
Secure Evaluation of Private Linear Branching Programs
with Medical Applications

Mauro Barni1, Pierluigi Failla1, Vladimir Kolesnikov2, Riccardo Lazzeretti1,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Department of Information Engineering, University of Siena, Italy
barni@dii.unisi.it,{pierluigi.failla,lazzaro79}@gmail.com

2 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com
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Abstract. Diagnostic and classification algorithms play an important role in data analysis, with ap-
plications in areas such as health care, fault diagnostics, or benchmarking. Branching programs (BP)
is a popular representation model for describing the underlying classification/diagnostics algorithms.
Typical application scenarios involve a client who provides data and a service provider (server) whose
diagnostic program is run on client’s data. Both parties need to keep their inputs private.
We present new, more efficient privacy-protecting protocols for remote evaluation of such classifica-
tion/diagnostic programs. In addition to efficiency improvements, we generalize previous solutions –
we securely evaluate private linear branching programs (LBP), a useful generalization of BP that we
introduce. We show practicality of our solutions: we apply our protocols to the privacy-preserving clas-
sification of medical ElectroCardioGram (ECG) signals and present implementation results. Finally,
we discover and fix a subtle security weakness of the most recent remote diagnostic proposal, which
allowed malicious clients to learn partial information about the program.

1 Introduction

Classification and diagnostic programs are very useful tools for automatic data analysis with re-
spect to specific properties. They are deployed for various applications, from spam filters [DCDZ05],
remote software fault diagnostics [HRD+07] to medical diagnostic expert systems [RGI05]. The
health-care industry is moving faster than ever toward technologies that offer personalized online
self-service, medical error reduction, consumer data mining and more (e.g., [Goo09]). Such tech-
nologies have the potential of revolutionizing the way medical data is stored, processed, delivered,
and made available in an ubiquitous and seamless way to millions of users throughout the world.

Typical application scenarios in this context concern two (remote) parties, a user or data
provider (client) and a service provider (server) who usually owns the diagnostic software that
will run on the client’s data and output classification/diagnostic results.

In this framework, however, a central problem is the protection of privacy of both parties. On
the one hand, the user’s data might be sensitive and security-critical (e.g., electronic patient records
in health care, passwords and other secret credentials in remote software diagnostics, trade- and
work-flow information in benchmarking of enterprises). On the other hand, the service provider,
who typically owns the diagnostic software, may not be willing to disclose the underlying algorithms
and the corresponding optimized parameters (e.g., because they represent intellectual property).

Secure function evaluation with private functions [SYY99,Pin02,KS08b,SS08] is one way to
realize the above scenarios, when the underlying private algorithms are represented as circuits.
However, as we elaborate in the discussion on related work, in some applications, such as diagnostics,
it is most natural and efficient to represent the function as a decision graph or a Branching Program
(BP). At a high level, BPs consist of different types of nodes - decision nodes and classification
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nodes. Based on the inputs and certain decision parameters such as thresholds (that are often the
result of learning processes), the algorithm branches among the decision nodes until it reaches the
corresponding classification node (which represents a leaf node in the decision tree).

In this work, we consider applications that benefit from the BP representation, such as our mo-
tivating application, classification of medical ElectroCardioGram (ECG) signals. In the remainder
of the paper, we concentrate on the BP approach (including discussion of related work).

Related Work. There is a number of fundamental works, e.g. Kilian [Kil88], that rely on Branching
Programs (BP) “under the hood”. These are general feasibility results that do not attempt to
achieve high efficiency for concrete problems. The goals and results of these works and ours are
different. We do not directly compare their performance to ours; instead, we compare our work
with previously-best approaches that are applicable to our setting (see below).

Recently, very interesting BP-based crypto-computing protocols were proposed by Ishai and
Paskin [IP07] (and later slightly improved by Lipmaa [Lip08] who also presented a variety of appli-
cations). In their setting, the server evaluates his program on client’s encrypted data. The novelty
of the approach of [IP07] is that the communication and client’s computation depend on the length
(or depth) of BP, and are independent of the size of BP. This allows for significant savings in
cases of “wide” BP. However, the protocol requires computationally expensive operations on homo-
morphically encrypted ciphertexts for each node of the BP. Further, the server’s computation still
depends on the size of BP. The savings achieved by these protocols are not significant in our setting
(in applications we are considering, BPs are not wide), and the cost of employed homomorphic
encryption operation outweighs the benefit.

Most relevant for this work is the sequence of works [KJGB06,BPSW07,Sch08], where the
authors consider problems similar to ours, and are specifically concerned with concrete performance
of the resulting protocols. Kruger et al. [KJGB06] observed that some functions are more succinctly
represented by Ordered Binary Decision Diagrams (OBDD), and proposed a natural extension of
the garbled circuit method which allows secure evaluation of (publicly known) OBDDs. As in the
garbled circuit approach, the client receives garblings of his inputs, and is blindly evaluating a
garbled OBDD to receive a garbling of the output, which is then opened. Brickell et al. [BPSW07]
further extended this approach and considered evaluation of private BPs. They also consider a more
complex decision procedure at the nodes of BP (based on the result of integer comparison). The
solution of [BPSW07] is especially suited for remote diagnostics, their motivating application.

In the above two approaches the communication complexity depends linearly on the size of
the BP, as the size of the garbled BP is linear in the size of the BP. While the computational
complexity for the client remains asymptotically the same as in the crypto-computing protocols of
[IP07] (linear in the length of the evaluation path), the computational cost is substantially smaller
(especially for the server), as only symmetric crypto operations need to be applied to the nodes of
the BP. Further, Schneider [Sch08] proposed an extension of the protocol of [KJGB06] for secure
evaluation of private OBDDs based on efficient selection blocks [KS08b]. In our work, we generalize,
unify, extend, and improve efficiency of the above three protocols [KJGB06,BPSW07,Sch08].

In addition to circuits and BPs, other (secure) classification methods have been considered, such
as those based on neural networks ([CL01,OPB07,PCB+08,SS08]). In our work, we concentrate on
the BP representation, and the problems it solves most efficiently.

Our Contribution and Outline. Our main contribution is a new more efficient modular protocol
for secure evaluation of a class of diagnostics/classification problems, which are naturally computed
by (a generalization of) decision trees (§3). We work in the semi-honest model, but explain how
our protocols can be efficiently secured against malicious adversaries (§3.6). We improve on the
previously proposed solutions in several ways.



Secure Evaluation of Private Linear Branching Programs with Medical Applications 3

Firstly, we consider a more general problem. It turns out, our motivating example – ECG
classification – as well as a variety of other applications, benefit from a natural generalization
of Branching Programs (BP) and decision trees, commonly considered before. We introduce and
justify Linear Branching Programs (LBP) (§3.1), and show how to evaluate them efficiently.

Secondly, we fine-tune the performance. We propose several new tricks (for example, we show
how to avoid inclusion of classification nodes in the encrypted program). We also employ performance-
improving techniques which were used in a variety of areas of secure computation. This results in
significant performance improvements over previous work, even for evaluation of previously consid-
ered BPs. A detailed performance comparison is presented in §3.5.

Further, in §4, we discover and fix a subtle vulnerability in the recent and very efficient variant
of the protocol for secure BP evaluation [BPSW07] and secure classifier learning [BS09].

Finally, we apply our protocols to the privacy-preserving classification of medical ElectroCar-
dioGram (ECG) signals (§5). We implemented our solution; our experimental results show the
practical suitability of our protocols (§6).

2 Preliminaries

In our protocols we combine several standard cryptographic tools (additively homomorphic encryp-
tion, oblivious transfer, and garbled circuits) which we summarize in §2.1. Readers familiar with
these tools can safely skip §2.1 and continue reading our notational conventions in §2.2.

We denote the symmetric security parameter with t and the asymmetric security parameter
with T . Recommended parameters for short-term security are for example t = 80 and T = 1248
[GQ09].

2.1 Cryptographic Tools

Homomorphic Encryption (HE). We use a semantically secure additively homomorphic public-
key encryption scheme. In an additively homomorphic cryptosystem, given encryptions JaK and JbK,
an encryption Ja + bK can be computed as Ja + bK = JaKJbK, where all operations are performed in
the corresponding plaintext or ciphertext structure. From this property follows, that multiplication
of an encryption JaK with a constant c can be computed efficiently as Jc · aK = JaKc (e.g., with
the square-and-multiply method). As instantiation we use the Paillier cryptosystem [Pai99,DJ01]
which has plaintext space ZN and ciphertext space Z∗

N2 , where N is a T -bit RSA modulus. This
scheme is semantically secure under the decisional composite residuosity assumption (DCRA). For
details on the encryption and decryption function we refer to [DJ01].

Parallel Oblivious Transfer (OT). Parallel 1-out-of-2 Oblivious Transfer (m−ParallelOT), is a
two-party protocol as shown in Fig. 1. S inputs m pairs of r-bit strings Si =

〈
s0
i , s

1
i

〉
; i = 1, . . . ,m;

s0
i , s

1
i ∈ {0, 1}r. C inputs m choice bits bi ∈ {0, 1}. At the end of the protocol, C learns sbi

i , but
nothing about s1−bi

i whereas S learns nothing about bi.
We use m − ParallelOT as a black-box primitive in our constructions. It can be instanti-

ated efficiently with different protocols [NP01,AIR01,Lip03,IKNP03]. For example the protocol
of [NP01] implemented over a suitably chosen elliptic curve has asymptotic communication com-
plexity m(4t+2r) and is secure against malicious C and semi-honest S in the random oracle model.
The protocol of [AIR01] implemented over a suitably chosen elliptic curve has asymptotic commu-
nication complexity m(12t) and is secure against malicious C and semi-honest S in the standard
model. Extensions of [IKNP03] can be used to reduce the number of computationally expensive
public-key operations to be independent of m while increasing the communictation complexity.
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Server S
S1, . . . , Sm

Client C

sb1
1 , . . . , sbm

m

m− ParallelOT
b1, . . . , bm

with Si =
〈
s0

i , s
1
i

〉

Fig. 1. m − ParallelOT - Parallel Oblivious Transfer

Garbled Circuit (GC). Yao’s Garbled Circuit approach [Yao86], excellently presented in [LP04],
is the most efficient method for secure evaluation of a boolean circuit C. We summarize its ideas in
the following. First, the circuit constructor (server S), creates a garbled circuit C̃ with algorithm
CreateGC: for each wire Wi of the circuit, he randomly chooses a complementary garbled value
W̃i =

〈
w̃0

i , w̃
1
i

〉
consisting of two secrets, w̃0

i and w̃1
i , where w̃j

i is the garbled value of Wi’s value
j. (Note: w̃j

i does not reveal j.) Further, for each gate Gi, S creates and sends to the evaluator
(client C) a garbled table T̃i, with the following property: given a set of garbled values of Gi’s
inputs, T̃i allows to recover the garbled value of the corresponding Gi’s output, and nothing else.
Then garbled values corresponding to C’s inputs xj are (obliviously) transferred to C with a parallel
oblivious transfer protocol ParallelOT: S inputs complementary garbled values W̃j into the protocol;
C inputs xj and obtains w̃

xj

j as outputs. Now, C can evaluate the garbled circuit C̃ with algorithm
EvalGC to obtain the garbled output simply by evaluating the garbled circuit gate by gate, using
the garbled tables T̃i. Correctness of GC follows from method of construction of garbled tables T̃i.
As in [BPSW07] we use the GC protocol as a conditional oblivious transfer protocol where we do
not provide a translation from the garbled output values to their plain values to C, i.e., C obtains
one of two garbled values which can be used as a key in following protocols but does not know to
which value this key corresponds.

Implementation Details. As described in [MNPS04], a point-and-permute technique can be used
to speed up the implementation of the GC protocol: The garbled values w̃i = 〈ki, πi〉 consist of a
symmetric key ki ∈ {0, 1}t and πi ∈ {0, 1} is a random permutation bit. The permutation bit πi

is used to select the right entry for decryption and the key ki is used to decrypt the table entry.
Extensions of [KS08a] to “free XOR” gates can be used to further improve performance of GC.

2.2 Notation

In the following, a (signed) `-bit integer x` is represented as one bit for the sign, sign(x`), and
` − 1 bits for the magnitude, abs(x`), i.e., −2`−1 < x` < +2`−1. We write log x as shortcut for
log2 x.

Homomophic Encryption. Gen(1T ) denotes the key generation algorithm of the Paillier cryp-
tosystem [Pai99,DJ01] which, on input the asymmetric security parameter T , outputs a pair of
secret key skC and public key pkC = N to C, where N is a T -bit RSA modulus. Then, Jx`K denotes
the encryption of an `-bit message x` ∈ ZN (we assume ` < T ) with public key pkC .

Garbled Objects. Objects overlined with a tilde symbol denote garbled objects: Intuitively, C
cannot infer the real value i from a garbled value w̃i, but can use garbled values to evaluate a
garbled circuit C̃ or a garbled LBP L̃. Capital letters W̃ denote complementary garbled values
consisting of a pair of garbled values

〈
w̃0, w̃1

〉
for which we use the corresponding small letters.

We group together multiple garbled values to a garbled `-bit value w̃` (small letter in bold font)
which consists of ` garbled values w̃1, . . . , w̃`. Analogously, a complementary garbled `-bit value W̃`

(capital letter in bold font) consists of ` complementary garbled values W̃1, . . . , W̃`.
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3 Secure Evaluation of Private Linear Branching Programs

After formally defining Linear Branching Programs (LBP) in §3.1, we present two protocols for
secure evaluation of private LBPs. We decompose our protocols into different building blocks similar
to the protocol of [BPSW07] and show how to instantiate them more efficiently than those presented
in [BPSW07].

The protocols for secure evaluation of private LBPs are executed between a server S, in pos-
session of a private LBP, and a client C in possession of data, called attribute vector. Let z be
the number of nodes in the LBP, and n be the number of attributes in the attribute vector.

As in most practical scenarios n is significantly larger than z, the protocol of [BPSW07] is
optimized for this case. In particular, the size of our securely transformed LBP depends linearly on
z but is independent of n.

In contrast to [BPSW07], our solutions do not reveal the total number z of nodes of the LBP,
but only its number of decision nodes d in order to gain efficiency improvements. In particular,
the size of our securely transformed LBP depends linearly on d which is smaller than z by up to a
factor of two.

3.1 Linear Branching Programs (LBP)

First, we formally define the notion of linear branching programs. We do so by generalizing the BP
definition used in [BPSW07]. We note that BPs – and hence also LBPs – generalize binary classifi-
cation or decision trees and Ordered Binary Decision Diagrams (OBDDs) used in [KJGB06,Sch08].

Definition 1 (Linear Branching Program (LBP)). Let x` = x`
1, .., x

`
n be the attribute vector

consisting of signed `-bit integer values. A binary Linear Branching Program (LBP) L is a
triple 〈{P1, .., Pz},Left ,Right〉. The first element is a set of z nodes consisting of d decision nodes
P1, .., Pd followed by z − d classification nodes Pd+1, .., Pz.
Decision nodes Pi, 1 ≤ i ≤ d are the internal nodes of the LBP. Each Pi :=

〈
a`
i , t

`′
i

〉
is a pair, where

a`
i =

〈
a`

i,1, .., a
`
i,n

〉
is the linear combination vector consisting of n signed `-bit integer values

and t`
′

i is the signed `′-bit integer threshold value with which a`
i ◦x` =

∑n
j=1 a`

i,jx
`
j is compared in

this node. Left(i) is the index of the next node if a`
i ◦x` ≤ t`

′
i ; Right(i) is the index of the next node

if a`
i ◦ x` > t`

′
i . Functions Left() and Right() are such that the resulting directed graph is acyclic.

Classification nodes Pj := 〈cj〉, d < j ≤ z are the leaf nodes of the LBP consisting of a single
classification label cj each.

To evaluate the LBP L on some attribute vector x`, start with the first decision node P1. If a`
1 ◦

x` ≤ t`
′

1 , move to node Left(1), else to Right(1). Repeat this process recursively (with corresponding
a`
i and t`

′
i , until reaching one of the classification nodes and obtaining the classification c = L(x`).

In the general case of LBPs, the bit-length `′ of the threshold values t`
′

i has to be chosen
according to the maximum value of the linear combinations: from abs(a`

i ◦x`) = abs(
∑n

j=1 a`
i,jx

`
j) ≤∑n

j=1 22(`−1) = n22(`−1) follows

`′ = 1 + dlog2(n22(`−1))e = 2` + dlog2 ne − 1. (1)

As noted above, LBPs can be seen as a generalization of previous representations:

– Branching Programs (BP) as used in [BPSW07] are a special case of LBPs. In a BP,
in each decision node Pi the αi-th input x`

αi
is compared with the threshold value t`

′
i , where



6 M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, T. Schneider

αi ∈ {0, .., n} is a private index. In this case, the linear combination vector a`
i of the LBP decision

node degrades to a selection vector ai = 〈ai,1, .., ai,n〉, with exactly one entry ai,αi = 1 and
all other entries ai,j 6=αi

= 0. The bit-length of the threshold values t`
′

i is set to `′ = `.
– Ordered Binary Decision Diagrams (OBDD) as used in [KJGB06,Sch08] are a special case

of BPs with bit inputs (` = 1) and exactly two classification nodes (Pz−1 = 〈0〉 and Pz = 〈1〉).

3.2 Protocol Overview

We start with a high-level overview of our protocol for secure evaluation of private linear branching
programs. We then fill in the technical details and outline the differences and improvements of our
protocol over previous work in the following sections.

Our protocol SecureEvalPrivateLBP, its main building blocks, and the data and communication
flows are shown in Fig. 2. Recall, the client C receives the attribute vector x` = {x`

1, . . . , x
`
n} as the

input, and the server S receives a linear branching program L. Upon completion of the protocol,
C outputs the classification label c = L(x`), and S learns nothing. Of course, both C and S wish
to keep their inputs private. The protocol SecureEvalPrivateLBP is naturally decomposed into the
following three phases (shown on Fig. 2).

x! = x!
1, .., x

!
n

w̃1, .., w̃d

SecureEvalPrivateLBP

EvalGarbledLBP

Client C

c = L(x!)

CreateGarbledLBP

L
Server S

i = 1, .., d : â!
i , t̂

!′

i , W̃i L̃

ObliviousLinearSelect

Fig. 2. Secure Evaluation of Private Linear Branching Programs - Structural Overview

CreateGarbledLBP. In this phase, S creates a garbled version of the LBP L. This is done similarly
to the garbled-circuit-based previous approaches [BPSW07,KJGB06]. The idea is to randomly
permute the LBP, encrypt the pointers on the left and right successor, and garble the nodes, so
that the evaluator is unable to deviate from the evaluation path defined by his input.

The novelty of our solution is that each node transition is based on the oblivious comparison of
a linear combination of inputs with a node-specific threshold. Thus, CreateGarbledLBP additionally
processes (and modifies) these values and passes them to the next phase. CreateGarbledLBP can be
entirely precomputed by S.

ObliviousLinearSelect. In this phase, C obliviously obtains the garbled values w̃1, .., w̃d which cor-
respond to the outcome of the comparisons of the linear combination of the attribute vector with
the threshold for each garbled node. These garbled values will then be used to evaluate the garbled
LBP in the next phase.
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Making analogy to Yao’s garbled circuit (GC), this phase is the equivalent of the GC eval-
uator receiving the wire secrets corresponding to his inputs. In our protocol, this stage is more
complicated, since the secrets are transferred based on secret conditions.

EvalGarbledLBP. This is the equivalent of Yao’s garbled circuit evaluation procedure. Here, C re-
ceives the garbled LBP L̃ from S, and evaluates it. EvalGarbledLBP additionally gets the gar-
bled values w̃1, .., w̃d output by ObliviousLinearSelect as inputs and outputs the classification label
c = L(x`).

3.3 Our Building Blocks

Phase I (offline): CreateGarbledLBP. In this pre-computation phase, S generates a garbled
version L̃ of the private branching program L. CreateGarbledLBP is presented in Algorithm 1.

Algorithm 1 CreateGarbledLBP

Input S: LBP L = 〈{P1, .., Pz},Left ,Right〉. For i ≤ d, Pi is a decision node
D
a`
i , t

`′
i

E
. For i > d, Pi is a classification

node 〈ci〉.
Output S: (i) Garbled LBP eL =

D
{ eP1, .., ePd}

E
; (ii) Complementary garbled input values fW1, .., fWd;

(iii) Permuted linear combination vectors â`
1, .., â`

d; (iv) Permuted threshold values t̂`′
1 , .., t̂`′

d

1: choose a random permutation Π of the set 1, .., d with Π[1] = 1.
2: choose key ∆1 := 0t and random keys ∆i ∈R {0, 1}t, 1 < i ≤ d for encrypting the decision nodes
3: for i = 1 to d do
4: Pi =

D
a`
i , t

`′
i

E
is a decision node

5: let permuted index î := Π[i]

6: set permuted linear combination vector â`
î

:= a`
i ; permuted threshold value t̂`′

î
:= t`′

i

7: choose random complementary garbled value fWî =
˙ ew0

î
=

˙
k0

î
, πî

¸
, ew1

î
=

˙
k1

î
, 1 − πî

¸¸
8: let left successor i0 := Left [i], î0 := Π[i0] (permuted)
9: if i0 ≤ d then

10: Pi0 is a decision node

11: let mî,0 :=
D
"decision", î0, ∆î0

E
12: else
13: Pi0 = 〈ci0〉 is a classification node

14: let mî,0 := 〈"classification", ci0〉
15: end if
16: let right successor i1 := Right [i], î1 := Π[i1] (permuted)
17: if i1 ≤ d then
18: Pi1 is a decision node

19: let mî,1 :=
D
"decision", î1, ∆î1

E
20: else
21: Pi1 = 〈ci1〉 is a classification node

22: let mî,1 := 〈"classification", ci1〉
23: end if

24: let garbled decision node ePî :=

*
Encî,0

k
π

î
î
⊕∆

î

(mî,π
î), Encî,1

k
1−π

î
î

⊕∆
î

(mî,1−π
î)

+
25: end for
26: return eL :=

D
{ eP1, .., ePd}

E
; fW1, .., fWd; â`

1, .., â`
d; t̂`′

1 , .., t̂`′
d

Algorithm CreateGarbledLBP converts the nodes Pi of L into garbled nodes P̃î in L̃, as follows.
First, we associate a randomly chosen key ∆i with each node Pi. We use ∆i (with other keys, see
below) for encryption of Pi’s data.
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Each decision node Pi contains a pointer to its left successor node Pi0 and one to its right
successor node Pi1 . Garbled P̃i contains encryptions of these pointers and of successors’ respective
keys ∆i0 ,∆i1 . Further, since we want to prevent the LBP evaluator from following both successor
nodes, we additionally separately encrypt the data needed to decrypt Pi0 and Pi1 with random
keys k0

i and k1
i respectively. Evaluator later will receive (one of) kj

i , depending on his input (see
block ObliviousLinearSelect), which will enable him to decrypt and follow only the corresponding
successor node. In CreateGarbledLBP, we use the following technical improvement from [KJGB06]:
Instead of encrypting twice (sequentially, with ∆i and kj

i ), we encrypt successor Pij ’s data with
∆i ⊕ kj

i .
Each classification node is garbled simply by including its label directly into the parent’s node

(instead of the decryption key ∆i). This eliminates the need for inclusion of classification nodes in
the garbled LBP (and necessitates adding a bit denoting the type of the successor’s node to the
decision node’s encryption). This technical improvement allows to reduce the size of the garbled
LBP by up to a factor of 2, depending on the number of classification nodes.

As the last step in garbling Pi, we randomly permute the two successors’ encryptions.
We note that sometimes the order of nodes in a LBP may leak some information. To avoid this

potential leak, in the garbling process we randomly permute the nodes of the LBP (which results
in the corresponding substitutions in the encrypted pointers). The start node P1 remains the first
node in L̃. Additionally, garbled nodes are padded s.t. they all have the same size.

The output of CreateGarbledLBP is L̃ (to be sent to the evaluator C), and the randomness used
in its construction (to be useful for S in the next phase).

Complexity (cf. Table 2). L̃ contains d garbled nodes P̃i which consist of two ciphertexts of size
dlog de + t + 1 bits each (assuming classification labels cj have less bits than this). Hence, the size
of L̃ is 2d(dlog de+ t + 1) ∼ 2d(log d + t) bits.

Tiny LBPs. In case of tiny LBPs with a small number of decision nodes d we describe an alternative
construction method for garbled LBPs with asymptotic size 2d log(z − d) in §B.

Phase II: ObliviousLinearSelect. In this phase, C obliviously obtains the garbled values w̃1, .., w̃d

which correspond to the outcome of the comparison of the linear combination of the attribute vector
with the threshold for each garbled node. These garbled values will then be used to evaluate the
garbled LBP L̃ in the next phase.

In the ObliviousLinearSelect protocol, C’s input is the private attribute vector x` = {x`
1, . . . , x

`
n}

and S’s input is the private outputs of CreateGarbledLBP: complementary garbled values W̃1 =〈
w̃0

1, w̃
1
1

〉
, .., W̃d =

〈
w̃0

d, w̃
1
d

〉
, permuted linear combination vectors â`

1, .., â`
d, and permuted threshold

values t̂`
′

1 , .., t̂`
′

d . Upon completion of the protocol, S learns whether the execution succeeded, and
nothing else. C, in turn, obtains the garbled values w̃1, .., w̃d, as follows: if â`

i ◦x` > t̂`
′

i , then w̃i = w̃1
i ;

else w̃i = w̃0
i . We note that ObliviousLinearSelect can be viewed as an instance of conditional oblivious

transfer [BK04].
We give two efficient instantiations for ObliviousLinearSelect in §3.4.

Phase III: EvalGarbledLBP. In the last phase, C receives the garbled LBP L̃ from S, and evaluates
it locally with algorithm EvalGarbledLBP as shown in Algorithm 2. This algorithm additionally gets
the garbled values w̃1, .., w̃d output by ObliviousLinearSelect as inputs and outputs the classification
label c = L(x`).
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Algorithm 2 EvalGarbledLBP

Input C: (i) Garbled LBP eL =
D
{ eP1, .., ePd}

E
; (ii) Garbled input values ew1, .., ewd

Output C: Classification label c such that c = L(x`)

1: let î := 1, ∆î := 0t (start at root)
2: while true do
3: let 〈kî, πî〉 := ewî

4: let
˙
c0

î
, c1

î

¸
:= ePî

5: let 〈typeî, dataî〉 := Dec
î,π

î
k

î
⊕∆

î
(cπ

î
)

6: if typeî = "decision" then

7: let
D
î, ∆î

E
:= dataî

8: else
9: let 〈c〉 := dataî

10: return c
11: end if
12: end while

C traverses the garbled LBP L̃ by decrypting garbled decision nodes along the evaluation path
starting at P̃1. At each node P̃î,

4 C takes the garbled attribute value w̃î =
〈
kî, πî

〉
together with

the node-specific key ∆î to decrypt the information needed to continue evaluation of the garbled
successor node until the correct classification label c is obtained.

It is easy to see that some information is leaked to C, namely: (i) the total number d of decision
nodes in the program L̃, and (ii) the length of the evaluation path, i.e., the number of decision nodes
that have been evaluated before reaching the classification node. We note that in many instances
this is acceptable. When it is not, this information can be hidden using appropriate padding of the
LBP L. We further note that L̃ cannot be reused. Each secure evaluation requires construction of
a new garbled LBP.

3.4 Oblivious Linear Selection Protocol

In this section we show how to instantiate the ObliviousLinearSelect protocol.
A straight-forward instantiation can be obtained by evaluating a garbled circuit whose size

depends on the number of attributes n. Due to space restrictions this is described in §A.1.
In the following, we concentrate on an alternative instantiation based on a hybrid combination of

homomorphic encryption and garbled circuits which results in a better communication complexity.

Hybrid Instantiation. In the hybrid instantiation of ObliviousLinearSelect (see Fig. 3 for an
overview), C generates a key-pair for the additively homomorphic encryption scheme and sends
the public key pkC together with the homomorphically encrypted attributes Jx`

1K, .., Jx
`
nK to S.

Using the additively homomorphic property, S can compute the linear combination of these ci-
phertexts with the private coefficients â`

i as Jy`′
i K := J

∑n
j=1 â`

i,jx
`
jK =

∏n
j=1Jx

`
jK

â`
i,j , 1 ≤ i ≤ d.

Afterwards, the encrypted values Jy`′
i K are obliviously compared with the threshold values t̂`

′
i in the

ObliviousParallelCmp protocol. This protocol allows C to obliviously obtain the garbled values corre-
sponding to the comparison of y`′

i and t̂`
′

i , i.e., w̃0
i if y`′

i ≤ t̂`
′

i and w̃1
i otherwise. ObliviousParallelCmp

ensures that neither C nor S learns anything about the plaintexts y`′
i from which they could deduce

information about the other party’s private function respectively inputs.

4 We use the permuted index î here to stress that C does not obtain any information from the order of garbled nodes.



10 M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, T. Schneider

Server SClient C
i = 1, .., d : â!

i , t̂
!′

i , W̃ix!
1, .., x

!
n

W̃1, .., W̃d

t̂!
′

1 , .., t̂!
′

dObliviousParallelCmp

w̃1, .., w̃d

pkC , !x!
1", .., !x!

n"
Encrypt !x!

1", .., !x!
n"

!y!′

i " :=
n∏

j=1
!x!

j"â!
i,j

ObliviousLinearSelect

skC pkC

(skC , pkC) := Gen(1T )

For i = 1, .., d:

Fig. 3. ObliviousLinearSelect - Hybrid Instantiation

!y!′

1 ", .., !y!′

d′"pkC

Server SClient C
skC

w̃1, .., w̃d′

W̃1, .., W̃d′

t̂!
′

1 , .., t̂!
′

d′

EvalGC

ParallelOT

ObliviousParallelCmp

!γ" := !R"!y"

!y" :=
∏d′

i=1(!2!′−1"!y!′
i ")2!′(i−1)

R ∈R ZN

CreateGC

C̃

CreateC

Cγ := DecskC (!γ")

γ̃1, .., γ̃L′

Γ̃1, .., Γ̃L′

γ1, .., γL′ := γ mod L′

Fig. 4. ObliviousParallelCmp - Parallel Comparison

ObliviousParallelCmp protocol (cf. Fig. 4). The basic idea underlying the ObliviousParallelCmp pro-
tocol is that S blinds the encrypted values Jy`′

i K additively with a randomly chosen value R ∈R ZN

before sending them to C who can decrypt this value. Afterwards, a garbled circuit C is evalu-
ated which takes off the blinding value R and compares the result (which corresponds to y`′

i ) with
the threshold value t`

′
i . We improve the communication complexity of this basic protocol which

essentially corresponds to the protocol of [BPSW07] with the following two technical tricks:

Packing. Usually, the plaintext space of the homomorphic encryption scheme ZN is substantially
larger than the encrypted values y`′

i . Hence, multiple encryptions, say d′, can be packed together into
one ciphertext before blinding and sending it to C. This reduces the communication complexity and
the number of decryptions that need to be performed by C by a factor of d′. For this, the encrypted
values −2`′−1 < y`′

i < 2`′−1 are shifted into the positive range (0, 2`′) first by adding 2`′−1 and after-

wards are concatenated by computing JyK = J
∑d′

i=1 2`′(i−1)(y`′
i +2`′−1)K =

∏d′

i=1(J2
`′−1KJy`′

i K)2`′(i−1)
.

The packed ciphertext JyK encrypts a L′ = d′`′ bit value now.

Minimizing Circuit Size. As described before, the garbled circuit obliviously takes off the blinding
value R. Instead of computing in the plaintext space of the homomorphic cryptosystem ZN it
is beneficial to compute over integers as circuit sizes are substantially smaller (inspired by the
BITREP gate of [ST06]). For this, we ensure that no overflow occurs when blinding the L′-bit
value y by adding R ∈R ZN . This can be achieved by choosing L′ such that it is κ bits less than
the bitlength of N , where κ is a statistical correctness parameter (e.g., κ = 80): L′ ≤ T − κ. Now,
an overflow occurs only if the κ topmost bits of R are all ones which – as R was chosen randomly –
happens with probability 2−κ which is negligible in κ. The circuit subtracts the lowest L′ bits of R
from those of γ to obliviously reconstruct the value y before comparing this component-wise with
the threshold values t`

′
i . The garbled circuit is naturally composed from subtraction and comparison

circuits and has asymptotic size 12L′t bits as described in §A.2.

Complexity (cf. Table 1). From L′ = d′`′ ≤ T − κ we can infer d′ = T−κ
`′ as the maximum number

of packed ciphertexts. As shown in Fig. 3, the ObliviousParallelCmp protocol needs to be run for d
inputs which can be achieved by running the ObliviousParallelCmp protocol of Fig. 4 with d′ inputs
d d

d′ e times in parallel. The asymptotic communication complexity of the hybrid ObliviousLinearSelect

protocol as shown in Table 1 consists of n + d
d′ = n + `′

T−κd Paillier ciphertexts of size 2T bits each



Secure Evaluation of Private Linear Branching Programs with Medical Applications 11

(HE), garbled circuits of size d
d′ ·12L′t = 12d`′t bits (GC), and an d

d′ ·L
′ = d`′−ParallelOT protocol

(OT). The number of moves is two for sending the homomorphic encryptions plus those of the
underlying OT protocol (C̃ can be sent with the last message of the OT protocol).

Extension of [BPSW07] to LBPs. Our hybrid instantiation of the ObliviousLinearSelect pro-
tocol is a generalization of the ObliviousAttributeSelection protocol proposed in [BPSW07]. The
protocol for secure evaluation of private BPs of [BPSW07] can easily be extended to a protocol for
secure evaluation of private LBPs by computing a linear combination of the ciphertexts instead of
obliviously selecting one ciphertext. We call this protocol “ext. [BPSW07]”. However, our hybrid
protocol is more efficient than ext. [BPSW07] as shown in the next section.

3.5 Performance Improvements Over Existing Solutions

On the one hand, our protocols for secure evaluation of private LBPs extend the functionality
that can be evaluated securely from OBDDs [KJGB06], private OBDDs [Sch08], and private BPs
[BPSW07] to the larger class of private LBPs. On the other hand, our protocols can be seen
as general protocols which simply become improved (more efficient) versions of the protocols of
[KJGB06,Sch08,BPSW07] when instantiated for the respective special case functionality as de-
scribed below.

In the following, we summarize the employed techniques and the resulting performance im-
provements of our protocols over previous solutions (see Table 1 and Table 2). We stress that our
improvements, achieved by combining our new technical tricks and some previously known tech-
niques, are at the conceptual protocol level and will translate directly into any implementation,
i.e., are independent of implementation details such as programming languages or hardware used.

Incorporate classification nodes into decision nodes: In contrast to previous protocols given
in [KJGB06,Sch08,BPSW07], the size of our improved method for constructing garbled LBPs (cf.
Algorithm 1 & 2 in §3.3) depends on the number of decision nodes d only which is smaller than the
total number of nodes z (cf. Table 2), e.g., a full classification tree has z = 2d + 1 nodes. Hence,
C cannot infer the number of classification nodes in our protocols. As additionally the number of
attributes for which the ObliviousLinearSelect protocol needs to be run is reduced from z down to
d, the communication complexity of our hybrid protocol – except sending the encrypted attributes
(HE) – grows linearly in d instead of z (cf. rows “[BPSW07]”/“ext. [BPSW07]” vs. “Hybrid” in
Table 1). For full classification trees this results in an overall improvement by a factor of two.

Tiny LBPs: For tiny LBPs with d ≤ 10 decision nodes, e.g., the privacy-preserving remote
diagnostics examples for iptables and mpg321 given in [BPSW07], or the medical ECG classification
application described in §5, our alternative method for garbled LBPs described in §B results in a
substantially smaller communication complexity than existing solutions (cf. Table 2).

Point-and-permute: The protocols of [KJGB06,BPSW07] use the semantically secure encryption
scheme with ‘special’ properties of [LP04] where trial-decryptions of all entries must be performed
until the ‘right’ entry was found (which can be decided using the special properties). To achieve
the special properties, the ciphertext size is increased by κ (the statistical correctness parameter)
additional bits [LP04]. In contrast to this, our protocols use a point-and-permute technique as
described in the end of §2.1 to directly identify the right entry to decrypt during evaluation of
the GC as well as for the garbled LBP. This reduces the computation complexity for C as no
trial-decryptions need to be performed. Also a standard semantically secure encryption scheme
without padding can be used in our protocols which results in reduced communication complexity
(cf. dependance on κ in column “GC” of Table 1 and column “Size of Garbled LBP” of Table 2).
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Key-offsets: In the protocol of [BPSW07], the garbled circuits are encrypted symmetrically with a
node-specific key. During evaluation, C obtains this key, decrypts the garbled circuit, and evaluates
it. In contrast to this, our protocols use node-specific key-offsets ∆i as described in §3.3 which
result in lower computation complexity for both, S and C (adapted from [KJGB06]).

Packing: The hybrid ObliviousLinearSelect protocol improves over the ObliviousAttributeSelection
protocol of [BPSW07] by packing together multiple ciphertexts before sending them back to C
as described in §3.4. This reduces the communication complexity and the number of public-key
decryptions that C needs to perform by a factor of d′ = T−κ

`′ (cf. column HE in Table 1). For the
privacy-preserving diagnostics application scenario given in [BPSW07] with `′ = 32, κ = 80 and
the minimum asymmetric security parameter T = 1248 recommended today [GQ09] this results in
an improvement by another factor of d′ = 36. (Packing together multiple ciphertexts into one was
exploited before for example in [BPB08].)

Oblivious Selection Private Moves Asymptotic Communication Complexity
Protocol Function GC OT HE

[BPSW07] BP
OT + 2

12z`(t + κ) ParallelOT[z`]
(n + z)2T

ext. [BPSW07] (§3.4) LBP 12z`′(t + κ) ParallelOT[z`′]

our Hybrid (§3.4)
BP

OT + 2
12d`t ParallelOT[d`] (n + `

T−κ
d)2T

LBP 12d`′t ParallelOT[d`′] (n + `′

T−κ
d)2T

our Circuit (§A.1)
BP

OT
4(n log d + 3d log d)`t

ParallelOT[n`]
LBP 16nd(`2 + `′)t

Table 1. Comparison of Protocols for Secure Evaluation of Private BPs/LBPs with parameters z: #nodes, d: #de-
cision nodes, n: #attributes, `: bitlength of attributes, `′: bitlength of thresholds (for LBPs), t: symmetric security
parameter, T : asymmetric security parameter, κ: statistical correctness parameter.

Algorithm to Size of Examples from [BPSW07] with t = 80, κ = 80
Create/Evaluate Garbled LBP iptables mpg321 ECG classification (§5) nfs

Garbled LBP in bit d = 4, z = 9 d = 5, z = 9 d = 6, z = 12 d = 12, z = 17

[KJGB06,BPSW07] 2z(dlog ze + t + κ) 2, 952 bit 2, 952 bit 3, 936 bit 5, 610 bit
Algorithm 1 & 2 (§3.3) 2d(dlog de + t + 1) 664 bit 840 bit 1, 008 bit 2, 040 bit

Tiny GLBP (§B) 2ddlog(z − d)e 48 bit 64 bit 192 bit 12, 288 bit

Table 2. Comparison of Algorithms to Create/Evaluate Garbled LBPs. Parameters as in Table 1.

3.6 Correctness and Security Properties

As previously mentioned, protocol SecureEvalPrivateLBP securely and correctly evaluates private
LBP in the semi-honest model. For the lack of space, we formally state and prove the corresponding
theorems in Appendix C.

Extensions to Malicious Players. We note that our protocols, although proven secure against
semi-honest players, tolerate many malicious client behaviors. For example, we use OT secure
against malicious choosers, and a malicious client is unable to tamper with the GC evaluation
procedure. Further, our protocols can be modified to achieve full security in the malicious model.
One classical way is to prove in zero-knowledge the validity of every step a party takes. However,
this approach is far inefficient. We achieve malicious security simply by employing efficient sub-
protocols proven secure against malicious players. (This is the transformation approach suggested in
[BPSW07].) More specifically, we use committed OT, secure two-party computation on committed
inputs, and verifiable homomorphic encryption schemes (see [JS07] for more detailed description).
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4 A Technical Omission in [BPSW07] w.r.t. Malicious Client

In this section, we briefly present and fix a small technical omission, which led to an incorrect claim
of security in the setting with semi-honest server and malicious client in [BPSW07, Section 4.4]
(and indirectly propagated to [BS09]). Recall, the protocol of [BPSW07] is similar in the struc-
ture to our protocol. The problem appears in the ObliviousAttributeSelection subroutine, which is
similar to (actually is a special case of) our ObliviousLinearSelect subroutine. The issue is that, for
efficiency, [BPSW07] mask the C-encrypted attribute values with relatively short random strings,
before returning them back to C. In the semi-honest model this guarantees that C is not able to
match the returned strings to the attribute values he earlier sent, and the security of the entire
protocol holds. However, the security breaks in case of a malicious C. Indeed, such a C can send S
very large values xi, wait for the blinded responses and match these with the original xi, allowing
C to determine which of the attributes are used for the computation. (Indeed, whereas the lower
bits are blinded correctly, the upper bits of the maliciously chosen large xi remain the same.) We
further note that malicious C will not even be caught since he will recover the blinding values and
will be able to continue execution with his real inputs, if he wishes.

This attack can be prevented by choosing R randomly from the full plaintext domain ZN instead
(as done in our ObliviousParallelCmp protocol). With this modification, the blinded value is entirely
random in ZN and a malicious C cannot infer any information from it.

5 Application: Secure Classification of Medical Data

In this section we present our motivating example application for secure evaluation of private
LBPs – privacy preserving classification of biomedical data. While one might need to protect a
variety of types of biomedical data (e.g., [BCA+93,TWBT95,FLK08,KTB+03]) we consider privacy-
preserving classification of ElectroCardioGram (ECG) signals as a simple representative example.
A patient (client C) owns an ECG signal and asks a service provider (server S) to determine which
class the ECG signal belongs to. C requires S to gain no knowledge about the ECG signal (as
this is sensitive personal data of C), whereas S requires no disclosure of details of the classification
algorithm to C (as this represents valuable intellectual property of S).

To achieve this, we map the signal processing chain of an established ECG classification algo-
rithm [ASSK07,GSK02] to secure evaluation of private LBPs, as described next (cf. Fig. 5).

Inputs and Outputs. The classification algorithm of Acharya et al. [ASSK07] and Ge et al. [GSK02]
classifies the ECG trace of a single heartbeat into one of 6 classes: Normal Sinus Rhythm (NSR),
Atrial Premature Contraction (APC), Premature Ventricular Contraction (PVC), Ventricular Fib-
rillation (VF), Ventricular Tachycardia (VT), and SupraVentricular Tachycardia (SVT).

Signal Preprocessing. Following the structure of the classification algorithm described in [ASSK07],
each ECG trace is modeled by a 4-th order autoregressive (AR) model first (cf. [BJR76] for details).
The AR model parameters and a proper set of statistics of the prediction error are merged together
to obtain the so-called feature vector (AR Modeling and Feature Extraction). This results in the
28-element-long feature vector which is quantized to `-bit signed integers (Quantization) – the
attribute vector x` = {x`

1, .., x
`
28} which is input into the secure classification described next.

Secure Classification. Secure classification consists of three steps: First, the quadratic discriminant
function (QDF) classifier (cf. [MWI92] for details) projects x` onto 6 dimensions a`

i , i = 1, .., 6.
Afterwards, the signs of the projections are extracted (Sign Extraction) and finally used to traverse
a classification tree (Classification). It is easy to see that these three steps of the signal processing
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chain exactly correspond to the evaluation of an LBP with x` as attribute vector and 6 nodes
Pi =

〈
a`
i , 0

〉
, i = 1, .., 6 as shown in Fig. 6. (Note, the coefficients of the linear combination vector

a`
i represent the knowledge embedded within the classifier and are usually computed by relying

on a set of training ECG’s [ASSK07].) This LBP can be efficiently and securely evaluated using
protocols presented in this paper.
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Fig. 5. Secure ECG Classification with LBP
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6 Implementation of Classification Algorithm and Communication Complexity

We have implemented and tested the classification algorithm for ECG data using LBPs to work in
the plain domain. To experimentally evaluate the dependence of the classification accuracy, we built
a dataset of 1200 ECG signals taken from the MIT-BIH Arrhythmia, Malignant Ventricular Ar-
rhythmia and Supraventricular Arrhythmia Databases available in PhysioBank archives [GAG+00].
The dataset contained 200 examples of each of the 6 classes considered by the classifier. We split
the dataset into two parts: 60 signals of each class for training the classifier and 140 for testing it.
In figure 7 the classification rate is plotted as a function of the attribute length `. An attribute
length of ` = 39 bit results in a reasonable classification accuracy of 88.6%.
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Fig. 7. Classification Accuracy over Attribute Size `

Protocol ext. [BPSW07] Hybrid Circuit
(§3.4) (§3.4) (§A.1)

Moves 4 4 2

Security Level Asymptotic Communication Complexity

short-term 295 kByte 91 kByte 41.2 MByte
medium-term 370 kByte 130 kByte 57.6 MByte
long-term 408 kByte 150 kByte 65.8 MByte

Fig. 8. Estimated Communication Complexity
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The estimated communication complexity of the protocol for secure classification of ECG data

with parameters z = 12, d = 6, n = 28, ` = 39, `′
(1)
= 82, κ = 80 is given in Fig. 8. This table depicts

different sizes for current security parameter recommendations for short-term (t = 80, T = 1248),
medium-term (t = 112, T = 2432) and long-term (t = 128, T = 3248) security [GQ09]. We use
the two-move m− ParallelOT protocol of [NP01] which can be implemented over a suitably chosen
curve, e.g., curve secp160r1 for t = 80, secp224r1 for t = 112, resp. secp256r1 for t = 128 from the
SECG standard [SEC00b,SEC00a,Bro05].

In order to verify these communication complexities experimentally and to determine the exact
computation complexity we are currently implementing the entire protocol for secure classification
of ECG data based on the protocols proposed in this paper. We plan to put the results obtained
from this into the final version of this paper as well.
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A Oblivious Linear Selection Protocol

A.1 Circuit Instantiation

ObliviousLinearSelect can be instantiated based on the secure evaluation of a garbled circuit as
shown in Fig. 9. First, S creates a boolean circuit C with `-bit inputs x`

1, .., x
`
n and output bits

w1, . . . , wd that obliviously computes the intended functionality as described below. The circuit is
evaluated securely with Yao’s garbled circuit protocol, i.e., S creates a garbled circuit C̃ (using
algorithm CreateGC) which is sent to C along with the garbled inputs corresponding to C’s inputs
x`

1, .., x
`
n in a n` − ParallelOT protocol, and finally C evaluates C̃ on these garbled inputs (using

algorithm EvalGC) to obtain the garbled output values w̃1, . . . , w̃d.
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Fig. 9. ObliviousLinearSelect - Circuit Instantiation
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LBP. In case of LBPs, the circuit C needs to compute wi = (â`
i ◦ x` > t̂`

′
i ) = (

∑n
j=1 â`

i,j · x`
j > t̂`

′
i ),

1 ≤ i ≤ d. As shown in Fig. 10, an efficient circuit construction can be obtained by first multiplying
the magnitudes of x`

j and â`
i,j with an unsigned integer multiplication circuit (∗). Afterwards, the

sign is determined by combining the sign bits of x`
j and â`

i,j with an XOR gate (⊕). Depending on
this sign, the multiplied value is added or subtracted from the intermediate result c`′

i,j−1 with an
integer addition/subtraction circuit (+/−). Hence, the intermediate values c`′

i,J carry the sum of
the first J summands, i.e., c`′

i,J =
∑J

j=1 â`
i,j · x`

j . In the end, the final value c`′
i,n =

∑n
j=1 â`

i,j · x`
j is

compared with the threshold value t̂`
′

i using an integer comparison circuit (>). The circuit can be
generated automatically with the compiler of [PSS09] into a garbled circuit of size |C̃| = d(n(|∗|+
|⊕|+ |+/−|)+ |>|) = d(n([16(`− 1)2− 16(`− 1)+4]+ [4]+ [16`′])+4`′)(t+1) ∼ 16tnd(`2 + `′) bit.

BP. In case of BPs, a substantially smaller circuit C ′ can be constructed to compute the function-
ality wi = (xα̂i

> t̂`i). This circuit first obliviously selects the input x`
α̂i

from the inputs x`
1, .., x

`
n.

This can be achieved by using selection blocks Sn
d as follows: An Sn

d selection block is a circuit
which can obliviously select for each of its d outputs any of its n inputs. By using ` such selec-
tion blocks in parallel (one for each bit of the ` bits), the circuit can obliviously select x`

α̂1
, .., x`

α̂d

from x`
1, .., x

`
n. Afterwards, the selected values are compared with the respective threshold value

t̂`i using an integer comparison circuit (>). Using efficient selection block constructions of [KS08b]
together with the comparison blocks implemented in [PSS09] this results in a garbled circuit of size
|C̃ ′| = `|Sn

d |+ d|>| = (`[4(n+3d)dlog de+4n− 16d+12]+ d[4`])(t+1) ∼ 4(n log d+3d log d)`t bit.
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Complexity (cf. Table 1). The circuit-based instantiation of ObliviousLinearSelect needs the same
number of moves as the underlying OT protocol as the garbled circuit can be sent with the
last message of the OT protocol. The asymptotic communication complexity of the circuit-based
ObliviousLinearSelect protocol as shown in Table 1 is that of the n`−ParallelOT protocol (OT) plus
the size of the garbled circuit given above (GC).

Security. The circuit-based instantiation of ObliviousLinearSelect is secure against malicious C and
semi-honest S in the standard model. This follows directly from the corresponding security of Yao’s
garbled circuit [LP04].

A.2 Hybrid Instantiation - Technical Details

In the hybrid instantiation of the ObliviousLinearSelect protocol described in §3.4, S constructs
a circuit C with L′ inputs corresponding to γ mod L′ and k outputs w1, .., wd′ : First, the L′

least significant bits of R are subtracted from the inputs corresponding to γ mod L′ resulting in
y = ȳ`′

d′ || . . . ||ȳ`′
1 with an integer subtraction circuit (−). Then, each ȳ`′

i , 1 ≤ i ≤ d is compared with
its corresponding threshold t̂`

′
i with an integer comparison circuit (>). The circuit can be generated

automatically with the compiler of [PSS09] into a garbled circuit of size |C̃| = | − | + d′|>| =
([8L′] + d′[4`′])(t + 1) ∼ 12L′t bit.

B Garbled LBP Construction for Tiny LBPs

As alternative to the improved method of [BPSW07] described in §3.3 (Algorithm 1 and Algo-
rithm 2), the garbled LBP can be constructed using a single Yao gate with d inputs as described
next. The garbled LBP L̃ needs to obliviously map the garbled inputs w̃1, .., w̃d to the correspond-
ing classification label c as explained in §3.2. This can trivially be implemented with a Yao gate
with d inputs which encrypts for each of the 2d possible input combinations the index of the corre-
sponding label. As the total number of classification nodes is z−d, their index can be encoded with
dlog(z−d)e bits. Hence, the overall size of the garbled gate is |L̃′| = 2ddlog(z−d)e ∼ 2d log(z−d) bits.
As the size of this alternative construction for garbled LBPs grows exponentially in d, this is feasible
for tiny LBPs only. While – in contrast to the method described in §3.3 – this method reveals the
number of classification nodes and their labels but hides the length of the evaluation path without
need for padding with dummy decision nodes.

C Security and Correctness Claims and Proofs

Correctness of SecureEvalPrivateLBP is easiest to verify by considering its components. By correct-
ness, we mean the requirement that, upon completion of the protocol execution, two honest parties
produce the correct output.

Firstly, observe that both our proposed implementations of ObliviousLinearSelect are indeed
correct. Verification of this is somewhat tedious, but straightforward. The circuit-based protocol is
based on Yao’s GC construction, and its correctness verification is similar to that of GC. Our hybrid
ObliviousLinearSelect algorithm additionally makes use of homomorphic encryption; the correctness
of this amendment is easily seen as well.

Further, given the correctness of ObliviousLinearSelect, the CreateGarbledLBP/EvalGarbledLBP
pair allows to correctly evaluate L̃. This can be easily verified through the method of construction
and blind evaluation of the garbled LBP L̃. Indeed, EvalGarbledLBP simply unravels the encryptions
and permutations added by CreateGarbledLBP. Since ObliviousLinearSelect correctly provides the
decryption keys corresponding to the parties’ inputs, C obtains the correct classification label c =
L(x`).
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Security Proofs. We now prove the security properties of our constructions. All of the proofs
are standard, and we omit the most tedious details. However, full proofs are readily obtained from
our presentation. We show security in the semi-honest setting, with respect to standard simulation-
based definitions (e.g., Goldreich [Gol04]). When we say “protocol π is secure”, we mean “protocol
π securely implements the (implied) ideal functionality”. We explicate this statement for our main
Theorem 3. We first show security of both ObliviousLinearSelect variants.

Theorem 1 (ObliviousLinearSelect - Circuit-Based). The circuit-based ObliviousLinearSelect pro-
tocol is secure against semi-honest adversaries.

Proof. We first note that the circuit C that S construct is independent of the parties’ inputs, and
is public. Further, standard GC construction and execution using a secure OT protocol (cf. §2.1) is
secure in the semi-honest model. We refer the reader to multiple existing constructions and proofs
in the literature (e.g., [LP04,PSS09]). This completes the proof of the theorem. ut

Theorem 2 (ObliviousLinearSelect - Hybrid). The hybrid ObliviousLinearSelect protocol is secure
against semi-honest adversaries.

Proof. The proof of security is simple, but somewhat tedious; it is similar to corresponding proofs
in [BPSW07]. At the high level, C’s security follows from the fact that C only sends encrypted data,
and from the security of employed OT. S’s security follows from the method of construction of the
garbled circuits and the homomorphic manipulations, and from the security of employed OT. ut

Let L be a LBP, as defined in Definition 1. We are interested in secure evaluation of the following
functionality, where d is the total number of decision nodes of L, and e is the the number of nodes
that have been evaluated before reaching a classification node (depth of evaluation path).

Functionality 1
fLBPEval(x`,L) = ((L(x`), d, e), empty string)) (2)

We note that we allow C to learn d and e, since hiding these values carries high cost, and for the
simplicity of presentation. If desired to keep these values private, dummy nodes can be inserted in
the LBP L to pad and thus partially hide both d and e. This is a standard simple technique, and
we do not further discuss it. Our proofs can be trivially modified to accommodate this addition.

Theorem 3 (Security). Let ObliviousLinearSelect be secure in the semi-honest model (cf. Theo-
rems 1 and 2). Then Protocol SecureEvalPrivateLBP evaluates Functionality 1 securely in the semi-
honest model.

Proof. The proof of Theorem 3 is similar to existing proofs of security of GC and OBDD, such as
those of [LP04,KJGB06]. At the highest level, C’s security follows from the security of the underlying
OT. Indeed, C does not send anything other than the messages of the OT protocol. S’s security
follows from the security of OT, as well as from the method of garbling the LBP L, allowing C to
follow a single evaluation path. Further, the structure of the LBP remains hidden from C since the
node pointers are encrypted.

Formal proof of security requires construction of simulators SimS and SimC , which produce a
view indistinguishable from the views S and C have respectively. Recall, a semi-honest party’s view
consists of its input, used randomness, and the messages it received.

First consider the case that S is corrupt. We construct a simulator SimS that, given the
input L, and the output ⊥, simulates V IEWS . SimS uses the simulator guaranteed by the se-
cure ObliviousLinearSelect as follows. SimS , given the input L, runs CreateGarbledLBP, and feeds
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the appropriate output of CreateGarbledLBP into the simulator of ObliviousLinearSelect. SimS ’s
output consists of SimS ’ input L, the randomness used to run CreateGarbledLBP, and whatever
ObliviousLinearSelect’s simulator output. It is easy to see that this simulation is indistinguishable
from the real view V IEWS (where the indistinguishability is computational (resp. statistical) if
the output of ObliviousLinearSelect’s simulator is computationally (resp. statistically) close to its
respective real view).

Now consider the case that C is corrupt. This case is a little more involved, but is standard
nonetheless. We construct a simulator SimC that, given the input x`, and the output L(x`), sim-
ulates V IEWS . Notice that, in particular, C expects to receive a garbled LBP L̃, together with
the wire values that correspond to C’s inputs. That is, when evaluated, L̃ should produce L(x`).
The main simulation challenge is that SimC does not know L, and thus cannot simply honestly
generate L̃ by running CreateGarbledLBP. We show how to generate a fake garbled L̃′ that evaluates
to L(x`), yet is indistinguishable from a real L̃. Once this is accomplished, the remainder of the
simulation is easy (calling simulator of ObliviousLinearSelect and plugging its output).

Recall, we allow C to learn the size (more specifically, the number of decision nodes) d of L, and
the depth e of the evaluation path. Therefore, this information is made available to SimC . SimC

then constructs L̃′ that always evaluates to L(x`), regardless of what L actually does. SimC builds
it by first generating, a (garbled) evaluation path of length e. Each path node is generated according
to Algorithm 1, with the following exceptions. First, the path terminates with the encrypted node
containing two classification labels – encryptions of L(x`). Second, each path node’s encrypted
pointers point to the same (next) node on the path.

Once the path is generated, SimC generates a number of fake nodes (so that the total number of
nodes is d). These nodes are properly formatted random encryptions of random values – they will
never be reached by the evaluation procedure, and they are indistinguishable from the real nodes.
Finally, we note that SimC actually places the nodes in random order and adjusts the pointers of
the nodes that lie on the evaluation path accordingly. This completes the description of SimC .

It is not hard to see that the view generated by SimC is computationally indistinguishable from
the real execution. This is done using a standard hybrid argument over the nodes of LBP, similarly
to the proof presented in [KJGB06]. As in [KJGB06], ultimately, the hybrid argument boils down to
the indistinguishability of the real node, and the simulated node, containing two encryptions (with
different keys) of identical values. We observe that if the encryption Enc is semantically secure,
or if Enc is a PRFG, then the “non-revealed” encryptions of the two nodes are indistinguishable.
Looking at it from another angle, a distinguisher that tells apart real and simulated nodes, can be
used to construct a distinguisher for PRFG (or semantically-secure encryption).

Finally, SimC uses the constructed simulated LBP L̃′ to provide inputs to the simulator of the
view of C of ObliviousLinearSelect. For each node i, SimC randomly chooses a bit bi, and uses wbi

i as
the secret to be output by ObliviousLinearSelect. Then the output of the simulator is plugged into
the output of SimC .

This completes the outline of the proof. ut


