
Compact McEliece Keys from Goppa Codes

Rafael Misoczki1 and Paulo S. L. M. Barreto1?

Departamento de Engenharia de Computação e Sistemas Digitais (PCS),
Escola Politécnica, Universidade de São Paulo, Brazil.

{rmisoczki,pbarreto}@larc.usp.br

Abstract. The classical McEliece cryptosystem is built upon the class of Goppa codes, which remains
secure to this date in contrast to many other families of codes but leads to very large public keys.
Previous proposals to obtain short McEliece keys have primarily centered around replacing that class
by other families of codes, most of which were shown to contain weaknesses, and at the cost of reducing
in half the capability of error correction. In this paper we describe a simple way to reduce significantly
the key size in McEliece and related cryptosystems using a subclass of Goppa codes, keeping the
capability of correcting the full designed number of errors while also improving the efficiency of
cryptographic operations to subquadratic time.

Keywords: post-quantum cryptography, syndrome decoding, efficient parameters and algorithms.

1 Introduction

Quantum computers can potentially break most if not all conventional cryptosystems actually de-
ployed in practice, namely, all systems based on the integer factorization problem (like RSA) or the
discrete logarithm problem (like traditional or elliptic curve Diffie-Hellman and DSA, and also all
of pairing-based cryptography).

Certain classical cryptosystems, inspired on computational problems of a nature entirely different
from the above and potentially much harder to solve, remain largely unaffected by the threat of quan-
tum computing, and have thus been called quantum-resistant or, more suggestively, ‘post-quantum’
cryptosystems. These include lattice-based cryptosystems and syndrome-based cryptosystems like
McEliece [16] and Niederreiter [19]. Such systems usually have even a speed advantage over conven-
tional schemes; for instance, McEliece or Niederreiter encryption over a code of length n has time
complexity O(n2), while (private exponent) RSA and DSA with n-bit keys have time complexity
O(n3). On the other hand, they are plagued by very large keys compared to their conventional
counterparts.

It is therefore of utmost importance to seek ways to reduce the key sizes for post-quantum
cryptosystems while keeping their security level. The first steps toward this goal were taken by
Monico et al. using low density parity-check codes [18], by Gaborit using quasi-cyclic codes [8], and
by Baldi and Chiaraluce using a combination of both [1]. However, these proposals were all shown
to contain weaknesses [21].

Recently Berger et al. [2] showed how to circumvent the drawbacks of Gaborit’s original scheme
and remove the weaknesses pointed out in [21] by means of two techniques:

1. Extracting block-shortened public codes from very large private codes, adapting an idea proposed
by Wieschebrink [28];

? Supported by the Brazilian National Council for Scientific and Technological Development (CNPq) under research
productivity grant 312005/2006-7 and universal grant 485317/2007-9, and by the Science Foundation Ireland (SFI)
as E. T. S. Walton Award fellow under grant 07/W.1/I1824.

2. Working with subfield subcodes over an intermediate subfield between the base field and the
extension field of the original code.

These two techniques were successfully applied to quasi-cyclic codes, yet we will see that their
applicability is not restricted to that class. Besides, the class of quasi-cyclic codes proposed in [2] has
the drawback, common to most other classes of alternant codes, that no decoding algorithm capable
of correcting more than t/2 errors is currently known (i.e. in practice only half the designed number
of errors can be corrected). The ability to correct as many errors as possible with the decoding
trapdoor is important in schemes like CFS signatures, since it is closely related to the probability
of finding a decodable syndrome (and thus producing a signature) by random sampling [7]. It also
allows for smaller keys than would be possible using a different kind of code, including the quasi-
cyclic codes as proposed in [2].

Our contribution: In this paper we propose the class of quasi-dyadic Goppa codes, which ad-
mit a very compact parity-check or a generator matrix representation, for efficiently instantiating
syndrome-based cryptosystems. We stress that we are not proposing any new cryptosystem, but
rather a technique to obtain efficient parameters and algorithms for such systems, current or future.
In contrast to many other proposed families of codes [10, 11, 21, 26], Goppa codes have withstood
cryptanalysis quite well, and despite considerable progress in the area [14, 25] (see also [5] for a sur-
vey) they remain essentially unscathed since they were suggested with the very first syndrome-based
cryptosystem known, namely, the original McEliece scheme. Our method produces McEliece-type
keys that are up to a factor t = Õ(n) smaller than keys produced from generic t-error correcting
binary Goppa codes, while retaining the capability of correcting the full designed number of errors
rather than just half as many, a feature that is missing in all previous attempts at constructing
compact codes for cryptographic purposes, including [2]. Furthermore, the complexity of all typical
cryptographic operations become no more than O(nlg 3); specifically, code generation (excluding
conversion to systematic form) has complexity O(n lg n), while systematic formatting, encryption
and decryption take no more than O(nlg 3) time.

The remainder of this paper is organized as follows. Section 2 introduces some basic concepts
of coding theory. In section 3 we describe our proposal of using binary Goppa codes in quasi-
dyadic form, and how to build them. We consider hardness issues in Section 4, and efficiency issues,
including guidelines on how to choose parameters, in Section 5. We conclude in Section 6.

2 Preliminaries

In what follows all vector and matrix indices are numbered from zero onwards.

Definition 1. Given a ring R and a vector h = (h0, . . . , hn−1) ∈ Rn, the dyadic matrix ∆(h) ∈
Rn×n is the symmetric matrix with components ∆ij = hi⊕j where ⊕ stands for bitwise exclusive-or
on the binary representations of the indices. The sequence h is called its signature. The set of dyadic
n× n matrices over R is denoted ∆(Rn). Given t > 0, ∆(t, h) denotes ∆(h) truncated to its first t
rows.

One can recursively characterize a dyadic matrix when n is a power of 2: any 1 × 1 matrix is
dyadic, and for k > 0 any 2k × 2k dyadic matrix M has the form

M =
[
A B
B A

]
2

where A and B are 2k−1× 2k−1 dyadic matrices. It is not hard to see that the signature of a dyadic
matrix coincides with its first row. Dyadic matrices form a commutative subring of Rn×n as long
as R is commutative [12].

Definition 2. A dyadic permutation is a dyadic matrix Π i ∈ ∆({0, 1}n) whose signature is the
i-th row of the identity matrix.

A dyadic permutation is clearly an involution, i.e. (Π i)2 = I. The i-th row (or equivalently the
i-th column) of the dyadic matrix defined by a signature h can be written ∆(h)i = hΠ i.

Definition 3. A quasi-dyadic matrix is a (possibly non-dyadic) block matrix whose component
blocks are dyadic submatrices.

Quasi-dyadic matrices are at the core of our proposal. We will be mainly concerned with the
case R = Fq, the finite field with q elements.

Definition 4. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ Ft
q and L = (L0, . . . , Ln−1) ∈ Fn

q

of distinct elements, the Cauchy matrix C(z, L) is the t×n matrix with elements Cij = 1/(zi−Lj),
i.e.

C(z, L) =

1

z0 − L0
. . .

1
z0 − Ln−1

...
. . .

...
1

zt−1 − L0
. . .

1
zt−1 − Ln−1

 .
Cauchy matrices have the property that all of their submatrices are nonsingular [24]. Notice

that, in general, Cauchy matrices are not dyadic and vice-versa, although the intersection of these
two classes is non-empty in characteristic 2.

Definition 5. Given t > 0 and a sequence L = (L0, . . . , Ln−1) ∈ Fn
q , the Vandermonde matrix

vdm(t, L) is the t× n matrix with elements Vij = Li
j.

Definition 6. Given a sequence L = (L0, . . . , Ln−1) ∈ Fn
q of distinct elements and a sequence

D = (D0, . . . , Dn−1) ∈ Fn
q of nonzero elements, the Generalized Reed-Solomon code GRSd(L,D) is

an [n, k, d] linear error-correcting code defined by the parity-check matrix

H = vdm(d− 1, L) · diag(D).

The classical Reed-Solomon code itself is GRSd(α,α) for α = (1, α, α2, . . . , αn−1) and some
primitive element α ∈ Fq.

Definition 7. An alternant code of length n and dimension k over Fq for q = pm is a subfield
subcode of a Generalized Reed-Solomon code over Fp.

Subfield subcodes are easily derived from a given code by means of the trace construction:

Definition 8. The trace construction produces an Fp-subfield subcode of a given code over Fpm =
Fp[x]/r(x) (for some irreducible polynomial r(x) ∈ Fp[x] of degree m) by writing the Fp coefficients
of each Fpm component of a parity-check matrix Ht×n of the original code onto m successive rows
of a parity-check matrix H ′mt×n of the subcode. The related co-trace parity-check matrix H ′′mt×n,
equivalent to H ′ by a left permutation, is obtained from H by writing the Fp coefficients of terms of
equal degree from all components on a column of H onto successive rows of H ′′.

3

Thus, given Fpm elements ui(x) = ui,0 + · · · + ui,m−1x
m−1, the trace construction maps a col-

umn (u0, . . . , ut−1)T from H to the column (u0,0, . . . , u0,m−1; . . . ;ut−1,0, . . . , ut−1,m−1)T on the trace
matrix H ′, and to the column (u0,0, . . . , ut−1,0; . . . ;u0,m−1, . . . , ut−1,m−1)T on the co-trace matrix
H ′′.

Finally, one of the most important families of linear error-correcting codes for cryptographic
purposes is that of Goppa codes:

Definition 9. Given q = pm, a sequence L = (L0, . . . , Ln−1) ∈ Fn
q of distinct elements and a

polynomial g(x) ∈ Fq[x] such that g(Li) 6= 0 for 0 6 i < n, the Goppa code is the alternant code
over Fp defined by the parity-check matrix H = GRSd(L,D) where D = (g(L0)−1, . . . , g(Ln−1)−1).

A binary irreducible Goppa code with design distance 2t + 1 can correct up to t bits using
Patterson’s algorithm [22], or slightly more using Bernstein’s list decoding method [4], and t errors
can still be corrected by suitable decoding algorithms if the binary generator g(x) is not irreducible1.
In all other cases no more than t/2 errors can in general be corrected.

3 Goppa codes in Cauchy and dyadic form

A property of Goppa codes that is central to our proposal is that they admit a parity-check matrix
in Cauchy form:

Theorem 1 ([27]). The Goppa code defined by a polynomial g(x) = (x− z0) . . . (x− zt−1) without
multiple zeros admits a parity-check matrix of the form H = C(z, L), i.e. Hij = 1/(zi − Lj),
0 6 i < t, 0 6 j < n.

This theorem (also appearing in [15, Ch. 12, §3, Pr. 5]) is completely general when one considers
the factorization of the Goppa polynomial over its split field, in which case a single root of g is
enough to completely characterize the code. For simplicity, we will restrict our attention to the case
where all zeroes of that polynomial are in the field Fq itself.

A cryptosystem cannot be securely defined on a Goppa code specified directly by a parity-check
matrix in Cauchy form, since this would immediately reveal the Goppa polynomial g(x): it suffices
to solve the overdefined linear system zi−Lj = 1/Hij consisting of tn equations in t+n unknowns.
Actually this system has rank t + n − 1, but the solutions this incurs are all equivalent in the
sense that, for any fixed ω ∈ Fq, the polynomial defined by the roots z′i = zi + ω on the support
L′j = Lj + ω leads to the same parity-check matrix Hij = 1/(z′i − L′j) and hence to the same
syndromes, decodable using any of those codes.

3.1 Building a binary Goppa code in dyadic form

We now show how to build a binary Goppa code that admits a parity-check matrix in dyadic form.
We do so by constructing a sequence h = (h0, . . . , hn−1) ∈ Fn

q , with q = 2m for some m, of distinct
nonzero values such that

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0
,

1 For instance, one can equivalently view the Goppa code as the alternant code defined by the generator polynomial
g2(x), in which case any generic alternant decoder will decode t errors. We are grateful to Nicolas Sendrier for
pointing this out.

4

choosing an element ω ∈ Fq, and then defining the Goppa code Γ (L, g) by assembling the polynomial
g from its zeros zi = 1/hi +ω and the code support Lj = 1/hj + 1/h0 +ω. Clearly the parity-check
matrix in Cauchy form Hij = 1/(zi − Lj) is actually a dyadic matrix Hij = hi⊕j .

The technique we propose consists of simply choosing distinct nonzero h0 and hi at random
where i scans all powers of two smaller than n, and setting all other values as

hi+j ←
1

1
hi

+
1
hj

+
1
h0

for 0 < j < i (so that i+ j = i⊕ j), as long as this value is well-defined. Algorithm 1, whose running
time is O(n lg n) steps, captures this idea. The notation u $←U means that variable u is uniformly
sampled at random from set U .

Algorithm 1 Constructing a binary Goppa code in dyadic form
Input: q (a power of 2), n 6 q/2, t.
Output: Support L, generator polynomial g and dyadic parity-check matrix H for a binary Goppa code Γ (L, g) of

length n and design distance 2t+ 1 over Fq.
1: U ← Fq \ {0}
. Choose the dyadic signature (h0, . . . , hn−1). N.B. Whenever hj with j > 0 is taken from U , so is 1/(1/hj + 1/h0)
to prevent a potential spurious intersection between z and L.

2: h0
$←U

3: U ← U \ {h0}
4: for s← 0 to dlgne − 1 do
5: i← 2s

6: hi
$←U

7: U ← U \ {hi, 1/(1/hi + 1/h0)}
8: for j ← 1 to i− 1 do
9: hi+j ← 1/(1/hi + 1/hj + 1/h0)
10: U ← U \ {hi+j , 1/(1/hi+j + 1/h0)}
11: end for
12: end for
13: ω $←Fq

. Assemble the Goppa generator polynomial:
14: for i← 0 to t− 1 do
15: zi ← 1/hi + ω
16: end for
17: g(x)←

∏t−1
i=0 (x− zi)

. Compute the support:
18: for j ← 0 to n− 1 do
19: Lj ← 1/hj + 1/h0 + ω
20: end for
21: h← (h0, . . . , hn−1)
22: H ← ∆(t, h)
23: return L, g, H

To complete the construction it is necessary to choose a compact generator matrix for the subfield
subcode. Although the parity check matrix H built by Algorithm 1 is dyadic over Fq, the usual trace
construction leads to a generator of the dual code that most probably violates the dyadic symmetry.
However, by representing each field element to a basis of Fq over the subfield Fp, one can view H as

5

a superposition of m = [Fq : Fp] distinct dyadic matrices over Fp, and each of them can be stored
in a separate dyadic signature.

Theorem 2. Algorithm 1 produces up to
∏dlg ne

i=0 (q − 2i) Goppa codes in dyadic form.

Proof. Each dyadic signature produced by Algorithm 1 is entirely determined by the values h0 and
h2s for s = 0, . . . , dlg ne − 1 chosen at steps 2 and 6 (ω only produces equivalent codes). Along
the loop at line 4, exactly 2i = 2s+1 elements are erased from U , corresponding to the choices of
h2s . . . h2s+1−1. At the end of that loop, 2 + 2

∑s
`=0 2` = 2s+2 elements have been erased in total.

Hence at the beginning of each step of the loop only 2s+1 elements had been erased from U , i.e.
there are q − 2s+1 elements in U to choose h2s from, and q − 1 possibilities for h0. Therefore this
construction potentially yields up to (q−1)

∏dlg ne−1
s=0 (q − 2s+1) =

∏dlg ne
i=0 (q − 2i) possible codes. ut

We will see, however, that the number of permuted subfield subcodes that we describe next and
propose for cryptographic applications is larger than this.

3.2 Constructing quasi-dyadic, permuted subfield subcodes

Algorithm 1 generates fully dyadic codes. We now show how to integrate the techniques of Berger
et al. with Algorithm 1 so as to build quasi-dyadic subfield subcodes whose parity-check matrix is
a non-dyadic matrix composed of blocks of dyadic submatrices. The principle to follow here is to
select, permute, and scale the columns of the original parity-check matrix so as to preserve quasi-
dyadicity in the target subfield subcode and the distribution of introduced errors in cryptosystems.
A similar process yields a generator matrix in convenient quasi-dyadic, systematic form.

For the desired security level (see the discussion in Section 5.1), choose r = 2m for some m,
q = rd for some d, a code length n and a design number of correctable errors t such that n = `t for
some ` > d. For simplicity we assume that t is a power of 2, but the following construction method
can be modified to work with other values.

Run Algorithm 1 to produce a code over Fq whose length N � n is a large multiple of t not
exceeding the largest possible length q/2, so that the constructed parity-check matrix Ht×N can be
viewed as a sequence of N/t dyadic blocks [B0 | · · · | BN/t−1] of size t×t each. Select ` distinct blocks
Bi0 , . . . , Bi`−1

in any order from H together with ` random dyadic permutations (Πj0 , . . . ,Πj`−1)
of size t× t and ` nonzero scale factors (σ0, . . . , σ`−1) ∈ F`

r. Let H ′′dt×`t be the co-trace matrix over
Fr constructed from [Bi0σ0Π

j0 | · · · | Bi`−1
σ`−1Π

j`−1]. By construction, H ′′ consists of d layers
of ` dyadic submatrices each. The private information consisting of the signature h (which gives
rise to the polynomial g and the support L), the sequence (i0, . . . , i`−1) of blocks, the sequence
(j0, . . . , j`−1) of dyadic permutation identifiers, and the sequence of scale factors (σ0, . . . , σ`−1),
relates the public code defined by (the systematic form of) H ′′ with the private code defined by H.
The space occupied by the private information is thus about ndm+ ` lg(N/t) + ` lg t+ `m bits.

Writing H ′′ in systematic form, when possible, involves a Gaussian elimination incurring some
` multiplications of such submatrices per layer to put each column of submatrices in echelon form;
since there are d columns to process and d layers, the overall cost is about d2` products of dyadic
t× t submatrices, implying a complexity O(d2`tlg 3). For typical cryptosystems one can set t = Õ(n)
or even t = O(n), and hence the cost of formatting is O(nlg 3) as long as d is a small constant, which
is indeed the case in practice since maximum size reduction is achieved when Fp is a large proper
subfield of Fq (see Section 5.1).

6

The resulting parity-check matrix defines a code of length n and dimension k = n − dt, and
still consists of dyadic submatrices which can be represented by a signature of length t, and hence
the whole matrix can be stored in an area a factor t smaller than a general matrix. During the
process the dyadic submatrices are not guaranteed to be nonsingular as they are not associated to
a Cauchy matrix any longer; should all the submatrices on a column be found to be singular during
the Gaussian elimination (above or below the diagonal, according to the direction of this process)
so that no pivot is possible, the whole column containing may be replaced by another block Bj′

chosen at random from H ′ as above.
The total space occupied by the essential part of the resulting generator (or parity-check) matrix

over Fp is dt× (n− dt)/t = dk Fp elements, or mk bits – a factor t better than plain Goppa codes,
which occupy k(n− k) = mkt bits. The size reduction is about the same even if the matrix is kept
in plain (rather than systematic) for, since in that case the matrix occupies mn bits. Had t not been
chosen to be a power of 2, say, t = 2uv where v > 1 is odd, the cost of multiplying t × t matrices
would be in general O(v33u) rather than simply O(3u), and the final parity-check matrix would be
compressed by only a factor 2u.

For each code produced by Algorithm 1, the number of codes generated by this construction is(N/t
`

)
× `! × t` × (r − 1)`, hence

(N/t
`

)
× `! × t` × (r − 1)` ×

∏dlg Ne
i=0 (q − 2i) codes are possible in

principle.

3.3 Decoding

While there are algorithms to efficiently decode a Goppa syndrome computed with a parity-check
matrix H in alternant form, no such algorithm is known to directly decode a syndrome computed
with a parity-check matrix ∆ in systematic quasi-dyadic form.

However, knowledge of z, L and the overall scaled permutation P resulting from the process
described in Section 3.2 is enough to build the easily decodable parity-check matrix H, which is
linearly related to ∆ as H = S∆P for some nonsingular matrix S, which can be retrieved as
S = HPT∆T(∆∆T)−1. Thus, given a syndrome s = ∆ cT for some (corrupted) codeword c, compute
s′ = Ss = HcT and use this syndrome for decoding.

3.4 A toy example

Let F25 = F2[u]/(u5 + u2 + 1). The dyadic signature

h = (u20, u3, u6, u28, u9, u29, u4, u22, u12, u5, u10, u2, u24, u26, u25, u15)

and the offset ω = u21 define a 2-error correcting binary Goppa code of length N = 16 with g(x) =
(x−u12)(x−u15) and support L = (u21, u29, u19, u26, u6, u16, u7, u5, u25, u3, u11, u28, u27, u9, u22, u2).
The associated parity-check matrix built according to Theorem 1 is

H ′ =
[
u20 u3 u6 u28 u9 u29 u4 u22 u12 u5 u10 u2 u24 u26 u25 u15

u3 u20 u28 u6 u29 u9 u22 u4 u5 u12 u2 u10 u26 u24 u15 u25

]
,

with eight 2×2 blocks B0, . . . , B7 as indicated. From this we extract the shortened, rearranged and
permuted sequence H ′′ = [B7Π

0 | B5Π
1 | B1Π

0 | B2Π
1 | B3Π

0 | B6Π
1 | B4Π

0] (for simplicity we
choose all scale factors equal to 1), i.e.:

H ′′ =
[
u25 u15 u2 u10 u6 u28 u29 u9 u4 u22 u26 u24 u12 u5

u15 u25 u10 u2 u28 u6 u9 u29 u22 u4 u24 u26 u5 u12

]
,

7

whose co-trace matrix over F2 has the systematic form:

H =

0 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1

= [MT | In−k],

from which one readily obtains the k × n = 4× 14 generator matrix in systematic form:

G =

1 0 0 0 0 1 0 1 0 0 0 1 1 1
0 1 0 0 1 0 1 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 1 1 0 1 0 0

 = [Ik |M],

where both G and H share the essential part M :

M =

0 1 0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0 0 0
1 0 0 0 1 1 0 1 0 0

 ,
which is entirely specified by the elements in boldface and can thus be stored in 20 bits instead of,
respectively, 4 · 14 = 56 and 10 · 14 = 140 bits.

4 Assessing the hardness of decoding quasi-dyadic codes

The original McEliece (or, for that matter, the original Niederreiter) schemes are perhaps better
described as a candidate trapdoor one-way functions rather than full-fledged public-key encryption
schemes. Such functions are used in cryptography in many different settings, each with different
security requirements, and we do not consider such applications in this paper. Instead we focus
purely on the question of inverting the trapdoor function, in other words, decoding.

As we pointed out in Section 1, the well-studied class of Goppa codes remains one of the best
choices to instantiate McEliece-like schemes. Although our proposal is ultimately based on Goppa
codes, one may wonder whether or not the highly composite nature of the Goppa generator poly-
nomial g(x), or the peculiar structure of the quasi-dyadic parity-check and generator matrices, leak
any information that might facilitate decoding without knowledge of the trapdoor.

Yet, any alternant code can be written in Goppa-like fashion by using the diagonal component of
its default parity-check matrix (see Definitions 6 and 7) to interpolate a generating polynomial (not
necessarily of degree t) that is composite with high probability. We are not aware of any way this
fact could be used to facilitate decoding without full knowledge of the code structure, and clearly
any result in this direction would affect most of the alternant codes proposed for cryptographic
purposes to date.

8

Otmani et al.’s attack against quasi-cyclic codes [21] could be modified to work against Goppa
codes in dyadic form. For this reason we adopt the same countermeasures proposed by Berger et al.
to thwart it for cyclic codes, namely, working with a block-shortened subcode of a very large code
as described in Section 3.2. This idea also build upon the work of Wieschebrink [28] who proved
that deciding whether a code is equivalent to a shortened code is NP-complete. In our case, the
result is to hide the Cauchy structure of the private code in a general dyadic structure, rather than
disguising a quasi-cyclic code as another one with the same symmetry.

We now give a reduction of the problem of decoding the particular class of quasi-dyadic codes
to the well-studied syndrome decoding problem, classical in coding theory and known to be NP-
complete [3].

Definition 10 (Syndrome decoding). Let Fq be a finite field, and let (H,w, s) be a triple con-
sisting of a matrix H ∈ Fr×n

q , an integer w < n, and a vector s ∈ Fr
q. Does there exist a vector

e ∈ Fn
q of Hamming weight w(e) 6 w such that HeT = sT?

The corresponding problem for quasi-dyadic matrices reads:

Definition 11 (Quasi-dyadic syndrome decoding). Let Fq be a finite field, and let (H,w, s) be
a triple consisting of a quasi-dyadic matrix H ∈ ∆(F`

q)
r×n, an integer w < `n, and a vector s ∈ F`r

q .
Does there exist a vector e ∈ F`n

q of Hamming weight w(e) 6 w such that HeT = sT?

Theorem 3. The quasi-dyadic syndrome decoding problem (QD-SDP) is polynomially equivalent to
the syndrome decoding problem (SDP). In other words, decoding quasi-dyadic codes is as hard in the
worst case as decoding general codes.

Proof. The QD-SDP, being an instance of the SDP restricted to a particular class of codes, is clearly
a decision problem in NP. Consider now an instance (H ′, w′, s′) ∈ Fr×n

q ×Z×Fr
q of the SDP. Assume

one is given an oracle that solves the QD-SDP over ∆(F`
q) for some ` > 0. Let u` be the first row of

the identity matrix I`, i.e. I` = ∆(u`). Define w = `w′, the quasi-dyadic matrix H ∈ ∆(F`
q)

r×n with
blocks Hij = H ′ijI`, and the vector s ∈ (F`

q)
r with blocks si = s′iu`. It is evident that the instance

(H,w, s) ∈ ∆(F`
q)

r×n × Z × (F`
q)

r of the QD-SDP can be constructed in polynomial time. Assume
now that there exists e ∈ F`n

q of Hamming weight w(e) 6 w such that HeT = sT. Let e′i ∈ Fn
q be the

vector with elements (e′i)j = ei+j`, so that the e′j are interleaved to compose e. Obviously at least
one of the e′i has Hamming weight not exceeding w/` = w′, and by the construction of H any of
them satisfies He′Ti = s′T, constituting a solution to the given instance of the SDP. This effectively
reduces the SDP to the QD-SDP for any given ` in polynomial time. Thus, the QD-SDP itself is
NP-complete. ut

Although this theorem does not say anything about hardness in the average case, it nevertheless
strengthens our claim that the family of codes we propose is in principle no less suitable for cryp-
tographic applications than a generic code. Incidentally, the expected running time of all known
algorithms for the SDP is exponential, so there is empirical evidence that the average case is also
very hard. We stress, however, that particular cryptosystems based on quasi-dyadic codes will usu-
ally depend on more specific security assumptions, whose assessment transcends the scope of this
paper.

9

5 Efficiency considerations

Due to their simple structure the matrices in our proposal can be held on a simple vector not only
for long-term storage or transmission, but for processing as well.

The operation of multiplying a vector by a (quasi-)dyadic matrix is at the core of McEliece
encryption. A Karatsuba-like approach for dyadic convolution2 leads to the asymptotic complexity
O(nlg 3) for this operation and hence also for encryption. Sarwate’s decoding method [23] sets the
asymptotic cost of decryption at roughly O(nlg 3) as well.

Inversion, on the other hand, can be carried out in O(n) steps: one can show by induction that
a binary dyadic matrix ∆(h) of dimension n satisfies ∆T∆ = ∆∆T = ∆2 = (

∑
i hi)2I, and hence

its inverse, when it exists, is ∆−1 = (
∑

i hi)−2∆, which can be computed in O(n) steps since it is
entirely determined by its first row.

The cost of converting a dyadic matrix to systematic (echelon) form is the same as the cost
of a dyadic convolution: write the original matrix as Mk×n = [Ak×k | Bk×(n−k)], invert the square
dyadic matrix A in linear time, and then compute the echelon form [Ik | A−1B], which involves
the product of two dyadic matrices (one of them possibly truncated) and hence has the claimed
O(nlg 3) overall complexity. If M is a parity-check matrix, write it as Mr×n = [Ar×(n−r) | Br×r] and
obtain the systematic form [B−1A | Ir]. Notice that, contrary to systems based on quasi-circulant
matrices [8, Proposition 3.4], our proposal does not require a lengthy process, involving expensive
O(n3) matrix rank computations to construct a generator matrix in suitable form, often larger than
one would expect for a code of the given dimension.

Table 1 summarizes the asymptotic complexities of key generation, systematic formatting, and
encryption or decryption. Preliminary tests in C/C++ for the range of code dimensions and lengths
that are expected to be found in practice (see Section 5.1) indicate that vector multiplication by a
quasi-dyadic matrix using iterative Karatsuba for purely dyadic submatrices runs twice as fast as
the textbook algorithm.

Table 1. Cryptographic operation complexity relative to the code length n.

operation generic ours
Key generation O(n3) O(n lgn)

Systematic form O(n3) O(nlg 3)

Encrypt/Decrypt O(n2) O(nlg 3)

5.1 Suggested parameters

Several trade-offs are possible when choosing parameters for a particular application. One may wish
to minimize the key size, or increase speed, or simplify the underlying arithmetic, or attaining a
balance between them. We present here some non-exhaustive combinations. The number of possible
codes is large; for instance, it is about 2655 for an original code length of N = 215 even for the least
secure example below, at the 80-bit level entry on table 3.

2 Regrettably the fast Walsh-Hadamard transform [12], which reduces the complexity of the dyadic convolution to
O(n lgn), is only possible in fields of characteristic other than 2.

10

Table 2 shows the influence of varying the subfield degree while keeping the security level and
the number of errors fixed. The ‘size’ columns give the bit size of the resulting parity-check matrix
in plain and in systematic (echelon) form. In general, codes over larger subfields allow for smaller
keys as already indicated in [2].

Table 2. Sample 128-bit security level parameters for a fixed number of errors (t = 32), using a subcode over the
subfield F2s of F216 .

s n k size
plain echelon

1 2752 2240 44032 35840
2 1696 1440 27136 23040
4 1024 896 16384 14336
8 576 512 9216 8192

Table 3 displays a different trade-off whereby the key size and the subfield are kept constant
at the cost of varying the number of errors and the code length. The estimated security level on
column ‘level’ refers to the approximate logarithmic cost of the best known attack according to the
guidelines in [6]. The number of errors is always a power of 2 to enable maximum reduction of the
key size.

Table 3. Sample parameters for a fixed key size (8192 bits, corresponding to k = 512), using a subcode over the
subfield F28 of F216 .

n t level
576 32 130
640 64 188
768 128 261

Table 4 contains a variety of balanced parameters for practical security levels. The target security
level and the estimated actual cost of the best known attack according to the guidelines in [6] are
shown on the columns labeled ‘level’. We consider the size of the parity-check matrix obtained with
our method in plain rather than systematic form. The ‘shrink’ column is the size ratio between
the size occupied by a generic Goppa parity-check or generator matrix as suggested in [6], and a
quasi-dyadic Goppa parity-check matrix for roughly the same security level. On the ‘RSA’ column
we list the typical size of a (quantum-susceptible) RSA modulus at the specified security level (more
accurate RSA estimates can be found in [20]). To assess our results against what can be achieved
by different post-quantum settings, the ‘NTRU’ columns contains size-optimal and speed-optimal
NTRU key sizes as suggested in the draft IEEE 1363.1 standard [13], and column ‘cyclic’ lists key
sizes for quasi-cyclic codes of approximately the specified security level, as suggested in [2]. This
last comparison illustrates how important and effective the ability to correct all design errors is to
obtain short keys.

11

Table 4. Sample parameters for a subcode over the subfield F28 of F216 .

level n k t size shrink RSA NTRU cyclic
target actual ours generic size speed

80 90 256 128 64 4096 460647 112 1024 – – 6510
112 115 320 192 64 5120 1047600 205 2048 4411 7249 11160
128 135 384 256 64 6144 1537536 250 3072 4939 8371 20800
192 223 640 384 128 10240 4185415 409 7680 7447 11957 –
256 261 768 512 128 12288 7667855 624 15360 11957 16489 –

6 Conclusion and further research

We have described how to generate Goppa codes in quasi-dyadic form for cryptographic applications.
Key sizes in a typical, McEliece-like cryptosystem are roughly a factor t = Õ(n) smaller than generic
Goppa codes, and keys can be kept in this compact size not only for storing and transmission but
for processing as well, without loosing the ability to correct the design number of errors, sometimes
even more. This brings the size of cryptographic keys to within a factor 4 or less of equivalent RSA
keys (breaking even at high security levels), and comparable to NTRU keys. Our work provides
an alternative to conventional cyclic and quasi-cyclic codes, and benefits from the same trapdoor-
hiding techniques proposed by Wieschebrink in general [28], and by Berger et al. for that family of
codes [2], while retaining the ability to correct the full designed number of errors t instead of only
t/2.

The complexity of all cryptographic operations in McEliece and related cryptosystems is reduced
to no more than O(nlg 3). An obvious research problem is how to reduce the cost to Õ(n) or to extend
the proposed construction to higher characteristics for which Õ(n) algorithms are immediately
available. Another problem is that of finding the largest class of quasi-dyadic, efficiently decodable
codes.

Other cryptosystems can also benefit from dyadic codes, e.g. entity identification and certain
digital signatures for which double circulant codes have been proposed [9] could use dyadic codes
instead, even random ones without a Goppa trapdoor.

Interestingly, it is equally possible to define lattice-based cryptosystems with short keys using
dyadic lattices entirely analogous to ideal (cyclic) lattices as proposed by Micciancio [17], and
achieving comparable size reduction. We leave this line of inquiry for future research since it falls
outside the scope of this paper.

Acknowledgements

We are most grateful and indebted to Pierre-Louis Cayrel, Philippe Gaborit, Steven Galbraith,
Robert Niebuhr, Christiane Peters, and Nicolas Sendrier for their valuable comments and feedback
during the preparation of this work.

References

1. M. Baldi and F. Chiaraluce. Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC
code. In IEEE International Symposium on Information Theory – ISIT’2007, pages 2591–2595, Nice, France,
2007. IEEE.

12

2. T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing key length of the McEliece cryptosystem.
In Progress in Cryptology – Africacrypt’2009, Lecture Notes in Computer Science. Springer, 2009. To appear.
Preliminary (2008) version at http://www.unilim.fr/pages_perso/philippe.gaborit/reducing.pdf.

3. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain coding problems. IEEE
Transactions on Information Theory, 24(3):384–386, 1978.

4. D. J. Bernstein. List decoding for binary Goppa codes. Preprint, 2008. http://cr.yp.to/papers.html#
goppalist.

5. D. J. Bernstein, J. Buchmann, and E. Dahmen. Post-Quantum Cryptography. Springer, 2008.
6. D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosystem. In Post-Quantum

Cryptography Workshop – PQCrypto’2008, volume 5299 of Lecture Notes in Computer Science, pages 31–46.
Springer, 2008. http://www.springerlink.com/content/68v69185x478p53g.

7. N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital signature scheme. In Advances
in Cryptology – Asiacrypt’2001, volume 2248 of Lecture Notes in Computer Science, pages 157–174, Gold Coast,
Australia, 2001. Springer.

8. P. Gaborit. Shorter keys for code based cryptography. In International Workshop on Coding and Cryptography
– WCC’2005, pages 81–91, Bergen, Norway, 2005. ACM Press.

9. P. Gaborit and M. Girault. Lightweight code-based authentication and signature. In IEEE International Sym-
posium on Information Theory – ISIT’2007, pages 191–195, Nice, France, 2007. IEEE.

10. J. K. Gibson. Severely denting the Gabidulin version of the McEliece public key cryptosystem. Designs, Codes
and Cryptography, 6(1):37–45, 1995.

11. J. K. Gibson. The security of the gabidulin public key cryptosystem. In Advances in Cryptology – Eurocrypt’1996,
volume 1070 of Lecture Notes in Computer Science, pages 212–223, Zaragoza, Spain, 1996. Springer.

12. M. N. Gulamhusein. Simple matrix-theory proof of the discrete dyadic convolution theorem. Electronics Letters,
9(10):238–239, 1973.

13. IEEE P1363 Working Group. IEEE 1363-1: Standard Specifications for Public-Key Cryptographic Techniques
Based on Hard Problems over Lattices (Draft), 2009. http://grouper.ieee.org/groups/1363/lattPK/index.
html.

14. P. Loidreau and N. Sendrier. Some weak keys in McEliece public-key cryptosystem. In IEEE International
Symposium on Information Theory – ISIT’1998, page 382, Boston, USA, 1998. IEEE.

15. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, volume 16. North-Holland Mathe-
matical Library, 1977.

16. R. McEliece. A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress
Report, DSN PR 42–44, 1978. http://ipnpr.jpl.nasa.gov/progressreport2/42-44/44N.PDF.

17. D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computational
Complexity, 16(4):365–411, 2007.

18. C. Monico, J. Rosenthal, and A. Shokrollahi. Using low density parity check codes in the McEliece cryptosystem.
In IEEE International Symposium on Information Theory – ISIT’2000, page 215, Sorrento, Italy, 2000. IEEE.

19. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information
Theory, 15(2):159–166, 1986.

20. European Network of Excellence in Cryptology. ECRYPT yearly report on algorithms and keysizes (2007-
2008). D.SPA.28 Rev. 1.1, IST-2002-507932 ECRYPT, 07/2008, 2008. http://www.ecrypt.eu.org/ecrypt1/
documents/D.SPA.28-1.1.pdf.

21. A. Otmani, J.-P. Tillich, and L. Dallot. Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes.
Preprint, 2008. http://arxiv.org/abs/0804.0409v2.

22. N. J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions on Information Theory, 21(2):203–
207, 1975.

23. D. V. Sarwate. On the complexity of decoding Goppa codes. IEEE Transactions on Information Theory,
23(4):515–516, 1977.

24. S. Schechter. On the inversion of certain matrices. Mathematical Tables and Other Aids to Computation,
13(66):73–77, 1959. http://www.jstor.org/stable/2001955.

25. N. Sendrier. Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE
Transactions on Information Theory, 46(4):1193–1203, 2000.

26. V. Sidelnikov and S. Shestakov. On cryptosystems based on generalized Reed-Solomon codes. Discrete Mathe-
matics, 4(3):57–63, 1992.

27. K. K. Tzeng and K. Zimmermann. On extending Goppa codes to cyclic codes. IEEE Transactions on Information
Theory, 21:721–716, 1975.

13

28. C. Wieschebrink. Two NP-complete problems in coding theory with an application in code based cryptography.
In IEEE International Symposium on Information Theory – ISIT’2006, pages 1733–1737, Seattle, USA, 2006.
IEEE.

14

