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Abstract: This paper presents an efficient and provable secure identity based 

generalized signcryption scheme based on [1] which can work as signcryption 

scheme, encryption scheme and signature scheme as per need. Its security is proved 

under the difficulty of q-BDHIP. A generalized signcryption scheme in multiple 

PKGs environment is also proposed. 
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1. Introduction:  

Signcryption is a cryptographic primitive due to Zheng [13] in 1997 which achieves both 

confidentiality and authenticity in a single logical step. Signcryption is to reduce the computation cost and 

communication overhead in comparison of sign-then-encrypt approach. An identity based signcryption 

was given by Malone Lee [9] in 2002 based on bilinear pairing. Several identity based signcryption 

schemes have been proposed since then. However, the construction of Barreto et al [1] on asymmetric 

bilinear pairing is considered as most efficient one till the date. 

In 2006, Han and Yang [4] generalized the concept of signcryption. The idea of this new primitive 

is to reduce the implementation complexity and not the computation cost or communication overhead. In 

most communication scenarios, the users need both confidentiality and authentication. However, in some 

cases they just need confidentiality, and sometimes they just need authentication. In this scenario, 

according to Zheng, signcryption may be replaced with signature/encryption algorithm. Thus to resolve 

problem, Zheng’s solution requires the use of three cryptographic algorithms signcryption, encryption and 

signature as per need. This however is problematic. Generalized signcryption is an attempt to solve this 

problem. Generalized signcryption is a new primitive which can work as an encryption scheme, a 

signature scheme, and a signcryption scheme as per need. In [4] Han and Yang gave the generalized 

signcryption scheme based on elliptic curve. Wang et al [12] improved upon the scheme [4] and provided 

security notions of generalized signcryption. In [12] Wang et al made some modifications in the scheme 

[4]. First they removed the additional property from the hash functions that is 

H(0) 0,K(0) 0,LH(0) 0,→ → →  MAC(0) 0→  because if there exists non-change point in hash function 

this would bring bad effects to hash function. Secondly they removed if-else clause from the scheme. 

An identity based generalized signcryption (IDGSC) scheme is given by Lal and Kushwah in [7]. 

They also consider the security notion of generalized signcryption in identity based setting. The scheme in 

[7] reduces to basic scheme of Boneh-Franklin ID based encryption which is only chosen plaintext secure.  

In this paper we present an efficient and secure identity based generalized signcryption based on 

Barreto et al signcryption scheme [1]. 

 

2. IDGSC and its Security notions: 

An IDGSC scheme consists of the following algorithm 
 

Set Up: On input of a security parameter 1
k 

the private key generator (PKG) uses this algorithm to 

produce a pair (param, s), where params are global public parameters for the system and s is the master 

secrete key. The public parameters include Ppub, the public key of PKG, a description of finite message 

space M, a description of a finite signature space S and a description of a finite ciphertext space C.. 

Further, there is no need for publicly known param to be explicitly provided as input to any other 

algorithm. 



Extract: On input of an identity IDU and the master key s, PKG uses this algorithm to compute secrete 

key 
UIDd  corresponding to IDU. 

GSC: Suppose Alice (IDA) wants to send a message m to Bob (IDB). On input (
AIDd , IDB, m), Alice uses 

this algorithm to produce cipher text c. 

UGSC: On receiving c, Bob uses this algorithm with input (IDA, BS , c) and obtains m if c is valid 

ciphertext, and the symbol ⊥  if c is invalid ciphertext.  
 

The two algorithms GSC and UGSC are such that c =( AS , IDB, m) iff m= UGSC (IDA, BS , c).  

Signature-Only mode: If Alice wants only to sign a message m, then the specific receiver Bob does not 

exist. In this case BID IDφ= , GSC ( AS , IDφ , m) = Sign ( AS , m), and UGSC (IDA, Sφ , c) = Verify (IDA, 

m). 
 

Encryption-Only mode: If a message is encrypted for Bob, then the specific sender Alice does not exist. 

In this case GSC (Sφ , IDB, m) = Enc (IDB, m), and UGSC ( IDφ , BS , c) = Dec ( BS , c). 
 

Security notions for IDGSC: 

We now discuss the security model for proposed identity based generalized signcryption scheme. 

2.1 Message Confidentiality (signcryption-mode) 
 

Game 

Initial: The challenger runs Setup k(1 )  and gives the resulting params to the adversary. It keeps s 

secrete. 

Probing: 

Phase1: The adversary makes the following queries to probes the challenger. 

• Sign: The adversary submits a signer identity and a message to the challenger. The challenger 

responds with the signature of the signer on the message. 

• Signcrypt: The adversary submits identities of a sender and a receiver and a message to the 

challenger. The challenger responds with the signature of the sender on the message, encrypted 

under the public key of the receiver. 

• Decrypt: The adversary submits a ciphertext and a receiver’s identity to the challenger. The 

challenger decrypts the ciphertext under the secrete key of receiver and returns the message. 

• Unsigncrypt: The adversary submits a ciphertext and identities of a sender and a receiver to the 

challenger. The challenger decrypts the ciphertext under the secrete key of receiver. It then verifies 

that the resulting decryption is a valid message/signature pair under the public key of the sender. If 

so the challenger returns the message, its signature and the identity of the signer, otherwise it 

returns ⊥ . 

• Extract: The adversary submits an identity to the challenger. The challenger responds with the 

secrete key of that identity. 

 At the end of phase1 the adversary outputs two identities { AID , BID } and two messages 

{ 0 1m ,m }. The adversary must not have made extraction query on BID and BID IDφ≠ . 

Challenge: The challenger chooses a bit b uniformly at random. It signs bm  under secrete key 

corresponding to AID  and encrypts the result under the public key of BID  to produce c. The challenger 

returns c to the adversary. 

Phase2: The adversary continues to probe the challenger with the same type of queries that it made in 

the phase1. It is not allowed to extract the private key corresponding to BID  and it is not allowed to 

make a decrypt and unsigncrypt query for c under BID . 

Response: The adversary returns a bit b′ . The adversary wins if b′ = b. 



  Let ��denote an adversary that plays the game above. The scheme is said to be semantically 

secure against adaptive chosen ciphertext attack, or IND-IDGSC-CCA2 secure in signcryption mode if 

the quantity Adv[�]= 2Pr[b ' b] 1= −  is negligible. 

  

 Note that above definition deals with insider security since the adversary is assumed to have 

access to the private key of the sender of a signcrypted message. This means that confidentiality is 

preserved even if a sender’s key is compromised. 

 

2.2 Message Confidentiality (encryption-only mode) 

Game 

Initial: The challenger runs Setup k(1 )  and gives the resulting params to the adversary. It keeps s 

secrete. 

Probing: The challenger is probed by the adversary who makes queries as in the phase1 of the game in 

section 2.1. 

 At the end of phase1 the adversary outputs receiver’s identity BID  and two messages { 0 1m ,m }. 

 The adversary must not have made extraction query on BID and BID IDφ≠ . 

Challenge: The challenger chooses a bit b uniformly at random. It signs bm  under secrete key 

corresponding to IDφ  and encrypts the result under the public key of BID  to produce c. The challenger 

returns c to the adversary. 

Phase2: The adversary continues to probe the challenger with the same type of queries that it made in 

the phase1. It is not allowed to extract the private key corresponding to BID  and it is not allowed to 

make a decrypt and unsigncrypt query for c under BID . 

Response: The adversary returns a bit b′ . The adversary wins if b′ = b. 

 

 Let ��denote an adversary that plays the game above. The scheme is said to be semantically 

secure against adaptive chosen ciphertext attack, or IND-IDGSC-CCA2 secure in encryption-only mode 

if the quantity Adv[�]= 2Pr[b ' b] 1= −  is negligible. 

 

2.3 Signature Non-repudiation (signcryption mode) 
 

Game 

Initial: The challenger runs Setup k(1 )  and gives the resulting params to the adversary. It keeps s 

secrete. 

Probing: The challenger is probed by the adversary who makes queries as in the phase1 of the game in 

section 2.1. 

Forge: The adversary returns a recipient identity BID  and a ciphertext c. Let (m, AID , σ ) be the result 

of decrypting c under the secrete key corresponding to BID . The adversary wins if 

AID ≠ BID ; AID IDφ≠≠≠≠ ; Verify (m, AID , σ ) =� ; no extraction query was made on AID ; no sign 

query was responded with (m, AID , σ ) and no signcrypt query (m, AID , B'ID ) was responded to with a 

ciphertext whose decryption under the private key of B'ID  is (m, AID , σ ). 

  Let ��denote an adversary that plays the game above. The scheme is said to be existentially 

unforgeable against adaptive chosen message and ciphertext attack, or EUF-IDGSC-CMA secure in 

signcryption mode if the quantity Adv [�] = Pr [��wins] is negligible. 



The above definition allows the adversary access to the secret key of the recipient of the forgery. It 

thus gives us insider security. 
 

2.4 Signature Non-repudiation (signature-only mode) 
 

Game 

Initial: The challenger runs Setup k(1 )  and gives the resulting params to the adversary. It keeps s 

secrete. 

Probing: The challenger is probed by the adversary who makes queries as in the phase1 of the game in 

section 2.1. 

Forge: The adversary returns a triplet (m, AID , σ ). The adversary wins if AID IDφ≠≠≠≠ ; Verify 

(m, AID , σ ) =� ; no extraction query was made on AID ; no sign query was responded with 

(m, AID , σ ) and no signcrypt query (m, AID , BID ) was responded to with a ciphertext whose 

decryption under the private key of BID  is (m, AID , σ ). 

  Let ��denote an adversary that plays the game above. The scheme is said to be existentially 

unforgeable against  chosen message and identity attack, or EUF-IDGSC-CMA secure in signature-only 

mode if the quantity Adv[�]=Pr[��wins] is negligible. 

 

3. IDGSC scheme [7]: 

Setup: Establishes parameters G1, G2, q, 1 1 2e : G G G× → , 1k
0 1H :{0,1} G→ , 0k n

1H :{0,1}
+ *

q�→ , 

0 1k k n
2 2H : G {0,1}

+ +→ , where 0k is the number of bits required to represent an element of G1, 1k is the 

number of bits required to represent an identity of a user and n is a number of bits of a message unit. Let P 

be the generator of cyclic group G1. PKG chooses a random s *
R q∈ �  and computes his public key PPub = 

sP. The system parameter params are 1, 2, pub 0 1 2G G q,e, P, P , n, H , H , H� � . Further the output of 2H (1)  is 

0 1(k k n)+ + bit zero string. 

Extract: Extracts private key of the user U with 1k
UID {0,1}∈  

 Computes the public key U 0 UQ H (ID )=  and the private key U US sQ= . 

 For signature-only mode (encryption-only mode) where receiver (sender) does not exist, we use 

the key pair U U( , ) (Q ,S )←� � when U= UID IDφ=  where IDφ  is a 1k bits zero string.  

Signcryption mode: 

GSC A B(S ,ID ,m) : To send a message nm {0,1}∈  UGSC A B(ID ,S ,c) :  On receiving the signcrypt-  

to Bob ( BID ) in a secure and authenticated way,   text c (X, y)= , Bob  

Alice ( AID ) does the following:    1. Computes  

1. Chooses *
R qr ∈ �       (i)  A 0 AQ H (ID )=  

2. Computes                                      (ii) Be(X,S )ω =  

 (i)  AX rP rQ= + , where A 0 AQ H (ID )=                    (iii) 2 Ay H ( ) Z ID⊕ ω = �� ���  

  (ii) Pub 1 AZ rP (r h )S= + + , where 1 1h H (X m)= ||        (iv) 1 1h H (X m)= ||  

 (iii) Pub A Be(rP rS ,Q ),ω = + where B 0 BQ H (ID )=       (v)  e(Z,P)  

 (iv) A 2y (Z ID m) H ( )= ⊕ ω�� ��        (vi) pub 1 Ae(P , X h Q )+  

3. Returns   c (X, y)= . 2. Returns valid iff 

 Here c is the signcryptext of message m.       pub 1 Ae(Z, P) e(P , X h Q )= +  



Signature-only mode:  

GSC ( AS , IDφφφφ , m) = Sign ( AS , m)   UGSC (IDA, IDφφφφ , σσσσ ) = Verify (IDA, σσσσ ) 

If Alice only wants to sign nm {0,1}∈ , then she  Any one can verify the signature on m by  

1. Chooses *
R qr ∈ �      computing 

2. Computes        (i)  A 0 AQ H (ID )=  

  (i)  AX rP rQ= + , where A 0 AQ H (ID )=     (ii) 1 e(X, )= �  

  (ii) Pub 1 AZ rP (r h )S= + + , where 1 1h H (X m)= ||    (iii) A 2 AZ ID H (1) Z ID⊕ =�� ��� �� ���  

 (iii) r
Pub A1 e(P S , )= + �        (iv) 1 1h H (X m)= ||  

 (iv) A A 2Z ID m (Z ID m) H (1)= ⊕�� �� �� �� , and   (v) e(Z,P)  

3. Returns A(Z ID m,X)σ = �� �� .     (vi) pub 1 Ae(P , X h Q )+  

Here σ is the signature on message m.  and concluding that σ  is valid iff 

               pub 1 Ae(Z, P) e(P , X h Q )= + . 

Encryption-only mode:     

GSC ( IDφφφφ , IDB, m) = Enc (IDB, m)   UGSC ( IDφφφφ ,
BIDd ,c) = Dec ( BS ,c) 

If user wants to send a message nm {0,1}∈  in a On receiving ciphertext c (X, y)= , Bob 

secure manner to Bob then he/she    1. Computes 

1. Chooses *
R qr ∈ �         (i)  Be(X,S )ω =  

2. Computes         (ii) 2Z ID y H ( )φ = ⊕ ω�� ���  

   (i)  X rP= = rP+�          (iii) 1 1h H (X m)= ||  

   (ii) 1 1h H (X m)= ||         (iv) e(Z,P)   

   (iii) PubZ rP= = PubrP +(r+h1)�       (v) pub 1e(P , X h )+ �  

   (iv) Pub Be(rP ,Q )ω = = Pub B e(rP ,Q )+�   2. Accepts m as plaintext iff 

   (v) 2y (Z ID m) H ( )φ= ⊕ ω�� ��           pub 1e(Z, P) e(P , X h )= + � . 

3. Returns c (X, y)=  as the ciphertext of the   

    message m. 

 

4. Preliminaries: 

Asymmetric Bilinear Pairing [1]: Let k be a security parameter and q be a k-bit prime number. Let us 

consider groups 1( , ),+�  2( , )+� and T( ,.)� of the same prime order q. Let 1 P=�  and 2 Q=� . 

There exists an asymmetric bilinear pairing 1 2 Te : × →� � �  satisfying the following properties 

1. Bilinearty: 1 2(S,T) , a, b∀ ∈ × ∀ ∈�� � , abe(aS, bT) e(S,T)=  

2. Non-degeneracy: S∀ 1∈� , e(S,T) 1= for all 2T ∈�  iff S =�  

3. Computability: 1 2(S,T) ,∀ ∈ ×� � e(S, T) is efficiently computable 

4. There exists an efficient, publicly computable (but not necessarily invertible) isomorphism 

2 1:ψ →� ��  such that (Q) Pψ =  

 Here we can use elliptic curve groups presented in [2], which allow both an efficient pairing and 

an efficient computable isomorphism. 

 As in [1], security of our scheme depend on the q-BDHIP assumption [1] defined below: 

 Let us consider bilinear map group 1 2 T( , , )� � � and generator P and Q of group 1�  and 2� . 



 The q-Diffie-Hellman inversion problem (q-DHIP) in 1 2( , )� � consists in, given a (q+2)-tuple 

2 q(P,Q, Q, Q,..., Q),α α α finding
1

P
α

. 

 The q-Bilinear Diffie-Hellman inversion problem (q-BDHIP) in 1 2 T( , , )� � � consists in, given 

a (q+2)-tuple 2 q(P,Q, Q, Q,..., Q),α α α computing 1/
Te(P,Q) α ∈� . 

 

Barreto et al signcryption scheme [1]: 

Setup: given k, the PKG chooses bilinear map groups 1 2 T( , , )� � � of prime order kp 2>  and generator 

2Q ∈� , 1P (Q)= ψ ∈� , Tg e(P,Q)= ∈� . It then chooses a master key *
R ps ∈ � , a system wide public 

key pub 2Q sQ G= ∈ and hash functions * *
1 pH :{0,1} → � , * *

2 T pH :{0,1} G× → �  and n
3 TH : G {0,1}→ . 

The public parameters are 

  params =  1 2 T pub 1 2 3, , , P,Q,g,Q ,e, ,H ,H ,Hψ� � �  

Extract: for an identity ID, the private key is ID 2
1

1
d Q

H (ID) s
= ∈

+
�  

Sign/Encrypt: given a message *m {0,1}∈ , a  Decrypt/Verify: given (c,S,T)σ = and some  

receiver’s identity BID and a sender’s private  sender’s identity AID  

key 
AIDd       1. Compute  

1. Pick *
R px ∈ �         (i) 

BIDr e(T,d )=  

2. Compute         (ii) 3m c H (r)= ⊕  

   (i)  xr g=         (iii) 2h H (m, r)=  

   (ii) 3c m H (r)= ⊕        (iv) h
1 A pube(S, H (ID )Q Q )g−+  

   (iii)
AIDS (x h) (d )= + ψ where 2h H (m, r)=  Accept the message iff  

   (iv) 1 B pubT x(H (ID )P (Q ))= + ψ    r = h
1 A pube(S, H (ID )Q Q )g−+  

The ciphertext is (c,S,T)σ =  

 

5. Generalization of Barreto et al scheme: 

Setup/Extract: Same as Barreto et al scheme [1] except some consideration 

(i) Consider 0P= 
1�

� (additive identity of 1� ) and 0Q=
2�

� (additive identity of 2� ) 

(ii) For signature only mode (encryption only mode), receiver (sender) does not exist we use IDφ  as 

the identifier for the absence of the user. 

(iii) Define a function such that  

    
U

U
U

0, if ID ID
f (ID )

1, if ID ID

φ

φ

=��
= �

≠��
 

(iv) Set ID

1
d Q

sφ
=  

Now public parameters are params = 1 2 T pub ID 1 2 3 U, , , P,Q,g,Q ,d ,e, , H , H , H ,f (ID )
φ

ψ� � �  

 

 



Signcryption mode: 

Signcrypt: given a message *m {0,1}∈ , a      Unsigncrypt: given A B(c,S,T, f (ID ), f (ID ))σ =   

receiver’s identity BID and a sender’s private  and some sender’s identity AID  

key 
AIDd       1. Compute  

1. Pick *
R px ∈ �         (i) 

BIDr e(T,d )=  

2. Compute         (ii) 3 Bm c {H (r)f (ID )}= ⊕  

   (i)  xr g=         (iii) 2h H (m, r)=  

   (ii) 3 Bc m {H (r)f (ID )}= ⊕       (iv) h
1 A A pube(S,{H (ID )f (ID )}Q Q )g−+  

   (iii)
AIDS (x h) (d )= + ψ where 2h H (m, r)=  Accept σ  iff  

   (iv) 1 B B pubT x({H (ID )f (ID )}P (Q ))= + ψ           r = h
1 A A pube(S,{H (ID )f (ID )}Q Q )g−+  

The ciphertext is A B(c,S,T, f (ID ), f (ID ))σ =  

Signature-only mode: 

Sign: given a message *m {0,1}∈ , a sender’s    Verify: given A(c,S,T, f (ID ), f (ID ))φσ =   

private key 
AIDd  and some sender’s identity AID and IDd

φ
 

1. Pick *
R px ∈ �      1. Compute  

2. Compute         (i) IDr e(T,d )
φ

=  

   (i)  xr g=         (ii) 3m m {H (r)f (ID )}φ= ⊕  

   (ii) 3c m {H (r)f (ID )}φ= ⊕       (iii) 2h H (m, r)=  

   (iii)
AIDS (x h) (d )= + ψ where 2h H (m, r)=    (iv) h

1 A A pube(S,{H (ID )f (ID )}Q Q )g−+  

   (iv) 1 pubT x({H (ID )f (ID )}P (Q ))φ φ= + ψ   Accept σ  iff  

  The signature is A(m,S,T,f (ID ), f (ID ))φσ =          r = h
1 A A pube(S,{H (ID )f (ID )}Q Q )g−+  

Encryption-only mode: 

Encrypt: given a message *m {0,1}∈ , a receiver’s Decrypt: given B(c,S,T, f (ID ), f (ID ))φσ =   

identity BID and IDd
φ

     and some sender’s identity AID  

1. Pick *
R px ∈ �      1. Computes  

2. Compute         (i) 
BIDr e(T,d )=  

  (i)  xr g=         (ii) 3 Bm c {H (r)f (ID )}= ⊕  

  (ii) 3 Bc m {H (r)f (ID )}= ⊕       (iii) 2h H (m, r)=  

  (iii) IDS (x h) (d )
φ

= + ψ where 2h H (m, r)=       (iv) h
1 pube(S,{H (ID )f (ID )}Q Q )g−

φ φ +  

  (iv) 1 B B pubT x({H (ID )f (ID )}P (Q ))= + ψ   Accept σ  iff  

  The ciphertext is B(c,S,T, f (ID ), f (ID ))φσ =          r = h
1 pube(S,{H (ID )f (ID )}Q Q )g−

φ φ +   

 

Remarks: Note that the proposed scheme is Barreto et al [1] signcryption scheme in signcryption mode. 

In the encryption-only mode where signer does not exist, the proposed scheme gives the ciphertext as the 



signcrypted text with sender IDφ . The verification process of signature of IDφ gives the CCA security in 

the encryption-only mode. In the signature-only mode where receiver does not exist, the proposed scheme 

gives signature on message m as the signcrypted text with receiver IDφ .  

 

Security Results: 

 We prove the security of proposed IDGSC scheme in signcryption mode. Since the definitions of 

IND-IDGSC-CCA2 and EUF-IDGSC-CMA in signcryption mode consider the insider security, this 

makes the analysis of message confidentiality and signature non-repudiation in encryption-only mode and 

signature-only mode similar to signcryption mode. Thus we give the proof of these notions in 

signcryption mode. The proofs of the theorems are adapted from [1]. 

 

Theorem 1: Assume that an IND-IDGSC-CCA2 adversary� has an advantage ε against signcryption 

mode (encryption-only mode) of proposed scheme when running in time τ , asking 
ihq , queries to random 

oracle iH (i = 1, 2, 3) and seq , sq , dvq , dq  signcrypt, sign, unsigncrypt, decrypt queries respectively. Then 

there is an algorithm � to solve the q-BDHIP for 
1hq q= with probability 

2

1 2 3

se s h dv d
se s k k

h h h

(q q q ) q q
' 1 (q q ) 1

(q 1)(2q q ) 2 2

+ +� � +ε � �
ε > − + −	 
	 
	 
− + � �� �

 

within a time 
1 2

2
se s dv d p h multi dv d h exp' O(q q q q ) O(q ) O((q q )q )τ < τ + + + + τ + τ + + τ  where expτ  is time 

complexity of exponentiation in T� , and multiτ  is the time complexity of multiplication in  2� and pτ  is 

the time complexity of a pairing computation. 

 

Proof: See appendix. 

 

 Before giving the theorem for signature non-repudiation we give the two lemmas. The proof of 

lemma 1 is similar to the proof of lemma 1 [3]. 

Lemma 1: If there is a forger ��  for an adaptively chosen ciphertext (chosen message) and identity 

attack having advantage 0ε against the proposed scheme in signcryption mode (signature-only mode) 

when running in time 0τ  and making 1q queries to random oracle 1H , then there exists an algorithm 1� for 

an adaptively chosen ciphertext and given identity attack which has advantage 

k 1

1
1 0 h

2
(1 ) (q 1)ε ≤ ε − − with in a running time 1 0τ ≤ τ . Moreover 1�  asks the same number of key 

extraction, signcrypt, sign, unsigncrypt, decrypt, 2H and 3H  queries as ��  does. 

 

Lemma 2: Assume that there is an adaptively chosen ciphertext (chosen message) and given identity 

attacker� against signcryption mode (signature-only mode) of proposed scheme. When running in time τ , 

asking 
ihq , queries to random oracle iH (i = 1, 2, 3) and seq , sq , dvq , dq  signcrypt, sign, unsigncrypt, 

decrypt queries respectively, �  produces a forgery with probability 
2

k
se s se s h10(q q ) (q q q ) 2ε ≥ + + + . 

Then there is an algorithm � to solve the q-BDHIP for 
1hq q= in an expected time  

2 2 1

k 2
h se s dv d p dv d h exp h multi' 120686q ( O(q q q q ) O((q q )q ) ) (1 q / 2 ) O(q )τ ≤ τ + + + + τ + + τ ε − + τ  

where multiτ , expτ  and pτ are the same quantity as in theorem 1. 

Proof: See appendix. 

 



The combination of these two lemmas yields the following theorem. 

Theorem 2: Assume that there exists an ESUF-IDGSC-CMA attacker� against signcryption mode 

(signature-only mode) of proposed scheme. When running in time τ , asking
ihq , queries to random oracle 

iH (i = 1, 2, 3) and seq , sq , dvq , dq  signcrypt, sign, unsigncrypt, decrypt queries respectively, �  produces 

a forgery with probability 
2

k
se s se s h10(q q ) (q q q ) 2ε ≥ + + + . Then there is an algorithm � to solve the 

q-BDHIP for 
1hq q= in an expected time  

2

1 2 1

se s dv d p dv d h exp 2
h h h multik k

( O(q q q q ) O((q q )q ) )
' 120686(q 1)q O(q )

(1 1/ 2 )(1 q / 2 )

τ + + + + τ + + τ
τ ≤ − + τ

ε − −
 

where multiτ , expτ  and pτ are the same quantity as in theorem 1. 

 

6. Efficiency discussion: The proposed scheme in the signcryption mode is the scheme [1], which is most 

efficient signcryption scheme till the date. Hence our scheme is as efficient as [1] in the signcryption 

mode. Encryption-only mode and signature-only mode have an extra pairing calculation than encryption 

and signature. Now in table 1, we compare our scheme with the generalized signcryption scheme 

proposed in [7]. 

 

IDGSC 

Signcrypt Unsigncrypt 

G1 mls G2 exp e cps G1 mls G2 exp e cps 

[7] 3        --- 1 1        --- 3 

proposed scheme 2 1  --- ---  1 2 

                                                                               Table 1 

 

7. IDGSC in multiple PKGs environment (IDGSCMP): 

 The multiple PKGs environment is presented by Wang [11], where he gave an ID based 

encryption scheme which is more practical in multiple PKGs environment. Some ID based signcryption 

schemes in multiple PKGs environment have been proposed in literature [5, 6, 8]. In this section we 

propose identity based generalized signcryption scheme in multiple PKGs environment based on [5]. 

 

Global-Setup: given k, the globally trusted third party chooses bilinear map groups 1 2 T( , , )� � � of 

prime order kp 2>  generator 2Q ∈� , 1P (Q)= ψ ∈� , Tg e(P,Q)= ∈� and hash functions *
1H :{0,1}  

*
p→ � , * *

2 T pH :{0,1} G× → �  and n
3 TH : G {0,1}→ . Similar to the scheme proposed in section 5, 

Consider 0P= 
1�

� and 0Q=
2�

� . For signature only mode (encryption only mode), receiver (sender) does 

not exist we use IDφ  as the identifier for the absence of the user. It also sets the function  

    
U

U
U

0, if ID ID
f (ID )

1, if ID ID

φ

φ

=��
= �

≠��
 

   The public parameters are 

  params =  1 2 T 1 2 3 U, , , P,Q,g,e, , H , H , H ,f (ID )ψ� � �  

Domain Setup: Using global public parameters, each domain iPKG  chooses *
i R ps ∈ �  as the domain 

master private key and keeps it’s secrete. It calculates pub,i iQ s Q=  and 
, iID

i

1
d Q

sφ
=  as domain master 

public key and secrete value corresponding to IDφ , it makes both public. 



Extract: for an identity UID , the domain 
Ui

PKG computes the private key as  

    
U

U U

ID 2
1 pub,i i

1
d Q

H (ID,Q ) s
= ∈

+
�  

Generalized Signcryption for multiple PKGs: 

Signcrypt: given a message *m {0,1}∈ , a      Unsigncrypt: given A B(c,S,T, f (ID ), f (ID ))σ =   

receiver’s identity BID and a sender’s private  and some sender’s identity AID  

key 
AIDd       1. Computes  

1. Pick *
R px ∈ �         (i) 

BIDr e(T,d )=  

2. Compute         (ii) 3 Bm c {H (r)f (ID )}= ⊕  

(i)  xr g=         (iii) 2h H (m, r)=  

(ii) 3 Bc m {H (r)f (ID )}= ⊕       (iv) 
A A

h
1 A pub,i A pub,ie(S,{H (ID ,Q )f (ID )}Q Q )g−+  

(iii)
AIDS (x h) (d )= + ψ where 2h H (m, r)=   Accept σ  iff  

(iv) 
B B1 B pub,i B pub,iT x({H (ID ,Q )f (ID )}P (Q ))= + ψ    r = 

A A

h
1 A pub,i A pub,ie(S,{H (ID ,Q )f (ID )}Q Q )g−+  

The ciphertext is A B(c,S,T, f (ID ), f (ID ))σ =  

 

Conclusion: In this paper we proposed an efficient and provable secure ID based generalized 

signcryption scheme based on [1]. The proposed scheme has many advantages over the scheme given in 

[7]. It has CCA security in encryption-only mode. We extend the security notions of generalized 

signcryption as we consider separate definition for message confidentiality and signature unforgeability in 

encryption-only mode and signature-only mode. The security of our scheme rely on q-BDHIP. Further we 

proposed an ID based generalized signcryption scheme for multiple PKGs environment. 
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Appendix: 

Proof of Theorem 1: We will show how an IND-IDGSC-CCA2 adversary� of IDGSC may be used to 

constructs a simulator� that extract 1/e(P,Q) α  on input 2 q(P,Q, Q, Q,..., Q)α α α . 

 We proceed similarly as in [1]. In the preparation phase� builds generator 2 2G ∈� , 1 2G (G )= ψ  

1∈� , a domain wide public key pub 2 2Q xG= ∈� and a domain wide private key IDφ i.e. 

1
ID 2 2x

d G
φ

= ∈� (for some unknown element *
px ∈� ) such that it knows q-1 pairs ( )

i

1
i 2I x

I , G
+

for 

*
1 2 q 1 R p1 1

I , I ,..., I , I ,..., I −− +
∈

� �
�  (including 1

2x
G ). To do so, 

1. � selects
1R h{1,...,q }∈� , elements *

R pI ∈
�

� , *
2 q R p1 1
,..., , ,...,

− +
ω ω ω ω ∈

� �
�  and sets 1 Iω =

�
. 

Expands the polynomial 
q

ii 1,i
f (z) (z )

= ≠
= + ω∏

�
to obtained the coefficients *

0 q 1 pc ,..., c − ∈�  such that f(z) 

= 
q 1 i

ii 0 c z
−
= . For i 1,..., 1, 1,...,q= − +� �  it also compute *

i i pI I= − ω ∈
�

�  (observe that 1I 0= ). 

2. It sets 
q 1 i

2 ii 0G c ( Q) f ( )Q
−
== α = α as public generator of 2� and 1 2G (G ) f ( )P= ψ = α as a generator 

of 1� . Another group element 2U ∈� is then set to
q i

i 1i 1U c ( Q)−== α . We note that 2U G= α although�  

does not know α .  

3. For i 1,..., 1, 1,...,q= − +� � , � expands i if (z) f (z) (z )= + ω =
q 2 i

ii 0 d z
−
= that satisfy 

   
q 2 i

2 i ii 0
i i

1 f ( )
G Q f ( )Q d ( Q)

−
=

α
= = α = α

α + ω α + ω
 

Thus � can compute q-1 = 
1hq 1− pairs 

i i 2
i

1
,S G

� �
ω =	 


α + ω� �
by the last term of above equation. 

 The system wide public key pubQ  is chosen as pub 2 2Q U I G ( I )G= − − = −α −
� �

so that its 

(unknown) private key is *
px I= −α − ∈

�
� . For all i 1,..., 1, 1,...,q= − +� � , we have i i i(I , S ) (I ,− =  

i 2(1 (I x))G )+ . Observe that private key ID(d )
φ

for IDφ corresponds to 1I . 

 Now simulator� then runs the algorithm� with input 1 2 pub ID(G ,G ,Q ,d )
φ

. �  probes the 

simulator� throughout the simulation and it is assumed that 1H queries are distinct, the target identity 

*
RID  is submitted to 1H at some point and any query involving the identity ID comes after a 1H query on 

ID. To maintain consistency in queries �  makes the lists iL  for random oracle iH  for i = 1, 2, 3.    

� initialize a counter ν  to 2 and starts answering 's�  queries. 

 

- Simulator 1H ( IDνννν ): � answer Iν and increment ν . 

- Simulator 2H (m,r) : If 2 2((m, r), h ) L∈ for some 2h , � returns 2h . Otherwise a random 2h *
R p∈ � is 

returns. � additionally simulates random oracle 3H on its own to obtain n
3H (r) {0,1}∈ and stores the 

information 2h
2 3 1 2(m, r, h ,c m h , r(G ,G ) )= ⊕ γ = in 2L  list. We will see how �  use this information to 

answer unsigncrypt and decrypt oracles. 

- Simulator 3H (r) : If 3 3(r, h ) L∈  for some 3h ,  � returns 3h . Otherwise � chooses a 3h uniformly at 

random form n{0,1}  and stores 3(r, h ) in the 3L list. 



- Simulator Extract ( IDνννν ): If ν = �  then � fails. Otherwise, it knows that 1H (ID ) Iν ν=  and returns 

2 2S (1 (I x))Gν ν− = + ∈� . 

- Simulator Signcrypt S R(m,ID ,ID ) : Let ( S RID , ID ) = (ID , ID )µ ν for 
1h, {2,...,q }µ ν ∈ . If ID IDµ ≠

�
, 

then � knows the sender’s private key IDd S
µ µ= −  and can answer the query according to the 

specification of Signcrypt of signcryption mode. We thus assume ID IDµ =
�

 and hence ID IDν ≠
�

by the 

irreflexivity assumption. Also ID ID IDµ φ ν≠ ≠ (by the definition of signcryption mode). In this case 

� knows the receiver’s private key IDd S
ν ν= − by construction. To find a triple (S, T, h) *

1 1 p∈ × ×�� �  

for which  

    h
ID ID 1 2e(T,d ) e(S,Q )e(G ,G )

ν

−=
�

     (1) 

where ID 2 pubQ I G Q= +
� �

holds, � randomly chooses *
R pt, h ∈ �  and computes IDS t (d ) t (S ),

ν ν= ψ = − ψ  

ID IDT t (Q ) h (Q )
ν

= ψ − ψ
�

where ID 2 pubQ I G Q
ν ν= + such that h

ID ID 1 2r e(T,d ) e(S,Q )e(G ,G )
ν

−= =
�

 = 

t h
ID ID 1 2e( (d ),Q ) e(G ,G )

ν

−ψ
�

. �  stores the value of 2H (m, r) to h in 2L  list (�  fails if 2H is already 

defined but this only happens with probability (
2

k
se s h(q q q ) 2+ + ). The ciphertext 

3m H (r),S,Tσ = ⊕  is returned. 

- Simulator Sign ( Sm,ID ): Analysis of sign simulator is similar to signcrypt simulator with replacing 

IDν  by IDφ . 

- Simulator Unsigncrypt ( R S(c,S,T), ID ,IDσ =σ =σ =σ = ): Let ( S RID , ID ) = (ID , ID )µ ν for 
1h, {2,...,q }µ ν ∈ . If 

ID ID
�ν ≠ , then � knows the receiver’s private key IDd S

ν ν= −  and can answer the query according to 

the specification of unsigncrypt of signcryption mode. We thus assume ID ID
�ν =  and hence 

ID ID
�µ ≠ by the irreflexivity assumption. Also ID ID IDµ φ ν≠ ≠ (by the definition of signcryption 

mode). In this case � knows the receiver’s private key IDd S
µ µ= −  and also knows that, for all valid 

cipher texts, 
ID ID

1
d ID (Q )log ( (S) hd ) log (T)

µµ ν

−
ψψ − = , where 2h H (m, r)= is the hash value obtained in 

the 2L  list and ID 2 pubQ I G Q
ν ν= + . Hence we have the relation  

    1
ID ID IDe(T,d ) e( (Q ), (S) hd )

µ ν µ

−= ψ ψ −     (2) 

or       1 h
ID ID ID IDe(T,d ) e( (Q ), (S))e( (Q ),d )

µ ν ν µ

− −= ψ ψ ψ  

observe that the latter equality can be tested without inverting ψ  as 1
ID IDe( (Q ), (S)) e(S,Q )

ν ν

−ψ ψ = . 

Thus the query is handled by computing IDe(S,Q )
µ

γ = , where ID 2 pubQ I G Q
µ µ= + and searching 

through the list 2L for entries of the form i i 2,i(m , r , h ,c, )γ indexed by 
2hi {1,...,q }∈ . If none is found, σ  

is rejected. Otherwise each one of them is further examined; for the corresponding indexes, �  checks if  

       2, ih

ID ID ID IDe(T,d ) e(S,Q ) e( (Q ),d )
µ ν ν µ

−
= ψ     (3) 

(the pairings are computed only once and at most 
2hq exponentiations are needed), meaning that (2) is 

satisfied. If the unique 
2hi {1,...,q }∈ satisfying (3) is detected, the matching pair i 2,i(m , h ,S )< >  is 



returned. Otherwise σ  is rejected. Overall an inappropriate rejection occurs with probability smaller than 
k

dvq / 2  across the whole game. 

- Simulator decrypt ( R(c,S,T),IDσ =σ =σ =σ = ): Analysis of decrypt simulator is similar to unsigncrypt 

simulator with replacing IDµ  by IDφ . Here an appropriate rejection occurs with probability smaller than 

k
dq / 2  across the whole game. 

 At the challenge phase, � outputs messages 0 1(m ,m ) and identities S R(ID , ID ) for which she 

never obtained RID ’s private key. If RID ID
�

≠ , � aborts. Otherwise it picks * n
R p R, c {0,1}ξ ∈ ∈�  and 

R 1S∈ � to return the challenge * c,S,Tσ =< >  where 1 1T G= −ξ ∈� . If we define ρ = ξ α  and since 

x I
�

= −α − , we can check that  

   1 1 1 1 pubT G G (I x) G I G (Q )
� �

= −ξ = −αρ = + ρ = ρ + ρψ  

 � cannot recognize that *σ  is not a proper ciphertext unless she queries 2H or 3H  on 1 2e(G ,G )ρ . 

Along the guess stage, her view is simulated as before and her eventual output is ignored. A successful �  

is very likely to query 2H or 3H  on the input 1 2e(G ,G )ρ  if the simulator is indistinguishable from real 

attack environment. 

 To produce a result � fetches a random entry 2(m, r, h ,c, )γ  or ,γ ⋅ from the list of 2L  or 3L with 

probability 
2 3h h1 (2q q )+ (as 3L contains more than 

2 3h hq q+ records by construction), the chosen entry 

contains the right element 
2

f ( ) /
1 2e(G ,G ) e(P,Q)ρ α ξ αγ = = , where 

q 1 i
ii 0f (z) c z

−
==   is the polynomial for 

which 2G = f ( )α Q. The q-BDHIP solution can be extracted by noting that, if * 1/e(P,Q) αγ = , then 

  ( ) ( )
2

0 q 2 q 2*(c )1/ i j
1 2 i 1 0 1 j 1i 0 j 0e(G ,G ) e c ( P),c Q e G , c ( Q)

− −α
+ += == γ α α   

 In an analysis of � ’s advantage, we note that it only fails in providing a consistent simulation 

because one of the following independent events: 

 1E : � does not choose to be challenged on ID
�

 

 2E : a key extraction query is made on ID
�

 

 3E : � aborts in a signcrypt or sign query because of collision on 2H  

 4E : � rejects valid ciphertext in unsigncrypt or decrypt query at some point of the game. 

  

 We clearly have 
11 hPr[ E ] 1 (q 1)¬ = − and we know that 1E¬ implies 2E¬ . We already observe 

that 
2

k
3 se s se s hPr[E ] (q q ) (q q q ) 2≤ + + + and k

4 dv dPr[E ] (q q ) 2≤ + . We thus find 

2

1

se s h dv d
1 3 4 se s k k

h

(q q q ) q q1
Pr[ E E E ] 1 (q q ) 1

q 1 2 2

+ +� � +� �
¬ ∧ ¬ ∧ ¬ ≥ − + −	 
	 
	 
− � �� �

 

We obtained the announced bound by noting that � selects the correct element from 2L  or 3L with 

probability
2 3h h1 (2q q )+ . Its workload is dominated by 

1

2
hO(q ) multiplication in the preparation phase, 

se s dv dO(q q q q )+ + + pairing evaluation and 
2dv d hO((q q )q )+ exponentiation in T� in its simulation of 

the signcrypt, sign, unsigncrypt, decrypt oracles. 

 



Proof of Lemma 2: we are going to use the “forking lemma” technique of Pointcheval and Stern [10] to 

prove our result. We will infect reduce the q-DHIP in bilinear groups 1 2( , )� � to the problem of forging. 

Since a black box for the q-DHIP is sufficient to solve the q-BDHIP the result will follow. We will now 

show how an EUF-IDGSC-CMA adversary � of IDGSC may be used to construct a simulator � that 

solves q-DHIP. Let 2 q(P,Q, Q, Q,..., Q)α α α be the instant of the q-DHIP that we wish to solve. 

 In the preparation phase, �  set up similarly as in theorem 1. The simulator �  is then ready 

answer � ’s queries throughout the simulation. To maintain consistency in queries �  makes the lists iL  

for random oracle iH  for i = 1, 2, 3. It first initializes a counter ν  to and runs �  on input 

1 2 pub ID(G ,G ,Q ,d , ID )
�φ

 for a randomly chosen challenge identity *
RID {0,1}

�
∈ . Also queries to the 

1 2 3H ,H ,H , signcrypt, sign, unsigncrypt and decrypt oracles are answered as in the proof of theorem 1. 

 This explain how � simulate � ’s environment in a chosen message and given identity attack. Let 

us assume that the attacker �  forges a ciphertext c,S,T< >  for a recipient’s identity RID in a time τ  

with probability 
2

k
se s se s h10(q q ) (q q q ) 2ε ≥ + + + when making seq signcrypt query, sq sign queries, 

2hq random oracle queries on 2H . By the irreflexivity assumption, RID ID
�

≠ , it makes possible to 

extract clear message signature pairs from ciphertext produce by the forger. Let the output of 

unsigncryption of c,S,T< >  is 1 1m,r,h ,S< > . Note that � does not know the private key corresponding 

to ID
�

. Then by forking lemma there exist a turning machine � ′  that runs � sufficient number of times 

on the input 1 2 pub ID(G ,G ,Q ,d , ID )
�φ

to obtain two suitable related forgeries which give 1 1m,r,h ,S< > , 

2 2m,r,h ,S< >  with 1 2h h≠ , in the expected time 
2h' 120686qτ ≤ τ ε . 

 The reduction then works as follows. The simulator � runs � ′  to obtain two forgeries 

1 1m*, r, h ,S< > and 2 2m*, r, h ,S< >  for the same message m *  and commitment r with 1 2h h≠ . Both 

forgeries satisfy the verification equation, this gives  

    1 2h h
1 2 2 ID 1 2e(G ,G ) e(S ,Q )e(G ,G )

�

− −=  

with ID 2 2Q (I x)G G
� �

= + = −α . Then its gives 1
1 2 1 2 IDe((h h ) (S S ),Q )

�

−− − 1 2e(G ,G )= and hence  

    * 1
1 2 1 2 1

1
T (h h ) (S S ) G−= − − =

α
 

From *T , � can extract 
1

* Pσ =
α

; it knows that 
q 2 i

0 ii 0
f (z) z c z c z

−
== +  and eventually computes 

   
q 2* i

ii 0
0

1 1
* T c ( Q) P

c

−
=

� �σ = − ψ α =� � α
 

which is returned as a result. 

 It finally comes that, if �  makes a forgery in time τ  with probability 

2

k
se s se s h10(q q ) (q q q ) 2ε ≥ + + + then � solves the q-DHIP in expected time 

    
2 2 1

k 2
h se s dv d p dv d h exp h multi' 120686q ( O(q q q q ) O((q q )q ) ) (1 q / 2 ) O(q )τ ≤ τ + + + + τ + + τ ε − + τ . 


