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Abstract. RFID can be used for a variety of applications, e.g., to conveniently pay for public transportation.
However, achieving security and privacy of payment is challenging due to the extreme resource restrictions
of RFID tags. In this paper, we propose PSP – a secure, RFID-based protocol for privacy-preserving pay-
ment. Similar to traditional electronic cash, the user of a tag can pay access to a metro using his tag and so
called coins of a virtual currency. With PSP, tags do not need to store valid coins, but generate them on the
fly. Using Bloom filters, readers can verify the validity of generated coins offline. PSP guarantees privacy
such that neither the metro nor an adversary can reveal the identity of a user or link subsequent payments.
PSP is secure against invention and overspending of coins, and can reveal the identity of users trying to
doublespend coins. Still, PSP is lightweight: it requires only a hash-function and few bytes of non-volatile
memory on the tag.

1 Introduction

Radio Frequency Identification (RFID) systems that were originally targeting simple object identifi-
cation are more and more used for sophisticated applications such as access control and payment. The
idea of having several small and cheap devices wirelessly communicate with a reader is appealing for
various scenarios. The Oyster Card [29] is a prominent example of a large scale deployment of con-
tactless smartcards, i.e., powerful RFID tags, enabling convenient payment for public transportation
services. In such a scenario, people entering a metro just quickly hold their tags close to a reader de-
vice in front of a gate to issue the payment for the transport fee. Similar payment and access control
schemes are in widespread use for other kinds of public transportation such as buses, tramways, or
trains.

Such payment scenarios however raise challenging security and privacy issues. First, an intruder
or a malicious user should be prevented from having access to public transportation without proper
payment, by issuing bogus payments or impersonating legitimate users. The second concern is privacy
that is often emphasized both as a user requirement and a regulatory matter. Privacy requires that
neither an external adversary nor the public transportation system be able to identify or trace users by
exploiting the payment system. Furthermore, readers in a metro station or in a bus are often embedded
devices that are not permanently connected to a backend system such as a server. So, readers must be
able to verify offline and within a very short period of time, whether a payment is valid or not.

This payment scenario typically calls for an offline, anonymous electronic payment solution such
as the ones targeted by myriads of ecash, payment and micro-payment schemes extensively covered
in the literature – e.g., see first seminal papers by Brands [3], Chaum [5], Chaum et al. [6], for
micropayment Micali and Rivest [20], Rivest [24], or see van Tilborg [33] for an overview. Yet, due
to the inherent requirement for blind signatures, existing solutions for anonymous, offline payment are
based on complex asymmetric cryptography. Customizing these solutions for RFID systems therefore
implies prohibitive complexity that exceeds the capacity of existing RFID devices. Due to the strong
cost and size constraints, RFID tags neither feature complex asymmetric cryptographic primitives, nor
large amounts of (non-volatile) memory, cf., Avoine et al. [2], Choi et al. [7], Dimitrou [10], Pietro
and Molva [22], Tsudik [32], Weis et al. [37]. Typically, hash functions are the only cryptographic



primitive feasible on the hardware of RFID tags. An alternative approach based on a time-memory
trade-off that would consist of storing a number of precomputed values in the tags such as with
MilliCent [12] or MicroMint [25] is not suitable either, since tags also have very little memory. In
conclusion, traditional ecash solutions cannot be applied to RFID.

Related work: The Oyster Card has several drawbacks: its security has been broken [11], it uses
a physically large, contactless smartcard being more expensive than today’s tiny RFID EPC Gen 2
tags [1], and bank and metro are combined, so there cannot be any privacy for users. Similar to Oyster
Card, large and expensive contactless smartcards are also used in, e.g., Visa’s payWave [36] program.
Other RFID payment solutions depend on using an additional mobile phone to confirm payment or
read out a barcode on the phone’s display [16, 17, 35, 38] – which is inconvenient.

To the best of our knowledge, there is no privacy-preserving, secure and offline payment solution
distinguishing between bank and payees that solely uses RFID tags for payment.

This paper presents PSP, a protocol for secure, private, offline, electronic cash suited for RFID
tags. Following notions of ecash, the tag serves as a rechargeable electronic wallet, it is responsible
for repeated “storage” of pre-paid coins of a virtual currency, and manages all communication with
the reader. The main idea of PSP is that the tag does not physically store coins, but it receives some
information to generate a limited number of valid coins on the fly. Using Bloom filters, readers can
verify the validity of coins received from tags.

PSP meets the security and privacy requirements raised by RFID based payment, as follows:

– An adversary cannot arbitrarily invent new coins, i.e., introduce coins into the system for which
he did not legitimately pay for through the bank.

– Overspending coins is impossible: an adversary cannot replay coins from his own payments or
stolen coins from other people’s payments he eavesdropped.

– Readers are offline and only synchronize, e.g., once a day, with the bank. Yet, an adversary still
can not doublespend coins: he cannot pay with the same coin twice at different readers. If he
does, his identity will be revealed at the bank. Revealing the identity of adversaries trying to
doublespend money has O(1) complexity for the bank, but is impossible for readers.

– Users of RFID tags remain anonymous and are untraceable: The true identity of a user is hidden
to the public transport system and the adversary. Also, neither the public transportation system
nor an adversary can trace users/tags on subsequent payments, i.e., link different payments to the
same tag.

– PSP is lightweight: besides being able to execute a hash function, tags feature only a few bytes of
non-volatile memory.

– PSP can cope with resource-limited readers. Readers are often embedded devices, so their storage
and computational resources are, although orders of magnitude higher compared to tags, still
restricted. With respect to the number of tags and coins, complexity for verifying a coin is in
O(1).

Note that in contrast to ecash with blind signatures, PSP wouldn’t prevent a malicious bank from
tracing users since by eavesdropping wireless communication between tags and readers the bank can
identify which user issued a payment at which reader. Hence, PSP does not protect privacy against
the bank. However, revealing privacy to the bank can only be prevented by using computationally
expensive blind signature techniques.

The sequel of the paper is structured as follows: first, an overview of the main idea behind PSP is
given in Section 2; Section 3 presents the adversary model assumed in this paper; Section 4 introduces
the general setup of the system with the bank, tags, readers, notion of time etc; Section 5 then presents



PSP in detail: the process of preparing the whole system by the bank, the act of (re-)charging a tag,
and the actual payment protocol; Section 6 discusses, why PSP is secure, i.e., analyzes its security
and privacy properties.

2 Overview

This paper uses the term “metro” for all kinds of public transportation systems: buses, trams, (urban)
railways etc. As with the Oyster Card, access to the public transportation system is only granted, if
Alice, the user of a tag, can pay her trip using her RFID tag and a reader. Otherwise, a gate or barrier
to access public transport will not open, or the bus driver will not let her use public transportation.
Note that PSP is quite general and its usage is not restricted to payment for public transport, but can
be extended to all kind of ecash scenarios. However, details on how to adapt some aspects of PSP for
different payment scenarios are out of scope of this paper.

Before starting with the more precise description of the system setup and all protocol details in
sections 4 and 5, the following paragraphs give an informal overview about the basic concepts of PSP.

Payment in PSP. The idea of payment with PSP is that each metro user Alice carries an RFID
tag TAlice. Before Alice passes a barrier, she wipes TAlice close to a reader attached to the barrier.
Reader and TAlice exchange data, using the PSP protocol. In general, the data exchanged is payment
information – in PSP, this is some kind of “digital coins“ of money. PSP basically achieves reader
authentication and the actual payment. First, TAlice sends a coin as a commitment to the reader. Then,
TAlice performs a challenge-response protocol for reader authentication. Since tags and readers do
not share keys in PSP, the bank provides TAlice with a set of challenges and matching responses.
Once the reader is successfully authenticated by TAlice, TAlice completes the payment by revealing
the preimage of the committed coin to the reader. Before opening the barrier, the reader verifies
whether the coin received from Alice it valid and whether it has been spent before. To protect against
an adversary trying to eavesdrop and steal a coin, TAlice sends not only a valid coin during payment,
but an additional “fake” coin. Only readers, but not an adversary, can distinguish between valid and
fake coins.

Charging: Storing Money on Tags. Before any payment, Alice has to “charge” her tag with
digital coins. Therefore, Alice goes to a bank and gives “real” money to the bank. In return, the bank
sends back some information to the tag which is stored on the tag’s non-volatile memory. Using
this information, the tag can later generate digital coins used for payments. Eventually, a tag is “ex-
hausted”, i.e., all the coins Alice has paid for are spent. Alice can go to the bank and (re-)charge her
tag or discard the old tag and buy a new one. During charging, the bank also gives the tag a set of so
called verification bits that will be used during tag-reader authentication.

Reader Preparation. The bank also prepares readers. During an initial phase, before any charg-
ing of tags, before any payment, and only once, the bank prepares a Bloom filter for each reader. This
Bloom filter represents all possible valid coins in the system. Consequently, later during payment, a
reader can therewith verify, whether a coin received from a tag is valid or not.

Maintenance. Readers are off-line most of the time, i.e., during normal, daily operation. But
periodically, e.g., once a day during the night, readers conduct maintenance: readers connect to the
bank, send in the coins collected over the day, and receive from the bank information to update their
Bloom filters.

Time. To cope with new tags entering the payment system over time, old ones being discarded,
and new coins, time is divided into “epochs” with PSP. The typical duration of an epoch his in the
order of several days or one month. At the beginning of a new epoch, the bank carries out the above-
mentioned initial preparation of readers once. Also, the bank and all readers discard all information



predating the last epoch, e.g., the Bloom filters. As a result, Alice might not be able to pay with coins
which are older than 2 epochs anymore – coins expire.

PSP’s Security and Privacy Properties. The information received from the bank allows Alice’s
tag (or an adversary) to only generate as many coins as she has paid for. Any other generated coin
is, with high probability, rejected by readers. If Alice tries to spend one valid coin, i.e., a coin she
really paid for, twice at the same reader, this is immediately detected and rejected by this reader. If
Alice tries to spend a valid coin on the same day at two different readers, this is detected by the bank
during maintenance, and the bank can identify Alice as being the origin of such malicious behavior.
An adversary cannot impersonate a reader and thereby steal coins from tags, as he would have to
authenticate himself to a tag. Finally, no one can establish any correlation among coins even when
they originate from the same tag. Therefore, neither the metro nor an adversary can track Alice.

Bloom Filters. The following is a quick introduction to Bloom filters limited to what is nec-
essary for understanding this paper, for more information, refer to Broder and Mitzenmacher [4].
We use Bloom filters, as they are a space efficient data structure representing a set of elements.
The following operations are supported. 1.) addBF(x, y) adds a new element y to Bloom filter x.
2.) isElement(x, y) outputs true, if y has been added to Bloom filter x, false otherwise. Here,
isElement(x, y) is prone to false positives: it might output true with probability P , even if y has
not been added to x before. False negatives are impossible. For convenience, isNotElement(x, y)
outputs the opposite of isElement(x, y). Finally, 3.) GenerateEmptyBloomFilter(s) returns a new
empty Bloom filter of a specified size s.

3 Adversary Model

Following definitions from Cramer and Damgård [8], we assume an active adversary: The adversary
can not only listen to wireless communication between tags and readers, but also initiate communi-
cation with arbitrary tags and readers. The adversary might act like a man-in-the-middle and rush,
i.e., he can intercept messages, modify or even selectively block them before forwarding them to their
destination3. The adversary also sees the “outcome” of a payment, i.e., if the barrier opens or not
after tag and reader have exchanged some messages. The adversary is computationally, timewise, and
memory-wise bounded to typical “security margins”. For example, he cannot invert a hash function.

An adversary might also compromise tags. He can read-out all the memory of the tag and tamper
with the data and logic stored on a tag. As as result, the tag’s behavior might not comply with the
protocol anymore. If he compromises a tag, there is, of course, no way to prevent him from spending
all coins of the tag the original owner paid for. In conclusion, the above adversary is equivalent to the
adversary of Juels and Weis [18] or the definition of the STRONG adversary of Vaudenay [34].

Typically users care about being traced by payees, in this case the metro system. Consequently,
PSP should not only be private against “outside” adversaries as described above, but also against the
payees. In the sequel, we assume that also the readers might collaborate to reveal users’ privacy and
to trace users. Note that with Oyster Card, there is traceability of users [27].

In contrast to ecash, we do not consider the bank as an adversary and interested in violating
users’ privacy. This would require properties equivalent to blind signatures, cf., [5], which cannot be
afforded on tags due to their computational overhead. Instead, in this paper, the bank is trusted by
tags and the metro. Furthermore, we assume all communication between readers and bank as trusted

3 Note that, without special physical assumptions, such as time or distance bounding, Mafia Fraud [9] is possible in ecash
systems. Preventing Mafia Fraud is out of scope of this paper, but PSP can be extended, e.g., using RFID time bounding
protocols, cf., Hanke [14], Hanke and Kuhn [15].



using traditional security mechanisms. Also, the communication between Alice and the bank, e.g.,
for charging her tag, takes place through a secure channel.

4 System Assumptions and Setup

Due to their limited capacity, the most complex operation tags can afford is a cryptographic hash
function [2, 10, 18, 19, 22, 26, 32, 37]. For convenience, we assume communication between tags
and readers to be error-free. As wireless communication is typically prone to static noise, we assume
appropriate mechanisms, like ARQ techniques, to be implemented on lower communication layers.
As mentioned in Section 3, the adversary might, however, selectively drop messages. In this case,
underlying ARQ mechanisms will give a timeout to PSP.

In sequel of this section, we introduce the components of PSP.

4.1 Money

Tags, the bank, and readers use virtual currency called coins. Although, by a stretch of language,
we use the notion of storing coins on a tag, tags do not directly “store” coins in their non-volatile
memory: instead, the bank will provide tags with information that allows them to create valid coins
in real-time.

Alice can charge a tag with money, i.e., trade in real money ($, £, , . . .) into coins. Alice can buy
and (re-)charge her tag only at a bank or at special cash machines. For convenience, the term “bank”
used throughout this paper encompasses all places where Alice can charge her tag, and these places
are synchronized and connected online to the same kind of backend banking system.

For convenience, we make the following simplifications regarding handling coins, charging, and
payment in PSP:

1.) The exchange rate is $1 for one coin. Transportation will always cost integer multiples of
coins, there is no notion of fractions of a coin.

2.) A tag can only be (re-)charged, if all its coins have been spent. Also, a tag can only be charged
with γmax coins at a time. Every time Alice wants to charge her tag with γmax coins, the bank provides
Alice’s tag with a so called “ID”. This ID will be used to generate coins during payments.

While PSP with the above simplifications for better understanding is rather limited, we will extend
it and add more flexibility in Section 5.5.

4.2 Per Epoch System Parameters

In PSP, time is divided into consecutive epochs, ε1, . . . , ε256. For example, one epoch is one month.
Using statistics available over the last recent years with traditional payments, bank and metro know
the following averages or expectation values. On average and per epoch εi:

There are τ different tags T1, . . . , Tτ in the system.
A tag will spend γavg coins on average in public transport during one epoch.
Unused coins will expire after 2 epochs, e.g., after two months4.
In total, there are η = τ · γavg coins in the system. Consequently, the number of IDs to generate

η coins on average is #ID = η
γmax

.
Generally, the metro should choose all system parameters using appropriate safety margins.

4 The bank can later reimburse expired coins, cf., Section 6.2.



4.3 Readers

The system consists of ρ readers. Each reader has a unique Reader ID, RID = 1, . . . , ρ.
Readers are not assumed to be permanently online connected to the bank and also cannot ex-

change data with each other. Instead, readers ore offline most of the time and connect to the bank
using a certain schedule, e.g., once a day during the night. In conclusion, readers are not synchro-
nized most of the time.

Finally, for cost and reliability reasons, readers are also assumed to be resource restricted, embed-
ded devices. We assume their available storage to be similar to what is available on today’s embedded
memory technologies, e.g., less than 1 GByte.

4.4 Security Parameters

PSP assumes a cryptographic hash-function h that can be executed on a tag. Output size of h is
128 bit, we use, e.g., a SHA-1 implementation for RFID tags and truncate the output to 128 bits,
cf., Choi et al. [7] or more lightweight hash functions such as SQUASH for RFID, cf., Shamir [26].
Truncation to 128 bits helps to reduce storage amount on the tag, as we will see in Section 5.7.

PSP uses (optimized) Bloom filters [4] to store information about all η valid coins during one
epoch. In the following, we present the major security properties and parameters required for PSP.

1.) Parameter κ defines the number of different hash function used for Bloom filters. As h is a
cryptographic hash function, we can, instead of using κ different hash functions h1, . . . , hκ, simple
define hi(x) = h(i, x), where “,” denotes concatenation.

2.) Parameter µ defines the storage size of each Bloom filter, i.e., its number of bits. For given κ
and η, it is possible to define the size µ of the Bloom filter with µ

η = κ
ln 2 such that the probability of

any bit in the Bloom filter being set to 1 is p = 1
2 . As a result, the probability of finding a single false

positive in the Bloom filter is P = 1
2κ . A false positive in our context is the case where an adversary

computes or guesses by chance one single coin which is accidently accepted by the Bloom filter, as
described in the following sections in higher detail.

3.) Parameter ω is the number of verification bits used for reader-to-tag authentication. An adver-
sary is able to impersonate a reader with 2−ω probability to receive one single valid coin from a valid
tag. Note: If an adversary fails to compute the correct verification bits for one coin from a valid tag,
the tag will send him “fake” payments, as described in the following sections in higher detail.

5 Protocol Description

5.1 Preparation of new epoch εi+1

For the first epoch, as well as periodically at the end of each epoch (e.g., once a month), the bank
prepares the system for the subsequent epoch εi+1 as follows.

1.) The bank creates a new 128 bit symmetric epoch key Kεi+1 and sends it to all readers. Also, the
bank creates two new, empty hash-tables called ∆εi+1 , Σεi+1 . The bank discards all stored information
of epoch εi−1, that is, hash-tables ∆εi−1 ,Σεi−1 .

2.) The so called IDs are prepared. In epoch εi+1, ∀k : 1 ≤ k ≤ #ID, IDεi+1

k can be computed
as: IDεi+1

k = h(KB, k, εi+1), where KB is a 128 bit key only known to the bank.
3.) The bank generates Bloom filters for all readers as shown in Algorithm 1. Prior to this, each

reader discards the information stored about epoch εi−1, i.e., BFεi−1
RID and spentBFεi−1

RID.



foreach RID do
BFεi+1

RID:=GenerateEmptyBloomFilter(µ);
for k := 1 to #ID do

for l := 1 to γmax do
coin := h(h(RID, IDεi+1

k , l));
addBF(BFεi+1

RID, coin);
end

end
spentBFεi+1

RID := GenerateEmptyBloomFilter(µ);
Bank −→ Reader RID : {BFεi+1

RID, spentBFεi+1
RID};

end
Algorithm 1: Preparing Bloom filters

In summary, a valid coin in PSP can be created simply by knowing a valid RID, a valid ID, and a
simple counter. The BFεi+1

RID Bloom filter is filled with all possible coins that will exist during epoch
εi+1. Based on BFεi+1

RID, reader RID will be in a position to verify whether coins presented to it are
valid. The spentBFεi+1

RID Bloom filter, while empty at the beginning, will later store all coins spent
during epoch εi+1. It will enable reader RID to check whether a coin has already been spent, cf.,
Section 5.3. Note that with one valid ID, up to γmax valid coins for reader RID can be created.

5.2 (Re-)Charging a Tag

In epoch ε, Alice wants to buy a new tag or recharge an old one. Alice’s tag is TAlice. The idea behind
charging TAlice is that the bank gives IDs to TAlice which will enable TAlice to later generate valid
coins. To that effect, the bank maintains counters ξε to store the information about which IDs have
already been sold to tags. So, 1 ≤ ξε ≤ #ID.

1.) Alice gives the equivalent amount of money to buy γmax coins.
2.) The bank computes the yet unused IDε

ξε = h(KB, ξε, ε) and sends the tuple (IDε
ξε , ε) to TAlice

which stores it in non-volatile memory.
3.) For each coin sold to Alice, the bank computes so called verification bits νj , |νj | = ω bit, and

sends them to Alice using Algorithm 2. TAlice stores νj . Kε is the current epoch key (as described in
Section 5.1).

for j := 1 to γmax do
chall := h(IDε

ξε , j); // Challenge

νj := %h(Kε, chall)&
ω

; // Response
Bank −→ TAlice: {νj} ;

end
Algorithm 2: Computation of verification bits

Here, %h(x)&
ω

is a truncated hash value, the first ω bits of output of h(x). As only the readers and
the bank know Kε, Alice can later use chall as a challenge to any reader and verify a reader’s response
using the νj – therewith providing reader authentication. Together with tuple (IDε

ξε , ε), TAlice stores a
local counter c in its non-volatile memory. c keeps track of how many coins have already been spent
by TAlice. Also, a maximum value max is stored, representing the maximum number of of coins that
can be spent with IDε

ξε , max = γmax.
4.) The bank adds information to its hash-tables ∆ε and Σε to protect against double spending as

described in Algorithm 3.



for RID := 1 to ρ do
for j := 1 to γmax do

coin := h(h(RID, IDε
ξε , j));

prechall := {ξε, ε, j};
addHash(∆ε, coin, prechall);
spent := 0;
Identity := {Name, spent};
addHash(Σε, prechall, Identity);

end
end
ξε := ξε + 1;

Algorithm 3: Bank prepares against double spending
addHash(x, y, z) stores value z in hash-table x at key y.
In Name, the bank stores an (unique) identifier of Alice, e.g., her name or her account number.

With Name, the bank should be able to identify Alice at a later point in time. Spent is one bit storing
the information, whether the user identified by Name has already spent a coin based on (IDε

ξε , j) at
any reader.

5.3 Payment






 







Fig. 1. Message flow in PSP

For the sake of simplicity, the price for using metro lines is fixed at 1 coin. This section describes
the payment protocol (Figure 1) through which TAlice pays 1 coin to reader RID. Let the current epoch
be ε, the current ID used by TAlice to generate coins be IDε

ξ, the verification bits be νj .
Reader RID initiates the protocol by sending RID to tag TAlice. TAlice responds by sending two

coins, a valid coin and a fake one. Sending these coins serves both the purpose of confusing a potential
adversary and achieving TAlice’s commitment for the payment. TAlice also sends a challenge chall and
the epoch ε of the valid coin. Upon receipt of message 2 and successful verification of the valid coin,
the reader replies by sending verification bits v. Finally, if v matches chall, the reader is authenticated
and the TAlice reveals the preimage of the committed valid coin, otherwise the authentication of the
reader has failed, and TAlice replies with the preimage of the committed fake coin.

Algorithm 4 presents the detailed sketch of the payment protocol. In 1©, reader RID periodically
broadcasts its ID. Using IDε

ξε , c, and RID, TAlice computes a challenge chall, a valid coin out of
precoin, and a (pseudo-)random invalid fake coin out of prefake.

In 2©, TAlice sends coin, fake, chall, and ε to the reader. Here, the order of sending coin and
fake swaps depending on a random bit b: flip(b, y, z) is {y, z} iff b = 0, and {z, y} otherwise. So,
TAlice randomly chooses the order of sending valid coin and fake coin to mislead the adversary.
The adversary cannot distinguish between the valid and the fake coin. Sending coin and fake serves
as a commitment, where the preimages will be revealed later. The reader verifies, whether one of
the two received coins, coin1, coin2, is valid, i.e., is in its Bloom filter BFε

RID. Thereby, the reader



TAlice Reader RID
// Receive RID TAlice ←− RID : {RID} 1©
chall := h(IDε

ξε , c);
precoin := h(RID, IDε

ξε , c);
coin := h(precoin);
prefake := h(RID, c, IDε

ξε);
fake := h(prefake);
b := %h(IDε

ξε , c, IDε
ξε)&

1
;

coins := flip(b, {coin, fake});
c := c + 1;

2©TAlice −→ RID : {coins, chall, ε} // Receive: {coin1, coin2}
if isElement(BFε

RID, coin1) then 3©
vcoin := coin1;

elseif isElement(BFε
RID, coin2) then

vcoin := coin2;
else sleep; exit;
if isNotElement(spentBFε

RID, vcoin)
and isNotElement(spentListε

RID, vcoin)
then 4©

addList(spentListε
RID, vcoin);

v := %h(Kε, chall)&
ω

;
TAlice ←− RID : {v}

// Authenticate reader
if v = νc then

// Finish payment 5©
TAlice −→ RID : {precoin} //received is precoin or

prefake

else TAlice −→ RID : {prefake} if h(received) = vcoin 6© then
openBarrier;

else
addList(reimburseListε

RID, vcoin);
sleep; exit;

end
end
else sleep; exit;

Algorithm 4: Payment procedure

identifies which coin is the valid coin (called vcoin thereafter), see 3©. Also, the reader verifies
whether this coin has not been spent on any reader before the last scheduled maintenance (check
spentBFε

RID), and whether the coin has not been spent on this reader since the last maintenance.
For the latter, the reader maintains a simple list, spentListε

RID. If vcoin passes the above tests, see
4©, vcoin is added to spentListε

RID, the reader computes the truncated hash-value of chall using
Kε, and sends the result back to TAlice. TAlice verifies received verification bits to authenticate the
reader. In 5©, if the verification bits match, TAlice sends precoin, the preimage of the coin to the
reader. Otherwise, TAlice assumes malicious behavior and sends prefake, the preimage of fake.



This exchange of precoin or prefake after the two coins achieves the commitment of TAlice without
allowing an adversary, impersonating a legitimate reader, to determine if the coin it receives is a fake.
In 6©, the reader verifies if the hash of the received preimage (precoin or prefake) matches coin. In
case the hash does not match, vcoin is included in the list reimburseListεRID. Also, if the protocol
gets somehow interrupted, and the reader does not receive the last message, the reader will include
vcoin in reimburseListεRID. Although the barrier does not open in the last two cases, and the coin
is “spent”, coins on reimburseListεRID can be later reimbursed to Alice by the bank as described
in Section 6.2. In general, if the reader suspects any misbehavior or cheating during PSP, it sleeps
(“sleep”) for a reasonable amount of time, e.g., 10 seconds, and exits protocol execution (exit). On
top of that, an alarm might go of, security personnel might arrive etc.

5.4 Periodic Maintenance

Once a day all readers connect to the bank, either simultaneously or using some kind of load-balancing
schedule mechanism. The current epoch is εi.

1.) All readers send their {spentListei−1
RID , spentListei

RID, reimburseListεi−1
RID, reimburseListεi

RID},
with 1 ≤ RID ≤ ρ, to the bank. All readers remove all entries from their spentLists and reimburseLists.

2.) The bank now checks all these lists, whether the included entries, coins of the form h(h(RID, IDε
ξε , c)),

have already been spent, cf., Algorithm 5.
for ε ∈ {εi−1, εi} do

for RID := 1 to ρ do
foreach entry ∈ spentListε

RID do
{ξε, ε, c} := getValue(∆ε, entry);// {ξε, ε, c} = prechall
IDε

ξε := h(KB , ξε, ε);
{Name, spent} := getValue(Σε, {ξε, ε, c});
if spent=1 then

reportIdentity(Name);// Cheating detected
else

modifyHashValue(Σε, {ξε, ε, c}, {Name, 1});
if entry ∈ reimburseListε

RID and entry *∈ spentList{εi−1,εi}
"=RID then

reimburseCoin(Name);
coin := h(h(RID, IDε

ξε , c));
Bank−→ Reader RID: {coin}

end
end

end
end

Algorithm 5: Periodic maintenance

With getValue(x, y), hash-table x is queried with key y the corresponding value is returned.
modifyHashValue(x, y, z) sets the value belonging to key y in hash-table x to z.

What happens in Algorithm 5 is basically that the bank does a reverse lookup for each spent
coin to get the information to compute the corresponding ID and counter pair – using hash-table ∆ε.
Therewith, the bank can find the name of the user this ID was issued and the information whether
this particular coin has been spent already. If this coin has been spent, the bank can take appropriate
countermeasures against Name. If a coin is on a reimburseList of reader RID and not on any other
reader’s spentList, the bank will reimburse this coin to Name. Finally, the bank computes a coin
for reader RID and sends it to the reader. The reader adds this coin to its spentBF Bloom filters:
addBF(spentBFε

RID, coin). Also, the bank pays the metro with real money (1$, £, ) for one coin.



5.5 Adding Flexibility

In this section, we extend PSP with respect to more flexibility of charging tags and payment as well
as distributing the bank’s workload to “proxies”.

Money. Instead of charging tags only with γmax coins all at once, tags can be charged with sets of
coins called packs π. Possible packs are, for example, π ∈ {10, 20, 50} coins. So, Alice can buy packs
of 10 coins, 20 coins, 50 coins, as well as combinations thereof. For every pack of coins that Alice
buys at the bank, the bank will handout one ID to Alice. Still, a tag can never be charged with more
than a total of γmax coins on a tag simultaneously. Also, Alice cannot buy more than, say, up to 3 packs
per charge. If a tag stores coins from more than one pack, it will always completely deplete one pack
for payment before using coins generated out of another pack. (Re-)Charging is only allowed, as soon
as the total number of coins on the tag is less or equal than 9 coins. If a tag is recharged, it will first
deplete the remaining old (≤ 9) coins before using the new ones. So in conclusion, simultaneously, a
tag has up to γmax coins stored in a total of ≤ 4 packs.

Again utilizing statistics, the metro knows on average how many packs πi ∈ {10, 20, 50} of
coins will be bought by users (including a safety margin) during one epoch. The expected number
of packs of size 10, πi = 10, is η10, η20 for packs πi = 20, and η50 for πi = 50. In conclusion,
10 · η10 + 20 · η20 + 50 · η50 = η.

Now, IDs can be computed as: 1 ≤ i ≤ 3, πi ∈ {10, 20, 50}, ∀k : 1 ≤ k ≤ ηπi , IDπi,ε
k =

h(KB, i, k, ε). The bank maintains 3 counters (ξε
10, ξ

ε
20, ξ

ε
50) to store the information about which IDs

have already been sold to tags. So, 1 ≤ ξε
10 ≤ η10, 1 ≤ ξε

20 ≤ η20, 1 ≤ ξε
50 ≤ η50. During charging,

Alice gives the equivalent amount of money to buy i ≤ 3 packs of coins, πi ∈ {10, 20, 50}. In return,
Alice’s tag TAlice receives and stores i tuples consisting of IDπi,ε

ξε
πi

, counter ci := 1, maxi := πi, and
verification bits νi,j , 1 ≤ j ≤ πi.

If a metro trip costs a total of α coins instead of 1 coin, reader RID broadcasts α together with
RID. As soon as TAlice receives this broadcast, it executes the payment protocol of Algorithm 4 α
times. TAlice completely depletes coins of one pack before it starts using coins from another.

Proxies. To decrease the workload of the bank, we introduce proxies. Readers are not directly, i.e.,
physically, connected to the bank, but multiple readers are grouped together and physically connected
to a bank’s proxy device, a more powerful computer. For example, readers of metro stations in close
physical distance are physically connected to one proxy, buses returning to the same bus garage in
the evening are connected to one proxy in the evening. A proxy is connected physically to the bank
and will carry out all communication between bank and readers. Readers, even the ones connected
to the same proxy, are not assumed to be permanently connected to their proxies. This would be
impossible, e.g., for readers in buses. Readers cannot exchange data with each other and are offline
most of the time. Readers connect to their proxies once a day during maintenance. Proxies could
collect all readers’ spentLists and reimburseLists and relay them to the bank. Proxies do not need to
be permanently online-connected to the bank, but also only once a day. As with the bank, we assume
the proxies, but not the readers, to be trusted by using tamper-proof hardware. Proxies are under full
control of the bank (and not the metro), and thus trusted by users. Secret key KB is now not only
known to the bank, but also to the proxies. During maintenance, the bank does not compute and send
spent coins to all readers, but only sends {IDε

ξε , c}, as in Algorithm 5, to all proxies. Proxies then
compute and send the coins for all their attached readers coin := h(h(RID, IDε

ξε , c)). There are σ
proxies in the system.



5.6 Real World Parameters

For evaluation, we assume system parameters similar to Oyster Card. Between 2003 and 2007, 107

Oyster Cards have been issued [13] from which τ = 5 · 106 are in use at the same time [27] (some
Oyster Cards are not rechargeable and dropped after use). In 2007, the total revenue of public transport
with buses and metro in London was 2.420 billion GBP [31]. If all transport would have been paid
with Oyster Cards (still traditional methods of payment, such as cash, are used), then η ≈ 108 per
epoch. Adopting the Oyster Card setting, we assume γmax = 80.

In London, there are 270 metro stations and 6,800 buses [28, 30]. We assume that there are in
the average 50 readers per metro station and one reader per bus. As a total, we assume ρ = 20, 000
readers. By assuming a total number of σ = 20 proxies in the system, each proxy is on average
associated to 1,000 readers.

We choose κ = 22, resulting in 2−22 probability of a single false positive. With ω = 1, the
adversary can impersonate a reader with 50%, but as discussed in Section 6, this is acceptable in the
overall scenario. Finally, |Name| = 32 bit should be sufficient to uniquely identify a single account
or user of the payment system.

5.7 Space Analysis

Based on the more flexible extension of PSP and the real world parameters, we can do the following
evaluation:

Tag. TAlice stores 4 IDs, 4 ci, 4 εi, 4 maxi to be able to generate coins. |ID| = 128 bit, |maxi| =
|ci| = 6 bit, |εi| = 8 bit. This sums up to 592 bit. Also, TAlice stores (γmax · ω) verification bits ν,
i.e., 80 · 1 = 80 bit. Each tag needs to store 672 bit = 84 byte in its non-volatile memory. This is
feasible, e.g., with Alien Technology’s prominent Higgs-3 RFID-tag [1], featuring 800 bit of non-
volatile storage. Compared to the Oyster Card, featuring 1 KByte (=6144 bit) storage [21], this is
much less and thus leading to cheaper tags in terms of production costs.

Generally for tags, computational complexity is important. However, computational complexity
is low with PSP: for payment, the tag has to do only hash evaluations, simple arithmetic, and to
wirelessly send 3 · 128 + 8 = 392 bit to the reader. Based on related work [2, 10, 18, 22, 32, 37], we
consider that these operations are feasible on tags.

Reader. A standard Bloom filter with false-positive probability P and η elements of a set to rep-
resent requires µ = log2 ( 1

P )·η
ln 2 bits of storage [4]. So with η = 108, each reader needs µ ≈ 378 MByte

of storage for the BF Bloom filter and the same for the spentBF Bloom filter. As BF and spentBF are
required for the current and second-to-last epoch, this would amount to a total of 4 ·378 ≈ 1.5 GByte
per reader. However, standard Bloom filters are not space optimal. Optimizations of Bloom filters can
achieve lower storage requirements, such as log2 ( 1

P ) bit per element represented in the filter. For ex-
ample, Putze et al. [23] suggest to build the Bloom filter with a single hash function instead of κ , 1
hash functions. In that optimized version, the hash outputs h1(x) of all coins are Golomb encoded
and partitioned into blocks. The isElement function that looks for coin is implemented by selectively
decoding one block and looking for the hash output h1(coin). The data structure of Putze et al. [23]
maintains exactly the same properties as a standard Bloom filter, i.e., false-positive probability P , but
requires only log2 ( 1

P ) bit storage per element. In our case, this optimization would results in ≈ 262
MByte total storage for each BF filter. Similar to Counting Bloom Filters, Putze et al. [23] allows
furthermore for deleting coins out of the data structure, superseding the spentBF Bloom filters on
readers. The latter helps in avoiding false positives while checking whether a coin has been spent.
Algorithm 4 can therefore be changed such that a reader accepts a coin if it is in its BF Bloom filter



and at the same time not on its current spentList. Instead of 4 · 378 ≈ 1.5 GByte, this would keep
storage close to a total of 2 ·262 = 524 MByte for both epochs. Finally, per day, each reader needs on
average to store 108

30·20,000 ≈ 170 coins, i.e.,≈ 3 KByte on both spentLists for the two epochs. Readers
at frequently used metro stations will require more memory for spentLists, but this will still be in
the order of magnitude of KBytes per day. Also, a small amount of memory is required for the two
reimburseLists. In conclusion, the total amount of memory is considerably less than 1 GByte which
should be feasible even on restricted reader hardware.

Computational complexity for the reader is also low. The isElement function required for validat-
ing a coin is cheap: it consists of performing a low complexity Golomb-decoding of a fixed length
block and searching for h1(coin) therein [23].

Bank. The bank needs to store ∆ and Σ for the current and last epoch. In ∆, for all 108 coins
and all 20, 000 readers a prechall has to be stored. With |prechall| = |ξ| + |i| + |ε| + |c|, and
|c| = log2 50 ≈ 6 bit, |ε| = 8 bit, |i| = log2 3 ≈ 2 bit, and |ξ| = log2

108

10 ≈ 24 bit (worst case: all
packs bought are 10 coin packs), |prechall| = 40 bit worst case. So, the two ∆s for the two epochs
require 2 · 20, 000 · 108 · 40 bit ≈ 18 TByte worst case. There are a total of 108 (ID, ci) pairs, and for
each pair Σ stores Name and spent. For the two epochs, this requires 2 · 108 · (32 + 1) bit ≈ 790
MByte storage. While the resulting 18 TByte is certainly a huge amount of storage, we claim this is
still affordable for a bank.

Computational complexity for the bank is low too: preparation of a new epoch has to be done only
once a month. The workload consisting of generating hash outputs for all coins and their Golomb
encoding can be distributed among the σ = 20 proxy devices.

6 Security and Privacy Analysis

The challenge of having secure and private payment with RFID tags is due to the lack of asymmetric
cryptography and blind signatures. Authentication and encryption based on symmetric keys shared
by tags and readers are not suitable either, since a globally shared key would allow the adversary
to jeopardize the whole system through the compromise of a single tag. Sharing a different key per
tag would affect privacy. As a result, PSP’s mechanism of reader authentication uses precomputed
challenge-response pairs.

6.1 Protection against fraudulent payment

Generally, it should not be possible for an adversary to spend coins he did not pay for and to spend
the same coin more than once. The basic idea behind PSP’s two staged payment procedure is that
a valid coin without an according precoin is worthless for the adversary. A simpler version of the
protocol solely based on the exchange of coin would allow the adversary to intercept message 2 of
Figure 1 and deny its delivery to the reader. The adversary would then have successfully stolen one
coin he could later use for his own payment. Consequently, TAlice will only send precoin in message
4 after it authenticated the reader in message 3. If the adversary denies delivery of message 4, he
might get a valid coin, precoin pair, but he still cannot use it, as the reader has already added coin on
its spentList after message 2. Also, the adversary cannot use this coin with another reader, as coins
are reader dependent by using RID.

Inventing coins. An adversary cannot “invent” new coins. If he bought a pack π of coins, he can
only spend these π coins, because more coins are not in the readers’ Bloom filters. So, knowledge of
valid IDs does not give any advantage for the adversary over guessing IDs. The probability Pinvent

for an adversary to invent a coin correctly is the chance to really guess a single valid coin by chance



(Pchance = valid coins
possible coins = 108

2128 ≈ 2−100) plus the false-positive probability P = 2−22, Pinvent =
Pchance + (1 − Pchance) · P ). Pinvent is still very close to the false-positive rate P . As Pchance is
negligible small, inventing a coin by guessing or brute-forcing a valid ID is unlikely. A rational
adversary will focus on exploiting the false-positive property of Bloom filters. However, the adversary
has to carry out such an attack online, by being close to the reader. Here, every time the adversary
guesses a coin incorrectly, the reader sleeps for a reasonable amount of time (and possibly raises
an alarm) such that this kind of attack quickly becomes too time consuming for the adversary. We
claim that 2−22 probability to guess one single valid coin is secure enough in this scenario. Similarly,
readers cannot “invent” new coins to maliciously get more real money from the bank during periodic
maintenance. Although knowledge of a Bloom filter allows a reader to generate a lot of coins being
accepted by its Bloom filter, this does not imply that coins were “real” coins, i.e., generated by
valid IDs and therefore in the bank’s hash-table ∆ε. To maliciously get money from the bank, the
probability for a reader to generate a coin accepted by the bank is Pchance ≈ 2−100.

Reader Impersonation. An adversary might try to impersonate a reader, initiate communication
with TAlice, and guess the ω verification bits ν for chall. If his guess is wrong, TAlice sends prefake
to him. If he is right, he receives precoin and has successfully stolen a valid {coin, precoin} pair.
However, he does not now whether he guessed correctly as he cannot distinguish whether the data he
receives is for the valid coin or the fake coin. He just knows that h(received) matches either coin or
fake. The pair he can compute is therefore either {fake, prefake} or {coin, precoin}. If he tries
to pay with this pair, he always succeeds with probability Psteal = 2−ω +(1− 2−ω) ·P , triggering an
alarm etc. With ω = 1, the adversary can steal successfully with Psteal ≈ 50%. This probability can
be decreased by increasing ω at the cost of additional storage requirements on the tag. With ω = 1,
ω·γmax=10 byte are required. If the adversary should be able to steal a coin with only 2−10 probability,
100 byte of storage would be required. Generally, security can be adjusted depending on the physical
properties of the tag. Stealing a coin from a tag requires much more effort from the adversary than
just randomly generating coins and sending them to a reader: the adversary has to be physically close
to the tag to send and receive messages. So, we claim a 50% probability of stealing one single valid
coin to be reasonable, because the adversary does never know whether each single coin is a fake or
not. We claim that triggering an alarm with 50% probability per coin and the difficulty of mounting
such an attack will prevent the adversary from stealing coins in practice.

Replay of coins. An adversary eavesdropping payment cannot replay a coin at the same reader,
because the reader stores all spent coins either in its spentList (same day), or the reader stores spent
coins in its spentBF Bloom filter (after maintenance, if spentBF is still used: see Section 5.7). In any
case, the reader will reject this coin. If the adversary eavesdropped a payment at a reader, he cannot
replay and pay with this coin at a different reader, because coins are reader dependent. If a malicious
user spends a valid coin, i.e., using an (ID, c) pair, on one reader today, and re-uses this pair with
another reader on another day after maintenance, this reader will reject the coin as it is already on
its spentBF. Only if a malicious user spends a valid coin on the same day with two different readers,
readers cannot immediately detect cheating and will accept this coin. However, during the periodic
maintenance at night, the bank will spot this kind of double spending, identify the malicious user
using Algorithm 5, and ask for compensation.

6.2 Denial-of-Service Attacks and Reimbursement

PSP is clearly vulnerable against DoS attacks: if the adversary repeatedly initiates communication
with TAlice and stops the protocol after the first message, the tag will increase counter ci until, eventu-
ally, it cannot create new coins anymore. The tag is “exhausted” and refuses to operate until charged



with money again. It is important to point out that the tag must increase ci every time, because other-
wise it will re-send the same coin on two subsequent protocol runs, therewith making it traceable.

Yet, the adversary is never able to steal money, but only to render all coins on the tag useless,
i.e., a denial-of-service attack against all coins on TAlice. As TAlice’s coins are not spent, Alice can
get reimbursed by the bank: the bank can verify that Alice’s coins have never been added to spentBF
Bloom filters. If the adversary replays {coin, fake} pairs received from initiating communication
with TAlice to a reader, the reader will then add coin to its spentList, therewith marking this coin as
“spent” in the whole system. To cope with this, each reader maintains reimburseLists. If a coin is
spent, but the protocol is not successfully finished, the reader adds coin to its reimburseList. This
allows the bank to easily reimburse Alice her money during periodic maintenance, cf., Algorithm 5.
So in conclusion, Alice never loses her money.

6.3 Privacy

According to the definition of the privacy game in Juels and Weis [18], PSP does not guarantee strong
privacy: in the LEARNING phase, the adversary calls the SETKEY oracle to compromise (τ −2) tags,
so two tags, T0 and T1, remain uncompromised. He now initiates communication with T0 a total of
γmax times, but stops protocol execution after receiving T0’s first message each time. Eventually, T0 is
“exhausted”, cannot produce any additional coins, and, for example, refuses to operate until recharge.
Now, in the CHALLENGE phase, the adversary is presented with one of the two tags. If this tag is
replying to his communication, he knows with 100% probability that it is T1, otherwise it is T0.

However, we claim DoS-attacks like the above exhaustion of coins in the strong privacy model to
be unrealistic: Alice would notice her tag not working anymore and become suspicious, and the metro
cannot afford DoS attacks against their customers’ tags, as customers would quickly start complain-
ing. So, in the absence of DoS-attacks, the information sent from tags to readers, i.e., coins, challs,
precoins, looks completely random for an adversary as well as for the metro in each protocol run.
Only ε will repeat, spoiling strong privacy. Yet, as there is potentially a large number of tags having
the same ε for many coins, we claim this to offer a good enough privacy in the set of all tags.

7 Conclusion

Secure, privacy-preserving, offline electronic payments only using tiny RFID tags is a new and chal-
lenging problem. In this paper, we presented PSP, a solution minimizing computational requirements
for the tag, but still offering protection against overspending and privacy against payees. Adversaries
cannot invent new coins, replay, or steal coins from legitimate users of the system. Payees, e.g., a
metro system, cannot trace or link subsequent transactions of users to the same tag. User remain pri-
vate. Tags are only supposed to evaluate a hash function and store 84 byte in non-volatile memory.
Readers can be offline most of the time and connect only rarely, e.g., once a day, for synchronization.
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