
Efficient Unidirectional Proxy Re-Encryption

Jian Weng1, Sherman S.M. Chow2, Yanjiang Yang3, and Robert H. Deng1

1 School of Information Systems,
Singapore Management University, Singapore

cryptjweng@gmail.com,robetdeng@smu.edu.sg
2 Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, NY 10012, USA

schow@cs.nyu.edu
3 Institute for Infocomm Research, Singapore

yyang@i2r.a-star.edu.sg

Abstract. Proxy re-encryption (PRE) allows a semi-trusted proxy to convert a ciphertext orig-
inally intended for Alice into one encrypting the same message for Bob. The proxy only needs
a re-encryption key given by Alice, and cannot learn anything about the message encrypted.
This adds flexibility in various data security applications, such as confidential email, digital
right management and distributed storage. In this paper, we study unidirectional PRE, where
the re-encryption key only enables delegation in one direction but not the opposite. In PKC
2009, Shao and Cao [23] proposed a unidirectional PRE in the random oracle model. However,
we show how to launch a chosen-ciphertext attack (CCA) on this recently proposed scheme and
discuss the flaws in their proof. We then propose an efficient unidirectional PRE scheme (without
resorting to pairings). We gain the high efficiency and CCA-security under the computational
Diffie-Hellman assumption, in the random oracle model.

Key words: proxy re-encryption, unidirectional, chosen-ciphertext attack

1 Introduction

Every application which requires some sort of confidentiality uses encryption as a building
block. As pointed out by Mambo and Okamoto [20], the encrypted data often needs to be re-
distributed in practice, i.e. the data encrypted under a public key pki should also be encrypted
under another independently generated public key pkj . This can be easily done if the holder
of the secret key ski (corresponding to pki) is online – simply decrypts the ciphertext and
re-encrypts the plaintext to pkj . However, this is not always practical. It is also undesirable to
just disclose the secret key to some untrusted server to do the transformation of ciphertext.

To solve this key management problem which hinders the practical adoption of encryption,
Blaze, Bleumer and Strauss [5] introduced the concept of proxy re-encryption (PRE). PRE
schemes allow a secret key holder to create a re-encryption key. A semi-trusted proxy can
use this key to translate a message m encrypted under the delegator’s public key into an
encryption of the same message under a delegatee’s public key, as specified by the delegator.
This can be done without allowing the proxy any ability to perform tasks outside of these
proxy delegations. In particular, the proxy can neither recover the delegator’s secret key nor
decrypt the delegator’s ciphertext.

Proxy re-encryption schemes have applications in digital rights management (DRM) [24],
distributed file storage systems [1, 2], law enforcement [17], encrypted email forwarding [5],
outsourced filtering of encrypted spam [1, 2], etc. In all these cases, the gist is that the process
of re-encryption, i.e. decrypting under one key for encryption under another key, should not
allow the re-encryptor module to compromise the secrecy of encrypted messages. This was the

2 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

problem that led to the compromise of Apple’s iTunes DRM [24]. With a PRE scheme, the
problem is solved since re-encryption can be performed without awarding the re-encryption
proxy any information about the encrypted message. Besides DRM, distributed file storage
systems also benefit in the sense that the storage server (proxy) can re-encrypt the files for
different servers without knowing the underlying file content, so it is less attractive for hacker
attacks since compromising the server does not compromise the files. Similarly, email servers
can re-encrypt emails for different users with the same effect, say when a user is on vacation
and wants to forward his encrypted email messages to his colleague.

1.1 Related Work

Proxy encryption (no “re-”) (e.g. [20, 18, 17]) also allows a delegator Alice to delegate her
decryption power to a delegatee Bob with the help of a proxy. Different from PRE, these
schemes require Alice to split her secret key between Bob and the proxy. In other words, Bob
needs to obtain and store an additional secret for each decryption delegation. This may intro-
duce other key management issues. In PRE, Bob just needs to use his own secret to decrypt
ciphertext originally addressed to him or ciphertext transformed for him. Theoretically, he
can be totally unaware of the delegation until he received the first transformed ciphertext
from the proxy. As argued in [7, 19], PRE is a (strict) subset of proxy encryption.

Another notion with a similar name is universal re-encryption [14], in which the ciphertexts
are re-randomized, instead of changing the underlying public key in PRE.

Blaze, Bleumer and Strauss’s seminal work [5] proposed a bidirectional PRE scheme
against chosen plaintext attack (CPA). However, as indicated by [1], their scheme has a few
shortcomings – 1) the delegation in their scheme is transitive, which means that the proxy
alone can create delegation rights between two entities that have never agreed on this, 2) the
delegator’s secret key can be recovered in full if the proxy and the delegate collude.

There are a number of PRE schemes proposed afterwards. Their properties are summarized
in Table 1. Within each category, the schemes are chronologically arranged. Unidirectional
scheme is indicated by “→” while bidirectional scheme is indicated by “↔”. Generally speak-
ing, a bidirectional scheme is easier to design than a unidirectional one (as one may inferred
from the time of their appearances). “RO” denotes whether random oracle model is assumed
for the security proof and “ê(·, ·)” denotes whether the construction relies on bilinear pairings.

Schemes Uni/Bi Security RO ê(·, ·)
Public-key-based

Ateniese et al. [1] → CPA X X
Hohenberger et al. [16] → CPA × X
Canetti-Hohenberger [7] ↔ CCA × X
Libert-Vergnaud [19] → RCCA4 × X
Deng et al. [11] ↔ CCA X ×
Shao-Cao [23] → CCA? X ×
Ours → CCA X ×

Identity-based

Green-Ateniese [15] → CCA X X
Matsuo [21]5 ↔ CPA × X
Chu-Tzeng [9] → CCA × X

Table 1. Summary of Proxy Re-Encryption Schemes

Efficient Unidirectional Proxy Re-Encryption 3

In this paper, we study unidirectional public-key-based PRE schemes which are secure
against adaptive chosen-ciphertext attack (CCA). Informally, CCA models an adversary who
can choose many ciphertexts and obtain their decryption under an unknown key, after seeing
the challenge ciphertext (the one encrypting the message of interest) and previous decryption
results. CCA-secure schemes often require ciphertext validity checking. Below we look into
two schemes to see what “ingredients” are useful for constructing CCA-secure PRE.

Most existing PRE schemes [1, 16, 15, 7, 21, 9, 19], no matter ID-based or not, are realized
by pairings. In the bidirectional scheme proposed by Canetti and Hohenberger [7], the trans-
formation key is simply rki↔j = xj/xi for the pair of delegation partners6 with public key
pki = gxi and pkj = gxj . The ciphertext comes with the term pkr

i for randomness r ∈ Zp

which can be transformed to pkr
j easily by using rki↔j . The ciphertext validity that was based

on g and the original recipient’s public key pki can still be checked after transformation with
the help of the pairing function ê(·, ·) with respect to the generator g and the new public key
pkj . For the unidirectional PRE scheme proposed by Libert and Vergnaud [19] (hereinafter
referred as LV08), the transformation key is in the form rki↔j = gxj/xi . The ciphertext also
comes with the term pkr

i and the message is encrypted by ê(g, g)r. As expected, a pairing
will be applied to get ê(gxj/xi , pkr

i) = ê(g, gr)xj , so the message can be recovered by firstly
cancelling xj from this term. These techniques in performing unidirectional transformation
and ciphertext validity checking intrinsically require the use of pairing function.

1.2 Our Contributions

From a theoretical perspective, we would like to have PRE scheme realized under a broader
class of complexity assumptions, and see different techniques in constructing CCA-secure
PRE. Practically, we want a PRE scheme with simple design, high computational efficiency
and short ciphertext size. Removing pairing7 from PRE constructions is an interesting prob-
lem, which is also one of the open problems left by Canetti and Hohenberger [7].

Very recently, Shao and Cao [23] proposed a unidirectional PRE scheme without pairing
(referred as SC09). Their proof for CCA-security is given in the random orale model, under
the decisional Diffie-Hellman assumption over Z∗

N2 , where N is a safe-prime modulus.
However, removing pairing is a mean, not the goal. SC09 requires a several (4 to 5) expo-

nentiations in Z∗
N2 for encryption, re-encryption and decryption8, and incurs an overhead of a

few (3 plus a proof-of-knowledge, to 5) Z∗
N2 elements for original ciphertext and transformed

ciphertext. Note that the modulus being used is N2, not N . Its performance over pairing-
based scheme (e.g. LV08), which instantiated on elliptic curves consist of much shorter group
elements at the same security level, is questionable. Finally, their assumption is still of the
Diffie-Hellman favor, and is decisional, which is stronger than its computational version.

4 Replayable chosen-ciphertext attacks (RCCA) [8] is a weaker variant of chosen-ciphertext attack (CCA) in
which a harmless mauling of the challenge ciphertext is tolerated.

5 The first scheme proposed in [21] is a hybrid system which transforms ciphertexts encrypted under a tradi-
tional PKI-based public key into the ciphertexts that can be decrypted by an IBE secret key. The other one
is purely ID-based; but it requires the key generation center (not the user) to give the re-encryption key.

6 For bidirectional scheme, once a delegation is made, a delegator becomes a delegatee and a delegate becomes
a delegator simultaneously.

7 In spite of the recent advances in implementation technique, compared with modular exponentiation, pairing
is still considered as a rather expensive operation, especially in computation resource limited settings.

8 Speed-up by Chinese remainder theorem is not possible, except 2 of the exponentiations in decryption.

4 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

Most importantly, we identify flaws in their security proof which translate to a real-
world chosen-ciphertext attack against SC09. Possible fixes further degrade the performance in
decryption time or ciphertext size. In view of this, we propose an efficient unidirectional PRE
scheme without pairings, which is provably CCA-secure under the standard computational
Diffie-Hellman assumption, in the random oracle model. Our design is based on ElGamal
encryption [13] and Schnorr signature [22], which is (arguably) simple. Our re-encryption
process is more natural – the decryption of transformed ciphertexts shares a similar process as
that of original ciphertexts, in particular, it does not require the input of the delegator’s public
key (c.f. SC09, the transformed ciphertext should have the delegator’s public key included).

2 Preliminaries

2.1 Notations and Complexity Assumptions

For a prime q, let Zq denote the set {0, 1, 2, . . . , q− 1}, and Z∗
q denote Zq\{0}. For a finite set

S, x
$← S means choosing an element x from S with a uniform distribution.

Definition 1. Let G be a cyclic multiplicative group with prime order q. The Computational
Diffie-Hellman (CDH) problem in G is, given (g, ga, gb) ∈ G3 with a, b

$← Z∗
q, to compute gab.

Definition 2. For an adversary B, we define his advantage in solving the CDH problem as
AdvCDH

B , Pr
[
B(g, ga, gb) = gab

]
, where the probability is taken over the randomly choices of

a, b and the random bits consumed by B. We say that the (t, ε)-CDH assumption holds in G
if no t-time adversary B has advantage at least ε in solving the CDH problem in G.

Bao et al. [4] introduced a variant of the CDH problem named divisible computation Diffie-
Hellman (DCDH) problem, which is to compute gab given (g, g

1
a , gb) ∈ G3 with unknown

a, b
$← Z∗

q . It is shown in [4] that the DCDH and CDH are equivalent in the same group.

2.2 Model of Unidirectional Proxy Re-Encryption Systems

Formally, a unidirectional PRE scheme consists of the following six algorithms [7]:

Setup(κ): The setup algorithm takes as input a security parameter κ and outputs the global
parameters param, which include a description of the message spaceM. We assume that
param is implicitly included in the input of the other algorithms for brevity.

KeyGen(): The key generation algorithm generates a public/private key pair (pki, ski).
ReKeyGen(ski, pkj): The re-encryption key generation algorithm takes as input a private key

ski and another public key pkj . It outputs a re-encryption key rki→j .
Encrypt(pk,m): The encryption algorithm takes as input a public key pk and a message

m ∈M. It outputs a ciphertext C under pk.
ReEncrypt(rki→j ,Ci): The re-encryption algorithm takes as input a re-encryption key rki→j

and a ciphertext Ci under public key pki. It outputs a ciphertext Cj under public key pkj .
Decrypt(sk,C): The decryption algorithm takes as input a private key sk and a ciphertext C.

It outputs a message m ∈M or the error symbol ⊥ if the ciphertext is invalid.

Efficient Unidirectional Proxy Re-Encryption 5

Correctness requires that, for any parameters param, m ∈M, the following conditions hold:

Pr
[
Decrypt(ski, C) = m

∣∣ (ski, pki)← KeyGen, C ← Encrypt(pki,m)
]

= 1,

Pr

Decrypt (skj , rki,→j ,Cj) = m

∣∣∣∣∣∣∣
(ski, pki)← KeyGen, (skj , pkj)← KeyGen,

rki,→j ← ReKeyGen(ski, pkj), Ci ← Encrypt(pki,m),

Cj ← ReEncrypt(rki→j ,Ci)

 = 1

Next, we review the game-based definition of chosen-ciphertext security for PRE systems
derived from [7, 19]. We slightly modify it to allow the adaptive corruptions of users.

Setup. C takes a security parameter κ and runs algorithm Setup. It gives A the resulting
global parameters param.

Phase 1. A adaptively issues queries q1, . . . , qm where each query qi is one of the following:
– Uncorrupted key generation query : C first runs KeyGen to obtain a public/private key

pair (pki, ski), and then sends pki to A.
– Corrupted key generation query : C first runs KeyGen to obtain a public/private key

pair (pkj , skj), and then gives (pkj , skj) to A.
– Re-encryption key generation query 〈pki, pkj〉: C runs ReKeyGen(ski, pkj) and returns

the generated re-encryption key rki→j to A. ski is the private key with respect to pki.
– Re-encryption query 〈pki, pkj ,Ci〉: C first runs ReKeyGento generate the re-encryption

key rki→j . Then it returns the result of ReEncrypt(rki→j ,Ci) to A.
– Decryption query 〈pk,C〉: Challenger C returns the result of Decrypt(sk,C) to A, where

sk is the private key with respect to pk.
For the last three kinds of queries, it is required that pki, pkj , or pk were generated
beforehand by a key generation query, either uncorrupted or corrupted.

Challenge. Once A decides that Phase 1 is over, it outputs two equal-length plaintexts
m0,m1 ∈M and a target public key pki∗ , subjects to the following conditions:
1. pki∗ is generated by an uncorrupted key generation query,
2. A has never issued a re-encryption key generation query 〈pki∗ , pkj〉 if pkj came from

a corrupted key generation query.
Challenger C flips a random coin δ ∈ {0, 1}, and sets the challenge ciphertext to be
C∗ = Encrypt(pki∗ ,mδ), which is sent to A.

Phase 2. A issues additional queries qm+1, . . . , qmax of the following types:
– Uncorrupted/Corrupted key generation query : C responds as in Phase 1.
– Re-encryption key generation query 〈pki, pkj〉: Challenger C responds as in Phase 1.

Here it is required that, if A has obtained the private key skj with respect to pkj , A
is disallowed to issue the re-encryption key generation query 〈pki∗ , pkj〉.

– Re-encryption query 〈pki, pkj ,Ci〉: Challenger C responds as in Phase 1. Here it is
required that, if A has obtained the private key skj with respect to pkj , then (pki,Ci)
cannot be a derivative of (pki∗ ,C

∗) (to be defined later).
– Decryption query 〈pk,C〉: Challenger C responds as in Phase 1. Here it is required that,

(pk,C) cannot be a derivative of (pki∗ ,C
∗).

Guess. Finally, A outputs a guess δ′ ∈ {0, 1}.

Derivative of (pki∗ ,C
∗) is inductively defined in [7] as below:

1. (pki∗ ,C
∗) is a derivative of itself (a trivial reflexivity condition).

6 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

2. If (pk,C) is a derivative of (pki∗ ,C
∗) and (pk′,C′) is a derivative of (pk,C), then (pk′,C′)

is a derivative of (pki∗ ,C
∗) (transitivity).

3. If A has issued a re-encryption query 〈pk, pk′,C〉 and obtained the resulting re-encryption
ciphertext C′, then (pk′,C′) is a derivative of (pk,C).

4. If A has issued a re-encryption key generation query 〈pk, pk′〉 to obtain the re-encryption
key rk, and C′ = ReEncrypt(rk,C), then (pk′,C′) is a derivative of (pk,C).

We refer to adversary A as an IND-PRE-CCA adversary, and we define his advantage in
attacking the PRE scheme as AdvIND-PRE-CCA

PRE,A =
∣∣Pr[δ′ = δ]− 1/2

∣∣, where the probability is
taken over the random coins consumed by the challenger and the adversary.

Definition 3. A PRE scheme is said to be (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA secure, if
for any t-time IND-PRE-CCA adversary A who makes at most qu uncorrupted key generation
queries, at most qc corrupted key generation queries, at most qrk re-encryption key genera-
tion queries, at most qre re-encryption queries and at most qd decryption queries, we have
AdvIND-PRE-CCA

PRE,A ≤ ε.

Delegator/Master Secret Security.9 Delegator secret security is considered in Ateniese et
al [1] which captures the intuition that, even if the dishonest proxy colludes with the delegatee,
it is still impossible for them to derive the delegator’s private key in full. The attack mode is
quite simple so we defer its formalization to the Appendix.

3 Cryptanalysis of A Recent CCA-Secure Unidirectional PRE Scheme

3.1 Review of Shao-Cao’s Scheme

Shao-Cao’s scheme [23] is reviewed as below, up to minor notational differences. We use �
to highlight the places which introduce the vulnerability.

Setup(κ): Given a security parameter κ, choose three hash functions H1, H2 and H3 where
H1 : {0, 1} → {0, 1}`2 , H2 : {0, 1} → {0, 1}`0 , and H3 : {0, 1} → {0, 1}`3 . Here `0, `2 and
`3 are security parameters determined by κ, and the message space M is {0, 1}`0 . The
parameters are param = (κ, H1,H2,H3, `0, `2, `3).

KeyGen: Given a security parameter κ, the key generation performs the following steps:
1. Choose two Sophie Germain primes p′ and q′, with p′ 6= q’,and having bit-length of κ.
2. Compute p = 2p′ + 1 and q = 2q′ + 1, which are safe primes.
3. Choose three random numbers α ∈ Z∗

N2 , a, b ∈ [1, pp′qq′].
4. Choose a hash function H : {0, 1}∗ → ZN2 .
5. Set g0 = α2 mod N2, g1 = ga

0 mod N2, and g2 = gb
0 mod N2.

6. The public key is pk = (H,N, g0, g1, g2), the “weak” secret key is wsk = (a, b), and the
long term secret key is sk = (p, q, p′, q′).

Either the long term secret key or the weak secret key can be used to decrypt (any) cipher-
texts, but both the long term secret key and the weak secret key are required to produce
a re-encryption key. Note that in the following description, the elements from the key of
user X contain an additional subscript of X, e.g. pkX = (HX(·), NX , gX0, gX1 = gaX

X0, gX2).

9 This notion is named as master secret security in [1] since the delegator’s public key is the master public
key in their secure distributed storage application.

Efficient Unidirectional Proxy Re-Encryption 7

ReKeyGen(skX , pkY): On input a long term secret key skX = (pX , qX , p′X , q′X), a “weak”
secret key wskX = aX , and a public key pkY = (HY , NY , gY 0, gY 1, gY 2), it outputs the
re-encryption key rkX→Y = (rk(1)

X→Y , rk
(2)
X→Y), where rk

(1)
X→Y = (Ȧ, Ḃ, Ċ), as follows:

1. Randomly pick β̇ ∈ {0, 1}`2 .
2. Compute rk

(2)
X→Y = aX − β̇ mod (pXqXp′Xq′X).

3. Randomly pick σ̇ ∈ ZNY
, compute rX→Y = HY (σ̇‖β̇).

4. Compute Ċ = H1(σ̇)⊕ β̇.
5. Compute Ȧ = (gY 0)rX→Y mod (NY)2 and Ḃ = (gY 2)rX→Y · (1 + σ̇NY) mod (NY)2.

Encrypt(pk,m): On input a public key pk = (H,N, g0, g1, g2) and a message m ∈M,
1. Randomly pick σ ∈ ZN , compute r = H(σ‖m).
2. Compute C = H2(σ)⊕m.
3. Compute A = (g0)r mod N2, B = (g1)r · (1 + σN) mod N2 and D = (g2)r mod N2.
4. Run (c, s)← SoK.Gen(A,D, g0, g2, (B,C)), where the underlying hash function is H3.10

5. Output the ciphertext C = (A,B, C, D, c, s).

ReEncrypt(rkX→Y ,CX , pkX , pkY): On input a re-encryption key rkX→Y = (rk(1)
X→Y , rk

(2)
X→Y)

and a ciphertext C = (A,B, C, D, c, s) under key pkX = (HX , NX , gX0, gX1, gX2),
1. Check if c = H3(A‖D‖gX0‖gX2‖(gX0)sAc‖(gX2)sDc‖(B‖C)). If not, return ⊥.
2. Otherwise, compute A′ = Ark

(2)
X→Y .

3. Output CY = (A, A′ , B, C, rk
(1)
X→Y) = (A,A′, B, C, Ȧ, Ḃ, Ċ).

The only “new” thing in CY is A′ = (gX0)r(aX−β̇) mod (NX)2 = (gX1)r (gX0)−rβ̇ mod (NX)2.
The second equality holds since gX1 = gaX

X0, by the public key construction in KeyGen.

Decrypt(sk,C): On input a private key and ciphertext C, parse C,
– If C is an original ciphertext in the form C = (A,B, C, D, c, s):

1. Check if c = H3(A‖D‖g0‖g2‖(g0)sAc‖(g2)sDc‖(B‖C)). If not, return ⊥
• if sk is in the form of (a, b), compute σ = B/(Aa)−1 mod N2

N .

• if sk is in the form of (p, q, p′, q′), compute σ = (B/g
w1
0)2p′q′−1 mod N2

N ·π(mod N),
where w1 is computed as that in [6], and π is the inverse of 2p′q′ mod N .

2. Compute m = C ⊕H2(σ).
3. If B = (g1)H(σ‖m) · (1 + σN) mod N2 holds, return m; else return ⊥.

– If C is in the form C = (A,A′, B, C, Ȧ, Ḃ, Ċ) re-encrypted from pkX to pkY :
1. Note that the decryptor is required to know the delegator’s public key. This

deviates from our framework presented in Section 2.
• if sk is in the form of (a, b), compute σ̇ = Ḃ/(Ȧb)−1 mod N2

Y
NY

.

• if sk is in the form of (p, q, p′, q′), compute σ̇ = (Ḃ/g
w1
Y 0)2p′q′−1 mod N2

Y
NY

·π(mod NY),
where w1 is computed as that in [6], and π is the inverse of 2p′Y q′Y mod NY .

10 Let y0, y2, g0, g2 ∈ G, where G is a cyclic group of quadratic residues modulo N2 and N is a
safe-prime modulus, and H3(·) : {0, 1}∗ → {0, 1}k, where k is the security parameter. A pair (c, s)
such that c = H3(y0||y2||g0||g2||gs

0y
c
0||gs

2y
c
2||m) is a signature of knowledge of the discrete logarithm

of both y0 = gx
0 w.r.t. base g0 and y2 = gx

2 w.r.t. base g2, on a message m ∈ {0, 1}∗, This pair

can be computed by SoK.Gen(y0, y2, g0, g2, m) – first picking t ∈ {0, . . . , 2|N
2|+k − 1}, then computing

c = H3(y0||y2||g0||g2||gt
0||ht

0||m) and s = t− cx. This requires 2 exponentiations.

8 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

2. Compute β̇ = Ċ ⊕H1(σ̇).
3. Check if Ḃ = (gY 1)HY (σ̇‖β̇) · (1 + σ̇NY) mod N2

Y . If not, return ⊥.
(Up to this point, only the decryptor’s public key, (HY , NY , gY 0, gY 1, gY 2), is used.
Afterward, only the delegator’s public key, (HX , NX , gX0, gX1, gX2), will be used.)

4. Compute σ = (B/(A′ ·Aβ̇)− 1 mod N2
X)/NX , and m = C ⊕H2(σ).

5. If B = (gX1)HX(σ‖m) · (1 + σNX) mod N2
X holds, return m; else return ⊥.

3.2 Possible Vulnerabilities in the Re-Encryption Key

Before describing our attack, we first briefly explain how the re-encryption key is generated in
SC09. Their ReKeyGen algorithm follows the “token-controlled encryption” paradigm, which
is adopted by [15, 9] and our scheme to be presented. Specifically, ReKeyGen first selects a
random token β̇ to “hide” (some form of) the delegator’s secret key aX (i.e. rk

(2)
X→Y = aX−β̇),

and then encrypts this token β̇ under the delegatee’s public key, (i.e. rk
(1)
X→Y = (Ȧ, Ḃ, Ċ)).

Note that when the proxy and the delegatee collude, it is possible to recover aX . So the
encryption of the token should use a mechanism that is different from the usual encryption on
the plaintext (i.e. Ḃ is computed using g2 while B component in Encrypt is computed using
g1). Otherwise, it will subject to the following “chain collusion attack” mentioned in [23].

Imagine that Bob (who holds public key pkY), who received delegation from Alice (who
holds public key pkX), now delegates his own decryption right to Carol. If the ReKeyGen al-
gorithm requires Bob to use skY (i.e. the whole private key) instead of just some form of the
private key (e.g. aY in SC09), when his proxy colludes with Carol, skY can be easily recovered.
Furthermore, skY can be used to recover β̇ in the re-encryption key generated by Alice to Bob;
the secret key of Alice, skX , can also be recovered exactly in the way how skY is recovered.
This clearly compromises the security of Alice out of her expectation, since her only delegatee
Bob has done nothing wrong (perhaps except using an insecure scheme). This is where the
schemes [15, 9] fail, as pointed by [23].

3.3 Our Attack

Although some measures are taken in SC09 to counter the above attack, we found that the
token β̇ is still not “securely” hidden. In particular, any re-encryption query (not necessary of
the challenge ciphertext) reveals partial information about β̇. Moreover, there is no validity
check on the A′ component of the transformed ciphertext. These two weaknesses lead us to
the following attack by an attacker A. We suppose pk∗X = (HX(·), NX , gX0, gX1, gX2) is the
challenge public key and C∗ = (A,B, C, D, c, s) is the challenge ciphertext.

1. Randomly pick m ∈M and r ∈ Z(NX)2 , compute C← Encryptpk∗X
(m; r), i.e. using r as the

randomness in the first step of Encrypt. (Note that it is a public key encryption. Anyone
can encrypt a message under pk∗X using whatever randomness r he wants to use.)

2. Issue a re-encryption oracle query to re-encrypt the ciphertext C from pk∗ to pk, in par-
ticular, A obtains Z ′ = g

r(aX−β̇)
X0 as the second component of the resulting transformed

ciphertext C0. (Z ′ here corresponds to A′ in the above description of SC09.)

3. Since Z ′ is in the form of (gX1)r (gX0)−rβ̇ mod (NX)2, A can compute (gX0)−rβ̇ ←
(Z ′/(gX1)r). (Recall that C is prepared by A himself, so A knows r.)

Efficient Unidirectional Proxy Re-Encryption 9

4. Issue a re-encryption oracle query to re-encrypt the ciphertext C∗ from pk∗ to pk, A thus
obtains C1 = (A,A′, B, C, Ȧ, Ḃ, Ċ). Now (pk,C1) is also a derivative of the challenge.
(This is legitimate, since the secret key of pk is not compromised by A.)

5. Randomly pick s ∈ Z(NX)2 , compute A′ ← A′ · (g−rβ̇
X0)s and A← A · (gX0)rs.

6. Issue a decryption oracle query under pk to decrypt C′ = (A,A′, B, C, Ȧ, Ḃ, Ċ).
7. Return the result of the decryption oracle as the message encrypted in C∗.

To see the correctness of the attack, first note that B,C, Ȧ, Ḃ, Ċ just come from the
derivative (pk,C1) of the challenge (pk∗,C∗), so the correct value of β̇ can be recovered. (Note
that B,C, Ȧ, Ḃ, Ċ are the only values from the ciphertext being used for the first three steps

of Decrypt.) Moreover, in Decrypt (refer to A′ ·Aβ̇), A′Aβ̇ = A′(gX0
−rβ̇)s(A · gX0

rs)β̇ =

A′ · g−rβ̇s
X0 ·Aβ̇ · grβ̇s

X0 = A′Aβ̇, which is exactly what Decrypt will compute for the challenge.
Finally, C′ is not a derivative of C∗. To check against the definition of derivative: 1) C∗ 6= C′;

2) No such transitive relation exists; 3) A has made two re-encryption queries, C has nothing
to do with the challenge C∗, only the second one is on C∗ to obtain a ciphertext, thus only
(pk,C1) is considered as a derivative of the challenge, but (pk,C′), where C1 6= C′, is not its
derivative, and 4) A has not made any re-encryption key generation oracle query at all.

3.4 Flaws in the Proof and Possible Fixes

This attack originated from some flaws in their proof, specifically, two rejection rules regarding
A in the decryption oracle simulation. There is no checking of A when decrypting a trans-
formed ciphertext in the real scheme, which makes a noticeable difference to the adversary.
The crux of our attack is the formulation of a new A component. To encounter our attack,
the first possible fix is to re-compute A in Decrypt and check whether it is correctly generated,
which requires one more exponentiation in ZN2 . The other way is to include (c, s,D) in the
transformed ciphertext for public ciphertext validity checking in both modes of decryption,
but the ciphertext is even longer, and Decrypt requires at least three more exponentiations.

4 Our Proposed Unidirectional PRE Scheme

4.1 Construction

Our proposed unidirectional PRE scheme extends the bidirectional scheme proposed by Deng
et al. [11], again by the “token-controlled encryption” technique. As previously discussed in
Section 3, however, this should be carefully done to avoid possible attacks.

Setup(κ): Given a security parameter κ, choose two primes p and q such that q|p − 1 and
the bit-length of q is κ. Let g be a generator of group G, which is a subgroup of Z∗

q with
order q. Choose four hash functions H1,H2,H3 and H4 where H1 : {0, 1}`0 × {0, 1}`1 →
Z∗

q ,H2 : G→ {0, 1}`0+`1 ,H3 : {0, 1}∗ → Z∗
q and H4 : G→ Z∗

q . Here `0 and `1 are security
parameters determined by κ, and the message space M is {0, 1}`0 . The parameters are
param = (q, G, g, H1,H2,H3,H4, `0, `1).

KeyGen(): Randomly picks ski = (xi,1, xi,2
$← Z∗

q), sets pki = (pki,1, pki,2) = (gxi,1 , gxi,2).

10 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

ReKeyGen(ski, pkj): On input user i’s private key ski = (xi,1, xi,2) and user j’s public key
pkj = (pkj,1, pkj,2), this algorithm generates the re-encryption key rki→j as below:

1. Pick h
$← {0, 1}`0 and π

$← {0, 1}`1 . Compute v = H1(h, π).
2. Compute V = gv and W = H2(pkv

j,2)⊕ (h‖π).

3. Define rk
〈1〉
i→j = h

xi,1H4(pki,2)+xi,2
. Return rki→j = (rk〈1〉i→j , V, W).

Encrypt(pki,m): On input a public key pki = (pki,1, pki,2) and a plaintext m ∈M:

1. Pick u
$← Z∗

q and compute D =
(
pk

H4(pki,2)

i,1 pki,2

)u
.

2. Pick ω
$← {0, 1}`1 , compute r = H1(m,ω).

3. Compute E =
(
pk

H4(pki,2)

i,1 pki,2

)r
and F = H2(gr)⊕ (m‖ω).

4. Compute s = u + r ·H3(D,E, F) mod q.
5. Output the ciphertext C = (D,E, F, s).

ReEncrypt(rki→j ,Ci, pki, pkj): On input a re-encryption key rki→j = (rk〈1〉i→j , V, W), an orig-
inal ciphertext Ci = (D,E, F, s) under public key pki = (pki,1, pki,2), this algorithm re-
encrypts Ci into another one under public key pkj = (pkj,1, pkj,2) as follows:

1. If
(
pk

H4(pki,2)

i,1 pki,2

)s
= D · EH3(D,E,F) does not hold, return ⊥;

2. Otherwise, compute E′ = Erk
〈1〉
i→j , and output the transformed ciphertext Cj = (E′, F, V,W).

Let r = H1(m,ω), v = H1(h, π), the transformed ciphertext is of the following forms:

Cj = (E′, F, V,W) =
(
gr·h, H2(gr)⊕ (m‖ω), gv, H2(pkv

j,2)⊕ (h‖π)
)

.

Decrypt(ski,Ci): On input a private key ski = (xi,1, xi,2) and ciphertext Ci, parse Ci, then
work according to two cases:

– C is an original ciphertext in the form C = (D,E, F, s):

1. If
(
pk

H4(pki,2)

i,1 pki,2

)s
= D · EH3(D,E,F) does not hold, return ⊥;

2. Otherwise, compute (m‖ω) = F ⊕H2(E
1

xi,1H4(pki,2)+xi,2);

3. Return m if E =
(
pk

H4(pki,2)

i,1 pki,2

)H1(m,ω)
holds; else return ⊥.

– C is a transformed ciphertext in the form C = (E′, F, V,W):
1. Compute (h‖π) = W ⊕H2(V ski,2) and (m‖ω) = F ⊕H2(E′ 1

h).
2. If both V = gH1(h,π) and E′ = gH1(m,ω)·h hold, return m; else return ⊥.

4.2 Security Analysis

We make three observations on the computation of a re-encryption key rki→j .

1. It just requires the input of (ski, pkj), but not skj , so our scheme is unidirectional.

2. Even though h can be recovered by anyone who owns skj , rk
〈1〉
i→j only gives information

about xi,1H4(pki,2)+xi,2 (no matter whom the delegatee j is), but not the concrete value
of xi,1 or xi,2. This gives an intuition why our scheme achieves delegator secret security.
The proof can be found in the appendix.

Efficient Unidirectional Proxy Re-Encryption 11

3. If the delegatee j is now a delegator to someone else (say k). Again, only xj,1H4(pkj,2)+xj,2

is known to a collusion of the delegatee k and a proxy, which is not useful in recovering
the token h in rki→j , hence the chain collusion attack suffered by [15, 9] does not apply.

The chosen-ciphertext security of our scheme is asserted by the following theorem.

Theorem 1 Our scheme is IND-PRE-CCA secure in the random oracle model, assuming
the CDH assumption holds in group G and the Schnorr signature[22] is EUF-CMA secure.
Concretely, if there exists an adversary A, who asks at most qHi random oracle quires to
Hi with i ∈ {1, . . . , 4}, and breaks the (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA of our scheme,
then, for any 0 < ν < ε, there exists

– either an algorithm B which can break the (t′, ε′)-CDH assumption in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (2qu + 2qc + 2qrk + 5qre + 2qd + qH1qre + (2qH2 + 2qH1)qd)texp,

ε′ ≥ 1
qH2

(ε− ν

e(1 + qrk)
− qH1 + qH3 + (qH1 + qH2)qd

2`0+`1
− qre + 2qd

q

)
,

where texp denotes the running time of an exponentiation in group G.
– or an attacker who breaks the EUF-CMA security of the Schnorr signature with advantage

ν within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, ν)-EUF-CMA
secure for some probability 0 < ν < ε. Since the CDH problem is equivalent to the DCDH
problem, for convenience, here we show a reduction of DCDH problem. Specifically, suppose
there exists a t-time adversary A who can break the IND-PRE-CCA security of our scheme
with advantage ε − ν, then we show how to construct an algorithm B which can break the
(t′, ε′)-DCDH assumption in G, given as input a DCDH challenge tuple (g, g

1
a , gb).

To output gab eventually, algorithm B acts as the challenger and plays the IND-PRE-CCA
game with adversary A in the following way.

Setup. Algorithm B gives (q, G, g, H1, . . . ,H4, `0, `1) to A. Here H1,H2,H3 and H4 are ran-
dom oracles controlled by B. B maintains four hash lists H list

i with i ∈ {1, . . . , 4}, which are
initially empty, and responds the random oracles queries for A as shown in Figure 1.

– H1(m,ω): If this query has appeared on the H list
1 in a tuple (m,ω, r), return the predefined value r. Otherwise,

choose r
$← Z∗

q , add the tuple (m,ω, r) to the list H list
1 and respond with H1(m,ω) = r.

– H2(R): If this query has appeared on the H list
2 in a tuple (R, β), return the predefined value β. Otherwise,

choose β
$← {0, 1}`0+`1 , add the tuple (R, β) to the list H list

2 and respond with H2(R) = β.
– H3(D,E, F): If this query has appeared on the H list

3 in a tuple (D,E, F, γ), return the predefined value γ.

Otherwise, choose γ
$← Z∗

q , add the tuple (D,E, F, γ) to the list H list
3 and respond with H3(D,E, F) = γ.

– H4(pk): If this query has appeared on the H list
4 in a tuple (pk, τ), return the predefined value υ. Otherwise,

choose υ
$← Z∗

q , add the tuple (pk, τ) to the list H list
4 and respond with H4(pk) = τ .

Fig. 1. The Simulations for Hi for i = 1, . . . , 4

Phase 1. Adversary A issues a series of queries as in the IND-PRE-CCA game. B maintains
two lists K list and Rlist which are initially empty, and answers these queries for A as follows:

12 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

– Uncorrupted key generation query. B picks xi,1, xi,2
$← Z∗

q . Next, using the Coron’s tech-
nique [10], it flips a biased coin ci ∈ {0, 1} that yields 1 with probability θ and 0 otherwise.
If ci = 1, it defines pki = (gxi,1 , gxi,2); else pki = (pki,1, pki,2) =

((
g1/a

)xi,1
,
(
g1/a

)xi,2
)
.

Next, it adds the tuple (pki, xi,1, xi,2, ci) to K list and returns pki.

– Corrupted key generation query. B picks xj,1, xj,2
$← Z∗

q and defines pkj = (gxj,1 , gxj,2) , cj =
‘−’. It then adds the tuple (pkj , xj,1, xj,2, cj) to K list and returns (pkj , (xj,1, xj,2)).

– Re-encryption key generation query 〈pki, pkj〉: If Rlist has an entry for (pki, pkj), return
the predefined re-encryption key to A. Otherwise, algorithm B acts as follows:
1. Recover tuples (pki, xi,1, ci) and (pkj , xj,1, cj) from K list.

2. Pick h
$← {0, 1}`0 , π

$← {0, 1}`1 ; compute v = H1(h, π), V = gv, W = H2(pkv
j,2)⊕(h‖π).

3. Construct the first component rk
〈1〉
i→j according to the following cases:

• ci = 1 or ci = ‘−’: define rk
〈1〉
i→j = h

xi,1H4(pki,2)+xi,2
, and define τ = 1.

• (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0): pick rk
〈1〉
i→j

$← Z∗
q , and define τ = 0.

• (ci = 0 ∧ cj = ‘−’): output “failure” and abort.
4. If B does not abort, add (pki, pkj , (rk

〈1〉
i→j , V, W), h, τ) into list Rlist, return (rk〈1〉i→j , V, W).

– Re-encryption query 〈pki, pkj ,Ci(= (D,E, F, s))〉: Parse pki as pki = (pki,1, pki,2) and pkj

as pkj = (pkj,1, pkj,2). If
(
pk

H4(pki,2)

i,1 pki,2

)s
6= D · EH3(D,E,F), then return ⊥. Otherwise:

1. Recover tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj) from K list.
2. If (ci = 0 ∧ cj = ‘−’) does not hold, issue a re-encryption key generation query
〈pki, pkj〉 to obtain rki→j , and then return ReEncrypt(rki→j ,Ci, pkj) to A.

3. Else, search for the tuple (m, ω, r) ∈ H list
1 such that (pk

H4(pki,2)

i,1 pki,2)r = E. If there

exists no such tuple, return ⊥. Otherwise, choose h
$← {0, 1}`0 , π $← {0, 1}`1 and

compute v = H1(h, π), V = gv and W = H2(pkv
j,2) ⊕ (h‖π). Finally, define E′ = gr·h,

and return (E′, F, V,W) to A. E′ is correctly computed as long as r can be retrieved.
(This corresponds to the event REErr to be explained).

– Decryption query 〈pki,Ci〉: B first parse pki = (pki,1, pki,2) and recovers tuple (pki, xi,1, xi,2, c)
from K list. If c = 1 or c = ‘−’, algorithm B runs Decrypt((xi,1, xi,2),Ci) and returns the
result to A. Otherwise, algorithm B works according to the following two cases:

• Ci is an original ciphertext Ci = (D,E, F, s): If
(
pk

H4(pki,2)

i,1 pki,2

)s
6= D · EH3(D,E,F),

return ⊥ to A indicating that Ci is an invalid ciphertext. Otherwise, search lists H list
1

and H list
2 to see whether there exist (m,ω, r) ∈ H list

1 and (R, β) ∈ H list
2 such that(

pk
H4(pki,2)

i,1 pki,2

)r
= E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
• Ci is a transformed ciphertext Ci = (E′, F, V,W) re-encrypted: Algorithm B recovers

the tuple (pki, xi,1, xi,2, c) from K list, then responds according to the following cases:

∗ If there exist a tuple (pkj , pki, (rk
〈1〉, V, W), h, 0) in Rlist: Compute E = E

′ 1

rk〈1〉 .
Search lists H list

1 and H list
2 to see whether there exist (m,ω, r) ∈ H list

1 and (R, β) ∈
H list

2 such that
(
pk

H4(pkj,2)

j,1 pkj,2

)r
= E, β⊕ (m‖ω) = F and R = gr. If yes, return

m to A, else return ⊥. Note that all V,W values from Rlist are correctly generated.

Efficient Unidirectional Proxy Re-Encryption 13

∗ Otherwise: Search lists H list
1 and H list

2 to see whether there exist (m,ω, r), (h, π, v) ∈
H list

1 and (R, β), (R′, β′) ∈ H list
2 such that

gv = V, β′ ⊕ (h‖π) = W, gr·h = E′, β ⊕ (m‖ω) = F,R = gr and R′ = pkv
i,2.

If yes, return m to A, else return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a public key pki∗ = (pki∗,1, pki∗,2)
and two equal-length messages m0,m1 ∈ {0, 1}`0 . Algorithm B responds as follows:

1. Recover tuple (pki∗ , xi∗,1, xi∗,2, c
∗) from K list. Note that according to the constraints de-

scribed in IND-PRE-CCA game, c∗ must be equal to 1 or 0. If c∗ = 1, B outputs “failure”
and abort. Otherwise, it means that c∗ = 0, and B proceeds to execute the rest steps.

2. Pick e∗, s∗
$← Z∗

q , and compute D∗ =
(
gb

)−(xi∗,1H4(pki∗,2)+xi∗,2)e∗
(
g

1
a

)(xi∗,1H4(pki∗,2)+xi∗,2)s∗

and E∗ =
(
gb

)xi∗,1H4(pki∗,2)+xi∗,2 .

3. Pick F ∗ $← {0, 1}`0+`1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ
$← {0, 1}, ω∗ $← {0, 1}`1 , and implicitly define H2(gab) = (mδ‖ω∗) ⊕ F ∗ and

H1(mδ, ω
∗) = ab (Note that algorithm B knows neither ab nor gab).

5. Return C∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.

Observe that the challenge ciphertext C∗ is identically distributed as the real one from the
construction. To see this, letting u∗ , s∗ − abe∗ and r∗ , ab, we have

D∗ =
(
gb

)−(xi∗,1H4(pki∗,2)+xi∗,2)e∗ (
g

1
a

)(xi∗,1H4(pki∗,2)+xi∗,2)s∗

=
((

g
1
a

)xi∗,1H4(pki∗,2)+xi∗,2

)s∗−abe∗

=
(
g

1
a
·xi∗,1H4(pki∗,2)g

1
a
·xi∗,2

)s∗−abe∗

=
(
pk

H4(pki∗,2)

i∗,1 pki∗,2

)u∗

,

E∗ =
(
gb

)xi∗,1H4(pki∗,2)+xi∗,2

=
((

g
1
a

)xi∗,1H4(pki∗,2)+xi∗,2

)ab

=
(
pk

H4(pki∗,2)

i∗,1 pki∗,2

)r∗

,

F ∗ = H2(gab)⊕ (mδ‖ω∗) = H2(gr∗)⊕ (mδ‖ω∗),
s∗ = (s∗ − abe∗) + abe∗ = u∗ + ab ·H3(D∗, E∗, F ∗) = u∗ + r∗ ·H3(D∗, E∗, F ∗).

Phase 2. Adversary A continues to issue queries as in Phase 1, with the restrictions described
in the IND-PRE-CCA game. Algorithm B responds to these queries for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B randomly picks
a tuple (R, β) from the list H list

2 and outputs R as the solution to the given DCDH instance.

Analysis. The main idea of our analysis is borrowed from [3, 11]. We first evaluate the simu-
lations of the random oracles. It is clear that the simulation of H4 is perfect. Let AskH∗

3 be
the event that A queried (D∗, E∗, F ∗) to H3 before Challenge phase. The simulation of H3 is
also perfect, as long as AskH∗

3 did not occur. Since F ∗ is randomly chosen from {0, 1}`0+`1 by
the challenger in Challenge phase, we have Pr[AskH∗

3] = qH3

2`0+`1
. Let AskH∗

1 be the event that
(mδ, ω

∗) has been queried to H1, and AskH∗
2 be the event that gab has been queried to H2.

The simulations of H1 and H2 are also perfect, as long as AskH∗
1 and AskH∗

2 did not occur,
where δ and ω∗ are chosen by B in the Challenge phase.

14 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

It is clear that the responses to A’s uncorrupted/corrupted key generation queries are
perfect. Let Abort denote the event of B’s aborting during the simulation of the re-encryption
key queries or in the Challenge phase. We have Pr[¬Abort] ≥ θqrk(1− θ), which is maximized
at θopt = qrk

1+qrk
. Using θopt, the probability Pr[¬Abort] is at least 1

e(1+qrk) .
The simulation of the re-encryption key queries is the same as the real one, except for the

case (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0), in which the component rk′i→j is randomly
chosen. If event Abort does not happen, this is computationally indistinguishable from the
real world according to the following facts. First, the secret key skj is unknown to A since
cj 6= ‘−’. Second, (gv,H2(pkv

j,2)⊕ (h‖π)) with v = H1(h, π) is in fact an encryption of h under
pkj,2 using the “hashed” ElGamal encryption scheme [13, 12, 3]. So, if A can distinguish rk′i→j

from rki→j , it means that A can determine (gv,H2(pkv
j,2) ⊕ (h‖π)) with v = H1(h, π) is an

encryption of h or h′. Since B can implant the two given messages in the CCA2 game of the
“hashed” ElGamal as the responses to the random oracle queries, this breaks the security
of the “hashed” ElGamal, which is based on the CDH assumption. Therefore, if event Abort
does not happen, the simulation of the re-encryption key queries is the same as the real one.

Next, we analyze the simulation of the re-encryption queries. This simulation is also per-
fect, unless A can submit valid original ciphertexts without querying hash function H1 (denote
this event by REErr). However, since H1 acts as a random oracle, we have Pr[REErr] ≤ qre

q .
The simulation of the decryption oracle is perfect, with the exception that simulation

errors may occur in rejecting some valid ciphertexts. However, these errors are not significant
as shown below: Suppose a ciphertext C has been queried to the decryption oracle. Even if C

is a valid ciphertext, there is a possibility that C can be produced without querying gr to H2,
where r = H1(m,ω). Let Valid be an event that C is valid. Let AskH2 and AskH1 respectively
be the events that gr has been queried to H2 and (m,ω) has been queried to H1. We have

Pr[Valid|¬AskH2] = Pr[Valid ∧ AskH1|¬AskH2] + Pr[Valid ∧ ¬AskH1|¬AskH2]

≤ Pr[AskH1|¬AskH2] + Pr[Valid|¬AskH1 ∧ ¬AskH2] ≤
qH1

2`0+`1
+

1
q
,

and similarly we have Pr[Valid|¬AskH1] ≤
qH2

2`0+`1
+

1
q
. Thus we have

Pr[Valid|(¬AskH1 ∨ ¬AskH2)] ≤ Pr[Valid|¬AskH1] + Pr[Valid|¬AskH2] ≤
qH1 + qH2

2`0+`1
+

2
q
.

Let DErr be the event that Valid|(¬AskH1∨¬AskH2) happens during the entire simulation.
Then, since A issues at most qd decryption oracles, we have Pr[DErr] ≤ (qH1

+qH2
)qd

2`0+`1
+ 2qd

q .

Now, let Good denote the event (AskH∗
2∨ (AskH∗

1|¬AskH∗
2)∨AskH∗

3∨REErr∨DErr)
∣∣¬Abort.

If Good does not happen, due to the randomness of the output of the random oracle H2, it is
clear that adversary A cannot gain any advantage greater than 1

2 in guessing δ. Namely, we
have Pr[δ = δ′|¬Good] = 1

2 . Hence, by splitting Pr[δ′ = δ], we have

Pr[δ′ = δ] = Pr[δ′ = δ|¬Good]Pr[¬Good] + Pr[δ′ = δ|Good]Pr[Good]

≤ 1
2
Pr[¬Good] + Pr[Good] =

1
2

+
1
2
Pr[Good]

and Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Good]Pr[¬Good] =
1
2
− 1

2
Pr[Good].

Efficient Unidirectional Proxy Re-Encryption 15

By definition of the advantage for the IND-PRE-CCA adversary, we then have

ε− ν =
∣∣2× Pr[δ′ = δ]− 1

∣∣
≤ Pr[Good] = Pr[(AskH∗

2 ∨ (AskH∗
1|¬AskH∗

2) ∨ AskH∗
3 ∨ REErr ∨ DErr)

∣∣¬Abort]
= (Pr[AskH∗

2] + Pr[AskH∗
1|¬AskH∗

2] + Pr[AskH∗
3] + Pr[REErr + Pr[DErr]) /Pr[¬Abort].

Since Pr[AskH∗
1|¬AskH∗

2] ≤
qH1

2`0+`1
, AskH∗

3 ≤
qH3

2`0+`1
, Pr[DErr] ≤ (qH1

+qH2
)qd

2`0+`1
+2qd

q , Pr[REErr] ≤
qre

q and Pr[¬Abort] ≥ 1
e(1+qrk) , we obtain

Pr[AskH∗
2] ≥ Pr[¬Abort] · (ε− ν)− Pr[AskH∗

1|¬AskH∗
2]− Pr[AskH∗

3]− Pr[DErr]− Pr[REErr]

≥ ε− ν

e(1 + qrk)
− qH1

2`0+`1
− qH3

2`0+`1
− (qH1 + qH2)qd

2`0+`1
− 2qd

q
− qre

q

=
ε− ν

e(1 + qrk)
− qH1 + qH3 + (qH1 + qH2)qd

2`0+`1
− qre + 2qd

q
.

If AskH∗
2 happens, algorithm B will be able to solve DCDH instance. Therefore, we obtain

ε′ ≥ 1
qH2

Pr[AskH∗
2] ≥

1
qH2

(ε− ν

e(1 + qrk)
− qH1 + qH3 + (qH1 + qH2)qd

2`0+`1
− qre + 2qd

q

)
.

From the description of the simulation, B’s running time can be bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (2qu + 2qc + 2qrk + 5qre + 2qd + qH1qre + (2qH2 + 2qH1)qd)texp.

ut
4.3 Comparisons

In Table 2, we compare our scheme with Libert-Vergnaud’s scheme [19] (LV08) and Shao-Cao’s
scheme [23] (SC09). We denote tê, texp, tsig and tver as the computational cost of a pairing, an
exponentiation (over G1 of elliptic curve or GT

11 in LV08 , over Z∗
N2 in SC09, and over G in

our scheme), signing and verifying a one-time signature, respectively. In our calculation, a
multi-exponentiation (m-exp) (which we assume it multiplies only up to 3 exponentiations in
one shot) is considered as 1.5 texp. Encrypt of LV08 , ReEncrypt and Decrypt(C) of SC09 used 1,

2 and 2 m-exp respectively. In our scheme, we assume pk
H4(pki,2)

i,1 pki,2 is pre-computed. Even
not, it only adds at most 1texp in Encrypt, ReEncrypt and Decrypt(C) using m-exp, since there
are other exponentiations to be done.

We use C to denote an original ciphertext and C′ to denote a transformed ciphertext, |C|
and |C′| are their size. For LV08 , G1 and GT are defined such that ê : G1×G1 → GT , svk and
σ denote the public key and the signature of the one-time signature respectively. For SC09,
NX (NY) is the safe-prime modulus used by the delegator (delegatee).

The comparison results indicate that our scheme beats SC09 in all aspects, and LV08 except
the reliance of random oracle. The CCA-security of our scheme is based on the standard and
well-studied CDH assumption, while LV08 is proved to be RCCA-secure under a stronger and
less-studied 3-quotient decision bilinear Diffie-Hellman (3-QDBDH) assumption. Compared
with LV08 and SC09, our re-encryption mechanism is more naturally designed.
11 GT is usually a subgroup of Zqα , which is vulnerable to sub-exponential discrete logarithm attacks, and

needs very large representation. For example, for 128 bits security, |GT | ≥ 3072 bits.
12 In [19], one can test whether pk is the original delegator by checking if ê(C′

2, C
′′
2) = ê(pk, g).

16 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

LV08 [19] SC09 [23] Our Scheme

Encrypt tsig + 2.5texp (in G1) + texp (in GT) 5texp (in ZN2) 3texp (in G)

ReEncrypt 2tê + tver + 4texp (in G1) 4texp (in ZN2) 2.5texp (in G)

Decrypt(C) 3tê + tver + texp (in G1) + texp (in GT) 5texp (in ZN2) 3.5texp (in G)

Decrypt(C′) 5tê + tver + texp (in G1) + texp (in GT) 4texp (in ZN2) 4texp (in G)

|C| |svk|+ |σ|+ 2|G1|+ |GT | 2k + 3|(NX)2|+ |m| 3|G|+|Zq|
|C′| |svk|+ |σ|+ 4|G1|+ |GT | `2 + 3|(NX)2|+ 2|(NY)2|+ |m| 2|G| + 2|Zq|
Security RCCA-Secure CCA-Secure? CCA-Secure

Assumption 3-QDBDH DDH CDH

RO-Free X × ×
Nature of C′ contains information Decryption of C′ requires No trace of the
ReEncrypt about the delegator12 pkX of the delegator delegator is in C′

Table 2. Comparisons of Unidirectional Proxy Re-Encryption Schemes

5 Conclusions

Most existing unidirectional proxy re-encryption schemes rely on pairing except a recently
proposed scheme by Shao and Cao [23]. However, we showed that their CCA-security proof
in the random oracle model is flawed, and presented a concrete attack. Possible fixes of their
scheme further degrades either the decryption efficiency or the transformed ciphertext length.
We then presented a natural construction of CCA-secure unidirectional proxy re-encryption
scheme without pairing that is very efficient. We remark that our schemes are single-hop and
is proved only in the random oracle model. It would be interesting to construct a PRE scheme
which is multi-hop, CCA-secure in the standard model, and yet without pairings.

Acknowledgement

We would like to thank Jun Shao for a helpful discussion of the attack.

References

1. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. In NDSS. The Internet Society, 2005.

2. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur., 9(1):1–30, 2006.

3. Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Certificateless Public Key Encryption Without
Pairing. In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume 3650 of
Lecture Notes in Computer Science, pages 134–148. Springer, 2005.

4. Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of Diffie-Hellman Problem. In Sihan Qing, Dieter
Gollmann, and Jianying Zhou, editors, ICICS, volume 2836 of Lecture Notes in Computer Science, pages
301–312. Springer, 2003.

5. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible Protocols and Atomic Proxy Cryptography.
In EUROCRYPT, pages 127–144, 1998.

6. Emmanuel Bresson, Dario Catalano, and David Pointcheval. A Simple Public-Key Cryptosystem with a
Double Trapdoor Decryption Mechanism and Its Applications. In Chi-Sung Laih, editor, ASIACRYPT,
volume 2894 of Lecture Notes in Computer Science, pages 37–54. Springer, 2003.

7. Ran Canetti and Susan Hohenberger. Chosen-Siphertext Cecure Proxy Re-Encryption. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference on Computer and
Communications Security, pages 185–194. ACM, 2007.

8. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing Chosen-Ciphertext Security. In Dan
Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 565–582. Springer,
2003.

Efficient Unidirectional Proxy Re-Encryption 17

9. Cheng-Kang Chu and Wen-Guey Tzeng. Identity-Based Proxy Re-encryption Without Random Oracles.
In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta, editors, ISC, volume 4779 of
Lecture Notes in Computer Science, pages 189–202. Springer, 2007.

10. Jean-Sébastien Coron. On the Exact Security of Full Domain Hash. In Mihir Bellare, editor, CRYPTO,
volume 1880 of Lecture Notes in Computer Science, pages 229–235. Springer, 2000.

11. Robert H. Deng, Jian Weng, Shengli Liu, and Kefei Chen. Chosen-Ciphertext Secure Proxy Re-encryption
without Pairings. In Matthew K. Franklin, Lucas Chi Kwong Hui, and Duncan S. Wong, editors, CANS,
volume 5339 of Lecture Notes in Computer Science, pages 1–17. Springer, 2008.

12. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and Symmetric Encryption
Schemes. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science,
pages 537–554. Springer, 1999.

13. Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In
CRYPTO, pages 10–18, 1984.

14. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal Re-encryption for Mixnets.
In Tatsuaki Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages 163–178.
Springer, 2004.

15. Matthew Green and Giuseppe Ateniese. Identity-Based Proxy Re-encryption. In Jonathan Katz and Moti
Yung, editors, ACNS, volume 4521 of Lecture Notes in Computer Science, pages 288–306. Springer, 2007.

16. Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan. Securely Obfuscating
Re-encryption. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages
233–252. Springer, 2007.

17. Anca-Andreea Ivan and Yevgeniy Dodis. Proxy Cryptography Revisited. In NDSS. The Internet Society,
2003.

18. Markus Jakobsson. On Quorum Controlled Asymmetric Proxy Re-encryption. In Hideki Imai and Yuliang
Zheng, editors, Public Key Cryptography, volume 1560 of Lecture Notes in Computer Science, pages 112–
121. Springer, 1999.

19. Benôıt Libert and Damien Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-encryption. In
Ronald Cramer, editor, Public Key Cryptography, volume 4939 of Lecture Notes in Computer Science,
pages 360–379. Springer, 2008.

20. Masahiro Mambo and Eiji Okamoto. Proxy cryptosystems: delegation of the power to decrypt cipher-
texts. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
E80-A(1):54–63, 1997.

21. Toshihiko Matsuo. Proxy Re-encryption Systems for Identity-Based Encryption. In Tsuyoshi Takagi,
Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto, editors, Pairing, volume 4575 of Lecture Notes
in Computer Science, pages 247–267. Springer, 2007.

22. Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In Gilles Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 239–252. Springer, 1989.

23. Jun Shao and Zhenfu Cao. CCA-Secure Proxy Re-encryption without Pairings. In Stanislaw Jarecki and
Gene Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages
357–376. Springer, 2009.

24. Tony Smith. DVD Jon: Buy DRM-less Tracks from Apple iTunes. Available online at
http://www.theregister.co.uk/2005/03/18/itunes pymusique, jan 2005.

A Delegator Secret Security

A.1 Definition

Delegator secret security is formally defined via the following game:

Setup. Challenger C runs Setup(1κ) and gives the global parameters param to A.
Queries. A adaptively issues queries q1, . . . , qm where query qi is one of the following:

– Uncorrupted key generation query : C first runs KeyGen to obtain a public/private key
pair (pki, ski), and then sends pki to A.

– Corrupted key generation query : C first runs KeyGen to obtain a public/private key
pair (pkj , skj), and then gives (pkj , skj) to A.

18 Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng

– Re-encryption key query 〈pki, pkj〉: C runs ReKeyGen(ski, pkj) to generate a re-encryption
key rki→j and returns it to A. Here ski is the private key with respect to pki. It is
required that pki and pkj were generated beforehand by algorithm KeyGen.

Output. Finally, A outputs a private key ski∗ with respect to the public key pki∗ . A wins
the game if ski∗ is indeed a valid private key and A has never issue the corrupted key
generation query on 〈i∗〉 (i.e., A issue the uncorrupted key generation query on 〈i∗〉).

We refer to the above adversary A as a DSK adversary, and define his advantage in
attacking the PRE scheme’s delegator secret security as AdvDSK

PRE,A = Pr[A wins], where the
probability is taken over the random coins consumed by the challenger and the adversary.

Definition 4. We say that a PRE scheme is (t, qu, qc, qrk, ε)-DSK secure, if for any t-time
DSK adversary A that makes at most qu uncorrupted key generation queries, at most qc

corrupted key generation queries and at most qrk re-encryption key queries, AdvDSK
PRE,A ≤ ε.

A.2 Analysis

The delegator secret security of our scheme is based on the discrete logarithm problem (DLP).

Definition 5. The DLP in G is, given a tuple (g, ga) ∈ G2 with unknown a, to compute a.
For a polynomial-time algorithm B, we define his advantage in solving the DLP in G as

Pr[B(g, ga) = a], where the probability is taken over the random choices of a in Zq, the random
choice of g in G, and the random bits consumed by B. We say that the (t, ε)-DL assumption
holds in group G, if no t-time adversary B has advantage at least ε in solving the DLP in G.

Theorem 2 Our scheme has delegator secret security, assuming the DL assumption holds in
G. Concretely, if there exists an DSK adversary A, who breaks the (t, qu, qc, qrk, ε)-DSK security
of our scheme, then there exists an algorithm B which can break the (t′, ε)-DL assumption in
G with t′ ≤ t +O(2qutexp + 2qctexp + 2qrktexp).

Proof. Suppose B is given as input a DLP challenge tuple (g, ga) ∈ G2 × GT with unknown

a
$← Z∗

q . Algorithm B’s goal is to output a. Algorithm B acts as a challenger and plays the
DSK game with adversary A in the following way:

Setup. Algorithm B gives (q, G, g, H1, . . . ,H4, `0, `1) to A. Here H1,H2,H3 and H4 are just
cryptographic hash functions which are not modelled as random oracles.

Queries. Adversary A issues a series of queries as defined in the DSK game. B maintains a
list K list, which is initially empty, and answers these queries for A as follows:

– Uncorrupted key generation query : Algorithm B first picks xi,1, xi,2
$← Z∗

q , and define

pki = (pki,1, pki,2) =
(
(ga)1/H4(pki,2) · gxi,1 , gxi,2/ga

)
. Next, set ci = 0 and add the tuple

(pki, xi,1, xi,2, ci) to the K list. Finally, it returns pki to adversary A. The private key with
respect to pki is ski = (a

H4(pki,2) + xi,1,−a + xi,2), is unknown to both B and A.

– Corrupted key generation query : B picks xj,1, xj,2
$← Z∗

q and defines pkj = (gxj,1 , gxj,2) and
cj = 1. It then adds the tuple (pkj , xj,1, xj,2, cj) to the K list and returns (pkj , (xj,1, xj,2)).

– Re-encryption key query 〈pki, pkj〉: B parses pki as pki = (pki,1, pki,2) and pkj = (pkj,1, pkj,2).
Next, it recovers tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj) from the K list. Then, it con-
structs the re-encryption key rki→j for adversary A according to the following situations:

Efficient Unidirectional Proxy Re-Encryption 19

• If ci = 1, B return the result of ReKeyGen(ski, pkj) to A since ski = (xi,1, xi,2) is known.

• If ci = 0, it means that ski = (a
H4(pki,2) + xi,1,−a + xi,2). B picks h

$← {0, 1}`0 , π $←

{0, 1}`1 and returns rki→j = (rk〈1〉i→j = h
xi,1H4(pki,2)+xi,2

, V = gH1(h,π),W = H2(pkv
j,2) ⊕

(h‖π)), which is valid since xi,1H4(pki,2)+xi,2 = (a
H4(pki,2) +xi,1)H4(pki,2)+(−a+xi,2).

Output. Eventually, A outputs the private key ski∗ = (ski∗,1, ski∗,2) with respect to the public
key pki∗ . B recovers the tuple (pki∗ , xi∗,1, xi∗,2, ci∗) from the K list (Note that according to the
restriction specified in the DSK game, we have ci∗ = 0), and then outputs xi∗,2− ski∗,2 as the
solution to the DLP challenge. Note that, if ski∗ = (ski∗,1, ski∗,2) is a valid private key with
respect to pki∗ , we have ski∗,1 = a

H4(pki∗,2) + xi∗,1 and ski∗,2 = −a + xi∗,2.

It can be verified that the responses for the key generation queries and the re-encryption
key query are perfect. Thus, when adversary A outputs the valid private key ski∗ with ad-
vantage ε, B can resolve the DLP with the same advantage. It can be easily seen that B’s
running time is bounded by t′ ≤ t +O(2qutexp + 2qctexp + 2qrktexp). ut

