by f2i + ω2 + ω, we can
restrict f2i to TR(f2i) ∈ F2.

Proof. Since f2i + TR(f2i) has trace 0, we can choose ω such that ω2 + ω = f2i +
TR(f2i). This choice of ω replaces f2i with TR(f2i). Note that the isomorphism
does not permit us to change the trace of f2i.

For the six types of curves where halving is interesting, we have:
(Ia) h3 6= 0 and h(x) irreducible: We first use β = h2/h3 to remove h2. Once

h2 = 0, h1 must be non-zero (otherwise h(x) would not be irreducible), so we
can set α =

√
h1/h3 and γ =

√
h3

1/h3 to obtain h(x) = x3 + x+ h0.
We can then use δ to restrict f6 to F2, then ε to force f5 = 0, % to force

f4 = 0 and finally ζ to have f3 = 0. We are left with f(x) = f7x
7 + f6x

6 +
f2x

2 + f1x+ f0 where f6 ∈ F2.

(Ie) h3 6= 0 and h(x) is a cube: Taking α = h2
3/f7 and γ = h7

3/f
3
7 we can force

both h(x) and f(x) to be monic. Once h3 = f7 = 1, we can use β = h2 to
obtain h(x) = x3 (since h(x) is a cube).

We can then use δ to restrict f6 to F2, then ε to force f5 = 0, % to force
f4 = 0 and finally ζ to have f3 = 0. We are left with f(x) = x7 + f6x

6 +
f2x

2 + f1x+ f0 where f6 ∈ F2.

(IIa) h3 = 0, h2 6= 0 and h(x) is irreducible: Using α = h1/h2 and γ = h2
1/h2

we can force h2 = h1 = 1. Since h(x) is irreducible, we must then have
TR(h1) = 1 and we can then use β = HT(h1 +1) to restrict h(x) to x2 +x+1.

Combining the remaining freedom on β (i.e. β ∈ F2) and δ, we can force
f6 = 0 and restrict the number of possibilities for f5 by a factor of 2 (in
general). Note that this restriction on f5 has no impact on TR(f5).

We can then use ε to restrict f4 to F2, then % to force f3 = 0 and finally ζ
to have f2 = 0. We are left with f(x) = f7x

7 + f5x
5 + f4x

4 + f1x+ f0 where
f4 ∈ F2 and TR(f7) · TR(f5) = 0.
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(IIc) h3 = 0, h2 6= 0 and h(x) is a square: Taking α = (h2
2/f7)1/3 and γ =

(h7
2/f

2
7 )1/3 we can force both h(x) and f(x) to be monic. Once h2 = f7 = 1,

we can use β =
√
h0 to obtain h(x) = x2 (since h(x) is a square).

We can then use δ to force f6 = 0, then ε to restrict f4 to F2, then %
to force f3 = 0 and finally ζ to have f2 = 0. We are left with f(x) =
x7 + f5x

5 + f4x
4 + f1x+ f0 where f4 ∈ F2.

(III) h3 = h2 = 0 and h1 6= 1: Taking α = (h2
1/f7)1/5 and γ = (h7

1/f7)1/5 we can
force both h(x) and f(x) to be monic. Once h1 = f7 = 1, we can use β = h0

to obtain h(x) = x.
We can then use δ to force f6 = 0, then ε to force f4 = 0, % to restrict f2

to F2 and finally ζ to have f1 = 0. We are left with f(x) = x7 +f5x
5 +f3x

3 +
f2x

2 + f0 where f2 ∈ F2.

(IV) h3 = h2 = h1 = 0 and h0 6= 0: Taking α = (h2
0/f7)1/7 and γ = h0 we can

have h(x) = 1 and force f(x) to be monic.
Once f7 = 1, we can use β =

√
f5 to remove the term in x5 form f(x). We

can then use δ to force f6 = 0, then ε to force f4 = 0, % to force f2 = 0 and
finally ζ to restrict f0 to F2. We are left with f(x) = x7 + f3x

3 + f1x + f0
where f0 ∈ F2.

Note that we did not include the non-singularity condition, nor conditions on the
group order in the descriptions of the different types. In terms of isomorphism
classes, Type Ia is the most common (with 2

3q
5+O(q4) classes), followed by Type IIa

(with q4 +O(q3) classes), then Types III, IIc, and Ie (each with 2q3 +O(q2) classes)
and finally Type IV (with 2q2 +O(q) classes).

3. Type IV: h(x) = 1

In this section, we consider the high-performance curves, i.e. those that are pre-
ferred when computational speed is more important than flexibility in the choice
of the curve (even then, there are enough isomorphism classes available for most
applications). From the results of the previous section, we can assume that curves
of Type IV are of the form

(2) C : y2 + y = x7 + f3x
3 + f1x+ f0,

with f0 ∈ F2. As well as having all but two of the coefficients of the curve equation
in F2 (and many of those being 0), these curves offer other advantages:

(1) The doubling is significantly faster than for other types of curves, and also
much faster than the group addition.

(2) The curve C is not supersingular (see Theorem 1.2 in [Scholten, Zhu] with
n = 3). This is an important advantage over the genus 1 and 2 situation
where curves with h = c are supersingular if c is a constant. Hence, our
genus 3 curves are secure against specialized attacks as long as the order of
the Jacobian is divisible by a large prime.

(3) Since h = 1, the 2-rank of the curve C is 0: Given any non-zero element
D = [u, v] of the Jacobian in Mumford representation, its negative is

−D = [u,−v − h mod u] = [u, v + 1].

Since v 6≡ v + 1 mod u for all D 6= [1, 0], we have D 6= −D and therefore
[2]D 6= [1, 0] for all non-zero D in the Jacobian of the curve, which shows that
there are no non-trivial 2-torsion points (and the group order is odd).
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This simple fact is extremely useful for the halving formulas. It means that
the doubling map is a one-to-one function, rather than a two-to-one as it is the
case for elliptic curves (and will be the case for the other curves considered in
this paper). The pre-image of the doubling will be unique, removing the need
for a potentially expensive verification step to find which of the pre-images
has odd order.

We will now give explicit formulas for the doubling and the halving of divisor
classes, and cover both the most frequent case and all other possible special cases.
Combined with divisor addition formulas [2, 4, 12], this allows to program the most
efficient implementation of genus 3 hyperelliptic curve group arithmetic.

3.1. Explicit doubling formulas. In the following, we give a complete study
of all cases that can occur when performing doubling of a divisor class on a genus 3
hyperelliptic curve of Type IV, i.e. we assume that we are given a curve of the form
(2) over a binary field. We consider the different cases by looking at the degree of the
polynomial ua in the Mumford representation of a given divisor class Da = [ua, va],
where ua is monic of degree at most 3 and va is of smaller degree than ua and such
that ua divides v2

a + va + f .
We will give criteria to detect which case is present, depending on the coefficients

of the polynomials ua and va. Therefore, we follow the steps of Cantor’s algorithm
to see how the degrees of the polynomials behave during the doubling. The details
of Cantor’s algorithm for genus 3 curves of type IV are given in Algorithm 2.

Algorithm 2 Cantor’s doubling algorithm for genus 3 HEC in characteristic 2 with
h(x) = 1 (Type IV)

Input: The divisor class D = [ua, va]

Output: The divisor class [uc, vc] = [2]D

1: u1 ← u2
a, v1 ← v2

a + f mod u1

2: if deg(u1) ≤ 3 then

3: uc ← u1, vc ← v1

4: else

5: u2 ← monic
(

f+v1+v2
1

u1

)
, v2 ← v1 + 1 mod u2

6: if deg(u2) ≤ 3 then

7: uc ← u2, vc ← v2

8: else

9: uc ← monic
(

f+v2+v2
2

u2

)
, vc ← v2 + 1 mod uc

10: end if

11: end if

12: return [uc, vc]

Note that from now on we will use the following notation: “Doubling n → m”
(short: DBLnm) stands for a doubling where the degree of the the first polynomial
of the divisor class to be doubled is n and the degree of the first polynomial of the
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target divisor class (in Mumford representation) is m. We will use the same syntax
for halving (short: HLVnm).

3.1.1. Distinguishing the cases. To distinguish the different doubling cases, we start
with a divisor class Da = [ua, va], and depending on the degree of ua we see what
degree can be taken by uc (in Dc = [uc, vc] = [2]Da).

If ua has degree 3, then the first step in Algorithm 2 computes u1 = u2
a and

v1 ≡ v2
a + f mod u1. We obtain

u1 = u2
a = x6 + u2

a2x
4 + u2

a1x
2 + u2

a0

and

v1 = v2
a + f mod u1

= u2
a2x

5 + v2
a2x

4 + (u2
a1 + f3)x3 + v2

a1x
2(3)

+(u2
a0 + f1)x+ (f0 + v2

a0).

Since u1 has degree 6, we must do at least one reduction step, so we compute

u2 = monic
(
f + v1 + v2

1

u1

)
.

We now have different possibilities for the degree of u2 depending on the degree of
v1. Since deg(u1) = 6, the degree of v1 is less than or equal to 5. We have the
following three cases:

(1) When deg(v1) is equal to 1, 2 or 3, the dominating part of the numerator
comes from f . The degree of u2 is then deg(u2) = deg(f) − deg(u1) = 1.
Cantor’s algorithm will then output uc ← u2 of degree 1. This case will be
handled in Subsection 3.1.4.

(2) When deg(v1) = 4, the numerator is dominated by v2
1 . The degree of u2 is

then deg(u2) = deg(v2
1) − deg(u1) = 2. Cantor’s algorithm outputs uc ← u2

of degree 2, which will be handled in Subsection 3.1.3.

(3) When deg(v1) = 5, the numerator is again dominated by v2
1 , but this time we

have deg(u2) = 4. Note that we also have deg(v2) ≤ 3. Cantor’s algorithm
will then proceed with a second reduction step, computing uc as

uc = monic
(
f + v2 + v2

2

u2

)
.

The numerator is once again dominated by f , and uc has degree deg(f) −
deg(u2) = 3. This case will be handled in Subsection 3.1.2.

If ua has degree 2, then deg(u1) = 4 and deg(v1) ≤ 3. We must then do one
reduction step, with

u2 = monic
(
f + v1 + v2

1

u1

)
,

where the numerator is dominated by f . The degree of u2 is then deg(u2) =
deg(f)− deg(u1) = 3 and Cantor’s algorithm will then output uc ← u2 of degree 3.
This case will be handled in Subsection 3.1.5.

Finally, if ua has degree 1, then deg(u1) = 2 and deg(v1) ≤ 1 and Cantor’s algo-
rithm outputs uc = u1 and vc = v1. This case will be handled in Subsection 3.1.6.
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3.1.2. Doubling 3 → 3. This is in fact the most common case of doubling (which
occurs with probability 1 − O( 1

q )). From the previous section, we know this will
happen when deg(v1) = 5, which means u2

a2 6= 0, i.e. when deg(ua) = 3 and ua2 6= 0.
We can now state the actual formula to double in the 3 → 3 case. This formula is
taken from [7, Table XXVI], although we adapted the notation to the one used in
this paper.

Algorithm 3 (DBL33, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0], ua2 6= 0

Output: [2]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← u2
a2, s1 ← u2

a1, s2 ← v2
a2, s3 ← f3 + s1, s4 ← s−1

0 . 1I+3S

2: s5 ← s4s2, s6 ← s4s3, uc1 ← s25 + s0, s7 ← s0uc1 . 3M+1S

3: s8 ← s26 + s1 + s7, s9 ← s7 + s3, s10 ← s2uc1, s11 ← s2s8 . 2M+1S

4: s12 ← s11 + f0 + v2
a0, s13 ← s10 + v2

a1 + s4, s14 ← s24 . 3S

5: s15 ← (s0 + s2)(s8 + s14) + s11 + f1 + u2
a0 + s4, uc2 ← s29 . 1M+2S

6: uc0 ← uc2uc1 + s213 + s14, s16 ← s9uc0, s17 ← s9uc1 . 3M+1S

7: s18 ← s9uc2, vc2 ← s13 + s18, vc1 ← s15 + s17, vc0 ← s12 + s16 . 1M

8: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0] . 1I+10M+11S

3.1.3. Doubling 3 → 2. From Subsection 3.1.1 (2), we know this case occurs when
deg(v1) = 4, and from Equation 3 this happens if and only if deg(ua) = 3, ua2 = 0,
and va2 6= 0.

Algorithm 4 (DBL32, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua1x+ ua0, va2x
2 + va1x+ va0], va2 6= 0

Output: [2]D = [x2 + uc1x+ uc0, vc1x+ vc0]

1: s0 ← v2
a2, s1 ← s−1

0 , uc1 ← s21, s2 ← f3 + u2
a1, s3 ← s22 . 1I+4S

2: uc0 ← uc1s3, s4 ← s1 + s2, s5 ← s4uc0 . 2M

3: s6 ← v2
a1 + (s0 + s4)(uc0 + uc1) + s5 + s1, s7 ← s6uc0 . 2M+1S

4: s8 ← s6uc1, vc1 ← f1 + u2
a0 + s5 + s8, vc0 ← f0 + 1 + v2

a0 + s7 . 1M+2S

5: return [x2 + uc1x+ uc0, vc1x+ vc0] . 1I+5M+7S

3.1.4. Doubling 3 → 1. From Subsection 3.1.1 (1), we see that this case occurs
when deg(v1) is less or equal than 3, and from Equation 3 this happens when
deg(ua) = 3, ua2 = 0 and va2 = 0.

Since any divisor must satisfy ua | v2
a + hva − f , it is easy to show that we also

have va1 = 0. We can therefore assume that the input divisor class has the form
[x3 + ua1x+ ua0, va0] and the output divisor is of the form [x+ uc0, vc0].
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Algorithm 5 (DBL31, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua1x+ ua0, va0]

Output: [2]D = [x+ uc0, vc0]

1: s0 ← u2
a1, s1 ← f2

3 , s2 ← s20, uc0 ← s1 + s2, s4 ← u2
c0 . 3S

2: vc0 ← uc0

(
(s0 + f3)s4 + (u2

a0 + f1)
)

+ v2
a0 + f0 + 1 . 2M+2S

3: return [x+ uc0, vc0] . 2M+5S

3.1.5. Doubling 2 → 3. As stated in Section 3.1.1, this is the only case that can
occur when deg(ua) = 2. The first step of Cantor’s algorithm gives us u1 = u2

a =
x4 + u2

a1x
2 + u2

a0 and

v1 = (f3 + u2
a0 + u4

a1)x3 + v2
a1x

2 + (u2
a1u

2
a0 + f1)x+ (f0v2

a0),

after which one reduction step is performed to obtain uc and vc. The formula is as
follows:

Algorithm 6 (DBL23, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [2]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: uc1 ← u2
a1, s0 ← f3 + u2

c1, s1 ← s0 + u2
a0, uc2 ← s21, s2 ← v2

a1 . 5S

2: s3 ← s2 + s1ua1, uc0 ← s23, s4 ← s1uc0, s5 ← s1uc2 . 3M+1S

3: vc2 ← s2 + s5, vc1 ← f1 + s0uc1, vc0 ← f0 + v2
a0 + 1 + s4 . 1M+1S

4: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0] . 4M+7S

3.1.6. Doubling 1 → 2. This is the last case which can occur when performing
a doubling. Since deg(u2

a) = 2 < 3, only the first step of Cantor’s algorithm is
necessary, and we obtain uc = u1 = u2

a = x2 + u2
a0 and

vc = v1 = (f1 + u6
a0 + f3u

2
a0)x+ (v2

a0 + f0).

We get the very short formula:

Algorithm 7 (DBL12, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [2]D = [x2 + uc0, vc1x+ vc0]

1: uc0 ← u2
a0, vc0 ← f0 + v2

a0, vc1 ← f1 + uc0(f3 + u2
c0) . 1M+3S

2: return [x2 + uc0, vc1x+ vc0] . 1M+3S

11



3.2. Explicit halving formulas. Having developed formulas for all the possible
cases of doubling of divisor classes, we can now look at halving these same classes of
our proposed genus 3 curves over binary fields. Our general approach will consist in
inverting (or “backtracking”) each one of the doubling cases to obtain the halving
formulas. We will therefore have five cases of halvings:

• Halving 3→ 3 (from the doubling 3→ 3);
• Halving 2→ 3 (from the doubling 3→ 2);
• Halving 1→ 3 (from the doubling 3→ 1);
• Halving 3→ 2 (from the doubling 2→ 3);
• Halving 2→ 1 (from the doubling 1→ 2).

Before going into the specifics of each formula, let us consider how to distinguish
between the different cases. Let us consider the halving of a divisor [uc, vc] known
to come from the doubling of a divisor [ua, va]:

• If deg(uc) = 1, then we can only be in the 1→ 3 case.

• If deg(uc) = 2, then deg(ua) was either 1 (doubling 1 → 2)—in which case
uc(x) is of the form x2 + uc0—or 3 (doubling 3 → 2). To have a simple
distinguishing condition, we would like to say that if [uc, vc] comes from a
doubling 3 → 2 then uc(x) is of the form x2 + uc1x + uc0 with uc1 6= 0, and
indeed, an easy computation from the doubling formula shows that uc1 =
1/v4

a2 where va2 6= 0 as we are coming from the 3→ 2 doubling case.

• If deg(uc) = 3, then deg(ua) was either 2 (doubling 2 → 3) or 3 (doubling
3 → 3). There is no direct way to distinguishing between these two cases
simply by looking at the form of uc and vc. However, the doubling formulas
do present us with a natural candidate when we notice that the 3→ 3 doubling
contains an inversion while the 2 → 3 doubling does not. Not surprisingly,
the same situation happens in the halving formulas. If we assume that [uc, vc]
is in the halving 3 → 3 case and try to work backward through the 3 → 3
doubling, we need to compute the inverse of uc0 + v2

c1 + uc2(uc1 + u2
c2) (or it’s

square root), so the operation cannot be valid if this value is 0 (i.e. it must
be 6= 0). On the other hand, if we take the result of a 2 → 3 doubling and
substitute the values of the uc0, uc1, uc2 and vc1 (in terms of the coefficients of
ua and va) in the expression uc0 +v2

c1 +uc2(uc1 +u2
c2), then we can verify that

it must always be 0. We can therefore use the value of uc0+v2
c1+uc2(uc1+u2

c2)
to safely distinguish between the two cases.

Now that the different cases can be identified, we can look at the formulas.
To have a more “standard” look, they are written with input [ua, va] and output
[uc, vc] = [12 ][ua, va], so the condition to distinguish between the cases are ua1 equal
or not to 0 when deg(ua) = 2 and ua0 + v2

a1 +ua2(ua1 +u2
a2) equal or not to 0 when

deg(ua) = 3.

3.2.1. Halving 3 → 3. We can now optimize the halving 3 → 3. In general, we
cannot distinguish this case from the halving 3→ 2 until s4 = ua0 +v2

a1 +ua2(ua1 +
u2

a2) has been computed. If s4 = 0, we must change to the same line of Algorithm 11.
Note that both ua0

√
ua2 and ua2

√
ua2 are needed in both the 3 → 3 and 3 → 2

halvings, so they can be computed before we distinguish the two cases.
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Algorithm 8 (HLV33, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← ua2s0, s2 ← ua0s0, s3 ← va2 + s1 . 2M+1SR

2: s4 ← ua0 + s23 + ua1ua2, s5 ←
√
s4, s6 ← s−1

5 . 1I+1M+1S+1SR

3: s7 ← ua1s6, s8 ← s0 + s7, s9 ← s6
√
s6 + ua1 . 2M+1SR

4: s10 ← s3 + ua1s9 + s5, s11 ← s8 + f3, s12 ← s11 + s4s
2
8 + s7 . 2M+1S

5: s13 ← s12s9, s14 ← va1 + ua1s0 + (s4 + s12)(s9 + s6) + s13 + s5 . 3M

6: s15 ← va0 + s2 + s13, vc2 ←
√
s9, vc1 ←

√
s10 . 2SR

7: vc0 ←
√
s15 + f0, uc2 ←

√
s6, uc1 ←

√
s11, uc0 ←

√
s14 + f1 . 4SR

8: return [x2 + uc0, vc1x+ vc0] . 1I+10M+2S+9SR

3.2.2. Halving 2 → 3. Since this case of the halving is the inverse of a 3 → 2
doubling, we know that the output must be of the form [x3 + uc1x + uc0, vc2x

2 +
vc1x+ vc0]. However, the output has one more coefficient than the input, and it is
not enough to simply reverse the doubling formula—doing so would leave us with q
possible choices for the output, which is clearly impossible as the halving operation
is injective.

To solve this problem, we must recall the last condition in Theorem 2.3, i.e. that
uc must divide v2

c + vc + f if [uc, vc] is a divisor. Computing the coefficient of x2 in

(vc2x
2 + vc1x+ vc0)2 + (vc2x

2 + vc1x+ vc0) + f mod x3 + uc1x+ uc0,

we find that vc2 + v2
c1 + uc1v

2
c2 must be 0 (since the whole equation must equal 0),

giving us the relation vc1 =
√
vc2 + uc1v2

c2 which allows us to complete the formula.

Algorithm 9 (HLV23, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [ 12 ]D = [x3 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: s0 ←
√
ua1, s1 ← s−1

0 , vc2 ←
√
s1, s2 ←

√
ua0, s3 ← s1s2 . 1I+1M+3SR

2: s6 ← s1ua0, uc1 ←
√
s3 + f3, s4 ← vc2 + uc1s1, vc1 ←

√
s4 . 2M+2SR

3: , s5 ← s3 + s0, s7 ← (s4 + s6)ua1, s8 ← ua0 + u2
a1 . 1M+1S

4: s9 ← s5s8, s10 ← s5ua1, uc0 ←
√
f1 + s9 + s7 + va1 . 2M+1SR

5: s11 ← s4 + s6 + s10, vc0 ←
√
f0 + 1 + s11ua0 + va0 . 1M+1SR

6: return [x3 + uc1x+ uc0, vc2x
2 + vc1x+ vc0] . 1I+7M+1S+7SR

3.2.3. Halving 1 → 3. Just as in the 2 → 3 case, the output has more coefficients
than the input, giving us difficulties to reverse the doubling formula. This time,
the output must be of the form [x3 + uc1x+ uc0, vc0], and once again the solution
can be found in Theorem 2.3. We compute the coefficient of x in v2

c0 + vc0 + f
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mod x3 + uc1x + uc0 to find that f1 + u2
c0 + uc1f3 + u3

c1 must be 0, and we can
complete the formula using the relation uc0 =

√
f1 + uc1(f3 + u2

c1).

Algorithm 10 (HLV13, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [ 12 ]D = [x3 + uc1x+ uc0, vc0]

1: s0 ←
√
ua0 + f3, uc1 ←

√
s0, s1 ← u2

a0 . 1S+2SR

2: s2 ← (f3 + s0)uc1, s3 ← (f3 + s0)s1, uc0 ←
√
f1 + s2 . 2M+1SR

3: vc0 ←
√
va0 + ua0 (s3 + s2) + f0 + 1 . 1M+1SR

4: return [x3 + uc1x+ uc0, vc2x
2 + vc1x+ vc0] . 3M+1S+4SR

3.2.4. Halving 3→ 2. Although reversing the 2→ 3 doubling formula can be done
in 2M and 5SR, distinguishing the 3 → 2 halving from the 3 → 3 case requires a
few more operations. The operation count below assumes that the first formula of
Subsection 3.2.1 is used. If the implementation does not take advantage of sequential
multiplications, the 3→ 2 halving can be done completely in 3M, 1S and 5SR.

Algorithm 11 (HLV32, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x2 + uc1x+ uc0, vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← ua2s0, s2 ← ua0s0, s3 ← va2 + s1 . 2M+1SR

2: s4 ← ua0 + s23 + ua1ua2, uc1 ←
√
ua1, uc0 ← ua1 +

√
s0 + f3 . 1M+1S+2SR

3: vc1 ←
√
v2 + s1, vc0 ←

√
va0 + f0 + 1 + s2 . 2SR

4: return [x2 + uc1x+ uc0, vc1x+ vc0] . 3M+1S+5SR

3.2.5. Halving 2→ 1. This is the final case of halving, and the simplest one.

Algorithm 12 (HLV21, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x2 + ua0, va1x+ va0]

Output: [ 12 ]D = [x+ uc0, vc0]

1: uc0 ←
√
ua0, vc0 ←

√
va0 + f0

2: return [x+ uc0, vc0] . 2SR

4. Halving for Other Types of Curves

In this section, we consider halving formulas for curves of genus 3 with h(x)
irreducible (and non-constant), i.e. curves of Type Ia, IIa, and III. Types Ie and
IIc, where h(x) is a perfect power (rather than irreducible) are available in the
appendix. From an efficiency point of view, these cases are less interesting since
they offer the same number of isomorphism classes as when h(x) is linear, but at a
higher cost.
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In general, it would be safe to say that the cost of the halving operation increases
with the degree of h(x), but this is in a way offset by having a larger number
of isomorphism classes (in particular when h(x) is irreducible), giving us more
flexibility in the choice of the curves.

Unlike the curves in the previous section (Type IV), the doubling of a divisor
admits two pre-images, and we must distinguish which of the two has odd order.
Because of the doubling is a 2-to-1 map, the structure of the special cases will
be somewhat altered. How to deal with this altered situation will be described in
Subsection 4.1

In the following subsections, we will study the three types of curves in increasing
order of complexity (i.e. increasing the degree of h(x)). For each curve type, we
will “define” the different cases (i.e. describe how to distinguish them) and obtain
necessary and sufficient conditions under which a divisor can be halved, which will
allow us to give a simple criteria for the curve to have order 2m, where m is odd,
after which we give the explicit formulas for the most common case (to reduce the
length of this paper, the other cases are available in the appendix). This structure
will be repeated in the appendix for Types Ie and IIc.

Finally, we will analyze the results in Subsection 4.5.

4.1. Halving 3→ 3 versus special cases. If we look at the doubling algorithm
when deg(h) > 0, the most obvious difference is that we cannot ignore the gcd
of h(x) and ua(x). If gcd(ua, h) = d 6= 1, we first divide ua by d, and reduce va

accordingly, after which the “normal” structure of special cases applies (clearly only
the doublings 2→ 3 and 1→ 2 are possible if ua/ gcd(ua, h) is different from 1).

The observation on gcd(ua, h) 6= 1 is very indicative of the problem we face
with the special cases of halving, but also hints at the solution. In the curves
we are interested in this section, the doubling is a 2-to-1 function, so to compute
the halving we will find two possible pre-images, but these pre-images could have
different degrees (which complicates the distinction between the different special
cases). On the other hand, the difference between the two pre-images is always the
unique divisor class of order 2, so once we can compute a pre-image the other one
could be found using Cantor’s algorithm (adding the divisor class of order 2). Note
that the divisor class of order 2 is of the form [h, vh] when h is irreducible, and of
the form [x,

√
f0] when h is a square or a cube.

To denote the halving cases, we will base ourselves on the lowest degree of the
pre-image, and then aggregate the degree of the other pre-image if it is different.
For example, HLV32/33 indicates that the input has degree 3, that one of the two
pre-images has degree 2 and the second one has degree 3. If both pre-images have
the same degree, we keep the same notation as before (for example HLV23). The
main advantage of this notation is that the pre-image of lowest degree is generally
the one that closely matches the corresponding case for Type IV curves.

In fact, when the pre-images have distinct degrees, the second pre-image can
often be found simply by adding the (unique) divisor class of order 2 to the first
pre-image using Cantor’s algorithm without the reduction step (as long as the total
degree remains less than 3), and it is usually more efficient to compute it explicitly
in this way. When adding the divisor of order 2 requires a reduction, it appears
more practical to go back to inverting the doubling, this time using the degree for
the second pre-image. We observe that those cases are due to certain coefficients
being 0 in the doubling, leading to “degenerate” quadratic equations, for example
z2 + 0z = α (which has a double root instead of two distinct ones).
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4.2. Type III: h(x) = x. According to Section 2.4, curves of Type III are of the
form

(4) C : y2 + xy = x7 + f5x
5 + f3x

3 + f2x
2 + f0,

where f2 ∈ F2. The Picard group of these curves has precisely one divisor class of
order 2, which is of the form [x,

√
f0].

Theorem 4.1. Let Da = [ua, va] be a divisor class in Pic0
C(Fq). If deg(ua) = 3,

then Da can be halved if and only if TR(ua1((u2
a2 + f5)ua2 + v2

a2 + ua0)) = 0. If
deg(ua) = 2, then Da can be halved if and only if TR(ua1((ua0 + u2

a1)(ua0 + f5) +
u4

a1+f3)) = 0. If deg(ua) = 1, then Da can be halved if and only if TR(ua0(u2
a0(u2

a0+
f5) + f3) + f2) = 0.

Proof. To halve a divisor class Da = [ua, va], we assume that it is the image under
the doubling of a divisor class Dc = [uc, vc]. To perform the halving, we work our
way backwards through the doubling of Dc, trying to solve for the coefficients of uc

and vc given the coefficients of ua and va (the form of uc and vc are determined by
the halving case).

In cases HLV33, HLV23 and HLV13, the halving requires us to solve an equation
of the form z2+z+α = 0 at some point in the computations. If Da is indeed equal to
[2]Dc for some Fq-rational divisor class Dc, then an Fq-rational root of z2+z+α = 0
must exist (since all the operations in Cantor’s algorithm are performed over Fq).
If TR(α) = 1, then no such root can exist, so a divisor class must have TR(α) = 0
if we want to halve it.

For cases HLV21/22 and HLV32/33, it is always possible to halve them, but there
are special conditions on the coefficients of ua and va and it can be shown that these
conditions force α = 0 (and obviously TR(α) = 0). This gives us the necessity of
the trace conditions.

To complete the proof, we must show that the trace conditions are also sufficient.
For this, we show that if the trace condition holds for a reduced divisor, then
applying one of the halving formula to this divisor will return an output that is a
valid divisor. By construction (of the formula), the double of that new divisor must
be the input of our halving, hence this input can be halved. Note that being able
to compute two Fq-rational polynomials uc and vc with the halving formulas is not
sufficient on its own to give us a divisor. We must also verify that v2

c + vch + f is
divisible by uc.

We explain how to do this in the HLV33 case, the other cases follow the same
pattern. We begin with a divisor class [ua, va], i.e. v2

a + vah + f ≡ 0 mod ua.
The coefficients of x0, x1 and x2 in this equality give us 3 coefficient identities, the
“divisibility conditions”. To obtain the halving formulas, we compute a sequence
of pairs of polynomials [ui, vi] which should all be semi-reduced divisors if we want
the output to be a reduced divisor (rather than a random pair of polynomials).

From [ua, va], we first compute [u2, v2] using the polynomial equations

ua = monic
(
v2
2 + v2h+ f

u2

)
,

va ≡ v2 + h mod ua,

v2
2 + v2h+ f ≡ 0 mod u2

(working backwards through the second reduction and making sure we have a semi-
reduced divisor). These equations give us 10 identities that must be satisfied by the
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coefficients of u2 and v2. We use 7 of these identities to compute the coefficients,
and the 3 remaining identities become our new divisibility conditions. To show
that [uc, vc] is a semi-reduced divisor, we use the 7 identities of the halving formula
to show that the 3 divisibility conditions of [uc, vc] imply the 3 new divisibility
conditions (once all 10 identities are satisfied, so are the 3 polynomial equations).

We then repeat the same idea to show that [u1, v1] (first reduction) is also a
semi-reduced divisor: To compute the coefficients of u1 and v1, we used 9 of the 13
coefficient identities in the equations

u2 = monic
(
v2
1 + v1h+ f

u1

)
,

v2 ≡ v1 + h mod u1,

v2
1 + v1h+ f ≡ 0 mod u1.

We are left with 4 divisibility conditions, which can be shown to be implied by the 3
divisibility conditions on u1 and v1 (once again using the 9 identities of the halving
formula to perform the simplifications).

To finish, we have to show that v2
0 + v0h+ f ≡ 0 mod u0, where u0 =

√
u1 and

v0 ≡ v1 mod u0 (i.e. performing the composition step backwards). This comes
directly from v2

1 + v1h + f ≡ 0 mod u1. Since this halving case comes from
gcd(uc, h) = 1 in the doubling of [uc, vc] (the preimage of the doubling), we have
uc = u0 and vc = v0 and all the divisibility conditions are already obtained.

To complete the proof, this process is repeated for the other halving cases, show-
ing that in all cases the preimages computed are valid divisors if the trace conditions
are satisfied. Note that for the HLV21/22 and HLV32/33 cases there is only one
possible choice for u0 and v0. The first preimage (of lower degree) corresponds to
gcd(uc, h) = 1 and no further work is required. The second preimage corresponds to
gcd(uc, h) = x and the divisibility conditions come from the addition of the reduced
divisor [u0, v0] to the reduced divisor of order 2 (using Cantor’s algorithm, which
does not require any reduction step in this case).

Corollary 1. The Picard group of the curve C over Fq given by (4) has order 2m,
where m is odd, if and only if f2 = 1.

Proof. The Picard group has exactly one divisor class of order 2, namely [x,
√
f0].

The order of the Picard group is divisible by 4 if and only if [x,
√
f0] can be halved.

From Theorem 4.1, this is possible if and only if TR(f2) = 0. Since f2 ∈ F2, we
find that Pic0

C(Fq) has a divisor class of order 4 if and only if f2 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 − Dc2 = [x,

√
f0] = Dc2 − Dc1 , i.e. the difference of two preimages is

the unique divisor class of order 2. This observation allows us to distinguish the
different special cases.

Remark 1. Let Da = [ua, va] be a divisor class in Pic0
C(Fq) that can be halved

and Dc = [uc, vc] = [ 12 ]Da its preimage (under the doubling) of odd order.

(1a) If deg(ua) = 3 and v2
a2+ua2(u2

a2+ua1+f5)+
√
ua2+ua0 6= 0, then deg(uc) = 3

and we are in case HLV33.
(1b) If deg(ua) = 3 and v2

a2+ua2(u2
a2+ua1+f5)+

√
ua2+ua0 = 0, then deg(uc) = 2

or 3 (with uc0 = 0 in the second case) and we are in case HLV32/33.
(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23.
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(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 (with uc0 = 0 in the second
case) and we are in case HLV21/22.

(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.

We obtain the following halving formulas:

Algorithm 13 (HLV33, h(x) = x, f(x) = x7 + f5x
5 + f3x

3 + x2 + f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← ua1 + f5, s2 ← s0ua2 + va2, s3 ← s1ua2 . 2M+1SR

2: s4 ← s0 + s22 + s3 + ua0, s5 ← s4ua1, s6 ← s0ua1 + va1 + 1 . 2M+1S

3: s7 ← s0ua0 + va0, s8 ← s2 + f3 + (s4 + s1)(ua2 + ua1) + s3 + s5 . 2M

4: s9 ← s−1
4 , s10 ←

√
s9, s11 ← s10s1, s12 ← s11 + s0 . 1I+1M+1SR

5: s13 ← HT(s5), s14 ← s9s13 . 1M+1HT

6: s15 ← s2 + (s14 + s10)(s4 + s1) + s11 + s13, s16 ← s14s8 + s7 . 2M

7: s17 ← s14 + f5, uc2 ←
√
s17, s18 ← s15 + f3, uc1 ←

√
s18 . 2SR

8: s19 ← s16 + f1, uc0 ←
√
s19, s20 ← s10s8 + s13 + s6 + 1 . 1M+1SR

9: s21 ← s10uc2, s22 ← s14 + s21, s23 ← s22uc1 . 2M

10: s24 ← s12 + (s10 + s22)(uc1 + uc2) + s21 + s23, s25 ← s24uc0 . 2M

11: vc2 ← s15 + s23 + (s10 + s24)(uc0 + uc2) + s21 + s25 . 1M

12: s26 ← TR(uc1(uc2(s17 + f5) + v2
c2 + uc0)) . 2M+1S+1TR

13: if s26 = 1 then

14: s20 ← s20 + 1, s27 ← s10
√
s8, s16 ← s16 + s227 . 1M+1S+1SR

15: uc2 ← uc2 + s10, s28 ← s10
√
s1, uc1 ← uc1 + s28 . 1M+1SR

16: uc0 ← uc0 + s27, s21 ← s21 + s9, s23 ← s23 + s22s28 . 1M

17: s24 ← s24 + s10(s22 + s28), s25 ← s24uc0 . 2M

18: vc2 ← s15 + s228 + s23 + (s10 + s24)(uc0 + uc2) + s21 + s25 . 1M+1S

19: end if

20: vc1 ← s20 + (s24 + s22)(uc0 + uc1) + s23 + s25, vc0 ← s16 + s25 . 1M

21: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 1I+25M+4S+7SR+1HT+1TR

We have a worst-case cost of 1I+25M+4S+7SR+1HT+1TR, which compares
very well with the doubling cost of 1I+44M+6S of [12].

However, the conditional block of lines 13 to 19 is only used when the initial
“choice” of the root of z2 + z + s5 = 0 (i.e. HT(s5) rather than HT(s5) + 1) is
incorrect and the variables computed afterwards must be corrected. This means
that the 6M+2S+2SR associated to that correction in the conditional block will
only be needed half of the time (on average), and the average cost of the halving
operation becomes 1I+22M+3S+6SR+1HT+1TR.
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4.3. Type IIa: h(x) = x2 + x + 1. According to Section 2.4, curves of Type IIa
are of the form

(5) C : y2 + (x2 + x+ 1)y = f7x
7 + f5x

5 + f4x
4 + f1x+ f0,

where f4 ∈ F2. The Picard group of these curves has precisely one divisor class of
order 2, which is of the form [h, vh] = [x2 + x+ 1, vh].

Theorem 4.2. Let Da = [ua, va] be a divisor class in Pic0
C(Fq). If deg(ua) = 3,

then Da can be halved if and only if TR(f7ua0+f4+ua2(f7(ua1+u2
a2)+f5+f7)) = 0.

If deg(ua) = 2, then Da can be halved if and only if TR(ua1(f7(u2
a1 + ua0) + f5 +

f7)) = 0. If deg(ua) = 1, then Da can be halved if and only if TR(f4 + ua0(f7u2
a0 +

f5 + f7)) = 0.

Proof. We use the same approach as in Theorem 4.1. Note that some of the formulas
require solving two quadratic equations. In those cases, it is easy to verify that
changing the root of the first quadratic equation changes the trace of the constant
term of the second quadratic equation by 1, so only one of the two roots of the first
quadratic equation allows us to compute an Fq-rational preimage.

Corollary 2. The Picard group of the curve C given by (5) has order 2m, where
m is odd, if and only if TR(f7) 6= TR(f5).

Proof. The Picard group has exactly one divisor class of order 2, namely [x2 + x+
1, vh]. The order of the Picard group is divisible by 4 if and only if [x2+x+1, vh] can
be halved. From Theorem 4.2, this is possible if and only if TR(f5 +f7) = 0 and we
find that Pic0

C(Fq) has a divisor class of order 4 if and only if TR(f7) = TR(f5).

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 −Dc2 = [x2 + x+ 1, vh] = Dc2 −Dc1 , i.e. the difference of two preimages
is the unique divisor class of order 2. This observation allows us to distinguish the
different special cases.

Remark 2. Let Da = [ua, va] be a divisor class in Pic0
C() that can be halved and

Dc = [uc, vc] = [12 ]Da its preimage (under the doubling) of odd order.
(1a) If deg(ua) = 3 and v2

a2+va2+ua2(f5+ua1f7+u2
a2f7)+

√
ua2f7+f4+ua0f7 6= 0,

then deg(uc) = 3 and we are in case HLV33.
(1b) If deg(ua) = 3 and v2

a2+va2+ua2(f5+ua1f7+u2
a2f7)+

√
ua2f7+f4+ua0f7 = 0,

then deg(uc) = 2 or 3 and we are in case HLV32/33.
(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23.
(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 (with uc2 = uc1 = uc0 + 1

in the second case) and we are in case HLV21/23.
(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.

Algorithm 14 (HLV33, h(x) = x2 + x+ 1, f(x) = f7x
7 + f5x

5 + f4x
4 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← ua2f7, s1 ←
√
s0, s2 ← (s1 + f5)f−1

7 + ua1 . 2M+1SR

2: s3 ← s1ua2 + va2 + 1, s4 ← s1ua1 + va1 + 1, s5 ← s1ua0 + va0 + 1 . 3M

3: s6 ← s2s0, s7 ← (s6 + s23 + s3 + s1 + f4)f−1
7 + ua0, s8 ← s−1

7 . 1I+2M+1S
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4: s9 ← (s7s0 + s4 + s3 + s1)f−1
7 + s2ua1, s10 ← f7s7, s11 ← HT(s10) . 4M+1HT

5: s12 ← s11s8, s13 ← (f7s2 + s1 + f5 + s12)s7, s14 ← TR(s13) . 3M+1TR

6: if s14 = 1 then

7: s11 ← s11 + 1, s12 ← s12 + s8, s13 ← s13 + 1

8: end if

9: s15 ← HT(s13), s16 ← s15s8, s17 ← s12s2 + s1 . 2M+1HT

10: s18 ← s16s2 + s3 + 1 + s11, s19 ← s12s9 + s4 + 1 + s15 . 2M

11: s20 ← (s12 + s8 + f7)f−2
7 , s21 ← (s17 + s16 + s12 + f5)s20 . 2M

12: uc2 ←
√
s21, s22 ← (s19 + s18 + s17)s20, uc1 ←

√
s22 . 1M+2SR

13: s24 ← (s23 + s19 + f1)s20, uc0 ←
√
s24 . 1M+1SR

14: s25 ← TR(uc0f7 + f4 + uc2(f5 + f7(uc1 + s21 + 1))) . 3M+1TR

15: if s25 = 1 then

16: s16 ← s16 + s8, s26 ← s8s2, s18 ← s18 + s26, s19 ← s19 + 1 . 1M

17: s27 ← s8s9, s23 ← s23 + s27, uc0 ← uc0 +
√

(s27 + 1)s20 . 2M+1SR

18: uc2 ← uc2 +
√
s8s20, uc1 ← uc1 +

√
(s26 + 1)s20 . 2M+2SR

19: end if

20: s28 ← s12uc2, s29 ← s16 + s28, s30 ← s29uc1 . 2M

21: s31 ← s17 + (s12 + s29)(uc2 + uc1) + s28 + s30, s32 ← s31uc0 . 2M

22: vc0 ← s23 + s32, vc1 ← s19 + (s29 + s31)(uc1 + uc0) + s30 + s32 . 1M

23: vc2 ← s18 + (s12 + s31)(uc2 + uc0) + s28 + s32 + s30 . 1M

24: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 1I+36M+1S+7SR+2HT+2TR

We note that in these formulas a division by s12 +f7 would normally be required
to compute s21, s22 and s24. However, s12 is a root of s7z2 + z + f7 = 0 (since
s12 = s11/s7), so s7(s12+f7)(s12+f7+1/s7) = s7s

2
12+s7f2

7 +s12+f7 = s7f
2
7 . We can

therefore replace divisions by s12 + f7 with multiplications by (s12 + f7 + 1/s7)f2
7 =

s20, replacing the inverse by a single multiplication.
We therefore have a worst-case cost of 1I+36M+1S+7SR+2HT+2TR, which

compares very well with the doubling cost of 1I+52M+8S of [12].
Conditional line 7 has very little impact on the overall cost, but the conditional

block of lines 15 to 19 has a noticeable cost. However, it is only used when the
initial “choice” of the root of z2 + z + s13 = 0 (i.e. HT(s13) rather than HT(s13) +
1) is incorrect and the variables computed afterwards must be corrected. This
means that the cost of 5M+3SR associated to that correction will only be needed
half of the time (on average). The average cost of the halving operation becomes
1I+33.5M+1S+5.5SR+2HT+2TR.

4.4. Type Ia: h(x) = x3 + x+ h0 irreducible. According to Section 2.4, curves
of Type Ia are of the form

(6) C : y2 + (x3 + x+ h0)y = f7x
7 + x6 + f2x

2 + f1x+ f0,
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where x3 + x + h0 is irreducible over Fq and f6 ∈ F2. The Picard group of these
curves has precisely one divisor class of order 2, which is of the form [h, vh] =
[x3 + x+ h0, vh].

Proposition 2. If the polynomial x3 + x + h0 is irreducible over Fq, then the
equation x4 + x2 + h0x+ a = 0 has exactly one root in Fq for each a ∈ Fq.

Proof. Since x4 and x2 act linearly in fields of characteristic 2, the operator T (x) =
x4 + x2 + h0x is linear. We also note that the roots of T (x) = 0 are 0, ζ1, ζ2 and
ζ3, where the ζi are the roots of x3 + x + h0 = 0 in Fq3 \ Fq (since x3 + x + h0

is irreducible). Because of this, for any a ∈ Fq there cannot exist more than one
Fq-rational root, otherwise we would have two Fq-rational roots of T (x) = 0. To
each element α ∈ Fq we can associate a polynomial of the form x4 + x2 + h0x+ a,
namely with a = T (α), all of which have exactly one Fq-rational root.

Note that T (x) = x4 +x2 +h0x being a linear operator also allows us to compute
the Fq-rational root. We first compute the images of T (ei) for every ei in the
basis used to represent field elements, which gives us a system of linear equations
(that can be used to describe the image of every field element). By inverting this
system, we can precompute the roots xi of x4 + x2 + h0x + ei = 0. For any
given a ∈ Fq, a =

∑n−1
i=0 aiei (with ai ∈ F2), we can then compute the root xa of

x4 + x2 + h0x+ a = 0 as xa =
∑n−1

i=0 aixi. With a little more work (computing the
roots for all blocks of w bits), it becomes possible to compute roots of the quartic
in time QR at least as fast as a multiplication. In fact, this method is equivalent to
what is used to compute half-traces, so QR ≈ HT ≤ M.

Remark 3. In the case where h0 = 1, we can express the root of x4 +x2 +x+a = 0
as the “two-third-trace” of a: if n ≡ 1 mod 3, we let xa = TR(a) −

∑n−4
3

i=0 a23i+1
,

and if n ≡ 2 mod 3, we let xa = TR(a)−
∑n−2

3
i=0 a23i

.

Theorem 4.3. Let Da = [ua, va] be a divisor class in Pic0
C(Fq). If deg(ua) = 3,

then Da can be halved if and only if TR(f7ua2 + f6) = 0. If deg(ua) = 2, then Da

can be halved if and only if TR(f7ua1) = 0. If deg(ua) = 1, then Da can be halved
if and only if TR(f7ua0 + f6) = 0.

Proof. As in Theorem 4.1.

Corollary 3. The Picard group of the curve C over Fq given by (6) has order 2m,
where m is odd, if and only if f6 = 1.

Proof. The Picard group has exactly one divisor class of order 2, namely [x3 + x+
h0, vh]. The order of the Picard group is divisible by 4 if and only if [x3 +x+h0, vh]
can be halved. From Theorem 4.3, this is possible if and only if TR(f6) = 0. Since
f6 ∈ F2, we find that Pic0

C() has a divisor class of order 4 if and only if f6 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 −Dc2 = [x3 +x+h0, vh] = Dc2 −Dc1 , i.e. the difference of two preimages
is the unique divisor class of order 2. This observation allows us to distinguish the
different special cases.

Remark 4. Let Da = [ua, va] be a divisor class in Pic0
C(Fq) that can be halved

and Dc = [uc, vc] = [ 12 ]Da its preimage (under the doubling) of odd order.
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(1a) If deg(ua) = 3 and

(1 + ua1)(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))

+(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))2

+ua1 + (1 + ua2f7)(1 + u2
a1) 6= 0,

then deg(uc) = 3 and we are in case HLV33.
(1b) If deg(ua) = 3 and

(1 + ua1)(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))

+(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))2

+ua1 + (1 + ua2f7)(1 + u2
a1) = 0,

then deg(uc) = 2 or 3 and we are in case HLV32/33.
(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23.
(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 and we are in case

HLV21/23.
(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.

We obtain the following halving formulas:

Algorithm 15 (HLV33, h(x) = x3 + x+ h0 irreducible, f(x) = f7x
7 + x6 + f2x

2 +
f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← HT(f7ua2 + 1), s1 ← va2 + ua2(s0 + 1) . 2M+1HT

2: s2 ← va1 + 1 + ua1(s0 + 1), s3 ← va0 + h0 + ua0(s0 + 1) . 2M

3: s4 ← s1f
−1
7 + ua1, s5 ← (s2 + s0 + s21)f−1

7 + ua0 + s4ua2 . 3M+1S

4: s6 ← (s1 + (s4 + 1)f7)s5 + (s5f7)2, s7 ← QR(s6) . 3M+1S+1QR

5: s8 ← s27, s9 ← s8s5, s10 ← s−1
9 , s11 ← s10s8, s12 ← s10s

2
5 . 1I+3M+2S

6: s13 ← s7s11, s14 ← s213s5 + f7, s15 ← (s4 + 1)s14 + (h0 + s5)s13 + s1 . 4M+1S

7: s16 ← s12s15, s17 ← TR(s16f2
7 ) . 2M+1TR

8: if s17 = 0 then

9: s0 ← s0 + 1, s1 ← s1 + ua2, s2 ← s2 + ua1, s3 ← s3 + ua0

10: s4 ← s4 + ua2f
−1
7 , s5 ← s5 + (ua1 + 1)f−1

7 . 2M

11: s6 ← (s1 + (s4 + 1)f7)s5 + (s5f7)2, s7 ← QR(s6) . 3M+1S+1QR

12: s8 ← s27, s9 ← s8s5, s10 ← s−1
9 , s11 ← s10s8 . 1I+2M+1S

13: s12 ← s10s
2
5, s13 ← s7s11, s14 ← s213s5 + f7 . 3M+2S

14: s15 ← (s4 + 1)s14 + (h0 + s5)s13 + s1, s16 ← s12s15 . 3M

15: end if

16: s18 ← (s3 + s1 + s0h0)f−1
7 + s4ua1 + s5ua2, s19 ← s13s4 . 5M

17: s20 ← s0 + 1 + s19, s21 ← (s14 + s13)(s5 + s4), s22 ← s14s5 . 2M

18: s23 ← s1 + s19 + s21 + s22, s24 ← s2 + 1 + s13s18 + s22 . 1M
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19: s25 ← h0 + s3 + s14s18, s26 ← (s23 + s20h0 + s25)s12 . 3M

20: s27 ← (f1 + s24h0 + s25)s12, uc2 ←
√
s16, uc1 ←

√
s26 . 2M+2SR

21: uc0 ←
√
s27, s28 ← s13uc2, s29 ← s14 + s28, s30 ← s29uc1 . 2M+1SR

22: s31 ← s20 + (s13 + s29)(uc2 + uc1) + s28 + s30, s32 ← s31uc0 . 2M

23: vc0 ← s25 + s32, vc1 ← s24 + (s29 + s31)(uc1 + uc0) + s30 + s32 . 1M

24: vc2 ← s23 + (s13 + s31)(uc2 + uc0) + s28 + s32 + s30 . 1M

25: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 2I+51M+9S+3SR+1TR+1HT+2QR

We note that in these formulas a division by s14 +f7 would normally be required
to compute s16, s26 and s27. However, s14 + f7 = s213s5, which we can compute as
s5/(s13s5)2. Since s13 = s7/s5, 1/(s13s5) = 1/s7 and we can combine this inverse
with the computation of 1/s5. As a result, we can compute both inverses using only
1I+3M+1S.

We therefore have a worst-case cost of 2I+49M+9S+3SR+1HT+1TR+2QR,
which compares well with the doubling cost of 1I+63M+9S of Guyot, Kaveh and
Patankar [12], as long as inversion costs are not too high.

However, the conditional block of lines 10 to 17 is only used when the initial
“choice” for the root of z2 + z+ua2 + 1 = 0 (i.e. HT(ua2 + 1) rather than HT(ua2 +
1) + 1) is incorrect and the variables computed afterwards must be corrected. This
means that the 1I+13M+4S+1QR associated to that correction will only be needed
half of the time (on average). The average cost of the halving operation becomes
1.5I+42.5M+7S+3SR+1HT+1TR+1.5QR.

Remark 5. There is another approach to “optimise” the formulas, limiting our-
selves to no more than one inversion per halving. The idea consists of doing the
computations for both roots of z2+z+ua2+1 = 0 together until the computations of
the inverses, at which points the two inverses can be combined into one using Mont-
gomery’s trick (doing both in 1I+3M), after which we can use the normal branching
approach. In this way, we get a worst-case cost of 1I+52M+9S+3SR+1HT+1TR
+2QR, from which we expect to save 7M+2S when the first choice of the root is
correct (half of the time). The final cost increases when an inversion costs less than
12M+2S+1QR, making this approach unlikely to be useful with many implemen-
tations of the field arithmetic (for field sizes used on genus-3 curves at standard
cryptographic security levels).

4.5. Discussion of the halving approach. To obtain the formulas in this sec-
tion, we inverted Cantor’s doubling algorithm rather than inverting the correspond-
ing explicit formulas. Even though we used the general algorithm rather than the
highly optimised version to obtain our formulas, we obtained operations that are
more efficient.

At first glance, this could seem contradictory. After all, one of the main meth-
ods used in explicit formulas to produce such savings in comparison with Cantor’s
algorithm is through the merging of the composition and the first reduction step.
This merging is completely ignored in our approach, but the resulting formulas are
still faster.

At the same time, the halving formulas must include the cost coming from choos-
ing the “wrong” roots of quadratic equations, which naturally increases as the
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quadratic equation is encountered earlier in the formula (since the condition to de-
termine the “correct root” comes from whether or not the computed preimage can
be halved again). As a consequence, one would expect the correction cost to in-
crease as the degree of h also does, and in fact this is more or less what we observe
(h = x2 + x+ 1 seems to be an exception to this rule of thumb). This means that
the halving formulas get a higher penalty for selecting the correct preimage when
the degree of h increases, and we do see this very clearly for the curves with h
irreducible of degree 3.

Nevertheless, the absolute saving when comparing with the doubling seems to
remain almost constant between the different curve types. In fact these apparent
discrepancies come from the inherent difference between doubling and halving.

In the doubling, even with optimised explicit formulas, the composition step
requires the computation of h−1 modulo ua, or at least its almost-inverse, after
which the reduction steps are relatively simple and straightforward. In fact, simply
looking at the distribution of the cost in the different steps of the algorithm makes
it quite clear that the composition, and in particular the computation of the almost-
inverse, is one of the dominant factors.

For the halving, we work our way backwards through the reductions steps until
we obtain [u0, v0]. In general, the cost of an “un-reduction” step may be higher
than for the corresponding reduction step, but this increase is usually small. Once
[u0, v0] is known, computing uc (the first polynomial of the output) only requires
computing the square-root of u0, while vc is obtained by reducing v0 modulo uc.

These last two operations are quite inexpensive, requiring a total of 6M and 3SR,
no matter what form the curve has. In comparison, the composition step, even when
merged with the first reduction, requires the computation of h−1 modulo ua (or an
almost-inverse), which becomes much more costly as the degree of h increases. The
savings obtained by switching from almost-inverse to modular reduction (from dou-
bling to halving) are therefore much greater when h becomes more complicated, and
easily compensate for any of the “inconveniences” of halving that we just described.

This also explains why the costs of doubling and halving are essentially identical
when h = 1: in that case, h−1 comes for free and the optimised doubling does not
merge the composition and first reduction, making doubling and halving perfect
mirror images of each other.

5. Conclusion

We have investigated doubling and halving of divisor classes of hyperelliptic
curves of genus 3 over binary fields. In case h(x) = 1 we get best performance for
both doubling and halving of a divisor class. In this “optimal performance” case
we provide halving formulas that are as efficient as the appropriate doubling ones.
Previously, explicit doubling formulas were known only for the most frequent case.
We extended this by adding explicit doubling formulas for all special cases, and also
halving formulas for all possible cases. This allows a complete implementation of a
DLP-based cryptosystem using genus 3 curves.

For three further (and more general) classes of genus 3 curves we provide halving
formulas that are noticeable faster than the associated doubling ones; We achieve
a speed-up of 10 to 20 field multiplications in each case.

Those explicit formulas were found by a new method. We did not invert the
doubling formulas to get the halving ones, but we reversed the combination and the
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reduction step of Cantor’s algorithm. This turned out to be a better way to get
more efficient operations.

To our knowledge, no explicit halving formulas for genus 3 curves have been
available until now. Thus, this paper can be considered the first result on efficient
halving on the divisor class group of genus 3 curves over finite fields of charac-
teristic 2. As for the doubling case there are only formulas for the most frequent
case published so far. In the present paper we extended this by all the missing
special cases, where the first polynomial u(x) in the Mumford representation is not
of degree 3.
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Extended Appendix of the Article

“Efficient Halving for Genus 3 Curves over Binary Fields”

by

Peter Birkner and Nicolas Thériault

Appendix A. Addition with f7 6= 1

Most papers dealing with genus 3 group operations assume that curve isomor-
phisms are used to force f7 (the leading coefficient of f) to be 1, i.e. that f is monic.
Since f is of degree 7, we still assume that f7 6= 0 (otherwise the curve would not
have genus 3). In Sections 4.3 and 4.4, we preferred to use the curve isomorphisms
to force h1 = 1, which allowed us to reduce the cost of the halving operation (since
we have fewer multiplications by f7 than we would have had by h1 with the more
standard curve simplification). In fact, those two choices (forcing h1 = 1 and forcing
f7 = 1) are really two sides of the same coin when h is irreducible of degree 2 or 3.

However, a natural question to arise from this choice is: What will be the impact
on the general group addition? Note that we will ignore the (possibly greater)
impact on the special cases of addition since those are required for only O(1/q) of
all group additions, and therefore have very little influence on the average cost of a
scalar multiplication.

To show this, we will use the notation of Guyot, Kaveh and Patankar [12], since
they give the most complete description of the general addition depending on the
form of the curve equation. Note that the idea of Avanzi, Thériault and Wang [4]
of replacing the resultant with Cramer’s rule for the computation of the almost-
inverse also applies here, but this computation is independent on the form of the
curve equation, so we will ignore it’s impact in the following discussion.

Looking at the addition formula, we see that h1 appears only in one multiplica-
tion, during the computation of

(7)
f + vTh+ v2

T

uT

(this is not the only place in the formula where h1 plays a role, but the other
occurrences are all in additions). On the other hand, if we allow f7 6= 1, it shows
in two places during the addition:

(1) in the computation of s−1
2

[
f+vAh+v2

A

uAuA

]
, which becomes (s−1

2 f7)x + s−1
2 (f6 +

a2 + b2), which requires one more multiplication.
(2) in the computation of f+vT h+v2

T

uT
. Here the simplest (and most cost-efficient)

strategy is to compute the denominator f+vTh+v2
T , make it monic and then

do the division with uT . As usual we are only interested in the part of the
denominator of degree at least 4 (since the remainder of the division is known
to be 0). The coefficients of x6, x5 and x4 are computed in the same way as
when f is monic, and we simply have to multiply these by f−1

7 (precomputed)
to make the denominator monic (hence an increase of three multiplications.

Taking into account that we saved one multiplication by h1, we therefore have a
total increase in cost of 3M for the general group addition.
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Since there are far fewer additions than halvings (or doublings) in a scalar mul-
tiplication, this tradeoff is easily a good choice. For example, using a NAF we have
on average three halvings for each addition, so our choice of forcing h1 = 1 instead
of f7 = 1 pays off the moment we can save one (or more) multiplication in the
halving, which is obviously the case.

Appendix B. Special Case, type III

Algorithm 16 (HLV32/33, h(x) = x, f(x) = x7 + f5x
5 + f3x

3 + x2 + f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x2 + uc1x+ uc0, vc1x+ vc0] or
[x3 + uc1x

2 + uc0x, vc2x
2 + vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← ua1 + f5, s2 ← s0ua2 + va2, s3 ← s1ua2 . 2M+1SR

2: s4 ← s0 + s22 + s3 + ua0, s5 ← va1 + 1 + s0ua1, s6 ← va0 + ua0s0 . 2M+1S

3: s7 ← s2 + f3 + s1(f5 + s1), uc1 ←
√
s1, uc0 ←

√
s7, s8 ← uc1s0 . 2M+2SR

4: s9 ← s2 + s8, s10 ← uc0s9, vc0 ← s6 + s10 . 1M

5: vc1 ← s5 + (uc0 + uc1)(s0 + s9) + s8 + s10 . 1M

6: s11 ← (uc0 + s1)(uc0 + f5) + s21 + f3 . 1M+1S

7: if TR(uc1s11) = 0 then . 1M+1TR

8: return [x2 + uc1x+ uc0, vc1x+ vc0]

9: else

10: s12 ← u−1
c0 , vc2 ← (

√
f0 + vc0)s12 . 1I+1M

11: vc1 ← vc1 + vc2uc1, vc0 ← vc0 + vc2uc0 . 2M

12: return [x3 + uc1x
2 + uc0x, vc2x

2 + vc1x+ vc0]

13: end if

14: . 1I+13M+2S+3SR+1TR

Algorithm 17 (HLV21/22, h(x) = x, f(x) = x7 + f5x
5 + f3x

3 + x2 + f0)

Input: D = [x2 + ua0, va1x+ va0]

Output: [ 12 ]D = [x+ uc0, vc0] or
[x2 + uc0x, vc1x+ vc0]

1: uc0 ←
√
ua0, vc0 ← va0 + va1uc0, s0← ua0(ua0 + f5) + f3 . 2M+1SR

2: if TR(uc0s0) = 1 then . 1M+1TR

3: return [x+ uc0, vc0]

4: else

5: s1 ← u−1
c0 , vc1 ← (

√
f0 + vc0)s1, vc0 ← vc0 + vc1uc0 . 1I+2M

6: return [x2 + uc0x, vc1x+ vc0]

7: end if

8: . 1I+5M+1SR+1TR
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Algorithm 18 (HLV23, h(x) = x, f(x) = x7 + f5x
5 + f3x

3 + x2 + f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [ 12 ]D = [x+uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← u−1
a1 , s1 ←

√
s0, s2 ← s1 + f5, s3 ← s1

√
s2 + ua0 . 1I+1M+2SR

2: s4 ← s3 + s0(s2ua0 + f3), s5 ← HT(s4u2
a1), s6 ← s5s0 . 4M+1S+1HT

3: s7 ← s6 + f3, s8 ← u2
a1, s9 ← s6 + s1s8 . 1M+1S

4: s10 ← va1 + 1 + s3(ua0 + u2
a1) + ua1s9 . 2M+1S

5: s11 ← va0 + ua0(s9 + s3ua1) + s1u
2
a0, s12 ← s11, uc2 ←

√
s2 . 3M+1S+1SR

6: uc1 ←
√
s7, uc0 ←

√
s12, s13 ← s3 + s1uc2, s14 ← s1uc1 . 2M+2SR

7: vc2 ← s6 + s13uc2 + s14, s15 ← uc0 + v2
c2 + uc2(s2 + f5) . 2M+1S

8: if TR(uc1s15) = 1 then . 1M+1TR

9: s6 ← s6 + s0, s7 ← s7 + s0, s9 ← s9 + s0, s10 ← s10 + 1

10: s16 ← ua0s0, s11 ← s11 + s16, s12 ← s12 + s16, s17 ←
√
s0 . 1M+1SR

11: uc1 ← uc1 + s17, uc0 ← uc0 +
√
s16, s18 ← s1s17 . 1M+1SR

12: s14 ← s14 + s18, vc2 ← vc2 + s0 + s18

13: end if

14: s15 ← s13uc0, vc1 ← s10 + (s13 + s1)(uc1 + uc0) + s14 + s15 . 2M

15: vc0 ← s11 + s15

16: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

17: . 1I+20M+4S+7SR+1TR+1HT

Algorithm 19 (HLV13, h(x) = x, f(x) = x7 + f5x
5 + f3x

3 + x2 + f0)

Input: D = [x+ ua0, va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ←
√
ua0, s1 ← f5, s2 ←

√
s0 + s1ua0, s3 ← s2 + f3 . 1M+2SR

2: s4 ← HT(1 + s3ua0), s5 ← va0 + ua0 + ua0s4 + u2
a0(s2 + s0ua0) . 4M+1S+1HT

3: s6 ← s5, uc2 ←
√
s1, uc1 ←

√
s3, vc2 ← s2 + s0uc2 . 1M+2SR

4: uc0 ←
√
s6, s7 ← uc0 + v2

c2 + uc2(s1 + f5) . 1M+1S+1SR

5: if TR(uc1s7) = 1 then . 1TR

6: s4 ← s4 + 1, s5 ← s5 + ua0, s6 ← s6 + ua0, uc0 ← uc0 + s0

7: end if

8: vc1 ← s4 + s0uc1, vc0 ← s5 + s0uc0 . 2M

9: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

10: . 9M+2S+5SR+1TR+1HT
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Appendix C. Special Case, type IIa

Algorithm 20 (HLV32/33, h(x) = x2 +x+1, f(x) = f7x
7 +f5x5 +f4x4 +f1x+f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x2 + uc1x+ uc0, vc1x+ vc0] or
[x3 + uc2x

2 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: s0 ← ua2f7, s1 ←
√
s0, s2 ← (s1 + f5)f−1

7 + ua1 . 2M+1SR

2: s3 ← s1ua2 + va2 + 1, s4 ← s1ua1 + va1 + 1, s5 ← s1ua0 + va0 + 1 . 3M

3: s6 ← s2s0, s7 ← (s6 + s23 + s3 + s1 + f4)f−1
7 + ua0, s8 ← s1 . 2M+1S

4: s9 ← s2, s10 ← s3, s11 ← s4, s12 ← s5

5: s13 ← (s11 + s8 + s10 + s9(f5 + s8))f−1
7 + s29, uc1 ←

√
s9 . 2M+1S+1SR

6: uc0 ←
√
s13, s14 ← f7(s9 + uc0) + f5 + f7 . 1M+1SR

7: if TR(uc1s14) = 0 then . 1M+1TR

8: s15 ← uc1s8, s16 ← s10 + s15, s17 ← uc0s16 . 2M

9: vc0 ← s12 + s17, vc1 ← s11 + (uc0 + uc1)(s8 + s16) + s15 + s17 . 2M

10: return [x2 + uc1x+ uc0, vc1x+ vc0]

11: else

12: s18 ← s8, s19 ← s10, s20 ← s11, s21 ← s12, s22 ← s9

13: s23 ← s22ua1 + (s20 + s19 + s18)f−1
7 , s24 ← f7 . 2M

14: s8 ← s18 + s24s22, s25 ← s24 + s8 + f5 . 1M

15: s11 ← s20 + 1 + s24s23, s10 ← s11 + s8, s12 ← f1 + s11 . 1M

16: s15 ← s225, s26 ← s22 + s15f
−2
7 , s30 ← s28 . 1M+2S

17: s9 ← s23 + s26s22 + f−1
7 + (s30 + s25)f−2

7 , s16 ← s30 + s25 . 2M

18: s13 ← s226s22 + s26f
−1
7 + (f4 + s25 + s210 + s9s15 + s26s16 + s11)f−2

7 . 5M+2S

19: uc2 ←
√
s26, uc1 ←

√
s9, uc0 ←

√
s13, s17 ← s24uc2 . 1M+3SR

20: s27 ← (s25 + s17)uc1, s28 ← s8 + (s24 + s25 + s17)(uc1 +uc2) + s17 + s27 . 2M

21: s29 ← s28uc0, vc2 ← s10 + s27 + (s24 + s28)(uc0 + uc2) + s17 + s29 . 2M

22: vc1 ← s11 + (s28 + s25 + s17)(uc0 + uc1) + s27 + s29, vc0 ← s12 + s29 . 1M

23: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

24: end if

25: . 29M+6S+6SR+1TR
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Algorithm 21 (HLV21/23, h(x) = x2 +x+1, f(x) = f7x
7 +f5x5 +f4x4 +f1x+f0)

Input: D = [x2 + ua0, va1x+ va0]

Output: [ 12 ]D = [x+ uc0, vc0] or
[x3 + uc2x

2 + uc2x+ uc0, vc2x
2 + vc1x+ vc0]

1: uc0 ←
√
ua0, vc0 ← va0 + va1uc0, s0 ← f4 + uc0(f7ua0 + f5 + f7) . 3M+1SR

2: if TR(s0) = 0 then . 1TR

3: return [x+ uc0, vc0]

4: else

5: uc2 ← uc0 + 1, s1 ← ua0 + uc0 + 1, s2 ← s−1
1 . 1I

6: s3 ←
√
f1 + f4 + f5 + f7, s4 ←

√
f1 + f4 + f0 + f7 . 2SR

7: vc2 ← (s4 + vc0 + uc0s3)s2, vc1 ← vc2 + s3, vc0 ← vc2 + s4 . 2M

8: return [x3 + uc2x
2 + uc2x+ uc0, vc2x

2 + vc1x+ vc0]

9: end if

10: . 1I+5M+3SR+1TR

Algorithm 22 (HLV23, h(x) = x2 + x+ 1, f(x) = f7x
7 + f5x

5 + f4x
4 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s1 ← u−1
a1 , s2 ← f7s1, s3 ←

√
s2, s4 ← u2

a1 . 1I+1M+1S+1SR

2: s5 ← (s3 + s2ua0)s4 + (f5 + s3)ua1, s6 ← HT(s5), s7 ← s6s1 . 4M+1HT

3: s8 ← (f5 + s3 + s7)f−1
7 , s9 ← s8s3, s10 ← s3s4 . 3M

4: s11 ← s6 + s9 + s29 + f4 + s3 + s10 + 1 . 1S

5: s12 ← s6 + s6ua0 + s8s
2
6, s13 ← s11s4 + (s6 + va1 + 1)ua1 + s12 . 4M+1S

6: if TR(s13) = 1 then . 1TR

7: s6 ← s6 + 1, s7 ← s7 + s1, s8 ← (f5 + s3 + s7)f−1
7 . 1M

8: s9 ← s8s3, s11 ← s6 + s9 + s29 + f4 + s3 + s10 + 1 . 1M+1S

9: s12 ← s6 + s6ua0 + s8s
2
6, s13 ← s11s4 + (s6 + va1 + 1)ua1 + s12 . 4M+1S

10: end if

11: s14 ← HT(s13), s15 ← s14s1 . 1M+1HT

12: s16 ← va1 + 1 + s14 + s7ua0 + ua1 + (s6 + s10)ua1 . 2M

13: s17 ← (s7 + s15 + s16)f−1
7 . 1M

14: s18 ← va0 + 1 + ua0 + ua0(s15 + s6 + s3(ua0 + s4)) . 2M
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15: s19 ← (f1 + s18 + s16)f−1
7 , uc2 ←

√
s8, uc1 ←

√
s17 . 1M+2SR

16: uc0 ←
√
s19, s20 ← f7uc0 + f4 + uc2(f7(uc1 + s8 + 1) + f5) . 3M+1SR

17: if TR(s20) = 1 then . 1TR

18: s14 ← s14 + 1, s15 ← s15 + s1, s16 ← s16 + 1

19: s17 ← (s7 + s15 + s16)f−1
7 , s18 ← s18 + ua0s1 . 2M

20: s19 ← (f1 + s18 + s16)f−1
7 , uc1 ←

√
s17, uc0 ←

√
s19 . 1M+2SR

21: end if

22: s21 ← s7 + s3uc2, s22 ← s3uc1, s23 ← s21uc0 . 3M

23: vc2 ← s15 + s21uc2 + s22, vc1 ← s16 + (s21 + s3)(uc0 + uc1) + s22 + s23 . 2M

24: vc0 ← s18 + s23

25: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

26: . 1I+36M+5S+6SR+2TR+2HT

Algorithm 23 (HLV13, h(x) = x2 + x+ 1, f(x) = f7x
7 + f5x

5 + f4x
4 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← f7ua0, s1 ←
√
s0, s2 ← (f5 + s1)f−1

7 , s3 ← f4 + s1 + s2s0 . 3M+1SR

2: s4 ← HT(s3), s5 ← u2
a0, s6 ← s5(1 + s4 + s1ua0) . 2M+1S+1HT

3: s7 ← s4 + va0 + 1 + ua0 + s6 + (s4 + s1)ua0 . 1M

4: if TR(s7) = 1 then . 1TR

5: s4 ← s4 + 1, s6 ← s6 + s5, s7 ← s7 + 1 + s5 + ua0

6: end if

7: s8 ← HT(s7), s9 ← va0 + 1 + ua0 + ua0s8 + s6 . 1M+1HT

8: s10 ← (s8 + s4 + s1)f−1
7 , s11 ← (f1 + s8 + s9)f−1

7 , uc2 ←
√
s2 . 2M+1SR

9: uc1 ←
√
s10, uc0 ←

√
s11 . 2SR

10: s12 ← f7uc0 + f4 + uc2(f7(uc1 + s2 + 1) + f5) . 3M

11: if TR(s12) = 1 then . 1TR

12: s8 ← s8 + 1, s9 ← s9 + ua0, s10 ← (s8 + s4 + s1)f−1
7 . 1M

13: s11 ← (f1 + s8 + s9)f−1
7 , uc1 ←

√
s10, uc0 ←

√
s11 . 1M+2SR

14: end if

15: vc2 ← s4 + s1uc2, vc1 ← s8 + s1uc1, vc0 ← s9 + s1uc0 . 3M

16: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

17: . 17M+1S+6SR+2TR+2HT
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Appendix D. Special Case, type Ia

Algorithm 24 (HLV32/33, h(x) = x3 +x+h0, f(x) = f7x
7 +x6 +f2x

2 +f1x+f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x2 + uc1x+ uc0, vc1x+ vc0] or
[x3 + uc2x

2 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: s0 ← HT(f7ua2 + 1), s1 ← va2 + ua2(s0 + 1) . 2M+1HT

2: s2 ← va1 + 1 + ua1(s0 + 1), s3 ← va0 + h0 + ua0(s0 + 1) . 2M

3: s4 ← s1f
−1
7 + ua1, s5 ← (s2 + s0 + s21)f−1

7 + ua0 + s4ua2 . 3M+1S

4: s6 ← (s1 + (s4 + 1)f7)s5 + (s5f7)2 . 3M+1S

5: if TR(s5) = 0 then . 1TR

6: s7 ← s0, s8 ← s1, s9 ← s2, s10 ← s3, s11 ← s4

7: else

8: s7 ← s0 + 1, s8 ← s1 + ua2, s9 ← s2 + ua1

9: s10 ← s3 + ua0, s11 ← s8f
−1
7 + ua1 . 1M

10: end if

11: uc1 ←
√
s11, s12 ← f7uc1 . 1M+1SR

12: if TR(s12) = 1 and ua1 = 1 then . 1TR

13: s7 ← s0 + 1, s8 ← s1 + ua2, s9 ← s2 + ua1, s10 ← s3 + ua0

14: s11 ← s8f
−1
7 + ua1, uc1 ←

√
s11, s12 ← f7uc1 . 2M+1SR

15: end if

16: if TR(s12) = 1 then . 1TR

17: if s5 6= 0 then

18: s0 ← s7, s1 ← s8, s2 ← s9, s3 ← s10, s4 ← s11, s5 ← 0

19: end if

20: s13 ← (s1 + s0h0 + s3)f−1
7 + s4ua1, s14 ← f7, s8 ← s1 + s14s4 . 4M

21: s10 ← s3 + h0 + s14s13, s15 ← (s8 + s14)h−1
0 . 2M

22: s7 ← s0 + 1 + s15s4, s9 ← s2 + 1 + s15s13, s12 ← s−1
15 , . 1I+2M

23: s16 ← s212, s17 ← s4 + s12 + s214s16 . 1M+2S

24: s11 ← s13 + s17s4 + s12 + (f6 + s7 + s27)s16 . 2M+1S

25: s18 ← s11s4 + s17s13 + (s9 + s7 + s28 + s14h0)s16, uc2 ←
√
s17 . 4M+1S+1SR
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26: uc1 ←
√
s11, uc0 ←

√
s18, s19 ← s15uc2, s20 ← s14 + s19 . 1M+2SR

27: s21 ← s20uc1, s22 ← s7 + (s15 + s20)(uc2 + uc1) + s19 + s21 . 2M

28: s23 ← s22uc0, vc0 ← s10 + s23 . 1M

29: vc1 ← s9 + (s20 + s22)(uc1 + uc0) + s21 + s23 . 1M

30: vc2 ← s8 + (s15 + s22)(uc2 + uc0) + s19 + s23 + s21 . 1M

31: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

32: else

33: s18 ← (s10 + s7h0 + s8 + s11s8)f−1
7 + s211, uc0 ←

√
s18 . 3M+1S+1SR

34: s24 ← uc1s7, s25 ← s8 + s24, s26 ← uc0s25, vc0 ← s10 + s26 . 2M

35: vc1 ← s9 + (uc0 + uc1)(s7 + s25) + s24 + s26 . 1M

36: return [x2 + uc1x+ uc0, vc1x+ vc0]

37: end if

38: . 1I+35M+5S+5SR+3TR+1HT

Algorithm 25 (HLV21/23, h(x) = x3 +x+h0, f(x) = f7x
7 +x6 +f2x

2 +f1x+f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [ 12 ]D = [x+ uc0, vc0] or
[x3 + uc21x

2 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: uc0 ←
√
ua0, vc0 ← va0 + va1uc0, s0 ← uc0f7 . 2M+1SR

2: if TR(s0) = 1 then . 1TR

3: return [x+ uc0, vc0]

4: else

5: s1 ← f7, s2 ← s1, s3 ← va0 + h0 + s1(ua0 + u2
a0) . 1M+1S

6: s4 ← (s3 + f1)h−1
0 , s5 ← (s3 + s2)h−1

0 . 2M

7: s6 ← ua0 + (s5 + f6 + s25)f−2
7 . 1M+1S

8: s7 ← s6ua0 + h0f
−1
7 + (s22 + s5 + s4)f−2

7 . 3M+1S

9: s8 ← s7ua0 + (s2h0 + f2 + s24 + s4)f−2
7 , uc2 ←

√
s6 . 3M+1S+1SR

10: uc1 ←
√
s7, uc0 ←

√
s8, s9 ← s5 + s1uc2, s10 ← s1uc1 . 2M+2SR

11: s11 ← s9uc0, vc2 ← s2 + s9uc2 + s10 . 2M

12: vc1 ← s4 + (s9 + s1)(uc0 + uc1) + s10 + s11, vc0 ← s3 + s11 . 1M

13: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

14: end if

15: . 17M+4S+4SR+1TR
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Algorithm 26 (HLV23, h(x) = x3 + x+ h0, f(x) = f7x
7 + x6 + f2x

2 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← u−1
a1 , s1 ← HT(f7ua1), s2 ← s1s0, s3 ← s22 . 1I+2M+1S+1HT

2: s4 ← s3ua0, s5 ← (f6 + s4)ua1, s6 ← u2
a1 . 2M+1S

3: s7 ← va1 + 1 + s1 + (f6 + s4 + 1 + s1)s6 . 1M

4: s8 ← s2ua0, s9 ← h0 + s8(ua0 + 1 + s6) . 2M

5: s10 ← s2 + s9 + va0 + (f6 + s4 + s3 + s2h0 + s7 + s25)ua1 . 2M+1S

6: s11 ← QR(s10ua1), s12 ← s11s0, s13 ← s11s12 + s11 + s5 + s2 . 3M+1QR

7: s14 ← (s2 + f7 + s0)f−2
7 , s15 ← (s2 + s13)s14 . 2M

8: uc2 ←
√
s15, s16 ← f7uc2 . 1M+1SR

9: if TR(s16) = 0 then . 1TR

10: s1 ← s1 + 1, s2 ← s2 + s0, s3 ← s3 + s20, s4 ← s3ua0 . 1M+1S

11: s5 ← (f6 + s4)ua1, s7 ← va1 + 1 + s1 + (f6 + s4 + 1 + s1)s6 . 2M

12: s8 ← s2ua0, s9 ← h0 + s8(ua0 + 1 + s6) . 2M

13: s10 ← s2 + s9 + va0 + (f6 + s4 + s3 + s2h0 + s7 + s25)ua1 . 2M+1S

14: s11 ← QR(s10ua1), s12 ← s11s0, s13 ← s11s12 + s11 + s5 + s2 . 3M+1QR

15: s14 ← (s2 + f7 + s0)f−2
7 , s15 ← (s2 + s13)s14, uc2 ←

√
s15 . 2M+1SR

16: end if

17: s17 ← s12ua0, s18 ← s211 + s17 + ua0 + s7 . 1M+1S

18: s19 ← va0 + s11s17 + s9 + ua0(s5 + ua1), s20 ← (s19 + s12h0 + s13)s14 . 4M

19: s21 ← (f1 + s18h0 + s19)s14, uc1 ←
√
s20, uc0 ←

√
s21 . 2M+2SR

20: s22 ← s12 + s2uc2, s23 ← s2uc1, s24 ← s22uc0 . 3M

21: vc2 ← s13 + s22uc2 + s23 . 1M

22: vc1 ← s18 + (s22 + s2)(uc0 + uc1) + s23 + s24, vc0 ← s19 + s24 . 1M

23: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

24: . 1I+39M+6S+4SR+1TR+1HT+2QR

Algorithm 27 (HLV13, h(x) = x3 + x+ h0, f(x) = f7x
7 + x6 + f2x

2 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← f6 + f7ua0, s1 ← HT(s0), s2 ← ua0s1, s3 ← u2
a0 . 2M+1S+1HT

2: s4 ← s2 + ua0 + va0 + h0 + (s2 + ua0)s3 . 1M

3: s5 ← f2 + s21 + s1 + s2h0 + s4ua0, s6 ← QR(s5) . 2M+1S+1QR

4: s7 ← s6f
−1
7 , uc2 ←

√
s7, s8 ← f7uc2 . 2M+1SR
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5: if TR(s8) = 0 then . 1TR

6: s1 ← s1 + 1, s2 ← s2 + ua0

7: s4 ← s2 + ua0 + va0 + h0 + (s2 + ua0)s3 . 1M

8: s5 ← s21 + s1 + f2 + s2h0 + s4ua0, s6 ← QR(s5) . 2M+1S+1QR

9: s7 ← s6f
−1
7 , uc2 ←

√
s7 . 1M+1SR

10: end if

11: s9 ← s26 + s1 + s6ua0, s10 ← ua0s
2
6 + s4, s11 ← (s10 + s1h0 + s6)f−1

7 . 4M+2S

12: s12 ← (f1 + s9h0 + s10)f−1
7 , uc1 ←

√
s11, vc2 ← s6 + s1uc2 . 3M+1SR

13: uc0 ←
√
s12, vc1 ← s9 + s1uc1, vc0 ← s10 + s1uc0 . 2M+1SR

14: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

15: . 20M+5S+4SR+1TR+1HT+2QR

Appendix E. Type IIc, h(x) = x2

From Section 2.4, these curves are of the form

(8) C : y2 + x2y = x7 + f5x
5 + f4x

4 + f1x+ f0,

with f4 ∈ F2. These curves have only one divisor class of order 2, which is of the
form [x,

√
f0].

Theorem E.1. Let Da = [ua, va] be a divisor class in Pic0
C(Fq). If deg(ua) = 3,

then Da can be halved if and only if (f4 + ua0 + ua2(ua1 + u2
a2 + f5)) = 0. If

deg(ua) = 2, then Da can be halved if and only if (ua1(u2
a1 + ua0 + f5)) = 0. If

deg(ua) = 1, then Da can be halved if and only if (f4 + ua0(u2
a0 + f5)) = 0.

Proof. As in Theorem 4.1.

Corollary 4. The Jacobian of the curve C given by (8) has order 2r, where r is
odd if and only if f4 = 1.

Proof. The Picard group of the curve C has exactly one divisor class of order 2,
namely [x,

√
f0]. The order of the Picard group is divisible by 4 if and only if [x,

√
f0]

can be halved. From Theorem E.1, this is possible if and only if TR(f4) = 0. Since
f4 ∈ F2 we find that C has a divisor class of order 4 if and only if f4 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 − Dc2 = [x,

√
f0] = Dc2 − Dc1 , i.e. the difference of two preimages is

the unique divisor class of order 2. This observation allows us to distinguish the
different special cases.

Remark 6. Let Da = [ua, va] be a divisor class in Pic0
C(Fq) that can be halved

and let Dc = [uc, vc] = [12 ]Da be its pre-image (under the doubling) of odd order.

(1a) If deg(ua) = 3 and

v2
a2 + va2 + f4 + ua0 +

√
ua2(ua2 + ua0) + ua2(f5 + ua1 + u2

a0) 6= 0,

then deg(uc) = 3 and we are in case HLV33.
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(1b) If deg(ua) = 3 and

v2
a2 + va2 + f4 + ua0 +

√
ua2(ua2 + ua0) + ua2(f5 + ua1 + u2

a0) = 0,

then deg(uc) = 2 or 3 (with uc0 = 0 in the second case) and we are in case
HLV32 or HLV33.

(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23.
(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 (with uc0 = 0 in the second

case) and we are in case HLV21 or HLV22.
(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.

Algorithm 28 (HLV33, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← s0 + f5 + ua1, s2 ← s1ua2 . 1M+1SR

2: s3 ← s0ua2 + va2 + 1, s4 ← s0ua1 + va1 . 2M

3: s5 ← s0ua0 + va0, s6 ← s2 + s23 + s3 + 1 + ua0 . 1M+1S

4: s7 ← s−1
6 , s8 ← s6ua2 + s4 + s1ua1, s9 ← HT(s6) . 1I+2M+1HT

5: s10 ← s9s7, s11 ← s10 + s7 + 1, s12 ← s0 + s10s1 . 2M

6: s13 ← (s12 + f5)s11, s14 ←
√
s1 + s13, s15 ← s10s14 . 2M+1SR

7: s16 ← s15s8, s17 ← s4 + (s15 + s10)(s8 + s6) + s9 + s16 . 2M

8: s18 ← s17s11, s19 ← f1s11, uc2 ←
√
s13, uc1 ←

√
s18 . 2M+2SR

9: uc0 ←
√
s19, s20 ← TR(uc0 + uc2(uc1 + s13 + f5)) . 1M+1SR+1TR

10: if s20 = 0 then

11: s9 ← s9 + 1, s10 ← s10 + s7, s12 ← s12 + s1s7 . 1M

12: s11 ← s11 + s7, s13 ← (s12 + f5)s11 . 1M

13: s14 ←
√
s1 + s13, s15 ← s10s14, s16 ← s15s8 . 2M+1SR

14: s17 ← s4 + (s15 + s10)(s8 + s6) + s9 + s16 . 1M

15: s18 ← s17s11, s19 ← f1s11, uc2 ←
√
s13 . 2M+1SR

16: uc1 ←
√
s18, uc0 ←

√
s19 . 2SR

17: end if

18: s21 ← s3 + 1 + s9 + s15s1, s22 ← s5 + s16, s23 ← s10uc2 . 2M

19: s24 ← s15 + s23, s25 ← s24uc1 . 1M

20: s26 ← s12 + (s10 + s24)(uc2 + uc1) + s23 + s25 . 1M

21: s27 ← s26uc0, vc0 ← s22 + s27 . 1M

22: vc1 ← s17 + (s24 + s26)(uc1 + uc0) + s25 + s27 . 1M

23: vc2 ← s21 + (s10 + s26)(uc2 + uc0) + s23 + s27 + s25 . 1M

24: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 1I+29M+1S+9SR+1TR+1HT

36



In this formula, we note that a division by s10 + 1 would normally be required
to compute s13, s18 and s19. However, s10 is a root of s6z2 + z + 1 = 0 (since
s10 = s9/s6), so s6(s10 + 1)(s10 + 1 + 1/s6) = s6s

2
10 + s6 + s10 + 1 = s6. We can

therefore replace divisions by s10 + 1 with multiplications by s10 + 1 + 1/s6 = s11,
giving us the second inverse (after 1/s6 is known) essentially for free.

We therefore have a worst-case cost of 1I+29M+1S+9SR+1HT+1TR. Note that
Guyot, Kaveh and Patankar [12] do not treat this doubling case separately from
the general deg(h) = 2, so they have a cost of 1I+52M+8S. However, it should be
remembered that this form of curve is much more special, and is much closer to the
case deg(h) = 1 in terms of the number of isomorphism classes.

The conditional lines 11 to 16 are only used when the initial “choice” for the root
of z2 +z+s6 = 0 (i.e. HT(s6) rather than HT(s6)+1) is incorrect and the variables
computed afterwards must be corrected. This means that the 7M+3SR associated
to that correction will only be needed half of the time (on average). The average
cost of the halving operation becomes 1I+25.13M+1S+7.13SR+1HT+1TR.

Algorithm 29 (HLV32/33, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x2 + uc1x+ uc0, vc1x+ vc0] or
[x3 + uc1x

2 + uc0x, vc2x
2 + vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← s0 + f5 + ua1, s2 ← s1ua2 . 1M+1SR

2: s3 ← s0ua2 + va2 + 1, s4 ← s0ua1 + va1, s5 ← s0ua0 + va0 . 3M

3: s6 ← s2 + s23 + s3 + 1 + ua0, s7 ← s0, s8 ← s1, s9 ← s3 . 1S

4: s10 ← s4, s11 ← s5, s12 ← s10 + s8(f5 + s7 + s8) . 1M

5: uc1 ←
√
s8, uc0 ←

√
s12, s13 ← uc1s7, s14 ← s9 + s13 . 1M+2SR

6: s15 ← uc0s14, vc0 ← s11 + s15 . 1M

7: vc1 ← s10 + (uc0 + uc1)(s7 + s14) + s13 + s15 . 1M

8: s16 ← s8 + uc0 + f5

9: if TR(uc1s16) = 0 then . 1M+1TR

10: return [x2 + uc1x+ uc0, vc1x+ vc0] . 9M+1S+3SR+1TR

11: else

12: vc2 ← (
√
f0 + vc0)u−1

c0 , vc1 ← vc1 + vc2uc1 . 1I+1M+1SR

13: vc0 ← vc0 + vc2uc0 . 1M

14: return [x3 + uc1x
2 + uc0x, vc2x

2 + vc1x+ vc0] . 1I+10M+1S+4SR

15: end if

Algorithm 30 (HLV21/22, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x2 + ua0, va1x+ va0]

Output: [ 12 ]D = [x+ uc0, vc0] or [x2 + uc0x, vc1x+ vc0]

1: uc0 ←
√
ua0, vc0 ← va0 + va1uc0, s0 ← ua0 + f5 . 1M+1SR

2: if TR(uc0s0) = 1 then . 1M+1TR
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3: return [x+ uc0, vc0] . 2M+1SR+1TR

4: else

5: vc1 ← (
√
f0 + vc0)u−1

c0 , vc0 ← vc0 + vc1uc0 . 1I+1M+1SR

6: return [x2 + uc0x, vc1x+ vc0] . 1I+2M+2SR

7: end if

Algorithm 31 (HLV23, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← u−1
a1 , s1 ←

√
s0, s2 ← f1, s3 ← ua0s0 . 1I+1M+1SR

2: s4 ←
√
f0 + s2s3, s5 ← ua0 + f5 +

√
ua1, s6 ← HT(ua1s5) . 2M+2SR+1HT

3: s7 ← s0s6, s8 ← s7 + f5, s9 ← u2
a0, s10 ← s1s9 + s4 + va0 . 2M+1S

4: s11 ← s9s7 + ua0va1 + s2 + s10ua1, s12 ←
√
s4 + s0s11 . 4M+1SR

5: s13 ← s12, uc2 ←
√
s8, uc1 ←

√
s13, uc0 ←

√
s2 . 3SR

6: s14 ← uc0 + uc2(uc1 + s8 + f5) . 1M

7: if TR(s14) = 0 then . 1TR

8: s6 ← s6 + 1, s7 ← s7 + s0, s8 ← s8 + s0, s15 ← s0
√
s9 . 1M+1SR

9: s12 ← s12 + s15, s13 ← s13 + s15, uc2 ←
√
s8 . 1SR

10: uc1 ←
√
s13, uc0 ←

√
s2 . 2SR

11: end if

12: s16 ← va1 + s12 + s7ua0, s17 ← s7 + s1ua1 . 2M

13: s18 ← 1 + s16s0 + ua1s17, s19 ← s7 + s1uc2 . 3M

14: s20 ← s1uc1, s21 ← s19uc0, vc2 ← s18 + s19uc2 + s20 . 3M

15: vc1 ← s12 + (s19 + s1)(uc0 + uc1) + s20 + s21, vc0 ← s4 + s21 . 1M

16: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

17: . Total: 1I+20M+1S+11SR+1TR+1HT

Algorithm 32 (HLV13, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ←
√
ua0, s1 ← s0 + f5, s2 ← f1, s3 ←

√
f0 + s2ua0 . 1M+2SR

2: s4 ← HT(f4 + s1ua0), s5 ← va0 + s3, s6 ← u−1
a0 . 1I+1M+1HT

3: s7 ← ua0 + ua0(s4 + ua0s0) + s5s6, s8 ← s7, uc2 ←
√
s1 . 3M+1SR

4: uc1 ←
√
s8, uc0 ←

√
s2, s9 ← uc0 + uc2(uc1 + s1 + f5) . 1M+2SR

5: if TR(s9) = 0 then . 1TR

6: s4 ← s4 + 1, s7 ← s7 + ua0, s8 ← s8 + ua0
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7: uc1 ← uc1 + s0

8: end if

9: vc2 ← s4 + s0uc2, vc1 ← s7 + s0uc1, vc0 ← s3 + s0uc0 . 3M

10: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

11: . Total: 1I+9M+5SR+1TR+1HT

Appendix F. Type Ie, h(x) = x3

From Section 2.4, these curves are of the form

(9) C : y2 + x3y = x7 + f6x
6 + f2x

2 + f1x+ f0,

with f6 ∈ F2. These curves have only one divisor class of order 2, which is of the
form [x,

√
f0].

Theorem F.1. Let Da = [ua, va] be a divisor class in Pic0
C(Fq). If deg(ua) = 3,

then Da can be halved if and only if TR(ua2 + f6) = 0. If deg(ua) = 2, then Da

can be halved if and only if TR(ua1) = 0. If deg(ua) = 1, then Da can be halved if
and only if TR(ua0 + f6) = 0.

Proof. As in Theorem 4.1.

Corollary 5. The Picard group of the curve C given by (9) has order 2r, where r
is odd if and only if f6 = 1.

Proof. The Picard group of C has exactly one divisor class of order 2, namely
[x,
√
f0]. The order of the Picard group is divisible by 4 if and only if [x,

√
f0] can

be halved. From Theorem F.1, this is possible if and only if TR(f6) = 0 and since
f6 ∈ F2 we find that the Picard group of C has a divisor class of order 4 if and only
if f6 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 − Dc2 = [x,

√
f0] = Dc2 − Dc1 , i.e. the difference of two preimages is

the unique divisor class of order 2. This observation allows us to distinguish the
different special cases.

Remark 7. Let Da = [ua, va] be a divisor class in Pic0
C(Fq) that can be halved

and let Dc = [uc, vc] = [12 ]Da be its pre-image (under the doubling) of odd order.
(1a) If deg(ua) = 3 and

u2
a1(f6 + u2

a2) +
(
va1 + v2

a2 + u2
a2(f6 + ua2) + va2ua2 + ua0

)2

+
(
va1 + v2

a2 + u2
a2(f6 + ua2) + va2ua2 + ua0

)
ua1 6= 0,

then deg(uc) = 3 and we are in case HLV33.
(1b) If deg(ua) = 3 and

u2
a1(f6 + u2

a2) +
(
va1 + v2

a2 + u2
a2(f6 + ua2) + va2ua2 + ua0

)2

+
(
va1 + v2

a2 + u2
a2(f6 + ua2) + va2ua2 + ua0

)
ua1 = 0,

then deg(uc) = 2 or 3 (with uc0 = 0 in the second case) and we are in case
HLV32 or HLV33.
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(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23).
(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 (with uc0 = 0 in the second

case) and we are in case HLV21 or HLV22.
(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.
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Algorithm 33 (HLV33, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← HT(ua2 + 1), s1 ← va2 + ua2(s0 + 1) . 1M+1HT

2: s2 ← va1 + ua1(s0 + 1), s3 ← va0 + ua0(s0 + 1) . 2M

3: s4 ← s1 + ua1, s5 ← ua0 + s2 + s21 + s4ua2 . 1M+1S

4: s6 ← s3 + s4ua1 + s5ua2, s7 ← ua1 + s5, s8 ← s7s5 . 3M

5: s9 ← s−1
8 , s10 ← s9s7, s11 ←

√
s8, s12 ←

√
s11 . 1I+1M+2SR

6: s13 ← s12s10, s14 ← s11s10 + 1, s15 ← s1 + s12 + s14s4 . 3M

7: s16 ←
√
s9, s17 ← s16s5, s18 ← s15s17 . 2M+1SR

8: s19 ← TR(s18) . 1TR

9: if s19 = 0 then

10: s0 ← s0 + 1, s1 ← s1 + ua2, s2 ← s2 + ua1

11: s3 ← s3 + ua0, s4 ← s4 + ua2, s20 ← (ua2 + ua2)2 . 1S

12: s5 ← s5 + ua1 + s20, s6 ← s6 + ua0 + s20ua2 . 1M

13: s7 ← s7 + ua1, s8 ← s7s5, s9 ← s−1
8 , s10 ← s9s7 . 1I+2M

14: s11 ←
√
s8, s12 ←

√
s11, s13 ← s12s10 . 1M+2SR

15: s14 ← s11s10 + 1, s15 ← s1 + s12 + s14s4 . 2M

16: s16 ←
√
s9, s17 ← s16s5, s18 ← s15s17 . 2M+1SR

17: end if

18: s21 ← s0 + 1 + s13s4, s22 ← s14s6, s23 ← s3 + s22 . 2M

19: s24 ← s2 + (s13 + s14)(s6 + s5) + s12 + s22, uc2 ←
√
s18 . 1M+1SR

20: s25 ← s23s17, s26 ← f1s17, uc1 ←
√
s25, uc0 ←

√
s26 . 2M+2SR

21: s27 ← s13uc2, s28 ← s14 + s27, s29 ← s28uc1 . 2M

22: s30 ← s21 + (s13 + s28)(uc2 + uc1) + s27 + s29, s31 ← s30uc0 . 2M

23: vc0 ← s23 + s31, vc1 ← s24 + (s28 + s30)(uc1 + uc0) + s29 + s31 . 1M

24: vc2 ← s15 + (s13 + s30)(uc2 + uc0) + s27 + s31 + s29 . 1M

25: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 2I+32M+2S+9SR+1TR+1HT

In this formula, we note that a division by s14 + 1 would normally be required
to compute s18, s25 and s26. However, s14 + 1 = s213s5, which we can compute as
s5/(s13s5)2. Since (s13s5)4 = s5s7, 1/(s13s5)2 = 1/

√
s5s7 and we can combine this

inverse with the computation of 1/s5. As a result, we can compute both inverses
using only 1I+3M+1SR.

We therefore have a worst-case cost of 2I+32M+2S+9SR+1HT+1TR. Note that
Guyot, Kaveh and Patankar [12] do not treat this doubling case separately from
the general deg(h) = 3, so they have a cost of 1I+63M+9S. However, it should be
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remembered that this form of curve is much more special, and is much closer to the
case deg(h) = 1 in terms of the number of isomorphism classes.

The conditional lines 10 to 16 are only used when the initial “choice” for the
root of z2 + z + ua2 + 1 = 0 (i.e. HT(ua2 + 1) rather than HT(ua2 + 1) + 1) is
incorrect and the variables computed afterwards must be corrected. This means
that the 1I+8M+1S+3SR associated to that correction will only be needed half
of the time (on average). The average cost of the halving operation becomes
1.5I+28M+1.5S+7.5SR+1HT+1TR.

Remark 8. As with type Ia curves, we can limit ourselves to no more than one
inversion per halving. The worst-cases cost of 1I+35M+2S+9SR+1HT+1TR, from
which we expect to save 6M+3SR when the first choice of the root is correct (half of
the time). The final cost will increase whenever an inversion costs less than 8M+1S,
making this approach potentially interesting for many implementations of the field
arithmetic.

Algorithm 34 (HLV32/33, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [ 12 ]D = [x2 + uc1x+ uc0, vc1x+ vc0] or
[x3 + uc1x

2 + uc0x, vc2x
2 + vc1x+ vc0]

1: s0 ← HT(ua2 + 1), s1 ← va2 + ua2(s0 + 1) . 1M+1HT

2: s2 ← va1 + ua1(s0 + 1), s3 ← va0 + ua0(s0 + 1) . 2M

3: s4 ← s1 + ua1, s5 ← ua0 + s2 + s21 + s4ua2 . 1M+1S

4: s6 ← s3 + s4ua1 + s5ua2, s7 ← ua1 + s5, s8 ← s7s5 . 3M

5: if s5 = 0 then

6: s10 ← s0, s11 ← s1, s12 ← s2, s13 ← s3, s14 ← s4

7: else

8: s10 ← s0 + 1, s11 ← s1 + ua2, s12 ← s2 + ua1

9: s13 ← s3 + ua0, s14 ← s4 + ua2

10: end if

11: s15 ← s13 + s14(s11 + s14), uc1 ←
√
s14, uc0 ←

√
s15 . 1M+2SR

12: s16 ← uc1s10, s17 ← s11 + s16, s18 ← uc0s17 . 2M

13: vc0 ← s13 + s18, vc1 ← s12 + (uc0 + uc1)(s10 + s17) + s16 + s18 . 1M

14: if TR(uc1) = 0 then . 1TR

15: return [x2 + uc1x+ uc0, vc1x+ vc0] . 11M+1S+2SR+1TR+1HT

16: else

17: vc2 ← (
√
f0 + vc0)u−1

c0 , vc1 ← vc1 + vc2uc1 . 1I+2M

18: vc0 ← vc0 + vc2uc0 . 1M

19: return [x3 + uc1x
2 + uc0x, vc2x

2 + vc1x+ vc0]

20: . 1I+14M+1S+2SR+1TR+1HT

21: end if
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Algorithm 35 (HLV21/22, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x2 + ua0, va1x+ va0]

Output: [ 12 ]D = [x+ uc0, vc0] or [x2 + uc0x, vc1x+ vc0]

1: uc0 ←
√
ua0, vc0 ← va0 + va1uc0 . 1M+1SR

2: if TR(uc0) = 1 then . 1TR

3: return [x+ uc0, vc0] . 1M+1SR+1TR

4: else

5: vc1 ← (
√
f0 + vc0)u−1

c0 , vc0 ← vc0 + vc1uc0 . 1I+2M

6: return [x2 + uc0x, vc1x+ vc0] . 1I+3M+1SR+1TR

7: end if

Algorithm 36 (HLV23, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: if ua0 = 0 then

2: s0 ← u−1
a1 , s1 ← HT(ua1), s2 ← s1s0 . 1I+1M+1HT

3: s3 ← s2 + 1 + s0, s4 ← f1s3, s5 ←
√
f0 . 1M

4: s6 ← s5s3, s7 ← s22, s8 ←
√
f2 + s4s7 . 2M+1S+1SR

5: s9 ←
√
s8 + s6s7, s10 ← s9s3 . 2M+1SR

6: if TR(s10) = 0 then . 1TR

7: s2 ← s2 + s0, s3 ← s3 + s0, s4 ← f1s3 . 1M

8: s5 ←
√
f0, s6 ← s5s3, s7 ← s22 . 1M+1S

9: s8 ←
√
f2 + s4s7, s9 ←

√
s8 + s6s7, s10 ← s9s3 . 3M+2SR

10: end if

11: s11 ← s20, s12 ← va1 + s8 + ua1s9, s13 ← s12s11 + 1 + s2ua1 . 3M+1S

12: else

13: s0 ← ua1ua0, s1 ← s−1
0 , s3 ← s1ua0, s7 ← HT(ua1) . 1I+2M+1HT

14: s2 ← s7s3, s11 ← s2 + 1 + s3, s4 ← f1s11 . 2M

15: s12 ← s22, s14 ← ua0s12, s15 ← f0 + s4s14, s5 ←
√
s15 . 2M+1S+1SR

16: s6 ← s5s11, s16 ← f2 + s4s12 + s6s14 . 3M

17: s8 ←
√
s16, s17 ← u2

a1, s18 ← s2ua0 . 1M+1S+1SR

18: s19 ← va0 + s5 + s0 + s18(ua0 + s17) . 1S

19: s20 ← va1 + s8 + ua0 + s17(1 + s2ua1) . 2M

20: s21 ← ua1s19 + ua0s20, s22 ← s1ua1, s23 ← s222 . 3M+1S

21: s13 ← s21s23, s9 ← s19s22 + s13ua1, s10 ← s9s11 . 4M
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22: if TR(s10) = 0 then . 1TR

23: s2 ← s2 + s3, s11 ← s11 + s3, s4 ← f1s11 . 1M

24: s12 ← s22, s14 ← ua0s12, s15 ← f0 + s4s14 . 2M+1S

25: s5 ←
√
s15, s6 ← s5s11, s16 ← f2 + s4s12 + s6s14 . 3M+1SR

26: s8 ←
√
s16, s17 ← u2

a1, s18 ← s2ua0 . 1M+1S+1SR

27: s19 ← va0 + s5 + s0 + s18(ua0 + s17) . 1M

28: s20 ← va1 + s8 + ua0 + s17(1 + s2ua1) . 2M

29: s21 ← ua1s19 + ua0s20, s22 ← s1ua1 . 3M

30: s23 ← s222, s13 ← s21s23, s9 ← s19s22 + s13ua1 . 3M+1S

31: s10 ← s9s11 . 1M

32: end if

33: end if

34: uc2 ←
√
s10, uc1 ←

√
s6, uc0 ←

√
s4, s24 ← s13 + s2uc2 . 1M+3SR

35: s25 ← s2uc1, s26 ← s24uc0, vc2 ← s9 + s24uc2 + s25 . 3M

36: vc1 ← s8 + (s24 + s2)(uc0 + uc1) + s25 + s26, vc0 ← s5 + s26 . 1M

37: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

38: . 2I+55M+10S+11SR+2TR+2HT

Algorithm 37 (HLV13, h(x) = x2, f(x) = x7 + f5x
5 + x4 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [ 12 ]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← f1, s1 ←
√
f0 + s0ua0, s2 ← s1 . 1M+1SR

2: s3 ←
√
f2 + s2ua0, s4 ← u−1

a0 , s5 ← s24, s6 ← s3s5 . 1I+2M+1S

3: s7 ← HT(s3s5), s8 ← s7ua0, s9 ← s8 . 2M+1HT

4: if TR(s9) = 0 then . 1TR

5: s8 ← s8 + ua0, s9 ← s9 + ua0

6: end if

7: s10 ← (va0 + s1)s5, s11 ← s4(s8 + s10) + 1 + s3s5 . 3M

8: uc2 ←
√
s9, uc1 ←

√
s2, vc2 ← s8 + s11uc2, uc0 ←

√
s0 . 1M+3SR

9: vc1 ← s3 + s11uc1, vc0 ← s1 + s11uc0 . 2M

10: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

11: . 1I+11M+1S+4SR+1TR+1HT
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