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Abstract

In a proxy re-encryption scheme, a semi-trusted proxy can transform a ciphertext under Alice’s public
key into another ciphertext that Bob can decrypt. However, the proxy cannot access the plaintext. Due
to its transformation property, proxy re-encryption can be used in many applications, such as encrypted
email forwarding. In this paper, by using signature of knowledge and Fijisaki-Okamoto conversion,
we propose a proxy re-encryption scheme without pairings, in which the proxy can only transform the
ciphertext in one direction. The proposal is secure against chosen ciphertext attack (CCA) and collusion
attack in the random oracle model based on Decisional Diffie-Hellman (DDH) assumption over Z∗

N2 and
integer factorization assumption, respectively. To the best of our knowledge, it is the first unidirectional
PRE scheme with CCA security and collusion-resistance.
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1 Introduction

In 1998, Blaze, Bleumer, and Strauss [6] proposed the concept of proxy re-encryption (PRE), where a semi-
trusted proxy can transform a ciphertext for Alice into another ciphertext that Bob can decrypt.1 However,
the proxy cannot get the plaintext. According to the direction of transformation, PRE schemes can be
classified into two types, one is bidirectional, i.e., the proxy can transform from Alice to Bob and vice versa;
the other is unidirectional, i.e., the proxy can only convert in one direction. Blaze et al. [6] also gave another
method to classify PRE schemes: multi-use, i.e., the ciphertext can be transformed from Alice to Bob to
Charlie and so on; and single-use, i.e., the ciphertext can be transformed only once.

Due to its transformation property, PRE can be used in many applications, including simplification of
key distribution [6], key escrow [21], distributed file systems [2, 3], security in publish/subscribe systems
[23], multicast [10], secure certified email mailing lists [24, 22], the DRM of Apple’s iTunes [36], interop-
erable architecture of DRM [34], access control [35], and privacy for public transportation [19]. Recently,
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1In almost all related papers, the concept of PRE is introduced as “PRE allows a semi-trusted proxy to convert a ciphertext

under Alice’s public key to another ciphertext under Bob’s public key”. However, all existing unidirectional PRE schemes
(including ours) do not exactly follow the definition. In particular, in these unidirectional PRE schemes, there are two kinds
of ciphertexts, one is the original ciphertext, and the other is the transformed ciphertext. The transformed ciphertext is not
exactly as the ciphertext under Bob’s public key, but Bob can decrypt the transformed ciphertext only by his secret key. To
the best of our knowledge, only the bidirectional schemes in [6, 9] satisfy the definition.



Hohenberger et al. got a result of securely obfuscating re-encryption [20], which is the first positive result
for obfuscating an encryption functionality and against a series of impossibility results [18, 16, 4].

Since the introduction of PRE by Blaze, Bleumer, and Strauss [6], there have been many papers [6, 21, 2,
3, 17, 9, 11, 25] that have proposed different PRE schemes with different security properties. Some of them
are related to chosen ciphertext attack (CCA) security. Ivan and Dodis [21] proposed a CCA security model
for PRE and a generic construction of single-use PRE in the security model. Nevertheless, their security
model allows the delegatee (Bob) to make use of the proxy as an oracle. As a result, the schemes only secure
in their security model are not enough for some applications. For example, in encrypted email forwarding,
an adversary (Bob) might hope to gain access to the original encrypted email by re-forming it, sending it
to the proxy, and then hoping that the proxy responds with, “Can you forward the following to me again?
[Encrypted attachment.]”

To fix the problem, Green and Ateniese [17], Canetti and Hohenberger [9] proposed new CCA secu-
rity models for ID-based PRE and PRE, respectively. In these two new security models, it requires that
the proxy checks the validity of the ciphertext before transformation, which is called public verifiability.
Following this intuition, the first CCA secure, single-use, unidirectional ID-based PRE scheme in the ran-
dom oracle model and the first CCA secure, multi-use, bidirectional PRE scheme in the standard model
are proposed in [17, 9], respectively. However, the scheme in [17] suffers from the attack in Remark 2.
Furthermore, the generic construction of PRE in [21] cannot be proved secure in the CCA security model
in [9]. (See Appendix A for details. Hereafter, we refer CCA security to the definition in [9] or Section
2 of this paper.) Chu and Tzeng [11] proposed a multi-use, unidirectional ID-based PRE scheme, and
claimed that it was CCA secure in the standard model. However, we showed that it was not true [31], since
its transformed ciphertext (Cv1, R, d′

1, d2, d
′
2) can be modified to another well-formed transformed ciphertext

(Cv1, R, d′
1F2(vk)r, d2, d

′
2g

r) by anyone, where r is a random number from Z∗
p. Recently, Libert and Vergnaud

[25] proposed a new unidirectional PRE scheme, which is replayable chosen ciphertext attack (RCCA) secure
but not CCA-secure. It is fair to say that there is no CCA-secure unidirectional PRE scheme.2 Further-
more, according to the results in [5, 29], the timing of a pairing computation is more than twice of that of a
modular exponentiation computation. Hence, the CCA-secure unidirectional PRE schemes without pairings
are desired.

Another important security notion on unidirectional PRE is collusion-resistance, which disallows Bob
and the proxy to collude to reveal Alice’s (long term) secret key, but allows the recovery of Alice’s “weak”
secret key only. In this case, Alice can delegate decryption rights, while keeping signing rights for the same
public key. Till now, there are only a few PRE schemes [2, 3, 25] holding this security.3

Though many PRE schemes have been proposed, we find that no unidirectional PRE scheme without
pairings but satisfying CCA security and collusion-resistance simultaneously, even in the random oracle
model. In this paper, we attempt to propose such a unidirectional PRE scheme.

1.1 Our Contribution

We present a proxy re-encryption scheme without pairings, named scheme U, which is unidirectional and
single-use, and proven CCA-secure and collusion resistant in the random oracle model based on Decisional
Diffie-Hellman (DDH) assumption over Z∗

N2 and integer factorization assumption, respectively. Here, N is
a safe-prime modulus.

The difficulty in constructing a CCA secure PRE scheme is to add the public verifiability to original
ciphertexts. This public verifiability can prevent malicious Bob from gaining some advantage by using the
proxy as an oracle. In pairing setting, such as [9], we can use the gap Diffie-Hellman problem (decisional
Diffie-Hellman problem is easy, but computational Diffie-Hellman problem is hard) to achieve this. In

2When we prepared the camera-ready version, we found another paper [13] dealing the similar problems, and getting the
similar results with us. In [13], the authors use Schnorr signature [28] to make the original ciphertext be publicly verifiable,
while we use signature of knowledge [8, 1]. In our submission version, we have a CCA-secure bidirectional PRE scheme, however,
the bidirectional one in [13] beats ours in every aspect. Hence, in the current version, we removed our bidirectional one, which
can be found in [30]. Furthermore, the unidirectional scheme in [13] suffers from the attack in Remark 2.

3The unidirectional PRE scheme in [13] suffers from the collusion attack.
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particular, the gap Diffie-Hellman problem allows us to check whether logg A = logh B. In this paper, we
use signature of knowledge [8, 1] to provide logg A = logh B, hence obtaining public verifiability for original
ciphertexts. In fact, using the signature of knowledge to provide public verifiability is due to Shoup and
Gennaro [33]. Furthermore, we use Fujisaki-Okamoto conversion [14, 15] to provide the validity check of
both original ciphertexts and re-encrypted ciphertexts for the decryptor (Alice or Bob).

Following the construction of the public key encryption scheme with double trapdoors in [7], scheme U
holds collusion-resistance. In particular, the factors of N are the long term secret key, and an exponent is the
“weak” secret key, and revealing the exponent does not hurt the secrecy of the factors of N . To the best of our
knowledge, scheme U is the first unidirectional PRE scheme holding CCA security and collusion-resistance
simultaneously.

Finally, we extend scheme U to scheme UT , where the delegator can revoke the proxy’s transformation
ability. In particular, the proxy can only transform the ciphertext during a restricted time interval.

1.2 Organization

The remaining paper is organized as follows. In Section 2, we review the definitions related to our proposals.
In what follows, we present scheme U and its security analysis, and scheme UT and its security analysis, in
Section 3 and Section 4, respectively. In Section 5 we compare scheme U with previous unidirectional PRE
schemes. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we briefly review the definitions related to our proposals, some similar content can be found
in [8, 1, 17, 9].

2.1 Public Key Encryption

Definition 1 (Public Key Encryption (PKE)) A public key encryption scheme PKE is a triple of PPT
algorithms (KeyGen, Enc, Dec):

• KeyGen(1k) → (pk, sk). On input the security parameter 1k, the key generation algorithm KeyGen

outputs a public key pk and a secret key sk.

• Enc(pk,m) → C. On input a public key pk and a message m in the message space, the encryption
algorithm Enc outputs a ciphertext C.

• Dec(sk, C) → m. On input a secret key sk and a ciphertext C, the decryption algorithm Dec outputs a
message m in the message space or ⊥.

2.1.1 Correctness.

The correctness property is that for any message m in the message space and any key pair (pk, sk) ←
KeyGen(1k). Then the following condition must hold: Dec(sk, Enc(pk,m)) = m.

2.2 Unidirectional Proxy Re-Encryption

Definition 2 (Unidirectional PRE) A unidirectional proxy re-encryption scheme UniPRE is a tuple of PPT
algorithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

• KeyGen, Enc, Dec: Identical to those in public key encryption.

• ReKeyGen(sk1, pk2) → rk1→2. On input a secret key sk1 and a public key pk2, the re-encryption key
generation algorithm ReKeyGen outputs a unidirectional re-encryption key rk1→2.
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• ReEnc(rk1→2, C1) → C2. On input a re-encryption key rk1→2 and a ciphertext C1, the re-encryption
algorithm ReEnc outputs a re-encrypted ciphertext C2 or ⊥.

2.2.1 Correctness.

A correct proxy re-encryption scheme should satisfy two requirements:

Dec(sk, Enc(pk,m)) = m,

and
Dec(sk′, ReEnc(ReKeyGen(sk, pk′), C)) = m,

where (pk, sk), (pk′, sk′) ← KeyGen(1k), and C is the ciphertext of message m for pk from algorithm Enc or
algorithm ReEnc.

2.2.2 Chosen Ciphertext Security for Unidirectional Proxy Re-Encryption.

This security note is a modification of replayable chosen ciphertext security in [25], where the corrupted
public keys are not decided before start of the Uni-PRE-CCA game, and the adversary is allowed adaptive
corruption of users4, and proxies between corrupted and uncorrupted users. But unlike [25], we require
that one well-formed ciphertext cannot be modified (but can be transformed) to be another well-formed
ciphertext. In [25], anyone can modify the transformed ciphertext, such that (C1, C

′
2, C

′′
2 , C ′′′

2 , C3, C4, σ) →
(C1, C

′
2
t
, C ′′

2
t−1

, C ′′′
2

t
, C3, C4, σ), where t is a random number from Zp.

Note that this security model is only for single-use scheme.

Phase 1: The adversary A issues queries q1, · · · , qn1 where query qi is one of:

• Public key generation oracle Opk: On input an index i,5 the Challenger takes a security parameter k,
and responds by running algorithm KeyGen(1k) to generate a key pair (pki, ski), gives pki to A and
records (pki, ski) in table TK .

• Secret key generation oracle Osk: On input pk by A, where pk is from Opk, the Challenger searches
pk in table TK and returns sk.

• Re-encryption key generation oracle Ork: On input (pk, pk′) by A, where pk, pk′ are from Opk, the
Challenger returns the re-encryption key rkpk→pk′ = ReKeyGen(sk, pk′), where sk is the secret key
corresponding to pk.

• Re-encryption oracle Ore: On input (pk, pk′, C) by A, where pk, pk′ are from Opk, the re-encrypted
ciphertext C ′ = ReEnc(ReKeyGen(sk, pk′), C) is returned by the Challenger, where sk is the secret key
corresponding to pk.

• Decryption oracle Odec: On input (pk,C), where pk is from Opk, the Challenger returns Dec(sk, C),
where sk is the secret key corresponding to pk.

These queries may be asked adaptively, that is, each query qi may depend on the replies to q1, · · · , qi−1.

Challenge: Once the adversary A decides that Phase 1 is over, it outputs two equal length plaintexts m0,
m1 from the message space, and a public key pk∗ on which it wishes to be challenged. There are three
constraints on the public key pk∗, (i) it is from Opk; (ii) it did not appear in any query to Osk in Phase 1;
(iii) if (pk∗,F) did appear in any query to Ork, then F did not appear in any query to Osk. The Challenger
picks a random bit b ∈ {0, 1} and sets C∗ = Enc(pk∗,mb). It sends C∗ as the challenge to A.

Phase 2: The adversary A issues more queries qn1+1, · · · , qn where query qi is one of:
4The security model in [13] does not allow such adaptive corruption.
5This index is just used to distinguish different public keys.
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• Opk: The Challenger responds as in Phase 1.

• Osk: On input pk by A, if the following requirements are all satisfied, the Challenger responds as in
Phase 1; otherwise, the Challenger terminates the game.

– pk is from Opk;

– pk 6= pk∗;

– (pk∗, pk) is not a query to Ork before;

– (pk′, pk, C ′) is not a query to Ore before, where (pk′, C ′) is a derivative6 of (pk∗, C∗).

• Ork: On input (pk, pk′) by A, if the following requirements are all satisfied, the Challenger responds
as in Phase 1; otherwise, the Challenger terminates the game.

– pk, pk′ are from Opk;

– if pk = pk∗, then pk′ is not a query to Osk.

• Ore: On input (pk, pk′, C) by A, if the following requirements are all satisfied, the Challenger responds
as in Phase 1; otherwise, the Challenger terminates the game.

– pk, pk′ are from Opk;

– if (pk,C) is a derivative of (pk∗, C∗), then pk′ is not a query to Osk.

• Odec: On input (pk,C), if the following requirements are all satisfied, the Challenger responds as in
Phase 1; otherwise, the Challenger terminates the game.

– pk is from Opk;

– (pk,C) is not a derivative of (pk∗, C∗).

These queries may be also asked adaptively.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We refer to such an adversary A as a Uni-PRE-CCA adversary. We define adversary A’s advantage in
attacking UniPRE as the following function of the security parameter k: AdvUniPRE,A(k) = |Pr[b = b′]−1/2|.
Using the Uni-PRE-CCA game we can define chosen ciphertext security for unidirectional proxy re-encryption
schemes.

Definition 3 (Uni-PRE-CCA security) We say that a unidirectional proxy re-encryption scheme UniPRE
is semantically secure against an adaptive chosen ciphertext attack if for any polynomial time Uni-PRE-CCA
adversary A the function AdvUniPRE,A(k) is negligible. As shorthand, we say that UniPRE is Uni-PRE-CCA
secure.

Remark 1 In [25], the authors considered this model as a static corruption model, since it does not capture
some scenarios, such as the adversary generate public keys on behalf of corrupted parties. However, we
think this model is an adaptive corruption model. Since Adaptive Security usually refers to the ability of the
adversary to choose which parties to corrupt depending on the information gathered so far, but the Challenger
still generates all parties’ key pairs. Allowing adversaries to generate malicious parties’ public keys on their
own is usually called “chosen-key model” [26].7

6Derivatives of (pk∗, C∗) are defined as follows [9]:

1. (pk∗, C∗) is a derivative of itself.

2. If (pk, C) is a derivative of (pk∗, C∗) and (pk′, C′) is a derivative of (pk, C), then (pk′, C′) is a derivative of (pk∗, C∗).

3. If A has queried Ore on input (pk, pk′, C) and obtained (pk′, C′), then (pk′, C′) is a derivative of (pk, C).

4. If A has queried Ork on input (pk, pk′), and C′ = ReEnc(Ore(pk, pk′), C), then (pk′, C′) is a derivative of (pk, C).

7We thank an anonymous reviewer of Indocrypt 2008 to point out this.
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Besides CCA security, there is another security notion, collusion resistance, for unidirectional PRE
schemes.

Definition 4 (Uni-PRE-CR security) 8 We say that a unidirectional proxy re-encryption scheme UniPRE
is collusion resistant if for any polynomial bounded adversary A, the following probability is negligible:

Pr[(sk1, pk1) ← KeyGen(1k), {(ski, pki) ← KeyGen(1k)},
{rki→1 ← ReKeyGen(ski, pk1)},
{rk1→i ← ReKeyGen(sk1, pki)},

i = 2, · · · ,
α ← A(pk1, {pki, ski}, {rk1→i}, {rki→1}) :

α = sk1].

Due to its similarity with that of unidirectional PRE schemes, we put the definitions of unidirectional PRE
schemes with temporary delegation in the Appendix.

2.3 Signature of Knowledge

In our proposal, we apply the following non-interactive zero-knowledge proof of knowledge, named signature
of knowledge of equality of two discrete logarithms [8, 1, 32].

Definition 5 Let y1, y2, g, h ∈ G, G be a cyclic group of quadratic residues modulo N2 (N is a safe-
prime modulus), and H(·) : {0, 1}∗ → {0, 1}k (k is the security parameter). A pair (c, s), verifying c =
H(y1||y2||g||h||gsyc

1||hsyc
2||m) is a signature of knowledge of the discrete logarithm of both y1 = gx w.r.t. base

g and y2 = hx w.r.t. base h, on a message m ∈ {0, 1}∗.

The party in possession of the secret x is able to compute the signature, provided that x = logg y1 =
logh y2, by choosing a random t ∈ {0, · · · , 2|N

2|+k − 1} (|n| is the bit-length of n). And then computing c
and s as:

c = H(y1||y2||g||h||gt||ht||m) and s = t − cx.

We denote SoK.Gen(y1, y2, g, h,m) as the generation of the proof.

2.4 Complexity Assumption

The security of our proposal is based on the Decisional Diffie-Hellman assumption (DDH) over Z∗
N2 .

DDH Problem. The DDH problem is as follows: Given 〈g, ga, gb〉 for some a, b ∈ ord(G) and T ∈ G, decide
whether T = gab, where G is a cyclic group of quadratic residues modulo N2 (N is a safe-prime modulus), g
is a random number of G. An algorithm A has advantage ε in solving DDH problem if |Pr[A(g, ga, gb, gab) =
0] − Pr[A(g, ga, gb, T ) = 0]| ≥ ε, where the probability is over the random choices of a, b in ord(G), the
random choices of g, T in G, and the random bits of A.

Definition 6 (DDH Assumption) We say that the ε-DDH assumption holds if no PPT algorithm has
advantage at least ε in solving the DDH problem.

Note that the DDH problem over Z∗
N2 is easy if the factors of N is known [7].

8This security notion is from [2, 3], called Master Secret Security.
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2.5 The Public Key Encryption with Double Trapdoors

The basic public key encryption of our proposal is the public key encryption with double trapdoors in [7],
named BCP03.

The following description is from [7]. Let N = pq be a safe prime modulus, such that p = 2p′ + 1,
q = 2q′ + 1, and p, p′, q, q′ are primes. Assume G is the cyclic group of quadratic residues modulo N2, then
we have the order of G is Np′q′.

• KeyGen(1k) → (pk, sk). Choose a random element α ∈ Z∗
N2 , a random value a ∈ [1, Np′q′], and set

g = α2 mod N2 and h = ga mod N2. The public key is (N, g, h), and the secret key is a.

• Enc(pk,m) → C. On input a public key pk and a message m ∈ ZN , the ciphertext (A,B) is computed
as

A = gr mod N2, B = hr(1 + mN) mod N2,

where r is a random number from ZN2 .

• Dec(sk, C) → m. There are two methods to decrypt.

– Knowing a, one can compute m by

m =
B/(Aa) − 1 mod N2

N
.

– Knowing p′, q′, one can compute m by

m =
D − 1 mod N2

N
· π mod N,

where D =
(

B
gw1

)2p′q′

, w1 = ar mod N, ar mod pqp′q′ = w1 +w2N , π is the inverse of 2p′q′ mod
N .
Note the values of a mod N and r mod N can be computed when given h = ga mod N2, A =
gr mod N2, and p′, q′, by the method in [27] (Theorem 1 in [27]).

3 New Unidirectional Proxy Re-Encryption Scheme without Pair-
ings

The proposed unidirectional scheme U is based on the CPA secure and collusion resistant unidirectional
PRE scheme in [2, 3] (the first attempt scheme in [2, 3]), and with the signature of knowledge [8, 1] and
Fujisaki-Okamoto conversion [14, 15]. The basic public key encryption is scheme BCP03.

The intuition in scheme U is as follows. Firstly, since there are two trapdoors (a and the factorization of
the modulus) in scheme BCP03, we can use the key sharing technique in [17] to share a. In particular, let
a = r1+r2, and sent the proxy r1 and the ciphertext of r2 under the delegatee’s public key. Knowing a cannot
hurt the secrecy of the factorization of the modulus, hence, collusion-resistance obtained. Secondly, scheme
BCP03 is CPA-secure, hence, we use Fijisaki-Okamoto conversion to make scheme BCP03 be CCA-secure.
Thirdly, we use the signature of knowledge to make the original ciphertext be publicly verifiable.

3.1 Scheme U with Single-Use

Scheme U contains three cryptographic hash functions for all users: H1(·) : {0, 1}∗ → {0, 1}k1 , H2(·) :
{0, 1}∗ → {0, 1}n, and H3(·) : {0, 1}∗ → {0, 1}k2 , where k1 and k2 are the security parameter, n is the
bit-length of messages to be encrypted. The details are as follows.
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KeyGen: Choose a safe-prime modulus N = pq, three random numbers α ∈ Z∗
N2 , a, b ∈ [1, pp′qq′], a hash

function H(·), where p = 2p′ + 1, q = 2q′ + 1, p, p′, q, q′ are primes, and H(·) : {0, 1}∗ → ZN2 .
Furthermore, set g0 = α2 mod N2, g1 = g0

a mod N2, and g2 = g0
b mod N2. The public key is

pk = (H(·), N, g0, g1, g2), the “weak” secret key is wsk = (a, b), and the long term secret key is
sk = (p, q, p′, q′).

ReKeyGen: On input a public key pkY = (HY (·), NY , gY 0, gY 1, gY 2), a “weak” secret key wskX = aX ,
and a long term secret key skX = (pX , qX , p′X , q′X), it outputs the unidirectional re-encryption key
rkX→Y = (rk(1)

X→Y , rk
(2)
X→Y ), where rk

(1)
X→Y = (Ȧ, Ḃ, Ċ), and computed as follows:

• Choose two random numbers σ̇ ∈ ZN , β̇ ∈ {0, 1}k1 .

• Compute rk
(2)
X→Y = aX − β̇ mod (pXqXp′Xq′X).

• Compute rX→Y = HY (σ̇||β̇), Ȧ = (gY 0)rX→Y mod (NY )2, Ċ = H1(σ̇) ⊕ β̇,

Ḃ = (gY 2)rX→Y · (1 + σ̇NY ) mod (NY )2. (1)

Enc: On input a public key pk = (H(·), N, g0, g1, g2) and a message m ∈ {0, 1}n, the encryptor does the
following performances:

• Choose a random number σ ∈ ZN .

• Compute r = H(σ||m), A = (g0)r mod N2, C = H2(σ) ⊕ m, D = (g2)r mod N2,

B = (g1)r · (1 + σN) mod N2. (2)

• Run (c, s) ← SoK.Gen(A,D, g0, g2, (B,C)), where the underlying hash function is H3.

• Output the ciphertext K = (A,B,C,D, c, s).

ReEnc: On input a re-encryption key rkX→Y = (rk(1)
X→Y , rk

(2)
X→Y ) and a ciphertext K = (A,B,C,D, c, s) un-

der key pkX = (HX(·), NX , gX0, gX1, gX2), check whether c = H3(A||D||gX0||gX2||(gX0)sAc||(gX2)sDc||(B||C)).
If not hold, output ⊥ and terminate; otherwise, re-encrypt the ciphertext to be under key pkY as:

• Compute A′ = Ark
(2)
X→Y = (gX0)r(aX−β̇) mod (NX)2.

• Output the new ciphertext (A,A′, B,C, rk
(1)
X→Y ) = (A,A′, B,C, Ȧ, Ḃ, Ċ).

Dec: On input a secret key and any ciphertext K, parse K = (A,B,C,D, c, s), or K = (A,A′, B,C, Ȧ, Ḃ, Ċ).

Case K = (A,B,C,D, c, s): Check whether c = H3(A||D||g0||g2||(g0)sAc||(g2)sDc||(B||C)), if not,
output ⊥ and terminate; otherwise,

• if the input secret key is the “weak” secret key a, compute σ = B/(Aa)−1 mod N2

N .

• if the secret key is the long term secret key (p, q, p′, q′), compute σ = (B/g
w1
0 )2p′q′−1 mod N2

N ·
π(modN), where w1 is computed as that in scheme BCP03, and π is the inverse of 2p′q′ mod
N .

Compute m = C ⊕ H2(σ), if B = (g1)H(σ||m) · (1 + σN) mod N2 holds, output m; otherwise,
output ⊥ and terminate.

Case K = (A,A′, B,C, Ȧ, Ḃ, Ċ): In this case, the decryptor should know the delegator’s (Alice’s)
public key (H ′(·), N ′, g′0, g

′
1, g

′
2).

• If the input secret key is the “weak” secret key b, compute σ̇ = Ḃ/(Ȧb)−1 mod N2

N .
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Figure 1: An example of delegation relationship.

• If the input secret key is the long term secret key (p, q, p′, q′), computes σ̇ = (Ḃ/g
w1
0 )2p′q′−1 mod N2

N ·
π(modN), where w1 is computed as that in scheme BCP03, and π is the inverse of 2p′q′ mod
N .

Compute β̇ = Ċ ⊕ H1(σ̇), if Ḃ = (g2)H(σ̇||β̇) · (1 + σ̇N) mod N2 holds, then compute σ =
B/(A′·Aβ̇)−1 mod N ′2

N ′ , m = C ⊕ H2(σ); otherwise, output ⊥ and terminate. If B = (g′1)
H′(σ||m) ·

(1 + σN ′) mod N ′2 holds, then output m; otherwise, output ⊥ and terminate.

Note that (H(·), N, g0, g1, g2) is the public key of the decryptor.

Remark 2 The values of Ḃ and B are computed differently, in particular, in equation (1), the base is g1,
while in equation (2), the base is g2. This difference aims to resist the following attack: Assume that there is
the delegation relationship as in Fig. 1. Alice delegates her decryption rights to Bob via the proxy PAB, and
Bob delegates his decryption rights to Charlie via the proxy PBC . Alice and Bob are uncorrupted, the rest
parties are corrupted, and the target (challenged) user is Alice. This corruption situation is allowed in the
security model in Section 2 (Note that the attacked scheme should be single-use). If the bases in equations
(1) and (2) are both g1, then the adversary can decrypt any ciphertext for Alice as follows. The proxy PBC

and Charlie colludes to get Bob’s weak secret key aB, and then they collude with the proxy PAB to get Alice’s
weak secret key aA. As a result, the adversary can use aA to decrypt any ciphertext for Alice. However, in
scheme U, the proxy PBC and Charlie cannot get Bob’s weak secret key bB (which is for decrypting partial
re-encryption key), hence, they cannot collude with the proxy PAB to get Alice’s weak secret key aA (which
is for decrypting ciphertexts).

Note that the above attack is also allowed in the security model in [17, 13], since they only disallow the
adversary to corrupt the proxy between the target user and the uncorrupted user. The unidirectional schemes
in [17, 13] suffer from the above attack. To resist the above attack, we can use the same method in scheme
U, in particular, every user has two public/secret key pairs, one is for decrypting ciphertexts of messages,
and the other is for decrypting the partial re-encryption key.

Correctness. The correctness property is easily obtained by the correctness of scheme BCP03 [7] and
Fujisaki-Okamoto conversion [14, 15].

Theorem 1 (Uni-PRE-CCA security) In the random oracle model, scheme U is CCA-secure under the
assumptions that DDH problem over Z∗

N2 is hard, and that the signature of knowledge is secure.

Proof. We show that if there exists an algorithm A that can break U with probability ε in time t, then there
is another algorithm B that uses A to solve DDH problem over Z∗

N2 , i.e., on DDH input (N,g,gu,gv,T), B
decides if T = guv or not.

B interacts with A in a Uni-PRE-CCA game as follows (B simulates the Challenger for A). In the
following, we use starred letters (A∗, B∗, C∗, D∗, c∗, s∗) to refer to the challenge ciphertext corresponding to
an uncorrupted pk∗.

Hash Oracles:
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OH : One oracle OH is corresponding to a hash function H(·) which is a part of user’s public key. As a
result, there are many such oracles, and they are all constructed in the following method. On input
(σi,mi), B first checks whether triple (σi,mi, αi) exists in table TH . If yes, B responds A with αi;
otherwise B chooses a random number αi ∈ ZN2 , responds A with αi, and records (σi,mi, αi) in table
TH , where N is the corresponding safe-prime modulus and a part of user’s public key.

OH1 : On input σi, B first checks whether pair (σi, βi) exists in table TH1 . If yes, B responds A with βi;
otherwise, B chooses a random number βi ∈ {0, 1}k1 , responds A with βi, and records (σi, βi) in table
TH1 .

OH2 : On input σi, B first checks whether pair (σi, γi) exists in table TH2 . If yes, B responds A with γi;
otherwise, B chooses a random number γi ∈ {0, 1}n, responds A with γi, and records (σi, γi) in table
TH2 .

OH3 : On input (Ai, Di, gi0, gi2, Ei, Fi, Bi, Ci), B first checks whether tuple (Ai, Di, gi0, gi2, Ei, Fi, Bi, Ci, δi)
exists in table TH2 . If yes, B responds A with δi; otherwise, B chooses a random number δi ∈ {0, 1}k2 ,
responds A with δi, and records (Ai, Di, gi0, gi1, Ei, Fi, Bi, Ci, δi) in table TH3 .

Phase 1:

Opk: On input an index i, B decides whether pki is the attacked public key pk∗.

• If yes, B sets N = N, H(·) : {0, 1}∗ → ZN2 , g0 = g, g1 = gu, and g2 = gw, where w ∈ ZN2 . And
then, B records (H(·), N, g0, g1, g2,⊥,⊥,⊥,⊥, coini) in table TK .

• Otherwise, B runs KeyGen to get the public key (H(·), N, g0, g1, g2), the long-term secret key
(p′, q′), and weak secret key (a, b), and records (H(·), N, g0, g1, g2, a, b, p′, q′) in table TK .

At last, B returns (H(·), N, g0, g1, g2) to A as pki.

Osk: On input pkX = (HX(·), NX , gX0, gX1, gX2), B checks whether pkX exists in TK . If not, B terminates.
Otherwise, if pkX is the guessed attacked public key, B reports failure and aborts; otherwise, B responds
A with corresponding (p′X , q′X), and records pkX into table Tsk.

Ork: On input (pkX , pkY ), B checks whether pkX and pkY both exist in TK . If not, B terminates. Otherwise,
B checks whether (pkX , pkY , rk

(1)
X→Y , rk

(2)
X→Y ) is in table Trk, or (pkX , pkY , βX→Y , rk

(1)
X→Y , rk

(2)
X→Y ) is

in table Turk, if it exists, B returns (rk(1)
X→Y , rk

(2)
X→Y ) to A; otherwise,

• If pkX is in table Tsk or pkX is not the guessed attacked public key, B responds A with (rk(1)
X→Y , rk

(2)
X→Y ) ←

ReKeyGen(skX , pkY ), and records (pkX , pkY , rk
(1)
X→Y , rk

(2)
X→Y ) in table Trk.

• If pkX is the guessed attacked public key, and pkY is not in table Tsk, B chooses three random
numbers β̇ ∈ {0, 1}k1 , rk

(2)
X→Y ∈ ZN2 , σ̇ ∈ ZN , and does

– Compute
rX→Y = HY (σ̇||β̇),

Ȧ = (gY 0)rX→Y mod (NY )2,

Ḃ = (gY 1)rX→Y · (1 + σ̇NY ) mod (NY )2,

Ċ = H1(σ̇) ⊕ β̇,

where (HY (·), NY , gY 0, gY 1, gY 2) = pkY .

– Set rk
(1)
X→Y = (Ȧ, Ḃ, Ċ).

– Return (rk(1)
X→Y , rk

(2)
X→Y ) to A.

– Record (pkX , pkY , β̇, rk
(1)
X→Y , rk

(2)
X→Y ) in table Turk.
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Because of the security property of scheme BCP03 with Fujisaki-Okamoto conversion, we have
that only if we can successfully respond the decryption oracle queried with the re-encrypted cipher-
texts re-encrypted by the above re-encryption keys, this step is the undistinguishable from the real
execution from the viewpoint of A.

• If pkX is the guessed attacked public key, and pkY is in table Tsk, B reports failure and aborts.

Ore: On input (pkX , pkY ,K), B checks whether pkX and pkY both exist in table TK . If not, B terminates.
Otherwise, B parses K = (A,B,C,D, c, s), and checks whether c = H3(A||D||gX0||gX2||(gX0)sAc||(gX2)sDc||
(B||C)), where pkX = (HX(·), NX , gX0, gX1, gX2), if not, B outputs ⊥ and terminates; otherwise, do
the following performances.

• If pkX is the guessed attacked public key, and pkY is in table Tsk, B does:

1. Set two empty lists, S1 and S2.
2. Find all elements (σi,mi, αi) in table THX

such that A = (gX0)αi mod (NX)2, and put them
into list S1. If S1 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary can
guess the correct value of HX(σi||mi) without querying OHX

. The probability of this event is
qHX

/|Z(NX)2 |, where qHX
is the number of queries to OHX

.
3. For every (σi,mi, αi) in list S1, find all elements in table TH2 such that σj = σi and put them

(i.e., (σi,mi, αi)||(σj , γj)’s) into list S2. If S2 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary
can guess the correct value of H2(σi) without querying OH2 . The probability of this event is
qH2/2n, where qH2 is the number of queries to OH2 .

4. Check in S2 if there exists a (σi,mi, αi)||(σj , γj) such that (gX1)αi ·(1+σiNX) mod (NX)2 = B
and γj ⊕ mi = C. If it does not exist or more than one exist, then output ⊥ and terminate.

5. Search (pkX , pkY , β̇) in table Tfrk, if not, choose a random number from {0, 1}k1 for β̇, and
record (pkX , pkY , β̇) in table Tfrk.

6. Choose a random number σ̇ ∈ ZN .
7. Compute

rX→Y = HY (σ̇||β̇),

Ȧ = (gY 0)rX→Y ,

Ḃ = (gY 1)rX→Y · (1 + σ̇NY ) mod (NY )2,

Ċ = H1(σ̇) ⊕ βX→Y ,

where pkY = (HY (·), NY , gY 0, gY 1, gY 2).

8. Set rk
(1)
X→Y = (Ȧ, Ḃ, Ċ).

9. Return (A, (gX1)αi · (gX0)−β̇ , B,C, rk
(1)
X→Y ) to A.

• Otherwise, B calls the oracle Ork to get the re-encryption key rkX→Y , and returns ReEnc(rkX→Y ,K).

Odec: On input (pkX ,K), B checks whether pkX exists in table TK , if not, B terminates. Otherwise, B
does the following performances.

• If pkX is not the guessed attacked public key, then skX is known to B, who responds A with
Dec(skX ,K).

• If pkX is the guessed attacked public key and K = (A,B,C,D, c, s), B checks whether c =
H3(A||D||gX0||gX2||(gX0)sAc||(gX2)sDc||(B||C)), if not, B outputs ⊥ and terminates; otherwise,
B does:

1. Set two empty lists, S1 and S2.
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2. Find all elements (σi,mi, αi) in table THX
such that A = (gX0)αi mod (NX)2, and put them

into list S1. If S1 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary can
guess the correct value of HX(σi||mi) without querying OHX

. The probability of this event is
qHX

/|Z(NX)2 |.
3. For every (σi,mi, αi) in list S1, find all elements in table TH2 such that σj = σi and put them

(i.e., (σi,mi, αi)||(σj , γj)’s) into list S2. If S2 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary
can guess the correct value of H2(σi) without querying OH2 . The probability of this event is
qH2/2n.

4. Check in S2 if there exists a (σi,mi, αi)||(σj , γj) such that (gX1)αi ·(1+σiNX) mod (NX)2 = B
and γj ⊕ mi = C. If none exists or more than one exist, then output ⊥ and terminate;
otherwise, output mi.

• If pkX is the guessed attacked public key and K = (A,A′, B,C, Ȧ, Ḃ, Ċ), B searches (pkY , pkX ,F1,
F2,F3) in table Turk, such that F2 = (Ȧ, Ḃ, Ċ).
If it does not exist, B does:

1. Set two empty lists, S1 and S2.
2. Find all elements (σi,mi, αi) in table THX

such that Ȧ = (gX0)αi mod (NX)2, and put them
into list S1. If S1 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary can
guess the correct value of HX(σi||mi) without querying OHX

. The probability of this event is
qHX

/|Z(NX)2 |.
3. For every (σi,mi, αi) in list S1, find all elements in table TH1 such that σj = σi and put them

(i.e., (σi,mi, αi)||(σj , βj)’s) into list S2. If S2 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary
can guess the correct value of H1(σi) without querying OH1 . The probability of this event is
qH1/2k1 , where qH1 is the number of queries to OH1 .

4. Check in S2 if there exists a (σi,mi, αi)||(σj , βj) such that Ḃ = (gX1)αi ·(1+σiNX) mod (NX)2

and βj ⊕ mi = Ċ. If none exists or more than one exist, then output ⊥ and terminate.

5. Compute σ = (B/(A′·Ami )−1 mod (NY )2)
NY

, m = C ⊕ H2(σ). If A = (gY 0)HY (σ||m) mod (NY )2,
output m, where pkY = (HY (·), NY , gY 0, gY 1, gY 2) is the corresponding delegator’s public
key; otherwise, output ⊥ and terminate.

If it does exist, B checks A′ ?= AF3 . If not, output ⊥ and terminate; otherwise,

1. Set two empty lists, S1 and S2.
2. Find all elements (σi,mi, αi) in table THY

such that A = (gY 0)αi mod (NY )2, and put them
into list S1. If S1 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary can
guess the correct value of HY (σi||mi) without querying OHY

. The probability of this event is
qHY

/|Z(NY )2 |, where qHY
is the number of queries to OHY

.
3. For every (σi,mi, αi) in list S1, find all elements in table TH2 such that σj = σi and put them

(i.e., (σi,mi, αi)||(σj , γj)’s) into list S2. If S2 = ∅, then output ⊥ and terminate.
This step makes this oracle be distinguishable from the real execution when the adversary
can guess the correct value of H2(σi) without querying OH2 . The probability of this event is
qH2/2n.

4. Check in S2 if there exists a (σi,mi, αi)||(σj , γj) such that (gY 1)αi ·(1+σiNY ) mod (NY )2 = B
and γj ⊕ mi = C. If none exists or more than one exist, then output ⊥ and terminate;
otherwise, output mi.

12



Challenge: At some point, A outputs a challenge tuple (pk∗,m0,m1). If pk∗ is not the public key B guessed
in oracle Opk, B reports failure and aborts. Otherwise, B responds choosing random d ∈ {0, 1}, σ ∈ ZN and
setting:

A∗ = gv mod N2, B∗ = T(1 + mdN) mod N2,

C∗ = H2(σ) ⊕ md, D∗ = (gv)w mod N2.

And then B chooses two random numbers c∗ ∈ {0, 1}k2 , s∗ ∈ {0, · · · , 2L(N2)+k2 − 1}, computes E∗ =
(g)s∗

A∗c∗ mod N2 and F ∗ = (gu)s∗
D∗c∗ mod N2, and checks wether (A∗, D∗,gu,gw, E∗, F ∗, B∗, C∗,F)

exists in table TH3 . If yes, B reports failure and aborts; otherwise, B outputs (A∗, B∗, C∗, D∗, c∗, s∗), and
records (A∗, D∗,gu,gw, E∗, F ∗, B∗, C∗, c∗) in table TH3 .

Phase 2:
Opk: B responds as in Phase 1.

Osk: On input pki, if pki = pk∗, or (pk∗, pki) is in table Trk, then B terminates. Otherwise, B responds as
in Phase 1.

Ork: On input (pki, pkj), if pki = pk∗, and pkj is in table Tsk, B terminates. Otherwise, B responds as in
Phase 1.

Ore: On input (pki, pkj ,K), if (pki,K) = (pk∗,K∗) and pkj is in table Tsk, B terminates. Otherwise,
B responds as in Phase 1, except when pki = pk∗ and (A,B,C,D, c, s) = (A∗, B∗, C∗, D∗, c∗, s∗), B
should record the result (pkj , A

′, C,D, Ȧ, Ċ, Ḋ) in table Tder, where the derivatives of the challenge
ciphertext are recorded.

Odec: On input (pki,K), if (pki,K) = (pk∗,K∗), or (pki,K) is in Tder, or K = ReEnc(Ork(pk∗, pki),K∗),
then B terminates. Otherwise, B responds as in Phase 1.

Guess: Finally, the adversary A outputs a guess d′ ∈ {0, 1}. If d = d′, then B outputs 1 (i.e., DDH
instance), otherwise, B outputs 0 (i.e., not a DDH instance).

Firstly, we analyze the probability of B do not abort due to the failure events, which are as follows.

1. B did not guess the right attacked public key.

2. The record (A∗, D∗,gu,gw, E∗, F ∗, B∗, C∗,F) is in table TH3 before Challenge phase.

Suppose A makes a total of qpk queries to public key generation oracle, qrk queries to re-encryption key
generation orale, qde queries to decryption orale, qH queries to H hash function oracle, qH1 queries to H1

hash function oracle, qH2 queries to H2 hash function oracle, and qH3 queries to H3 hash function oracle.
The probabilities that B does not abort due to the first failure event and the second failure event are

1/qpk and 1− (qH3 +1)/2k2 , respectively. Therefore, the probability that B does not abort due to the failure
events during the simulation is (1 − (qH3 + 1)/2k2)/qpk.

Secondly, oracles Ore and Odec are indistinguishable from the corresponding real executions with proba-
bilities at least

„

1 + qmax + (qmax)2

(1 + qmax)2
+

qmax

(1 + qmax)2

„

1 − qHX

|ZNmX |

«

“

1 − qH1

2k1

”

«qre

>

„

1 + qmax + (qmax)2

(1 + qmax)2

«qre

and (
qmax

1 + qmax
+

1
1 + qmax

(
1 − qHX

|ZNmX
|

)
(1 − q2)

)qde

>

(
qmax

1 + qmax

)qde

,

respectively, where qHX
is the amount of queries to the same kind of oracle OH , NmX is the largest number

among users’ public key N ’s, |ZNmX
| is the size of ZNmX

, and q2 = max{ qH1
2k1

,
qH2
2n }.

Finally, in the re-encryption oracle, we assume that the signature of knowledge is secure, hence, we should
minus the probability of breaking the signature of knowledge ξ.
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As a result, B’s advantage is at least

ε ·
(
1 − (qH3 + 1)/2k2

)
·
(
1 + qmax + (qmax)2

)qre · (qmax)qde

qpk · (1 + qmax)2qre+qde
− ξ

and its running time is at most

t + O(3qpk + (7 + qH)qrk + (5 + qH)qde)te,

where te is the time of computing one exponentiation in a cyclic group of quadratic residues modulo, and
we only consider the exponentiation computation. ¤

Note that if we modifies B as computed by H ′((g2)r) · (1 + σ · N), where H ′ is another user’s own hash
function, H ′(·) : {0, 1}∗ → ZN2 , we can get a new PRE scheme proven secure against chosen ciphertext
based on CDH assumption over Z∗

N2 and secure signature of knowledge.9 The proof is almost the same as
that of Theorem 1, but the probability of solving CDH assumption will be 1/qH′ of that of solving DDH
assumption, where qH′ is the number of queries to oracle H ′.

Theorem 2 (Uni-PRE-CR security) In the random oracle, if N is hard to factor, then scheme U is
collusion resistant.

Proof. One can easily show that an algorithm for against scheme U’s collusion resistance, i.e., from an
algorithm that it is given (N,g0,g1,g2,a, N(= pq), p(= 2p′+1), q(= 2q′+1), p′, q′, g0, g1, g2), it can compute
p,q,p′,q′, such that N = pq, p = 2p′+1, and q = 2q′ + 1, we can easily get another algorithm for factoring
N. ¤

4 Scheme UT with Temporary Delegation

This section describes scheme UT , a variant of scheme U, supporting temporary delegation. Like the tempo-
rary unidirectional PRE schemes in [2, 3, 25], the proxy is only allowed to transform ciphertexts from the
delegator to the delegatee during a limited time period. The point of modifying scheme U to scheme UT is
to make different g1’s for every time period.

Scheme UT also contains three cryptographic hash functions for all users: H1(·) : {0, 1}∗ → {0, 1}k1 ,
H2(·) : {0, 1}∗ → {0, 1}n, and H3(·) : {0, 1}∗ → {0, 1}k2 , where k1 and k2 are the security parameter, n is
the bit-length of messages to be encrypted. The details are as follows.

KeyGen: Choose a safe-prime modulus N = pq, T + 2 random numbers α ∈ Z∗
N2 , a1, · · · , aT , b ∈ [1, pp′qq′],

a hash function H(·), where p = 2p′ + 1, q = 2q′ + 1, p, p′, q, q′ are primes, T is the number of
time intervals, and H(·) : {0, 1}∗ → ZN2 . Furthermore, set g0 = α2 mod N2, g

(i)
1 = g0

ai mod N2

(i = 1, · · · , T ), and g2 = g0
b mod N2. The public key is pk = (H(·), N, g0, g

(i)
1 (i = 1, · · · , T ), g2), the

“weak” secret key is (ai (i = 1, · · · , T ), b), and the long-term secret key is sk = (p, q, p′, q′).

ReKeyGen: On input a public key pkY = (HY (·), NY , gY 0, g
(1)
Y 1, · · · , g

(TY )
Y 1 , gY 2), a “weak” secret key aX,j for

time period j ∈ {1, · · · , TX}, and a secret key skX = (pX , qX , p′X , q′X), it outputs the unidirectional re-
encryption key rkX→Y,j = (rk(1)

X→Y,j , rk
(2)
X→Y,j) for the j-th time period, which is generated as follows.

• Choose two random numbers σ̇j ∈ ZN , β̇j ∈ {0, 1}k1 .

• Compute rk
(2)
X→Y,j = aX,j − β̇j mod (pXqXp′Xq′X).

• Compute

rX→Y,j = HY (σ̇j ||β̇j), Ȧj = (gY 0)rX→Y,j mod (NY )2,
Ḃj = (gY 2)rX→Y,j · (1 + σ̇jNY ) mod (NY )2, Ċj = H1(σ̇j) ⊕ β̇j

9We thank Eike Kiltz to point out this to us.
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• Set rk
(1)
X→Y,j = (Ȧj , Ḃj , Ċj).

Enc: On input a public key pk = (H(·), N, g0, g
(1)
1 , · · · , g

(T )
1 , g2), a time period j ∈ {1, · · · , T} and a message

m ∈ {0, 1}n, the encryptor does the following performances:

• Choose a random number σj ∈ ZN .

• Compute
rj = H(σj ||m),

Aj = (g0)r mod N2, Bj = (g(j)
1 )r · (1 + σjN) mod N2,

Cj = H2(σj) ⊕ m, Dj = (g2)r mod N2.

• Run (cj , sj) ← SoK.Gen(Aj , Dj , g0, g2, (Bj , Cj)), where the underlying hash function is H3.

• Output the ciphertext Kj = (Aj , Bj , Cj , Dj , cj , sj) for the j-th time period .

ReEnc: On input a re-encryption key rkX→Y,j = (rk(1)
X→Y,j , rk

(2)
X→Y,j) and a ciphertext Kj = (Aj , Bj , Cj , Dj , cj ,

sj) under key pkX = (HX(·), NX , gX0, g
(1)
X1, · · · , g

(TX)
X1 , gX2), where j ∈ {1, · · · , TX}, the proxy checks

whether cj = H3(Aj ||Dj ||gX0||gX2||(gX0)sj (Aj)cj ||(gX2)sj (Dj)cj ||(Bj ||Cj)). If not hold, output ⊥ and
terminate; otherwise, re-encrypt the ciphertext to be under key pkY as:

• Compute A′
j = (Aj)rk

(2)
X→Y,j = (gX0)r(aX,j−β̇j) mod (NX)2.

• Output the new ciphertext

(Aj , A
′
j , Bj , Cj , rk

(1)
X→Y,j) = (Aj , A

′
j , Bj , Cj , Ȧj , Ḃj , Ċj).

Dec: On input a secret key and any ciphertext Kj for the j-th time period, where j ∈ {1, · · · , T}, the
decryptor parses Kj = (Aj , Bj , Cj , Dj , cj , sj), or Kj = (Aj , A

′
j , Bj , Cj , Ȧj , Ḃj , Ċj).

Case Kj = (Aj , Bj , Cj , Dj , cj , sj): Check whether cj = H3(Aj ||Dj ||g0||g2||(g0)sj (Aj)cj ||(g2)sj Dj
cj ||(Bj ||Cj)),

if not, output ⊥ and terminate; otherwise,

• if the input secret key is the “weak” secret key aj , compute σj = Bj/((Aj)
aj )−1 mod N2

N .

• if the secret key is the long term secret key (p, q, p′, q′), compute σj = (Bj/(g0)
w1 )2p′q′−1 mod N2

N ·
π(modN), where w1 is computed as that in scheme BCP03, and π is the inverse of 2p′q′ mod
N .

Compute m = Cj⊕H2(σj), if Bj = (g(j)
1 )H(σj ||m) ·(1+σj ·N) mod N2 holds, output m; otherwise,

output ⊥ and terminate.

Case Kj = (Aj , A
′
j , Bj , Cj , Ȧj , Ḃj , Ċj): In this case, the decryptor should know the delegator’s (Al-

ice’s) public key (H ′(·), N ′, g′0, g
(i)
1

′
, · · · , g

(T ′)
1

′
, g′2).

• If the input secret key is the “weak” secret key b, compute σ̇j = Ḃj/((Ȧj)
b)−1 mod N2

N .

• If the input secret key is the long term secret key (p, q, p′, q′), computes σ̇j = (Ḃj/g
w1
0 )2p′q′−1 mod N2

N ·
π(modN), where w1 is computed as that in scheme BCP03, and π is the inverse of 2p′q′ mod
N .

Compute β̇j = Ċj ⊕ H1(σ̇j), if Ḃj = (g2)H(σ̇j ||β̇j) · (1 + σ̇jN) mod N2 holds, then compute

σj = Bj/(A′
j ·(Aj)

βj )−1 mod N ′2

N ′ , m = Cj ⊕ H2(σj); otherwise, output ⊥ and terminate. If Bj =

(g(j)
1

′
)H′(σj ||m) · (1 + σj · N ′) mod N ′2 holds, then output m; otherwise, output ⊥ and terminate.

Note that (H(·), N, g0, g
(i)
1 , · · · , g

(T )
1 ), g2) is the public key of the decryptor.
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Table 1: Comparison between scheme U and scheme LV08.
Schemes LV08 U

Comput.
Cost

ReKeyGen 2teb 2teN

Enc 3.5teb + 1ts 5teN

ReEnc 2tp + 4teb + 1tv 4teN

Dec
Original 3tp + 2teb + 1tv 5teN

Transformed 5tp + 2teb + 1tv 4teN

Ciphertext
Size

Original 1|svk| + 2|Ge| + 1|GT | + 1|σ| 2k + 3|NX
2| + |m|

Transformed 1|svk| + 4|Ge| + 1|GT | + 1|σ| k1 + 3|NX
2| + 2|NY

2| + |m|

Security
Security Level collusion resistant, RCCA collusion resistant, CCA

Standard model Yes No

Underlying Assumptions 3-QDBDH DDH

Correctness. The correctness property is easily obtained by the same method for scheme U.

Theorem 3 (Uni-PRETD-CCA Security) In the random oracle model, scheme UT is CCA-secure un-
der the assumptions that DDH problem over Z∗

N2 is hard, and that the signature of knowledge is secure.

Proof. In this proof, B does not only guess which public key is the attacked public key, but also guess which
time period is the attacked time period. We set N as the safe-prime modulus of the target public key, g0 = g,
and set gu as the public parameters of the attacked time period. The rest of the simulation can be proceeded
by the same method in the proof of Theorem 1.

The probability of this proof is 1/qT of that in the proof of Theorem 1, where qT is the amount of time
periods of the attacked time period. ¤

Theorem 4 (Uni-PRETD-CR security) In the random oracle, if N is hard to factor, then scheme UT

is collusion resistant.

Proof. It is easy to get this proof, since we can know “weak” secret key which can be used to respond all
kinds of queries. Once the adversary outputs the long-term secret key (p, q, p′, q′), we get the factors of N.¤

5 Comparison

In this section, we compare scheme U with the previous CCA-secure unidirectional PRE schemes. Since as
mentioned above, the unidirectional PRE schemes in [21, 17, 11, 13] are not CCA-secure, we only compare
scheme U with the scheme in [25] (named LV08).

In Table 1, we denote tp, teb, teN , ts, and tv as the computational cost of a bilinear pairings, an exponen-
tiation over a bilinear group, an exponentiation over Z∗

N2 (N is a safe-prime modulus), a one-time signature
and verification, respectively. Ge and GT are the bilinear groups used in scheme LV08. NX and NY are
the safe-prime modulus corresponding to the delegator and the delegatee, respectively. svk and σ are the
one-time signature’s public key and signature. Note that we only consider the case of using weak secret key
to decrypt in Dec algorithm of scheme U.

From Table 1, we can see that scheme LV08 is a little bit more efficient than scheme U. In order to
guarantee that N is hard to factor, N should be 1024-bit at least, which makes scheme U need more time
for an exponentiation and more storage for a ciphertext. However, we emphasize that scheme U is CCA-
secure and based on the well-studied DDH assumption, while scheme LV08 is RCCA-secure and based on
the less-studied 3-quotient decision Bilinear Diffie-Hellman (3-QDBDH) assumption.
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6 Conclusions

In this paper, by using signature of knowledge and Fijisaki-Okamoto conversion, we proposed the first CCA-
secure and collusion resistant unidirectional PRE scheme without pairings, which solves a problem proposed
in [9, 25].

There are still many open problems to be solved, such as designing more efficient CCA-secure, collu-
sion resistant unidirectional PRE schemes without pairings, and CCA-secure multi-use unidirectional PRE
schemes [9, 25].
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A Analysis on Ivan-Dodis Construction

A.1 Ivan-Dodis Construction

The Ivan-Dodis construction is based on any CCA-secure PKE. The details are as follows.

UniPRE.KGen: On input the security parameter 1k, it outputs two key pairs (pk1, sk1) and (pk2, sk2).

UniPRE.RKGen: On input the delegator’s key pairs (pk1, sk1) and (pk2, sk2), the delegator sends sk1 as the
re-encryption key to the proxy via a secure channel, and sends sk2 to the delegatee as the partial key
via another secure channel.

UniPRE.Enc: On input public keys (pk1, pk2) and a message m, it outputs PKE.Enc(
pk1, PKE.Enc(pk2,m)).

UniPRE.ReEnc: On input a re-encryption key sk1 and a ciphertext C, it outputs a re-encrypted ciphertext
C ′ = PKE.Dec(sk1, C).

UniPRE.Dec: On input secret keys (sk1, sk2), a partial key sk′
2 from its delegator and a ciphertext C,

UniPRE.Dec does:

• If C is an original ciphertext, then it outputs PKE.Dec(sk2, PKE.Dec(sk1, C)).

• If C is a re-encrypted ciphertext, then it outputs PKE.Dec(sk′
2, C).

Note that the partial key sk2 can be encrypted by the delegatee’s public key, and forwarded to Bob by
the proxy. In this case, the delegatee does not require to store extra secrets for every delegation [2, 3].

A.2 Chosen Ciphertext Attacks on the Ivan-Dodis Construction

In this subsection, we will show that the adversary always wins the Uni-PRE-CCA game with the Ivan-Dodis
construction’s Challenger.

Phase 1: The adversary does not need to make any query in this phase.

Challenge: The adversary outputs two equal length plaintexts m0, m1 from the message space, and an
uncorrupted public key pk∗ = (pk∗

1 , pk∗
2).

The Challenger will follow the Uni-PRE-CCA game’s specification, i.e., pick a random bit b ∈ {0, 1}
and sets C∗ = UniPRE.Enc(pk∗,mb). It sends C∗ as the challenge ciphertext to A.

Phase 2: The adversary performs as follows.

1. The adversary queries Ore with (pk∗, pk, C∗), such that pk is uncorrupted. Then as the Uni-
PRE-CCA game’s specification, the adversary can get the re-encrypted ciphertext C ′ such that
C ′ = PKE.Dec(sk∗

1 , C∗), sk∗
1 is the key corresponding to pk∗

1 .
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2. The adversary computes Ĉ = PKE.Enc(pk∗
1 , C ′). Note that Ĉ 6= C∗ since PKE is CCA-secure, such

as the underlying PKE scheme is the Cramer-Shoup scheme [12].

3. The adversary queries Ode with (pk∗, Ĉ) and gets a message m. Note that (pk∗, Ĉ) is not a
derivative of (pk∗, C∗), hence this query is valid.

Guess: If m = m0, the adversary A outputs b′ = 0; otherwise, output b′ = 1.

Since Ĉ and C∗ are corresponding to the same message, we always have b = b′. As a result, the Ivan-Dodis
construction is not CCA-secure for the security model in Section 2.

B Definitions of Unidirectional PRE Schemes with Temporary
Delegation

Definition 7 (Unidirectional PRE with Temporary Delegation) A unidirectional proxy re-encryption
scheme UniPRE with temporary delegation is a tuple of PPT algorithms (KeyGen, ReKeyGen, Enc, ReEnc,
Dec):

• KeyGen(1k) → (pk, sk, T ). On input the security parameter 1k, the key generation algorithm KeyGen
outputs a public/secret key pair (pk, sk), and the number of time intervals T .

• Enc(pk,m, j) → Cj . On input a public key pk, a message m in the message space, and the time period
j ∈ {1, · · · , T}, the encryption algorithm Enc outputs a ciphertext Cj for the j-th time period.

• ReKeyGen(sk1, pk2, j) → rk1→2,j . On input a secret key sk1, a public key pk2, and the time period
j ∈ {1, · · · , T1}, where T1 is the number of time intervals corresponding to the delegator. The re-
encryption key generation algorithm ReKeyGen outputs a unidirectional re-encryption key rk1→2,j for
the j-th time period.

• ReEnc(rk1→2,j , C
(j)
1 ) → C

(j)
2 . On input a re-encryption key rk1→2, and a ciphertext C

(j)
1 for the j-th

time period, where j ∈ {1, · · · , T1}, T1 is the number of time intervals corresponding to the delegator.
The re-encryption algorithm ReEnc outputs a re-encrypted ciphertext C

(j)
2 for the j-th time period or

⊥.

• Dec(sk, Cj) → m. On input a secret key sk and a ciphertext Cj for the j-th time period, where
j ∈ {1, · · · , T}, T is the number of time intervals corresponding to the decryptor. The decryption
algorithm Dec outputs a message m in the message space or ⊥.

B.0.1 Correctness.

A correct proxy re-encryption scheme should satisfy two requirements: Dec(sk, Enc(pk,m, j)) = m, and
Dec(sk′, ReEnc(ReKeyGen(sk, pk′, j), Cj)) = m, where (pk, sk, T ), (pk′, sk′, T ′) ← KeyGen(1k), Cj is the
ciphertext of message m for pk and the j-th time period from algorithm Enc or algorithm ReEnc, and
j ∈ {1, · · · , T}.

B.0.2 Chosen Ciphertext Security for Unidirectional Proxy Re-Encryption with Temporary
Delegation.

Following the method in [25], we extend Uni-PRE-CCA game to Uni-PRETD-CCA game, which is described
as follows.

Phase 1: The adversary A issues queries q1, · · · , qn1 where query qi is one of:

• Opk, Osk: Identical to those Uni-PRE-CCA game.
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• Re-encryption key generation oracle Ork: On input (pk, pk′, j) by A, where pk, pk′ are from Opk,
and the time period j ∈ {1, · · · , T}, the Challenger returns the re-encryption key rkpk→pk′,j =
ReKeyGen(sk, pk′, j), where sk is the secret key corresponding to pk.

• Re-encryption oracle Ore: On input (pk, pk′, C, j) by A, where pk, pk′ are from Opk, and the time
period j ∈ {1, · · · , T}, the re-encrypted ciphertext C ′ = ReEnc(ReKeyGen(sk, pk′, j), C) is returned by
the Challenger, where sk is the secret key corresponding to pk.

• Decryption oracle Odec: On input (pk,C, j), where pk is from Opk, and the time period j ∈ {1, · · · , T},
the Challenger returns Dec(sk, C), where sk is the secret key corresponding to pk.

These queries may be asked adaptively, that is, each query qi may depend on the replies to q1, · · · , qi−1.

Challenge: Once the adversary A decides that Phase 1 is over, it outputs two equal length plaintexts m0,
m1 from the message space, a public key pk∗, and the time period j∗ on which it wishes to be challenged.
There are some constraints on the public key pk∗ and j∗: (i) pk∗ is from Opk; (ii) pk∗ did not appear in any
query to Osk in Phase 1; (iii) if (pk∗,F, j∗) did appear in any query to Ork, then F did not appear in any
query to Osk. The Challenger picks a random bit b ∈ {0, 1} and sets C∗ = Enc(pk∗,mb, j). It sends C∗ as
the challenge to A.

Phase 2: The adversary A issues more queries qn1+1, · · · , qn where query qi is one of:
• Opk: The Challenger responds as in Phase 1.

• Osk: On input pk by A, if the following requirements are all satisfied, the Challenger responds as in
Phase 1; otherwise, the Challenger terminates the game.

– pk is from Opk;
– pk 6= pk∗;
– (pk∗, pk, j∗) is not a query to Ork before;
– (pk′, pk, C ′, j∗) is not a query to Ore before, where (pk′, C ′, j∗) is a derivative10 of (pk∗, C∗, j∗).

• Ork: On input (pk, pk′, j) by A, if the following requirements are all satisfied, the Challenger responds
as in Phase 1; otherwise, the Challenger terminates the game.

– pk, pk′ are from Opk;
– if pk = pk∗ and j = j∗, then pk′ is not a query to Osk.

• Ore: On input (pk, pk′, C, j) by A, if the following requirements are all satisfied, the Challenger
responds as in Phase 1; otherwise, the Challenger terminates the game.

– pk, pk′ are from Opk;
– if (pk,C, j) is a derivative of (pk∗, C∗, j∗), then pk′ is not a query to Osk.

• Odec: On input (pk,C, j), if the following requirements are all satisfied, the Challenger responds as in
Phase 1; otherwise, the Challenger terminates the game.

– pk is from Opk;
– (pk,C, j) is not a derivative of (pk∗, C∗, j∗).

These queries may be also asked adaptively.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We refer to such an adversary A as a Uni-PRETD-CCA adversary. We define adversary A’s advantage in
attacking UniPRE as the following function of the security parameter k: AdvUniPRE,A(k) = |Pr[b = b′]−1/2|.
Using the Uni-PRE-CCA game we can define chosen ciphertext security for unidirectional proxy re-encryption
schemes.

10Derivatives of (pk∗, C∗, j∗) are defined similarly with that in Section 2.2, and just add j∗ into every input/output.
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Definition 8 (Uni-PRETD-CCA security) We say that a unidirectional proxy re-encryption scheme
UniPRE with temporary delegation is semantically secure against an adaptive chosen ciphertext attack if
for any polynomial time Uni-PRETD-CCA adversary A the function AdvUniPRE,A(k) is negligible. As
shorthand, we say that UniPRE is Uni-PRETD-CCA secure.

Definition 9 (Uni-PRETD-CR security) We say that a unidirectional proxy re-encryption scheme UniPRE
with temporary delegation is collusion resistant if for any polynomial bounded adversary A, the following
probability is negligible:

Pr[(sk1, pk1, T1) ← KeyGen(1k), {(ski, pki, Ti) ← KeyGen(1k)},
{rki→1,j ← ReKeyGen(ski, pk1, j)} (j = 1, · · · , Ti),
{rk1→i,j ← ReKeyGen(sk1, pki, j)} (j = 1, · · · , T1),

i = 2, · · · ,
α ← A(pk1, {pki, ski}, {rk1→i,j}, {rki→1,j}) :

α = sk1].
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