
Cryptanalysis of Dynamic SHA(2)

Jean-Philippe Aumasson1,∗, Orr Dunkelman2,†, Sebastiaan Indesteege3,‡, and
Bart Preneel3

1 FHNW, Windisch, Switzerland.
2 École Normale Supérieure, INRIA, CNRS, Paris, France.

3 COSIC, K.U. Leuven, Belgium, and IBBT, Belgium.

Abstract. In this paper, we analyze the hash functions Dynamic SHA
and Dynamic SHA2, which have been selected as first round candidates
in the NIST hash function competition. These hash functions rely heav-
ily on data-dependent rotations, similar to certain block ciphers, e.g.,
RC5. Our analysis suggests that in the case of hash functions, where the
attacker has more control over the rotations, this approach is less favor-
able. We present practical, or close to practical, collision attacks on both
Dynamic SHA and Dynamic SHA2. Moreover, we present a preimage
attack on Dynamic SHA that is faster than exhaustive search.

1 Introduction

New generic cryptanalytic techniques for hash functions [3, 4] and the recent
results on MD5 and SHA-1 [1,11,12], along with the fact that the SHA-2 family
of hash functions was designed with a similar structure, have led to the initiation
of the NIST hash function competition [7], a public competition to develop a
new hash standard, which will be called SHA-3.

The competition has sparked a great deal of submissions: 64 new hash func-
tion proposals were submitted to the competition, of which 51 were accepted as
meeting the submission criteria for the first round. Among the 51 candidates,
Dynamic SHA and Dynamic SHA2 stand out as a combination of the SHA family
design with data-dependent rotations.

The concept of data-dependent rotations has been explored for block ciphers
in several constructions, most notably in the RC5 and RC6 block ciphers [8, 9].
The security of such block ciphers has been challenged many times, and a ma-
jority of attacks is based on guessing the distances of the rotations. In crypt-
analysis of hash functions, however, the internal state is known. The attacker
even has control over (parts of) the internal state, including rotations, though
sometimes this control is only indirect. For example, Mendel et al. [6] exploited
data-dependent rotations to find collisions for the hash function of Shin et al. [10].
Our attacks on Dynamic SHA and Dynamic SHA2 also exploit data-dependent
rotations, to find (second) preimages and collisions.

∗Supported by the Swiss National Science Foundation, project no. 113329.
†This author was supported by the France Telecom chaire.
‡F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).



2 Brief Description of Dynamic SHA and Dynamic SHA2

Dynamic SHA and Dynamic SHA2 use similar building blocks, but have different
compression functions. This section gives a brief description of these algorithms.

Dynamic SHA and Dynamic SHA2 follow a classical Merkle-Damg̊ard con-
struction, based on a compression function that maps an 8-word chaining value
and a 16-word message to a new 8-word chaining value. The 256-bit versions use
32-bit words, and the 512-bit versions use 64-bit words. We will focus on the 256-
bit versions, also called Dynamic SHA-256 and Dynamic SHA2-256. See [13,14]
for details on the 512-bit versions, Dynamic SHA-512 and Dynamic SHA2-512.
The following presents a bottom-up description of the compression function, thus
starting with its building blocks.

The symbol⊕ stands for exclusive OR (XOR), ∧ for logical AND, ∨ for logical
OR, and + for integer addition. Numbers in hexadecimal basis are written in
typewriter font (e.g., 255 = FF). We count bit indices starting from zero at the
least significant bit (LSB). Thus, the first bit of a word w is written as w0,
and more generally we use the notation wi for the bit i of the word w. The
most significant bit (MSB) of w is thus w31 for Dynamic SHA-256, and w63

for Dynamic SHA-512. Note that the i-th bit of a word corresponds to the bit
number i− 1, since we start counting from zero.

2.1 Building Blocks

The function G takes as input three words x1, x2, x3 and an integer t ∈ {0, 1, 2, 3},
and returns one word, computed as follows.

Gt(x1, x2, x3) =















x1 ⊕ x2 ⊕ x3 if t = 0
(x1 ∧ x2)⊕ x3 if t = 1
(x1 ∧ x2)⊕ x3 ⊕ ¬x1 if t = 2
(x1 ∧ x2)⊕ x3 ⊕ ¬x2 if t = 3

.

Note that this definition is simplified, but equivalent to the original in [13,14].

The function R takes as input eight words x1, . . . , x8 and an integer t, and
returns one word computed as follows:

R(x1, . . . , x8, t) = (((((((x1 ⊕ x2) + x3)⊕ x4) + x5)⊕ x6) + x7)⊕ x8) ≫ t .

The function R1 takes as input eight words x1, . . . , x8 and returns one word
computed as follows (in the 256-bit versions):

t0 ← (((((x1 + x2)⊕ x3) + x4)⊕ x5) + x6)⊕ x7

t1 ← ((t0 ≫ 17)⊕ t0) ∧ 0001FFFF

t2 ← ((t1 ≫ 10)⊕ t1) ∧ 000003FF

t3 ← ((t2 ≫ 5)⊕ t2) ∧ 0000001F

return x8 ≫ t3



Finally, the COMP function takes as input eight words a, . . . , h representing the
internal state, eight message words w0, . . . , w7, or w8, . . . , w15, and an integer t.
COMP updates the internal state as follows (in the 256-bit versions):

T ← R(a, . . . , h, wt mod 32) T ← R(a, . . . , h, (wt ≫ 15) mod 32)
h← g h← g + wt+7

g ← f ≫ ((wt ≫ 5) mod 32) g ← f ≫ ((wt ≫ 20) mod 32)
f ← e + wt+3 f ← e + wt+6

e← d ≫ ((wt ≫ 10) mod 32) e← d ≫ ((wt ≫ 25) mod 32)
d← Gwt≫30(a, b, c) + wt+2 d← Gt mod 4(a, b, c) + wt+5

c← b c← b + wt

b← a b← a
a← T + wt+1 a← T + wt+4

2.2 Compression Functions

Given a chaining value h0, . . . , h7 and a message block w0, . . . , w15, the compres-
sion function of Dynamic SHA (Dynamic SHA2, respectively) produces a new
chaining value, as described in Algorithm 1 (Algorithm 2, resp.).

The compression function of Dynamic SHA is composed of an initialization,
an iterative part of 48 rounds, and a feedforward of the initial chaining value. It
uses three constants TT0, TT1, TT2.

The compression function of Dynamic SHA2 is composed of an initialization
followed by three iterative parts, and finally by a feedforward. Note that, when
calling COMP with the message words w8, . . . , w15 and an integer t, wt stands
for w8, wt+1 stands for w9, etc. Dynamic SHA2 surprisingly enough, uses no
constants.

3 Collision Attack on Dynamic SHA

This section describes a practical collision attack on Dynamic SHA. It builds
on a 9-step local collision that exploits an important differential property of the
function R1, which we will introduce first. The same local collision pattern is
repeated three times to find collisions for the entire compression function. Fur-
thermore, these three instances of the local collision pattern can be decoupled,
which drastically reduces the attack complexity. We present the attack on Dy-
namic SHA-256 here. We could adapt it to Dynamic SHA-512 with only minimal
changes, as detailed in Appendix C.

3.1 A Differential Property of the Function R1

To overcome the obstacle of data-dependent rotation, our attack ensures that no
difference occurs in any of the data-dependent rotation amounts. This section
clarifies how to achieve this.

The data-dependent rotations are located in the 8-input function R1. For
Dynamic SHA-256, consider the difference ∆ = 80004000, i.e., only bits 31



Algorithm 1 Compression function of Dynamic SHA.

Initialization

a = h0 b = h1 c = h2 d = h3 e = h4 f = h5 g = h6 h = h7

Iterative part

for t = 0, 1 . . . , 47

T ← R1(a, b, c, d, e, f, g, h)

U ← G(a, b, c, t mod 4) + wt mod 16 + TTt≫4

(a, b, c, d, e, f, g, h)← (T, a, b, U, d, e, f, g)

Feedforward

h0 ← h0 + a h1 ← h1 + b h2 ← h2 + c h3 ← h3 + d

h4 ← h4 + e h5 ← h5 + f h6 ← h6 + g h7 ← h7 + h

Algorithm 2 Compression function of Dynamic SHA2.

Initialization

a = h0 b = h1 c = h2 d = h3 e = h4 f = h5 g = h6 h = h7

First iterative part

COMP (a, b, c, d, e, f, g, h, w0, w1, . . . , w7, 0)

COMP (a, b, c, d, e, f, g, h, w8, w9, . . . , w15, 0)

Second iterative part

for t = 0, 1 . . . , 8

T ← R1(a, b, c, d, e, f, g, h)

(a, b, c, d, e, f, g, h)← (T, a, b, c, d, e, f, g)

Third iterative part

for t = 1, 2 . . . , 7

COMP (a, b, c, d, e, f, g, h, w0, w1, . . . , w7, t)

COMP (a, b, c, d, e, f, g, h, w8, w9, . . . , w15, t)

Feedforward

h0 ← h0 + a h1 ← h1 + b h2 ← h2 + c h3 ← h3 + d

h4 ← h4 + e h5 ← h5 + f h6 ← h6 + g h7 ← h7 + h



and 14 are set. Let one of the first seven inputs to the function R1 have this
difference, i.e., one of x1, . . . , x7. In the first step of R1, an intermediary word
t0 is computed as follows:

t0 ← ((((((x1 + x2)⊕ x3) + x4)⊕ x5) + x6)⊕ x7 .

The difference in the MSB always propagates to t0. Assuming that no carry
occurs for bit 14, the intermediary t0 also has the difference ∆. If t0 has a
difference ∆, this difference is then absorbed by the rest of the function R1.
Indeed, the next step computes the intermediary word t1 as

t1 ← ((t0 ≫ 17)⊕ t0) ∧ 0001FFFF .

Note that (∆ ≫ 17) ⊕ ∆ = 80000000, which is absorbed by the logical AND
operation.

We now estimate the probability that a single ∆-difference in one of the first
seven inputs of the function R1 is absorbed. As a ∆-difference in t0 is absorbed
with certainty, it suffices that a ∆-difference in one of the seven first inputs
propagates to t0. This happens when no carry difference occur for bit 14 in any
of the modular additions. The probability that a one-bit difference in one of the
summands in an addition does not cause a carry difference is 1/2. Thus, the
probability that a ∆-difference is absorbed by the function R1 can be estimated
to 2−k, where k is the number of modular additions the difference propagates
through. For instance, a difference in x3 activates two modular additions, so
k = 2.

However, the actual probability is higher, as the undesirable effects of a carry
difference in one modular addition can be reverted by another carry difference
in a subsequent addition. The combination of modular additions and XOR can
be represented compactly in a trellis, and a variant of the Viterbi algorithm
can be used to efficiently count the probability that a ∆-difference is passed
to t0 unchanged. Our computer aided research revealed that this is indeed an
important effect: For a difference in x3 or x4, the actual probability is 2−1.58

rather than 2−2, and for a difference in x1 or x2, the actual probability is 2−2.07

rather than 2−3. For differences in the other words, only one modular addition
is affected, so no carry differences can be canceled. Hence, in those cases, the
simple estimation is correct.

3.2 A 9-step Local Collision

We present a simple 9-step local collision for Dynamic SHA in Table 1. A differ-
ence of ∆ = 80004000 is introduced, then, all further diffusion of this difference
is avoided. After seven more steps, the difference has rotated through the internal
state of Dynamic SHA once, and can be canceled via an appropriate difference
in the message word. The characteristic has probability 2−20.3.

In step 0, a ∆-difference is introduced via the message word. Note that the
message word itself can contain any additive difference that can cause a ∆-
difference in the state. In steps 1 to 4, the ∆-difference in one of the state



Table 1. A 9-step local collision for Dynamic SHA. The difference at step t is the
difference in the state before computing step t.

t a b c d e f g h w Pr

0 0 0 0 0 0 0 0 0 ∆ 2−1

1 0 0 0 ∆ 0 0 0 0 0 2−1.58

2 0 0 0 0 ∆ 0 0 0 0 2−1

3 0 0 0 0 0 ∆ 0 0 0 2−1

4 0 0 0 0 0 0 ∆ 0 0 1
5 0 0 0 0 0 0 0 ∆ 0 2−5

6 ∆ 0 0 0 0 0 0 0 0 2−2.07
· 2−2

7 0 ∆ 0 0 0 0 0 0 0 2−2.07
· 2−2

8 0 0 ∆ 0 0 0 0 0 ∆ 2−1.58
· 2−1

0 0 0 0 0 0 0 0

variables is absorbed by the function R1, as described in Section 3.1. Then, at
the beginning of step 5, there is a ∆-difference in the internal state word h. This
word is rotated by a data-dependent amount, and thus we can require that it is
rotated by zero bits, i.e., not rotated at all. In steps 6 and 7, the ∆-difference
should be absorbed by the G-functions. Any G-function except XOR absorbs
differences in its first two inputs with probability 1/2 per bit. Also, R1 should
absorb the differences in these steps. Finally, in step 8, the difference in the state
variable c is canceled by another ∆-difference coming from the message word.

The probability that the local collision pattern is followed is estimated by
simply multiplying the probabilities of all the events discussed above. The prob-
abilities of each step are indicated in Table 1. This yields an overall probability
of 2−20.3 for the entire 9-step local collision.

3.3 The Attack

Our attack repeats the 9-step collision three times. This made possible by the
simple message schedule, which consists of a simple repetition of the 16 words
in a message block. Thus, the only message words that have a difference are w0,
which introduces the differences, and w8, which cancels them.

A straightforward attack would consist of choosing an arbitrary message
block, and applying a difference of ∆ = 80004000 to w0 and w8. As the local
collision is repeated three times, the complexity of this attack would be approx-
imately (220.3)3 = 261. This can be improved tremendously by making the three
local collisions independent. Then, the three local collision complexities can be
added rather than multiplied.

The first two local collisions can be decoupled in a straightforward way as
only the message words w0 to w8 influence the first local collision. Therefore, once
suitable values for these message words have been found, there is still enough
freedom remaining in the other message words. The words w0 to w8 can thus



be kept constant, while values for w9 to w15 are searched such that the second
local collision is also achieved.

Controlling Internal State Values. In each step of Dynamic SHA, the new
value of the internal state word d is found as the modular addition of a message
word and an intermediate depending on the internal state words a, b and c. Full
control over message words allows an adversary to give the internal state word d
any desired value. Indeed, it holds that

wt mod 16 = dnew −G(a, b, c, t mod 4)− TTt≫4 .

Applying this to eight consecutive steps allows one to almost fully control the
final internal state. In every step, the new value of d is fixed to some desired
value. These values then shift through the internal state words a number of times,
to end up as one of the internal state words after the eighth step. However, a
complication arises with the first three steps, which ends up in the state words a,
b and c. Before a controlled value from d ends up in one of these three state words,
it is be rotated by a data-dependent amount. An obvious way to sidestep this
issue is to choose a rotation-invariant value for these three words, i.e., 00000000
or FFFFFFFF. Then, the data-dependent rotations have no influence.

Decoupling All Three Local Collisions. Our attack consists of three phases,
each dealing with one local collision. The first phase satisfies the first local col-
lision, using the message words w0 to w8. It would be possible to use message
modification techniques here to find a conforming message pair quicker, but as
the later phases of the attack dominate the overall complexity anyway, no sig-
nificant gains can be made in this way.

To satisfy the second local collision, we use the freedom in the remaining
message words. However, we do not choose the remaining message words directly,
but rather choose the internal state after step 15. We then use the words w8 to
w15 to connect to this state, using the technique outlined earlier. We fix the
values of a, b and c to zero, to make them rotation-invariant, and choose the
remaining five words arbitrarily. Note that w8 was already determined in phase 1,
so it should not be modified again, but w8 is used here to force a zero value,
which ends up in the internal state word d after step 15. This issue is solved by
shifting this condition on w8 to phase 1. Instead of arbitrarily choosing w8 there,
it is computed such that the required zero is generated. This does not change
the complexity of the first phase.

Finally, to satisfy the third local collision, we modify w7. Then, only d changes
after step seven. As the value in w8, which should force d to zero after step
eight, depends only on the internal state words a, b and c before step eight,
modifying w7 does not require a correction in w8. Thus, such modifications do
not change the fact that the first local collision pattern is followed. The values
of w9 to w15 are then updated such that the internal state after step 15 is
unchanged, and so the start of the second local collision will be unaltered. For



the same reasons as before, the change in w7 also does not affect the end of the
second local collision pattern.

Hence, we dispose of a modification algorithm that leaves the first two local
collisions unaffected, but changes the internal state values before the third local
collision randomly. This provides the required freedom to also satisfy this third
and final local collision. Hence, the overall attack complexity can be estimated
at about 221 Dynamic SHA compression function computations. Appendix A
reports on our implementation of the attack, with an example of collision.

4 Preimage Attack on Dynamic SHA

This section describes (first and second) preimage attacks on Dynamic SHA. We
first describe how to find preimages for the compression function of Dynamic
SHA, and then explain how to extend this to first and second preimage attacks.
on the Dynamic SHA hash function. We describe how to attack Dynamic SHA-
256 here, and refer to Appendix C for details on how to adapt the attack to
Dynamic SHA-512.

Conceptually, our preimage attack bears some similarity to the work on
SHA-0 and SHA-1 by De Cannière and Rechberger [2], for it finds a preim-
age bit slice per bit slice. If all data-dependent rotation amounts in Dynamic
SHA are assumed to be zero, then a bit of any intermediate word cannot be
influenced by any other bit of higher position. This is because, besides rotations,
all operations are either bit-wise or modular additions.

4.1 Preimage Attack on the Compression Function

Assume that the rotations in a block of Dynamic SHA are all zero. Then, all
words in Dynamic SHA can be divided into bit slices, as all computations are
now T-functions [5]. As noted above, bit i of each word can only be influenced
by bits 0 to i of other words. When bits 0 to (i − 1) of each word are known,
bit i of all words can be determined.

In a preimage attack on the Dynamic SHA compression function, the internal
state is given before step 0 and after step 47. Our attack starts by determining
the LSB of each word. To determine this bit of all of the internal state words in
every step, only the LSBs of the 16 message words need to be known. There are
216 choices for these 16 bits. Then, it can be verified whether the LSBs of the
eight internal state words after step 47 are correct. This occurs with probability
2−8, so 28 choices are expected to survive.

We then proceed to the next bit slice. Keeping the choice for the LSB slice
fixed, the same procedure can be repeated. For each choice of the LSB slice again
28 choices for the second LSB are expected to survive. For Dynamic SHA-256,
this procedure is repeated until the 28 LSBs (bits 0–27) have been determined. At
that point, one of the bits of each of the 48 rotation constants can be determined,
as it does not depend on the higher bits of any word. Now, it can be verified
if the initial assumption that all rotation constants are zero indeed holds. This



corresponds to a 48-bit condition, i.e., for all rotation constants to be zero, surely
this single bit of each rotation constant has to be zero. Any choices that do not
satisfy this condition are eliminated. Then, the next bit is determined as before,
after which another bit of each rotation constant can be verified. This is repeated
until all bits have been determined.

4.2 Complexity Evaluation

The attack can be described as a simple tree search, where a tree level corre-
sponds to a bit slice, and a node represents an assignment for all bits in the
slice under consideration, and all LSB slices. To expand a node in the tree, one
guesses the 16 message bits of the next slice, and checks that the conditions on
the state words after step 47 are satisfied. As explained above, on average about
28 choices are expected to survive, i.e., the tree has a branching factor of 28.
When the 28 LSB slices are known, however, the average number of child nodes
drops by 2−48 due to the additional filtering. The cost of expanding one node is
about 216 Dynamic SHA compression function evaluations, as 216 choices have
to be investigated. The expected number of solutions is equal to the expected
number of nodes at the deepest level of the tree, which is 28·32 ·2−48·5 = 216. This
agrees with the observation that for a given input/output chaining values of the
compression function, there are expected to be 2256 message blocks that conform
to this combination. For each of these, the probability that all the rotations are
by 0 positions is 2−240, so about 216 remain.

As we aim to find just one solution, i.e., any node on the deepest level of
the tree, a depth-first search is well suited to our application. It requires only
negligible memory and can easily be parallelised. Since, for Dynamic SHA-256,
216 solutions are expected, the depth-first search needs to search only about
a fraction 2−16 of the entire tree before encountering the first solution. Due
to the large branching factor, the total number of nodes in the tree is well
approximated by the number of nodes on the widest level of the tree, which
has 28·27 = 2216 nodes for Dynamic SHA-256. The search is thus expected to
expand about 2200 nodes, each of which costs 216 Dynamic SHA-256 compression
function evaluations, resulting in a total attack complexity of 2216 Dynamic SHA-
256 compression function evaluations.

4.3 Application to the Hash Function

Our preimage attack on the compression function directly gives a second preim-
age attack on the Dynamic SHA hash function with the same complexity, pro-
vided that there is at least one message block that does not contain any padding
in the challenge message.

For a first preimage, the padding bits limit the control an attacker has over
the message bits. It is not possible to simply copy the padding as in a second
preimage attack. Thus, we use the following approach instead. First, choose a
message length such that the last padded message block only contains 65 bits of
padding, which is the minimum. Then, choose an arbitrary message for all but



the last message block. Finally, a modified version of the attack in Section 4.1 is
used to determine the last message block.

The main difference is that the last 65 bits of the message block can not be
chosen by the adversary, as they are padding bits. Their contents are fixed by
the choice of the message length. However, the same approach as in Section 4.1
can still be applied, except that fewer bits can be chosen in each bit slice. For
Dynamic SHA-256, the expected number of solutions in the search tree now be-
comes 26·27 · 2−42·4 · 2−43·1 = 2−49. A solution is thus only expected to exist
with probability 2−49, thus the attack is repeated sufficiently many times with a
different message length. The number of nodes at the widest level of the tree is
26·27, and the cost for expanding a single node at this level is 214 Dynamic SHA
compression function calls. Thus, the total attack complexity becomes approxi-
mately 249 · 26·27 · 214 = 2225 Dynamic SHA compression function evaluations.

5 Collision Attack on Dynamic SHA2

To attack Dynamic SHA2, we use similar ideas as for Dynamic SHA. Specifically,
we use the control of the message to ensure that as many rotations as possible
are by the amounts that we need. Moreover, as many of the rotations amounts
are directly determined by the message, our task becomes easier. Our attack
is based on introducing a difference in the most significant bit of two message
words, w8 and w14. As a 32-bit condition is imposed on the chaining value, a two-
block collision finding technique is used, where the first block is searched until
a suitable chaining value is encountered. We describe our attack on Dynamic
SHA2-256 here. It can be adapted to Dynamic SHA2-512, as Appendix C shows.

5.1 First Iterative Part

Given an initial value a, . . . , h, the first iterative part of the compression function
of Dynamic SHA2 updates the chaining value words a, . . . , h by computing

COMP(a, b, . . . , h, w0, w1, . . . , w7) ,

Since there is no difference in the message words w0, . . . , w7 nor in the initial
value, we have no difference at this stage.

Then, Dynamic SHA2 computes

COMP(a, b, . . . , h, w8, w9, . . . , w15) .

To follow our characteristic, the difference in w8 and in w14 should lead to a
difference ∆ = 80000000 in c and in f . Below, we show that, to obtain these
differences, it suffices to set w30

8 = 1 and to ensure that b equals FFFFFFFF after
the first COMP. These conditions are easily satisfied, and do not increase the
complexity of our attack.

We note that w14 is used only once in the first iterative part. Thus the
difference ∆ in w14 only propagates to f , when COMP sets f ← e + w14. The



word w8, however, is used eight times, but as only the MSB has a difference,
only two of these require our attention: first, when setting c ← b + w8 (which
gives the difference ∆ in c with probability one), and second when setting

d← Gw8≫30(a, b, c) + w10 .

Here, the two MSBs of w8 encode the index of the function used in G. Since we
have a difference in the MSB of w8, different functions are applied to (a, b, c). To
obtain the same output, we require that the functions G1 and G3 are used, that
is, we set the bit w30

8 = 1. The reason for this is that, when b equals FFFFFFFF,
it is ensured that the outputs of both functions are equal, as can readily be seen
from the definition of the G-functions in Section 2.1

To summarize, a difference ∆ in w8 and w14 yields a difference ∆ in c and f
after the first iterative part. To have b = FFFFFFFF, it is sufficient to start from
a chaining values that gives at the very first COMP a T such that T + w1 =
FFFFFFFF. Such a chaining value can be reached in about 232 trials, and needs
to be precomputed only once. That is, one first needs to find a message block
leading to a chaining value that satisfies T +w1 = FFFFFFFF, before starting the
actual differential attack with a second block. Actually, by using the freedom in
w0 and w1 rather than fixing them a priori, this step can be accelerated further.
However, as the other parts of the attack dominate the overall complexity, no
significant gains can be made in this way.

5.2 Second Iterative Part

Table 2 describes our differential characteristic for the second iterative part of
Dynamic SHA2. Note that no message word is input in this part. A set of
conditions that ensure that this characteristic is followed, is relatively simple.
Indeed, except when t = 2 and t = 5, the two differences ∆ vanish in the first
step of the computation of R1, namely when computing

(((((a + b)⊕ c) + d)⊕ e) + f)⊕ g .

Therefore, particular conditions are only required for t = 2 and t = 5.
When t = 2, the difference in e gives a difference of 16 in the rotation

amounts, and so the function R1 returns h ≫ r and (h⊕∆) ≫ (r+16 mod 32),
respectively. In order to obtain, as required by our differential characteristic, the
relation

(h ≫ r)⊕∆ = (h⊕∆) ≫ (r + 16 mod 32) ,

a sufficient condition is to have r = 16, and h invariant under 16-bit rotation,
i.e., (h ≫ 16) = h. This means that h should be of the form XYZTXYZT, which
we call symmetric. When t = 5, we require similar conditions.

Now, observe that the words that should be symmetric are c and f obtained
after the first iterative part. The values of c and f then directly depend on w8

and w14 (see description of COMP in Section 2). We now have to find values of
w8 and of w14 that give symmetric c and f .



Table 2. Differential characteristic for the second iterative part of Dynamic SHA2.
The difference at step t is the difference in the state before computing step t.

t a b c d e f g h

0 0 0 ∆ 0 0 ∆ 0 0
1 0 0 0 ∆ 0 0 ∆ 0
2 0 0 0 0 ∆ 0 0 ∆

3 ∆ 0 0 0 0 ∆ 0 0
4 0 ∆ 0 0 0 0 ∆ 0
5 0 0 ∆ 0 0 0 0 ∆

6 ∆ 0 0 ∆ 0 0 0 0
7 0 ∆ 0 0 ∆ 0 0 0
8 0 0 ∆ 0 0 ∆ 0 0

Such w8 and w14 can be found as follows: first fix w14 to some arbitrary value,
and search for a w8 that gives a symmetric c, in 216 trials. Then, fix w8 to the
value found, and search for a pair (w5, w14) that gives a symmetric f after the
first iterative part. Here we need w5 to have enough freedom, since for certain
choices of w5, there does not exist a suitable w14. Again, 216 trials are expected.
Then we are enough degrees of freedom in the message words that do not affect
c and f to find rotation r = 16.

Assuming symmetric c and f after the first iterative part, the characteristic
is followed with probability 2−10, since the condition r = 16 is satisfied for both
t = 2 and t = 5 with probability 2−5 × 2−5. By trying several values of, for
example, w9, and leaving the other message words fixed, one can thus find a
conforming message pair for the first two iterative parts in about 210 trials.

5.3 Third Iterative Part

Given the final difference of the second iterative part, we found a characteristic
for the second round that yields no difference in the final state, thus given a colli-
sion. Table 5 in Appendix B describes our differential characteristic. Appendix B
also explains in detail why the characteristic can be followed with probability
2−42, given some conditions on the input.

Combining our differential characteristics with their respective conditions
on the message, we obtain a method for finding a 2-block collision in about
242+10 = 252 trials. The attack succeeds with probability close to one.

6 Conclusion

In this paper we have discussed the security of the two SHA-3 candidates Dy-
namic SHA and Dynamic SHA2. We have analyzed their security, and found out
that, despite their reliance on data-dependent rotations and in the case of Dy-
namic SHA2 even data-dependent functions, their security is subverted by the
vast control and knowledge the adversary has while attacking a hash function.



Table 3. Summary of our results.

Hash Function Attack Complexity Section

Dynamic SHA-256 Collision 221 3
Dynamic SHA-512 Collision 222 3,C
Dynamic SHA-256 Second preimage 2216 4
Dynamic SHA-512 Second preimage 2256 4,C
Dynamic SHA-256 First preimage 2225 4
Dynamic SHA-512 First preimage 2262 4,C

Dynamic SHA2-256 Collision 252 5
Dynamic SHA2-512 Collision 285 5,C

We also showed that neither Dynamic SHA nor Dynamic SHA2 are suitable to
be selected as SHA-3, following their lack of security. Table 3 summarizes our
results.

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of the Belgian

State (Belgian Science Policy), and in part by the European Commission through the

ICT programme under contract ICT-2007-216676 ECRYPT II.

References

1. Christophe De Cannière and Christian Rechberger. Finding SHA-1 characteris-
tics: General results and applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer, 2006.

2. Christophe De Cannière and Christian Rechberger. Preimages for reduced sha-
0 and sha-1. In David Wagner, editor, CRYPTO, volume 5157 of LNCS, pages
179–202. Springer, 2008.

3. John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus
attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of LNCS, pages
183–200. Springer, 2006.

4. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In Ronald Cramer, editor, EUROCRYPT, volume 3494
of LNCS, pages 474–490. Springer, 2005.

5. Alexander Klimov and Adi Shamir. Cryptographic applications of t-functions. In
Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography,
volume 3006 of LNCS, pages 248–261. Springer, 2003.

6. Florian Mendel, Norbert Pramstaller, and Christian Rechberger. Improved col-
lision attack on the hash function proposed at PKC’98. In Min Surp Rhee and
Byoungcheon Lee, editors, ICISC, volume 4296 of LNCS, pages 8–21. Springer,
2006.

7. National Institute of Standards and Technology. Cryptographic hash algorithm
competition. http://www.nist.gov/hash-competition.



Table 4. Collision example for Dynamic SHA-256: two messages and their common
digest.

34BC5378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E

22FBFA2E 08CE50DF 95CDE61F 71E5F222 3D30C361 EB7676B8 F1AE9728 758B70AF

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

B4BC9378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E

A2FBBA2E 08CE50DF 95CDE61F 71E5F222 3D30C361 EB7676B8 F1AE9728 758B70AF

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

703C40F7 9DDFE2C6 8298F6D0 8D2B45B6 664CBB71 8BAB1BE3 DD563F77 0D0901E6

8. Ronald L. Rivest. The RC5 encryption algorithm. In Bart Preneel, editor, FSE,
volume 1008 of LNCS, pages 86–96. Springer, 1994.

9. Ronald L. Rivest, Matthew J. B. Robshaw, and Yiqun Lisa Yin. RC6 as the AES.
In AES Candidate Conference, pages 337–342, 2000.

10. Sang Uk Shin, Kyung Hyune Rhee, DaeHyun Ryu, and Sangjin Lee. A new hash
function based on MDx-family and its application to MAC. In Hideki Imai and
Yuliang Zheng, editors, Public Key Cryptography, volume 1431 of LNCS, pages
234–246. Springer, 1998.

11. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for
MD5 and colliding X.509 certificates for different identities. In Moni Naor, editor,
EUROCRYPT, volume 4515 of LNCS, pages 1–22. Springer, 2007.

12. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35.
Springer, 2005.

13. Zijie Xu. Dynamic SHA. Submission to NIST, 2008.
14. Zijie Xu. Dynamic SHA2. Submission to NIST, 2008.

A Practical Results

We have implemented our collision attack on Dynamic SHA. Collisions for Dy-
namic SHA-256 and Dynamic SHA-512 are found in a matter of seconds on an
average desktop PC. A collision example for Dynamic SHA-256 is given in Ta-
ble 4. An all-zero block was appended to both messages to circumvent an error
in the padding routine of the Dynamic SHA reference implementation, which
causes part of the last message block to be reused in the padding block.

B Differential Characteristic for Dynamic SHA2

This appendix describes the differential characteristic for the third iterative part
of Dynamic SHA2, used in our collision attack presented in Section 5.

A transition in Table 5 has probability 1/2 when there is a difference in a
or b and G1, G2 or G3 is used. In this case, the difference does (not) propagate



with probability 1/2. When there is a difference only in c, it always propagates
to the output of the G function, independent of the function used. We also note
that a difference ∆ in one operand of R is always transferred to T , and thus
to a, except when wt+1 or wt+4 are w8 or w14, in which case the differences
vanish. When two operands of T have a difference ∆, they cancel out and yield
no difference in T .

The probabilities for each step assume some conditions on the message. We
will take as example the first COMP when t = 2: we start with a difference

0 ∆ 0 ∆ 0 0 0 0

in the chaining value a, b, . . . , h. In the computation of COMP (first half), there is
no difference in T , because the ∆ difference in b cancels that of d. The assignment
of the new values of f, g, h requires no condition on the message, for it only
involves words with no difference. To obtain a difference ∆ in e, we need that
d is rotated by zero bit positions, that is, we need the bits 10 to 14 of w2 to
be zero. This is easy as we have direct control over w2. Then, to obtain no
difference in d, we require that the difference in b does not propagate in G. This
is only possible if the Boolean function in G is not x1⊕x2⊕x3 (see Section 2.1).
Since the Boolean function is determined by the last two bits of w2, we require
w30

2 ∨ w31
2 = 1, i.e., these bits should not be both zero. Now, the difference will

not propagate in G with probability 1/2. Finally, we get a difference ∆ in c with
probability 1.

By applying a similar reasoning to all the steps of our differential charac-
teristic, we obtain conditions on the message w0, . . . , w15 that are sufficient to
conform to the characteristic with probability 2−42. Table 6 summarizes these
conditions, along with the conditions for the other iterative parts.

Conditions on w0, . . . , w7 ensure that in the first COMP of each step the
rotations are by bit zero positions, and thus the difference remains in the MSB.
The probabilities smaller than one are the probabilities that the function G
absorbs or passes a difference in a or b. In the second COMP, we need some
rotations to be zero in order the difference to stay in the MSB. This is achieved
by setting conditions on the message, for example at t = 1, the first ten bits of w9

should be zero. Table 6 summarizes these conditions. After satisfying all these
conditions, about 200 bits of freedom remain; indeed, besides w8 and w14, the
message words w1 to w4 have to be fixed to let the symmetric c and f unchanged
after the first iterative part.

At step t = 6, the difference in the MSB of w14 implies that G will apply
different functions to (a, b, c). Similarly to Section 5.1, we will require w30

14 = 1
and b = EFFFFFFF, which will occur with probability 2−32. The MSB of b should
be zero in order the difference to propagate, which will happen with probability
1/2, thus the total probability for this step 1/2× 2−32 = 2−33



Table 5. Differential characteristic for the third iterative part of Dynamic SHA2. The
difference at step t is the difference in the state before computing step t. The column
T indicates the difference in the temporary variable T . The probability on a line is the
probability to reach the next difference, when conditions on the message are satisfied.

t (message input) a b c d e f g h T prob.

1 (w1, . . . , w0)
0 0 0 ∆ 0 0 ∆ 0 0 1
0 0 0 0 ∆ 0 0 ∆ 0 1

1 (w9, . . . , w8)
0 0 0 0 0 ∆ 0 0 ∆ 1
∆ 0 0 0 0 0 ∆ 0 0 2−1

2 (w2, . . . , w1)
0 ∆ 0 ∆ 0 0 0 0 0 2−1

0 0 ∆ 0 ∆ 0 0 0 0 1

2 (w10, . . . , w9)
0 0 0 ∆ 0 ∆ 0 0 0 1
0 0 0 0 ∆ 0 ∆ 0 0 1

3 (w3, . . . , w2)
∆ 0 0 0 0 0 0 ∆ 0 2−1

0 ∆ 0 0 0 0 0 0 ∆ 2−1

3 (w11, . . . , w10)
∆ 0 ∆ 0 0 0 0 0 0 2−1

0 ∆ 0 ∆ 0 ∆ 0 0 ∆ 2−1

4 (w4, . . . , w3)
∆ 0 ∆ 0 ∆ 0 ∆ 0 0 2−1

0 ∆ 0 ∆ 0 ∆ 0 ∆ 0 1

4 (w12, . . . , w11)
0 0 ∆ ∆ ∆ 0 ∆ 0 0 1
0 0 0 0 ∆ ∆ 0 ∆ ∆ 1

5 (w5, . . . , w4)
0 0 0 0 0 ∆ ∆ 0 0 1
0 0 0 0 0 0 ∆ ∆ 0 1

5 (w13, . . . , w12)
0 0 0 0 0 0 0 ∆ ∆ 1
0 0 0 0 0 ∆ 0 0 ∆ 1

6 (w6, . . . , w5)
∆ 0 0 0 0 0 ∆ 0 0 1
0 ∆ 0 ∆ 0 0 0 ∆ ∆ 2−1

6 (w14, . . . , w13)
∆ 0 ∆ ∆ ∆ 0 0 0 ∆ 2−33

0 ∆ 0 ∆ ∆ ∆ 0 0 0 2−1

7 (w7, . . . , w6)
0 0 0 ∆ ∆ ∆ ∆ 0 0 1
0 0 0 0 ∆ ∆ ∆ ∆ 0 1

7 (w15, . . . , w14)
0 0 0 0 0 ∆ ∆ ∆ ∆ 1
0 0 0 0 0 0 ∆ ∆ 0 1

0 0 0 0 0 0 0 0



Table 6. Conditions on the message words w0, . . . , w15 sufficient to follow our differ-
ential characteristic.

Word Condition

w0 –

w1 w1 = 0

w2 w10

2 = · · · = w14

2 = 0, w25

2 = · · · = w29

2 = 0, w30

2 ∨ w31

2 = 1

w3 w30

3 ∨ w31

3 = 1

w4 w20

4 = · · · = w29

4 = 0, w30

4 ∨ w31

4 = 1

w5 w5

5 = · · · = w9

5 = 0

w6 w0

6 = · · · = w4

6 = 0, w15

6 = · · · = w19

6 = 0, w20

6 = · · · = w29

6 = 0

w7 w5

7 = · · · = w14

7 = 0, w20

7 = · · · = w24

7 = 0

w8 difference in w31

8 , w30

8 = 1

w9 w0

9 = · · · = w9

9 = 0

w10 w5

10 = · · · = w14

10 = 0

w11 w15

11 = · · · = w29

11 = 0, w30

11 ∨ w31

11 = 1

w12 w10

12 = · · · = w24

12 = 0

w13 w0

13 = · · · = w4

13 = 0, w15

13 = · · · = w24

13 = 0

w14 difference in w31

14, w10

14 = · · · = w14

14 = 0, w20

14 = · · · = w29

14 = 0, w30

14 = 1

w15 w0

15 = · · · = w9

15 = 0



C Extensions to the 512-bit Versions

The attacks presented in this paper can be extended to the 512-bit versions
of Dynamic SHA and Dynamic SHA2 in a straightforward way. This appendix
details how the attacks can be adapted.

Collision Attack on Dynamic SHA. The attack on Dynamic SHA-256 can be
adapted to Dynamic SHA-512 with almost no change. Due to the different R1
function, the difference word is ∆ = 8000000080000000. Also, the probability
of the local collision is lowered by about 2−1 compared to Dynamic SHA-256,
as in the fifth step six rotation bits have to be fixed to zero instead of only five.

Preimage Attack on Dynamic SHA. The preimage attack on Dynamic SHA-512
is similar to that on Dynamic SHA-256, except that the 59 LSBs are determined,
instead of the 28 LSBs. Then, when building the tree, 2224 solutions are expected,
leading to an attack complexity of 2256 on the compression function. Calculations
for preimages on the full hash function (with correct padding bits) give a cost
of of 2262 compression function evaluations.

Collision Attack on Dynamic SHA2. To attack Dynamic SHA2-512 we use a
similar differential path. The changes are that the condition on the first block
is on 64 bits (starting from a chaining value with b = FFFFFFFFFFFFFFFF),
the fact that in the second iterative part the probability is 2−6 for each of the
two transitions, the decrease in the probability only of the sixth COMP from
2−33 to 2−65, and the different set of conditions on the message described in
Table 7. Hence, the total time complexity of this attack is 285. We note that in
this approach the attack fixes w60

i and w61
i to i mod 4 (which causes the same

function to be used in this case as in the attack on Dynamic SHA2-256).



Table 7. Conditions on the message words w0, . . . , w15 sufficient to follow our differ-
ential characteristic in Dynamic SHA2-512

Word Condition

w0 –

w1 w1 = 0 ,w18

1 = · · · = w23

1 = 0, w42

1 = · · · = w47

1 = 0, w60

1 = 1, w61

1 = 0

w2 w18

2 = · · · = w29

2 = 0, w42

2 = · · · = w47

2 = 0, w60

2 = 0, w61

2 = 1, w62

2 ∨ w63

2 = 1

w3 w54

3 = · · ·w59

3 = 0, w60

3 = w61

3 = 1, w62

3 ∨ w63

3 = 1

w4 w6

4 = · · · = w11

4 = 0, w18

4 = · · · = w23

4 = 0, w42

4 = · · · = w47

4 = 0,
w60

4 = w61

4 = 0, w62

4 ∨ w63

4 = 1

w5 w6

5 = · · · = w11

5 = 0, w60

5 = 1, w61

5 = 1

w6 w48

6 = · · · = w53

6 = 0, w60

6 = 0, w61

6 = 1

w7 w6

7 = · · · = w23

7 = 0, w36

7 = · · · = w53

7 = 0, w60

7 = w61

7 = 1

w8 difference in w63

8 , w62

8 = 1

w9 w12

9 = · · · = w17

9 = 0,w36

9 = · = w41

9 = 0, w60

9 = 1, w61

9 = 0

w10 w6

10 = · · · = w11

10 = 0, w18

10 = · · · = w23

10 = 0, w42

10 = · · · = w47

10 = 0, w60

10 = 0,

w61

10 = 1

w11 w36

11 = · · · = w41

11 = 0, w48

11 = · · · = w59

11 = 0, w60

11 = w61

11 = 1, w62

11 ∨ w63

11 = 1

w12 w12

12 = · · · = w23

12 = 0, w36

12 = · · · = w47

12 = 0, w60

12 = w61

12 = 0

w13 w36

13 = · · · = w41

13 = 0, w60

13 = 1, w61

13 = 0

w14 difference in w63

14, w12

14 = · · · = w23

14 = 0, w36

14 = · · · = w53

14 = 0, w60

14 = 0, w61

14 = 1

w15 w6

15 = · · · = w11

15 = 0, w36

15 = · · · = w41

15 = 0, w60

15 = w61

15 = 1


