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Abstract. Diagnostic and classification algorithms play an important role in data analysis, with ap-
plications in areas such as health care, fault diagnostics, or benchmarking. Branching programs (BP)
is a popular representation model for describing the underlying classification/diagnostics algorithms.
Typical application scenarios involve a client who provides data and a service provider (server) whose
diagnostic program is run on client’s data. Both parties need to keep their inputs private.
We present new, more efficient privacy-protecting protocols for remote evaluation of such classifica-
tion/diagnostic programs. In addition to efficiency improvements, we generalize previous solutions –
we securely evaluate private linear branching programs (LBP), a useful generalization of BP that we
introduce. We show practicality of our solutions: we apply our protocols to the privacy-preserving clas-
sification of medical ElectroCardioGram (ECG) signals and present implementation results. Finally,
we discover and fix a subtle security weakness of the most recent remote diagnostic proposal, which
allowed malicious clients to learn partial information about the program.

1 Introduction

Classification and diagnostic programs are very useful tools for automatic data analysis with respect to
specific properties. They are deployed for various applications, from spam filters [DCDZ05], remote software
fault diagnostics [HRD+07] to medical diagnostic expert systems [RGI05]. The health-care industry is moving
faster than ever toward technologies that offer personalized online self-service, medical error reduction,
consumer data mining and more (e.g., [Goo09]). Such technologies have the potential of revolutionizing the
way medical data is stored, processed, delivered, and made available in an ubiquitous and seamless way to
millions of users all over the world.

Typical application scenarios in this context concern two (remote) parties, a user or data provider (client)
and a service provider (server) who usually owns the diagnostic software that will run on the client’s data
and output classification/diagnostic results.

In this framework, however, a central problem is the protection of privacy of both parties. On the one
hand, the user’s data might be sensitive and security-critical (e.g., electronic patient records in health care,
passwords and other secret credentials in remote software diagnostics, trade- and work-flow information in
benchmarking of enterprises). On the other hand, the service provider, who owns the diagnostic software,
may not be willing to disclose the underlying algorithms and the corresponding optimized parameters (e.g.,
because they represent intellectual property).

Secure function evaluation with private functions [SYY99,Pin02,KS08b,SS08] is one way to realize the
above scenarios, when the underlying private algorithms are represented as circuits. However, as we elaborate
in the discussion on related work, in some applications, such as diagnostics, it is most natural and efficient
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to represent the function as a decision graph or a Branching Program (BP). At a high level, BPs consist of
different types of nodes — decision nodes and classification nodes. Based on the inputs and certain decision
parameters such as thresholds (that are often the result of learning processes), the algorithm branches among
the decision nodes until it reaches the corresponding classification node (which represents a leaf node in the
decision tree).

In this work, we consider applications that benefit from the BP representation, such as our motivating
application, classification of medical ElectroCardioGram (ECG) signals. In the remainder of the paper, we
concentrate on the BP approach (including discussion of related work).

Related Work. There is a number of fundamental works, e.g. Kilian [Kil88], that rely on Branching
Programs (BP) “under the hood”. These are general feasibility results that do not attempt to achieve high
efficiency for concrete problems. The goals and results of these works and ours are different. We do not
directly compare their performance to ours; instead, we compare our work with previously-best approaches
that are applicable to our setting (see below).

Recently, very interesting BP-based crypto-computing protocols were proposed by Ishai and Paskin [IP07]
(and later slightly improved by Lipmaa [Lip08] who also presented a variety of applications). In their setting,
the server evaluates his program on client’s encrypted data. The novelty of the approach of [IP07] is that
the communication and client’s computation depend on the length (or depth) of BP, and are independent
of the size of BP. This allows for significant savings in cases of “wide” BP. However, the protocol requires
computationally expensive operations on homomorphically encrypted ciphertexts for each node of the BP.
Further, the server’s computation still depends on the size of BP. The savings achieved by these protocols
are not significant in our setting (in applications we are considering, BPs are not wide), and the cost of
employed homomorphic encryption operation outweighs the benefit.

Most relevant for this work is the sequence of works [KJGB06,BPSW07,Sch08], where the authors consider
problems similar to ours, and are specifically concerned with concrete performance of the resulting protocols.
Kruger et al. [KJGB06] observed that some functions are more succinctly represented by Ordered Binary
Decision Diagrams (OBDD), and proposed a natural extension of the garbled circuit method which allows
secure evaluation of (publicly known) OBDDs. As in the garbled circuit approach, the client receives garblings
of his inputs, and is blindly evaluating a garbled OBDD to receive a garbling of the output, which is
then opened. Brickell et al. [BPSW07] further extended this approach and considered evaluation of private
BPs. They also consider a more complex decision procedure at the nodes of BP (based on the result of
integer comparison). The solution of [BPSW07] is especially suited for remote diagnostics, their motivating
application.

In the above two approaches the communication complexity depends linearly on the size of the BP,
as the size of the garbled BP is linear in the size of the BP. While the computational complexity for the
client remains asymptotically the same as in the crypto-computing protocols of [IP07] (linear in the length
of the evaluation path), the computational cost is substantially smaller (especially for the server), as only
symmetric crypto operations need to be applied to the nodes of the BP. In [Sch08] an extension of the
protocol of [KJGB06] for secure evaluation of private OBDDs based on efficient selection blocks [KS08b]
was proposed. In our work, we generalize, unify, extend, and improve efficiency of the above three protocols
[KJGB06,BPSW07,Sch08].

In addition to circuits and BPs, other (secure) classification methods have been considered, such as those
based on neural networks [CL01,OPB07,PCB+08,SS08]. In our work, we concentrate on the BP representa-
tion.

Our Contribution and Outline. Our main contribution is a new more efficient modular protocol for secure
evaluation of a class of diagnostics/classification problems, which are naturally computed by (a generalization
of) decision trees (§3). We work in the semi-honest model, but explain how our protocols can be efficiently
secured against malicious adversaries (§3.6). We improve on the previously proposed solutions in several ways.
Firstly, we consider a more general problem. It turns out, our motivating example — ECG classification —
as well as a variety of other applications, benefit from a natural generalization of Branching Programs (BP)
and decision trees, commonly considered before. We introduce and justify Linear Branching Programs (LBP)
(§3.1), and show how to evaluate them efficiently. Secondly, we fine-tune the performance. We propose several
new tricks (for example, we show how to avoid inclusion of classification nodes in the encrypted program). We
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also employ performance-improving techniques which were used in a variety of areas of secure computation.
This results in significant performance improvements over previous work, even for evaluation of previously
considered BPs. A detailed performance comparison is presented in §3.5. Further, in §4, we discover and fix a
subtle vulnerability in the recent and very efficient variant of the protocol for secure BP evaluation [BPSW07]
and secure classifier learning [BS09]. Finally, we apply our protocols to the privacy-preserving classification
of medical ElectroCardioGram (ECG) signals (§5). We implemented our solution; our experimental results
show the practical suitability of our protocols (§6).

2 Preliminaries

In our protocols we combine several standard cryptographic tools (additively homomorphic encryption,
oblivious transfer, and garbled circuits) which we summarize in §2.1. Readers familiar with these tools can
safely skip §2.1 and continue reading our notational conventions in §2.2.

We denote the symmetric (asymmetric) security parameter with t (T ). Recommended sizes for short-term
security are t = 80, T = 1248 [GQ09].

2.1 Cryptographic Tools

Homomorphic Encryption (HE). We use a semantically secure additively homomorphic public-key
encryption scheme. In an additively homomorphic cryptosystem, given encryptions JaK and JbK, an encryption
Ja+bK can be computed as Ja+bK = JaKJbK, where all operations are performed in the corresponding plaintext
or ciphertext structure. From this property follows, that multiplication of an encryption JaK with a constant
c can be computed efficiently as Jc · aK = JaKc (e.g., with the square-and-multiply method). As instantiation
we use the Paillier cryptosystem [Pai99,DJ01] which has plaintext space ZN and ciphertext space Z∗

N2 , where
N is a T -bit RSA modulus. This scheme is semantically secure under the decisional composite residuosity
assumption (DCRA). For details on the encryption and decryption function we refer to [DJ01].

Parallel Oblivious Transfer (OT). Parallel 1-out-of-2 Oblivious Transfer for m bitstrings of bitlength `,
denoted as OTm

` , is a two-party protocol as shown in Fig. 1. S inputs m pairs of `-bit strings Si =
〈
s0

i , s
1
i

〉
for i = 1, ..,m with s0

i , s
1
i ∈ {0, 1}`. C inputs m choice bits bi ∈ {0, 1}. At the end of the protocol, C learns

sbi
i , but nothing about s1−bi

i whereas S learns nothing about bi. We use OTm
` as a black-box primitive in our

Server S
S1, . . . , Sm :

Client C

sb1
1 , . . . , sbm

m

OTm
!

b1, . . . , bm ∀i = 1, ..,m :
Si =

〈
s0

i , s
1
i

〉

s0
i , s

1
i ∈ {0, 1}!

Fig. 1. OTm
` - Parallel Oblivious Transfer

constructions. It can be instantiated efficiently with different protocols [NP01,AIR01,Lip03,IKNP03]. For
example the protocol of [NP01] implemented over a suitably chosen elliptic curve has asymptotic communi-
cation complexity m(4t+2r) and is secure against malicious C and semi-honest S in the random oracle model.
The protocol of [AIR01] implemented over a suitably chosen elliptic curve has asymptotic communication
complexity m(12t) and is secure against malicious C and semi-honest S in the standard model. Extensions
of [IKNP03] can be used to reduce the number of computationally expensive public-key operations to be
independent of m. We omit the parameters m or ` if they are clear from the context.

Garbled Circuit (GC). Yao’s Garbled Circuit approach [Yao86], excellently presented in [LP04], is the
most efficient method for secure evaluation of a boolean circuit C. We summarize its ideas in the following.
First, the circuit constructor (server S), creates a garbled circuit C̃ with algorithm CreateGC: for each
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wire Wi of the circuit, he randomly chooses a complementary garbled value W̃i =
〈
w̃0

i , w̃1
i

〉
consisting of two

secrets, w̃0
i and w̃1

i , where w̃j
i is the garbled value of Wi’s value j. (Note: w̃j

i does not reveal j.) Further, for
each gate Gi, S creates and sends to the evaluator (client C) a garbled table T̃i with the following property:
given a set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the corresponding Gi’s
output, and nothing else. Then garbled values corresponding to C’s inputs xj are (obliviously) transferred
to C with a parallel oblivious transfer protocol OT: S inputs complementary garbled values W̃j into the
protocol; C inputs xj and obtains w̃

xj

j as outputs. Now, C can evaluate the garbled circuit C̃ with algorithm
EvalGC to obtain the garbled output simply by evaluating the garbled circuit gate by gate, using the garbled
tables T̃i. Correctness of GC follows from method of construction of garbled tables T̃i. As in [BPSW07] we
use the GC protocol as a conditional oblivious transfer protocol where we do not provide a translation from
the garbled output values to their plain values to C, i.e., C obtains one of two garbled values which can be
used as key in subsequent protocols but does not know to which value this key corresponds.

Implementation Details. A point-and-permute technique can be used to speed up the implementation of
the GC protocol [MNPS04]: The garbled values w̃i = 〈ki, πi〉 consist of a symmetric key ki ∈ {0, 1}t and
πi ∈ {0, 1} is a random permutation bit. The permutation bit πi is used to select the right table entry
for decryption with the key ki. Extensions of [KS08a] to “free XOR” gates can be used to further improve
performance of GC.

2.2 Notation

Number Representation. In the following, a (signed) `-bit integer x` is represented as one bit for the
sign, sign(x`), and ` − 1 bits for the magnitude, abs(x`), i.e., −2`−1 < x` < +2`−1. This allows sign-
magnitude representation of numbers in a circuit, i.e., one bit for the sign and `− 1 bits for the magnitude.
For homomorphic encryptions we use ring representation, i.e., x` with 2` ≤ N is mapped into an element of

the plaintext group ZN using m(x`) =
{

x`, if x` ≥ 0
N + x`, if x` < 0 .

Homomophic Encryption. Gen(1T ) denotes the key generation algorithm of the Paillier cryptosystem
[Pai99,DJ01] which, on input the asymmetric security parameter T , outputs secret key skC and public key
pkC = N to C, where N is a T -bit RSA modulus. Jx`K denotes the encryption of an `-bit message x` ∈ ZN

(we assume ` < T ) with public key pkC .

Garbled Objects. Objects overlined with a tilde symbol denote garbled objects: Intuitively, C cannot infer
the real value i from a garbled value w̃i, but can use garbled values to evaluate a garbled circuit C̃ or a garbled
LBP L̃. Capital letters W̃ denote complementary garbled values consisting of two garbled values

〈
w̃0, w̃1

〉
for which we use the corresponding small letters. We group together multiple garbled values to a garbled `-bit
value w̃` (small, bold letter) which consists of ` garbled values w̃1, . . . , w̃`. Analogously, a complementary
garbled `-bit value W̃` (capital, bold letter) consists of ` complementary garbled values W̃1, . . . , W̃`.

3 Secure Evaluation of Private Linear Branching Programs

After formally defining Linear Branching Programs (LBP) in §3.1, we present two protocols for secure
evaluation of private LBPs. We decompose our protocols into different building blocks similar to the protocol
of [BPSW07] and show how to instantiate them more efficiently than in [BPSW07].

The protocols for secure evaluation of private LBPs are executed between a server S in possession of a
private LBP, and a client C in possession of data, called attribute vector. Let z be the number of nodes in
the LBP, and n be the number of attributes in the attribute vector.

As in most practical scenarios n is significantly larger than z, the protocol of [BPSW07] is optimized for
this case. In particular, the size of our securely transformed LBP depends linearly on z but is independent
of n.

In contrast to [BPSW07], our solutions do not reveal the total number z of nodes of the LBP, but only its
number of decision nodes d for efficiency improvements. In particular, the size of our securely transformed
LBP depends linearly on d which is smaller than z by up to a factor of two.
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3.1 Linear Branching Programs (LBP)

First, we formally define the notion of linear branching programs. We do so by generalizing the BP definition
used in [BPSW07]. We note that BPs – and hence also LBPs – generalize binary classification or decision
trees and Ordered Binary Decision Diagrams (OBDDs) used in [KJGB06,Sch08].

Definition 1 (Linear Branching Program). Let x` = x`
1, .., x

`
n be the attribute vector of signed `-bit

integer values. A binary Linear Branching Program (LBP) L is a triple 〈{P1, .., Pz},Left ,Right〉. The
first element is a set of z nodes consisting of d decision nodes P1, .., Pd followed by z − d classification
nodes Pd+1, .., Pz.
Decision nodes Pi, 1 ≤ i ≤ d are the internal nodes of the LBP. Each Pi :=

〈
a`
i , t

`′

i

〉
is a pair, where

a`
i =

〈
a`

i,1, .., a
`
i,n

〉
is the linear combination vector consisting of n signed `-bit integer values and t`

′

i is
the signed `′-bit integer threshold value with which a`

i ◦ x` =
∑n

j=1 a`
i,jx

`
j is compared in this node. Left(i)

is the index of the next node if a`
i ◦ x` ≤ t`

′

i ; Right(i) is the index of the next node if a`
i ◦ x` > t`

′

i . Functions
Left() and Right() are such that the resulting directed graph is acyclic.
Classification nodes Pj := 〈cj〉, d < j ≤ z are the leaf nodes of the LBP consisting of a single classification
label cj each.

To evaluate the LBP L on attribute vector x`, start with the first decision node P1. If a`
1 ◦ x` ≤ t`

′

1 ,
move to node Left(1), else to Right(1). Repeat this process recursively (with corresponding a`

i and t`
′

i ), until
reaching one of the classification nodes and obtaining the classification c = L(x`).

In the general case of LBPs, the bit-length `′ of the threshold values t`
′

i has to be chosen according to
the maximum value of linear combinations:

abs(a`
i ◦ x`) = abs(

n∑
j=1

a`
i,jx

`
j) ≤

n∑
j=1

22(`−1) = n22(`−1)

⇒ `′ = 1 + dlog2(n22(`−1))e = 2` + dlog2 ne − 1. (1)

As noted above, LBPs can be seen as a generalization of previous representations:

– Branching Programs (BP) as used in [BPSW07] are a special case of LBPs. In a BP, in each decision
node Pi the αi-th input x`

αi
is compared with the threshold value t`

′

i , where αi ∈ {0, .., n} is a private
index. In this case, the linear combination vector a`

i of the LBP decision node degrades to a selection
vector ai = 〈ai,1, .., ai,n〉, with exactly one entry ai,αi

= 1 and all other entries ai,j 6=αi
= 0. The

bit-length of the threshold values t`
′

i is set to `′ = `.
– Ordered Binary Decision Diagrams (OBDD) as used in [KJGB06,Sch08] are a special case of BPs

with bit inputs (` = 1) and exactly two classification nodes (Pz−1 = 〈0〉 and Pz = 〈1〉).

3.2 Protocol Overview

We start with a high-level overview of our protocol for secure evaluation of private linear branching programs.
We then fill in the technical details and outline the differences and improvements of our protocol over previous
work in the following sections.

Our protocol SecureEvalPrivateLBP, its main building blocks, and the data and communication flows are
shown in Fig. 2. The client C receives an attribute vector x` = {x`

1, . . . , x
`
n} as input, and the server S

receives a linear branching program L. Upon completion of the protocol, C outputs the classification label
c = L(x`), and S learns nothing. Of course, both C and S wish to keep their inputs private. Protocol
SecureEvalPrivateLBP is naturally decomposed into the following three phases (cf. Fig. 2).

CreateGarbledLBP. In this phase, S creates a garbled version of the LBP L. This is done similarly to the
garbled-circuit-based previous approaches [BPSW07,KJGB06]. The idea is to randomly permute the LBP,
encrypt the pointers on the left and right successor, and garble the nodes, so that the evaluator is unable to
deviate from the evaluation path defined by his input.

The novelty of our solution is that each node transition is based on the oblivious comparison of a linear
combination of inputs with a node-specific threshold. Thus, CreateGarbledLBP additionally processes (and
modifies) these values and passes them to the next phase. CreateGarbledLBP can be entirely precomputed by
S.



6 M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, T. Schneider

x! = x!
1, .., x

!
n

w̃1, .., w̃d

SecureEvalPrivateLBP

EvalGarbledLBP

Client C

c = L(x!)

CreateGarbledLBP

L
Server S

i = 1, .., d : â!
i , t̂

!′

i , W̃i L̃

ObliviousLinearSelect

Fig. 2. Secure Evaluation of Private Linear Branching Programs - Structural Overview

ObliviousLinearSelect. In this phase, C obliviously obtains the garbled values w̃1, .., w̃d which correspond to
the outcome of the comparisons of the linear combination of the attribute vector with the threshold for each
garbled node. These garbled values will then be used to evaluate the garbled LBP in the next phase. Making
analogy to Yao’s garbled circuit (GC), this phase is the equivalent of the GC evaluator receiving the wire
secrets corresponding to his inputs. In our protocol, this stage is more complicated, since the secrets are
transferred based on secret conditions.

EvalGarbledLBP. This phase is equivalent to Yao’s GC evaluation. Here, C receives the garbled LBP L̃ from S,
and evaluates it. EvalGarbledLBP additionally gets the garbled values w̃1, .., w̃d output by ObliviousLinearSelect
as inputs and outputs the classification label c = L(x`).

3.3 Our Building Blocks

Phase I (offline): CreateGarbledLBP. In this pre-computation phase, S generates a garbled version L̃ of
the private branching program L. CreateGarbledLBP is presented in Algorithm 1.

Algorithm CreateGarbledLBP converts the nodes Pi of L into garbled nodes P̃î in L̃, as follows. First,
we associate a randomly chosen key ∆i with each node Pi. We use ∆i (with other keys, see below) for
encryption of Pi’s data. Each decision node Pi contains a pointer to its left successor node Pi0 and one to
its right successor node Pi1 . Garbled P̃i contains encryptions of these pointers and of successors’ respective
keys ∆i0 ,∆i1 . Further, since we want to prevent the LBP evaluator from following both successor nodes,
we additionally separately encrypt the data needed to decrypt Pi0 and Pi1 with random keys k0

i and k1
i

respectively. Evaluator later will receive (one of) kj
i , depending on his input (see block ObliviousLinearSelect),

which will enable him to decrypt and follow only the corresponding successor node. The used semantically
secure symmetric encryption scheme can be instantiated as Encs

k(m) = m ⊕ H(k||s) = Decs
k(m), where

s is a unique identifier used once, and H(k||s) is a pseudo-random function (PRF) evaluated on s and
keyed with k, e.g., a cryptographic hash function from the SHA-2 family. In CreateGarbledLBP, we use the
following technical improvement from [KJGB06]: Instead of encrypting twice (sequentially, with ∆i and kj

i ),
we encrypt successor Pij ’s data with ∆i⊕kj

i . Each classification node is garbled simply by including its label
directly into the parent’s node (instead of the decryption key ∆i). This eliminates the need for inclusion of
classification nodes in the garbled LBP and increases the size of each garbled decision node by only two bits
denoting the type of its successor nodes. This technical improvement allows to reduce the size of the garbled
LBP by up to a factor of 2, depending on the number of classification nodes. Finally, the two successors’
encryptions are randomly permuted.

We note that sometimes the order of nodes in a LBP may leak some information. To avoid this, in the
garbling process we randomly permute the nodes of the LBP (which results in the corresponding substitutions
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Algorithm 1 CreateGarbledLBP

Input S: LBP L = 〈{P1, .., Pz},Left ,Right〉. For i ≤ d, Pi is a decision node
D
a`
i , t

`′
i

E
. For i > d, Pi is a classification

node 〈ci〉.
Output S: (i) Garbled LBP eL =

D
{ eP1, .., ePd}

E
; (ii) Compl. garbled inputs fW1, .., fWd; (iii) Perm. lin. comb. vectors

â`
1, .., â`

d; (iv) Perm. thresholds t̂`′
1 , .., t̂`′

d

1: choose a random permutation Π of the set 1, .., d with Π[1] = 1.
2: choose key ∆1 := 0t, rand. keys ∆i ∈R {0, 1}t, 1 < i ≤ d for enc. decision nodes

3: for i = 1 to d do {Pi =
D
a`
i , t

`′
i

E
is a decision node}

4: let permuted index î := Π[i]

5: set perm. linear combination vector â`
î

:= a`
i ; perm. threshold value t̂`′

î
:= t`′

i

6: choose rand. compl. garbled value fWî =
˙ ew0

î
=

˙
k0

î
, πî

¸
, ew1

î
=

˙
k1

î
, 1 − πî

¸¸
7: let left successor i0 := Left [i], î0 := Π[i0] (permuted)
8: if i0 ≤ d then {Pi0 is a decision node}
9: let mî,0 :=

D
"decision", î0, ∆î0

E
10: else {Pi0 = 〈ci0〉 is a classification node}
11: let mî,0 := 〈"classification", ci0〉
12: end if
13: let right successor i1 := Right [i], î1 := Π[i1] (permuted)
14: if i1 ≤ d then {Pi1 is a decision node}
15: let mî,1 :=

D
"decision", î1, ∆î1

E
16: else {Pi1 = 〈ci1〉 is a classification node}
17: let mî,1 := 〈"classification", ci1〉
18: end if

19: let garbled decision node ePî :=

*
Encî,0

k
π

î
î
⊕∆

î

(mî,π
î), Encî,1

k
1−π

î
î

⊕∆
î

(mî,1−π
î)

+
20: end for
21: return eL :=

D
{ eP1, .., ePd}

E
; fW1, .., fWd; â`

1, .., â`
d; t̂`′

1 , .., t̂`′
d

in the encrypted pointers). The start node P1 remains the first node in L̃. Additionally, garbled nodes are
padded s.t. they all have the same size.

The output of CreateGarbledLBP is L̃ (to be sent to C), and the randomness used in its construction (to
be used by S in the next phase).

Complexity (cf. Table 2). L̃ contains d garbled nodes P̃i consisting of two ciphertexts of size dlog de+t+1 bits
each (assuming classification labels cj have less bits than this). The size of L̃ is 2d(dlog de + t + 1) ∼
2d(log d + t) bits.

Tiny LBPs. In case of tiny LBPs with a small number of decision nodes d we describe an alternative
construction method for garbled LBPs with asymptotic size 2d log(z − d) in §B.

Phase II: ObliviousLinearSelect. In this phase, C obliviously obtains the garbled values w̃1, .., w̃d which
correspond to the outcome of the comparison of the linear combination of the attribute vector with the
threshold for each garbled node. These garbled values will then be used to evaluate the garbled LBP L̃ in
the next phase.

In ObliviousLinearSelect, the input of C is the private attribute vector x` and S inputs the private outputs of
CreateGarbledLBP: complementary garbled values W̃1 =

〈
w̃0

1, w̃
1
1

〉
, .., W̃d =

〈
w̃0

d, w̃1
d

〉
, permuted linear combi-

nation vectors â`
1, .., â`

d, and permuted threshold values t̂`
′

1 , .., t̂`
′

d . Upon completion of the ObliviousLinearSelect

protocol, C obtains the garbled values w̃1, .., w̃d, as follows: if â`
i ◦ x` > t̂`

′

i , then w̃i = w̃1
i ; else w̃i = w̃0

i . S
learns nothing about C’s inputs. We note that ObliviousLinearSelect can be viewed as an instance of conditional
oblivious transfer [BK04].
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We give two efficient instantiations for ObliviousLinearSelect in §3.4.

Phase III: EvalGarbledLBP. In the last phase, C receives the garbled LBP L̃ from S, and evaluates it locally
with algorithm EvalGarbledLBP as shown in Algorithm 2. This algorithm additionally gets the garbled values
w̃1, .., w̃d output by ObliviousLinearSelect as inputs and outputs the classification label c = L(x`).

Algorithm 2 EvalGarbledLBP

Input C: (i) Garbled LBP eL =
D
{ eP1, .., ePd}

E
; (ii) Garbled input values ew1, .., ewd

Output C: Classification label c such that c = L(x`)

1: let î := 1; ∆î := 0t (start at root)
2: while true do

3: let 〈kî, πî〉 := ewî;
˙
c0

î
, c1

î

¸
:= ePî; 〈typeî, dataî〉 := Dec

î,π
î

k
î
⊕∆

î
(cπ

î
)

4: if typeî = "decision" then

5: let
D
î, ∆î

E
:= dataî

6: else
7: let 〈c〉 := dataî

8: return c
9: end if

10: end while

C traverses the garbled LBP L̃ by decrypting garbled decision nodes along the evaluation path starting
at P̃1. At each node P̃î,

4 C takes the garbled attribute value w̃î = 〈kî, πî〉 together with the node-specific key
∆î to decrypt the information needed to continue evaluation of the garbled successor node until the correct
classification label c is obtained.

It is easy to see that some information about L is leaked to C, namely: (i) the total number d of decision
nodes in the program L̃, and (ii) the length of the evaluation path, i.e., the number of decision nodes that
have been evaluated before reaching the classification node. We note that in many cases this is acceptable.
If not, this information can be hidden using appropriate padding of L. We further note that L̃ cannot be
reused. Each secure evaluation requires construction of a new garbled LBP.

3.4 Oblivious Linear Selection Protocol

We show how to instantiate the ObliviousLinearSelect protocol next.
A straight-forward instantiation can be obtained by evaluating a garbled circuit whose size depends on

the number of attributes n. This construction is described in §A.1.
In the following, we concentrate on an alternative instantiation based on a hybrid combination of homo-

morphic encryption and garbled circuits which results in a better communication complexity.

Hybrid Instantiation. In this instantiation of ObliviousLinearSelect (see Fig. 3 for an overview), C generates
a key-pair for the additively homomorphic encryption scheme and sends the public key pkC together with
the homomorphically encrypted attributes Jx`

1K, .., Jx`
nK to S. Using the additively homomorphic property,

S can compute the linear combination of these ciphertexts with the private coefficients â`
i as Jy`′

i K :=
J
∑n

j=1 â`
i,jx

`
jK =

∏n
j=1Jx

`
jK

â`
i,j , 1 ≤ i ≤ d. Afterwards, the encrypted values Jy`′

i K are obliviously compared
with the threshold values t̂`

′

i in the ObliviousParallelCmp protocol. This protocol allows C to obliviously obtain
the garbled values corresponding to the comparison of y`′

i and t̂`
′

i , i.e., w̃0
i if y`′

i ≤ t̂`
′

i and w̃1
i otherwise.

ObliviousParallelCmp ensures that neither C nor S learns anything about the plaintexts y`′

i from which they
could deduce information about the other party’s private function or inputs.

4 We use the permuted index î here to stress that C does not obtain any information from the order of garbled nodes.
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Server SClient C
i = 1, .., d : â!

i , t̂
!′

i , W̃ix!
1, .., x

!
n

W̃1, .., W̃d

t̂!
′

1 , .., t̂!
′

dObliviousParallelCmp

w̃1, .., w̃d

pkC , !x!
1", .., !x!

n"
Encrypt !x!

1", .., !x!
n"

!y!′

i " :=
n∏

j=1
!x!

j"â!
i,j

ObliviousLinearSelect

skC pkC

(skC , pkC) := Gen(1T )

For i = 1, .., d:

Fig. 3. ObliviousLinearSelect - Hybrid

ObliviousParallelCmp protocol (cf. Fig. 4). The basic idea underlying this protocol is that S blinds the
encrypted value Jy`′

i K in order to hide the encrypted plaintext from C. To achieve this, S adds a randomly
chosen value R ∈R ZN

5 under encryption before sending them to C who can decrypt but does not learn the
plain value. Afterwards, a garbled circuit C is evaluated which obliviously takes off the blinding value R and
compares the result (which corresponds to y`′

i ) with the threshold value t`
′

i . We improve the communication
complexity of this basic protocol which essentially corresponds to the protocol of [BPSW07] with the following
two technical tricks:

Packing. Usually, the plaintext space of the homomorphic encryption scheme ZN is substantially larger than
the encrypted values y`′

i . Hence, multiple encryptions, say d′, can be packed together into one ciphertext
before blinding and sending it to C. This reduces the communication complexity and the number of decryp-
tions that need to be performed by C by a factor of d′. For this, the encrypted values −2`′−1 < y`′

i < 2`′−1

are shifted into the positive range (0, 2`′) first by adding 2`′−1 and afterwards are concatenated by com-
puting JyK = J

∑d′

i=1 2`′(i−1)(y`′

i + 2`′−1)K =
∏d′

i=1(J2
`′−1KJy`′

i K)2
`′(i−1)

. The packed ciphertext JyK encrypts a
L′ = d′`′ bit value now.

Minimizing Circuit Size. As described before, the garbled circuit obliviously takes off the blinding value
R. Instead of computing in the plaintext space of the homomorphic cryptosystem ZN it is beneficial to
compute over integers as circuit sizes are substantially smaller (inspired by the BITREP gate of [ST06]). For
this, we ensure that no overflow occurs when blinding the L′-bit value y by adding R ∈R ZN . This can be
achieved by choosing L′ such that it is κ bits less than the bitlength of N , where κ is a statistical correctness
parameter (e.g., κ = 80): L′ ≤ T − κ. Now, an overflow occurs only if the κ topmost bits of R are all ones
which — as R was chosen randomly — happens with probability 2−κ which is negligible in κ. The circuit
subtracts the lowest L′ bits of R from those of γ to obliviously reconstruct the value y before comparing this
component-wise with the threshold values t`

′

i . The garbled circuit is naturally composed from subtraction
and comparison circuits and has asymptotic size 12L′t bits as described in §A.2.

If the negligible correctness error should be removed entirely, one could use a slightly larger circuit which
checks if an overflow occurred and recovers the correct value. Alternatively, one could choose R from a smaller
range which allows for possible attacks by a malicious C as described in §4.

Complexity (cf. Table 1). From L′ = d′`′ ≤ T − κ we can infer d′ = T−κ
`′ as the maximum number of

packed ciphertexts. As shown in Fig. 3, the ObliviousParallelCmp protocol needs to be run for d inputs
which can be achieved by running the ObliviousParallelCmp protocol of Fig. 4 with d′ inputs d d

d′ e times in
parallel. The asymptotic communication complexity of the hybrid ObliviousLinearSelect protocol as shown in
Table 1 consists of n + d

d′ = n + `′

T−κd Paillier ciphertexts of size 2T bits each (HE), garbled circuits of size

5 In contrast to [BPSW07], we choose R from the full plaintext space in order to protect against malicious behavior
of C as explained in §4.
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d
d′ · 12L′t = 12d`′t bits (GC), and a d

d′ · L
′ = d`′ parallel OT protocol OTd`′ (OT). The number of moves is

two for sending the homomorphic encryptions plus those of the underlying OT protocol (C̃ can be sent with
the last message of the OT protocol).

We note that further performance improvements can be achieved when the client only computes those
values he will actually use in the LBP evaluation phase (“lazy evaluation”). All server-visible messages of
OT must be performed to hide the evaluation path taken based on client’s inputs.

w̃1, .., w̃d′

W̃1, .., W̃d′

t̂!
′

1 , .., t̂!
′

d′

EvalGC

OTL′

!γ" := !R"!y"

!y" :=
∏d′

i=1(!2!′−1"!y!′
i ")2!′(i−1)

R ∈R ZN

CreateGC

C̃

CreateC

C

γ̃1, .., γ̃L′

Γ̃1, .., Γ̃L′

!y!′

1 ", .., !y!′

d′"pkC

Server SClient C
skC

γ := DecskC (!γ")
γ1, .., γL′ := γ mod 2L′

ObliviousParallelCmp

Fig. 4. ObliviousParallelCmp

Extension of [BPSW07] to LBPs. Our hybrid instantiation of the ObliviousLinearSelect protocol is a
generalization of the ObliviousAttributeSelection protocol proposed in [BPSW07]. The protocol for secure
evaluation of private BPs of [BPSW07] can easily be extended to a protocol for secure evaluation of private
LBPs by computing a linear combination of the ciphertexts instead of obliviously selecting one ciphertext.
We call this protocol “ext. [BPSW07]”. However, our hybrid protocol is more efficient than ext. [BPSW07]
as shown in the following.

3.5 Performance Improvements Over Existing Solutions

On the one hand, our protocols for secure evaluation of private LBPs extend the functionality that can
be evaluated securely from OBDDs [KJGB06], private OBDDs [Sch08], and private BPs [BPSW07] to the
larger class of private LBPs. On the other hand, our protocols can be seen as general protocols which simply
become improved (more efficient) versions of the protocols of [KJGB06,Sch08,BPSW07] when instantiated
for the respective special case functionality.

In the following, we summarize the employed techniques and the resulting performance improvements of
our protocols over previous solutions (see Table 1 and Table 2). We stress that our improvements, achieved
by combining our new technical tricks and some previously known techniques, are at the conceptual protocol
level and will translate directly into any implementation, i.e., are independent of implementation details such
as programming languages or hardware used.

Incorporate classification nodes into decision nodes: In contrast to previous protocols given in
[KJGB06,Sch08,BPSW07], the size of our improved method for constructing garbled LBPs (cf. Algorithm 1
& 2 in §3.3) depends on the number of decision nodes d only which is smaller than the total number of nodes
z (cf. Table 2), e.g., a full classification tree has z = 2d+1 nodes. Hence, C cannot infer the number of classi-
fication nodes in our protocols. As additionally the number of attributes for which the ObliviousLinearSelect
protocol needs to be run is reduced from z down to d, the communication complexity of our hybrid protocol —
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except sending the encrypted attributes (HE) — grows linearly in d instead of z (cf. rows “[BPSW07]”/“ext.
[BPSW07]” vs. “Hybrid” in Table 1). For full classification trees this results in an overall improvement by a
factor of two.

Tiny LBPs: For tiny LBPs with d ≤ 10 decision nodes, e.g., the privacy-preserving remote diagnostics
examples for iptables and mpg321 given in [BPSW07], or the medical ECG classification application de-
scribed in §5, our alternative method for garbled LBPs described in §B results in a substantially smaller
communication complexity than existing solutions (cf. Table 2).

Point-and-permute: The protocols of [KJGB06,BPSW07] use the semantically secure encryption scheme
with ‘special’ properties of [LP04] where trial-decryptions of all entries must be performed until the ‘right’
entry was found (which can be decided using the special properties). To achieve the special properties, the
ciphertext size is increased by κ (the statistical correctness parameter) additional bits [LP04]. In contrast
to this, our protocols use a point-and-permute technique as described in §2.1 to directly identify the right
entry to decrypt during evaluation of the GC as well as for the garbled LBP. This reduces the computation
complexity for C as no trial-decryptions need to be performed. Also a standard semantically secure encryption
scheme without padding can be used in our protocols which results in reduced communication complexity
(cf. dependance on κ in column “GC” of Table 1 and column “Size of Garbled LBP” of Table 2).

Key-offsets: In the protocol of [BPSW07], the garbled circuits are encrypted symmetrically with a node-
specific key. During evaluation, C obtains this key, decrypts the GC, and evaluates it. In contrast to this, our
protocols use node-specific key-offsets ∆i as described in §3.3 which result in lower computation complexity
for both, S and C (adapted from [KJGB06]).

Packing: The hybrid ObliviousLinearSelect protocol improves over the ObliviousAttributeSelection protocol of
[BPSW07] by packing together multiple ciphertexts before sending them back to C as described in §3.4. This
reduces the communication complexity and the number of public-key decryptions that C needs to perform
by a factor of d′ = T−κ

`′ (cf. column HE in Table 1). For the privacy-preserving diagnostics application
scenario given in [BPSW07] with `′ = 32, κ = 80 and the minimum asymmetric security parameter T = 1248
recommended today [GQ09] this results in an improvement by another factor of d′ = 36. (Packing together
multiple ciphertexts into one was exploited before for example in [BPB08].)

Oblivious Selection Private Moves Asymptotic Communication Complexity
Protocol Function GC OT HE

[BPSW07] BP
OT + 2

12z`(t + κ) OTz`
t (n + z)2T

ext. [BPSW07] (§3.4) LBP 12z`′(t + κ) OTz`′
t

our Hybrid (§3.4)
BP

OT + 2
12d`t OTd`

t (n + `
T−κ

d)2T

LBP 12d`′t OTd`′
t (n + `′

T−κ
d)2T

our Circuit (§A.1)
BP

OT
4(n log d + 3d log d)`t

OTn`
tLBP 16nd(`2 + `′)t

Table 1. Protocols for Secure Evaluation of Private BPs/LBPs with parameters z: #nodes, d: #decision
nodes, n: #attributes, `: bitlength of attributes, `′: bitlength of thresholds (for LBPs), t: symmetric security
parameter, T : asymmetric security parameter, κ: statistical correctness parameter.

3.6 Correctness and Security Properties

As previously mentioned, protocol SecureEvalPrivateLBP securely and correctly evaluates private LBP in the
semi-honest model. We formally state and prove the corresponding theorems in Appendix C.
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Algorithm to Size of Examples from [BPSW07] with t = 80, κ = 80
Create/Evaluate Garbled LBP iptables mpg321 ECG classification (§5) nfs

Garbled LBP in bit d = 4, z = 9 d = 5, z = 9 d = 6, z = 12 d = 12, z = 17

[KJGB06,BPSW07] 2z(dlog ze + t + κ) 2, 952 bit 2, 952 bit 3, 936 bit 5, 610 bit
Algorithm 1 & 2 (§3.3) 2d(dlog de + t + 1) 664 bit 840 bit 1, 008 bit 2, 040 bit

Tiny GLBP (§B) 2ddlog(z − d)e 48 bit 64 bit 192 bit 12, 288 bit

Table 2. Algorithms to Create/Evaluate Garbled LBPs with parameters z: #nodes, d: #decision nodes, t:
symmetric security parameter, κ: statistical correctness parameter.

Extensions to Malicious Players. We note that our protocols, although proven secure against semi-honest
players, tolerate many malicious client behaviors. For example, many efficient OT protocols are secure against
malicious chooser, and a malicious client is unable to tamper with the GC evaluation procedure. Further,
our protocols can be modified to achieve full security in the malicious model. One classical way is to prove in
zero-knowledge the validity of every step a party takes. However, this approach is far inefficient. We achieve
malicious security simply by employing efficient sub-protocols proven secure against malicious players. (This
is the transformation approach suggested in [BPSW07].) More specifically, we use committed OT, secure
two-party computation on committed inputs, and verifiable homomorphic encryption schemes (see [JS07] for
more detailed description).

Learning the LBP. A general problem of trying to hide a private function are so-called oracle attacks. Here,
the attacker, having black-box access to the functionality, queries the functionality adaptively on multiple
inputs and interpolates the private function from the results.6

As oracle attacks only use the black-box functionality, they can be applied to any secure implementation
of a cryptographic protocol which realizes the black-box functionality — recall, the security definition only
guarantees that the protocol does not reveal more information than what can be learned from the outputs
in the plain algorithm. A possible solution to protect against this possibility to learn the LBP by successive
queries is to limit the number of allowed accesses to the server.

Especially piecewise linear functions such as LBPs can be learned easily: It is easy to see that the
boundaries of the decision regions produced by an LBP algorithm are piecewise linear in an n-dimensional
space. If an attacker is able to find n points on each of the hyperplanes defining the boundary of the decision
regions, then he is able to completely reveal the LBP algorithm. If the attacker can query the LBP protocol
without any limits, finding such n points is relatively easy by using a bisection algorithm. The attacker starts
with two attribute vectors yielding different classification results, then he applies a bisection algorithm on
the line passing for such two vectors until he finds a point that is on (or very close) to the decision boundary.
The overall complexity of this attack is only linear in n and hence it represents a serious threat.

4 A Technical Omission in [BPSW07] w.r.t. Malicious Client

In this section, we briefly present and fix a small technical omission, which led to an incorrect claim of
security in the setting with semi-honest server and malicious client in [BPSW07, Section 4.4] (and indirectly
propagated to [BS09]). Recall, the protocol of [BPSW07] is similar in the structure to our protocol. The
problem appears in the ObliviousAttributeSelection subroutine, which is similar to (actually is a special case
of) our ObliviousLinearSelect subroutine. The issue is that, for efficiency, [BPSW07] mask the C-encrypted
attribute values with relatively short random strings, before returning them back to C. In the semi-honest
model this guarantees that C is not able to match the returned strings to the attribute values he earlier sent,
and the security of the entire protocol holds. However, the security breaks in case of a malicious C. Indeed,
such a C can send S very large values xi, wait for the blinded responses and match these with the original
xi, allowing C to determine which of the attributes are used for the computation. (Indeed, whereas the lower
bits are blinded correctly, the upper bits of the maliciously chosen large xi remain the same.) We further

6 Oracle attacks are used for example in image watermarking applications where it is referred to as sensitivity attack
[KLvD98,CPFPG06].
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note that malicious C will not even be caught since he will recover the blinding values and will be able to
continue execution with his real inputs, if he wishes.

This attack can be prevented by choosing R randomly from the full plaintext domain ZN instead (as
done in our ObliviousParallelCmp protocol). With this modification, the blinded value is entirely random in
ZN and a malicious C cannot infer any information from it.

5 Application: Secure Classification of Medical Data

In this section we present our motivating example application for secure evaluation of private LBPs –
privacy-preserving classification of biomedical data. While one might need to protect a variety of types
of biomedical data (e.g., [BCA+93,TWBT95,FLK08,KTB+03]) we consider privacy-preserving classification
of ElectroCardioGram (ECG) signals as a simple representative example. A patient (client C) owns an ECG
signal and asks a service provider (server S) to determine which class the ECG signal belongs to. C requires
S to gain no knowledge about the ECG signal (as this is sensitive personal data of C), whereas S requires
no disclosure of details of the classification algorithm to C (as this represents valuable intellectual property
of S). To achieve this, we map the signal processing chain of an established ECG classification algorithm
[ASSK07,GSK02] to secure evaluation of a private LBP, as described next (cf. Fig. 5).

Inputs and Outputs. The classification algorithm of [ASSK07] and [GSK02] classifies the ECG trace of a
single heartbeat into one of 6 classes: Normal Sinus Rhythm (NSR), Atrial Premature Contraction (APC),
Premature Ventricular Contraction (PVC), Ventricular Fibrillation (VF), Ventricular Tachycardia (VT), and
SupraVentricular Tachycardia (SVT).

Signal Preprocessing. Following the structure of the classification algorithm described in [ASSK07], each
ECG trace is modeled by a 4-th order autoregressive (AR) model first (cf. [BJR76] for details). The AR
model parameters and a proper set of statistics of the prediction error are merged together to obtain the
so-called feature vector (AR Modeling and Feature Extraction). This results in the 21-element-long feature
vector which is quantized to `-bit signed integers (Quantization) – the attribute vector x` = {x`

1, .., x
`
21}

which is input into the secure classification as follows.

Secure Classification. Secure classification consists of three steps: First, the quadratic discriminant function
(QDF) classifier (cf. [MWI92] for details) projects x` onto 6 dimensions a`

i , i = 1, .., 6. Afterwards, the
signs of the projections are extracted (Sign Extraction) and finally used to traverse a classification tree
(Classification). It is easy to see that these three steps of the signal processing chain exactly correspond
to the evaluation of an LBP with x` as attribute vector and 6 nodes Pi =

〈
a`
i , 0

〉
, i = 1, .., 6 as shown in

Fig. 6. (Note, the coefficients of the linear combination vector a`
i represent the knowledge embedded within

the classifier and are usually computed by relying on a set of training ECG’s [ASSK07].) This LBP can be
efficiently and securely evaluated using protocols presented in this paper.

6 Implementation of Classification Algorithm and Communication Complexity

We have implemented and tested the classification algorithm for ECG data using LBPs to work in the plain
domain. To experimentally evaluate the dependence of the classification accuracy, we built a dataset of 1200
ECG signals taken from the MIT-BIH Arrhythmia, Malignant Ventricular Arrhythmia and Supraventricular
Arrhythmia Databases available in PhysioBank archives [GAG+00]. The dataset contained 200 examples of
each of the 6 classes considered by the classifier. We split the dataset into two parts: 60 signals of each class
for training the classifier and 140 for testing it. In figure 7 the classification rate is plotted as a function of
the attribute length `. An attribute length of ` = 44 bit results in a reasonable classification accuracy of
88.6%.

The estimated communication complexity of the protocol for secure classification of ECG data with

parameters z = 12, d = 6, n = 21, ` = 44, `′
(1)
= 92, κ = 80 is given in Fig. 8. This table depicts different

sizes for current security parameter recommendations for short-term (t = 80, T = 1248), medium-term (t =
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Protocol ext. [BPSW07] Hybrid Circuit
(§3.4) (§3.4) (§A.1)

Moves 4 4 2

Security Level Asymptotic Communication Complexity

short-term 329 kByte 101 kByte 39.0 MByte
medium-term 411 kByte 143 kByte 54.7 MByte
long-term 453 kByte 164 kByte 62.5 MByte

Fig. 8. Estimated Communication Complexity

112, T = 2432) and long-term (t = 128, T = 3248) security [GQ09]. We use the parallel version of the two-
move OT protocol of [NP01] which can be implemented over a suitably chosen curve, e.g., curve secp160r1 for
t = 80, secp224r1 for t = 112, resp. secp256r1 for t = 128 from the SECG standard [SEC00b,SEC00a,Bro05].

To evaluate the real communication and computation complexity of the Hybrid and the GC instantiation
of the protocol, we implemented both protocols in C++ using the Miracl library [Sco09]. The measured
communication and computation complexities for short-term security are shown in Table 3. The tests were
performed on two PCs with 3 GHz Intel Core Duo processor and 4GB memory connected via Gigabit
Ethernet. The measured communication complexities are slightly higher than the estimated ones shown in
Table 8 as communication is byte-oriented.

Protocol Communication Computation [s]
Type Client Client Server

sent received cpu total cpu total

Hybrid (§3.4) 17.7 kByte 94.5 kByte 2.0 29.0 4.8 27.6
Circuit (§A.1) 19.0 kByte 40.6 MByte 4.7 48.5 11.5 48.8

Table 3. Performance of our protocols for secure ECG classification
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A Oblivious Linear Selection Protocol

A.1 Circuit Instantiation

ObliviousLinearSelect can be instantiated based on the secure evaluation of a garbled circuit as shown in Fig. 9.
First, S creates a boolean circuit C with `-bit inputs x`

1, .., x
`
n and output bits w1, . . . , wd that obliviously

computes the intended functionality as described below. The circuit is evaluated securely with Yao’s garbled
circuit protocol, i.e., S creates a garbled circuit C̃ (using algorithm CreateGC) which is sent to C along with
the garbled inputs corresponding to C’s inputs x`

1, .., x
`
n in a OTn` protocol, and finally C evaluates C̃ on

these garbled inputs (using algorithm EvalGC) to obtain the garbled output values w̃1, . . . , w̃d.

Server SClient C
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Fig. 9. ObliviousLinearSelect - Circuit Instantiation
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LBP. In case of LBPs, the circuit C needs to compute wi = (â`
i ◦x` > t̂`

′

i ) = (
∑n

j=1 â`
i,j ·x`

j > t̂`
′

i ), 1 ≤ i ≤ d.
As shown in Fig. 10, an efficient circuit construction can be obtained by first multiplying the magnitudes
of x`

j and â`
i,j with an unsigned integer multiplication circuit (MUL). Afterwards, the sign is determined

by combining the sign bits of x`
j and â`

i,j with an XOR gate (⊕). Depending on this sign, the multiplied
value is added or subtracted from the intermediate result c`′

i,j−1 with an integer addition/subtraction circuit
(ADD/SUB). Hence, the intermediate values c`′

i,J carry the sum of the first J summands, i.e., c`′

i,J =
∑J

j=1 â`
i,j ·

x`
j . In the end, the final value c`′

i,n =
∑n

j=1 â`
i,j · x`

j is compared with the threshold value t̂`
′

i using an integer
comparison circuit (CMP>). The circuit can be generated automatically with the compiler of [PSS09] into a
garbled circuit of size |C̃| = d(n(|MUL|+ |⊕|+ |ADD/SUB|) + |CMP>|) = d(n([16(`− 1)2 − 16(`− 1) + 4] +
[4] + [16`′]) + 4`′)(t + 1) ∼ 16tnd(`2 + `′) bit.

BP. In case of BPs, a substantially smaller circuit C ′ can be constructed to compute the functionality
wi = (xα̂i > t̂`i). This circuit first obliviously selects the input x`

α̂i
from the inputs x`

1, .., x
`
n. This can be

achieved by using selection blocks Sn
d as follows: An Sn

d selection block is a circuit which can obliviously
select for each of its d outputs any of its n inputs. By using ` such selection blocks in parallel (one for each bit
of the ` bits), the circuit can obliviously select x`

α̂1
, .., x`

α̂d
from x`

1, .., x
`
n. Afterwards, the selected values are

compared with the respective threshold value t̂`i using an integer comparison circuit (CMP>). Using efficient
selection block constructions of [KS08b] together with the comparison blocks implemented in [PSS09] this
results in a garbled circuit of size |C̃ ′| = `|Sn

d |+d|CMP>| = (`[4(n+3d)dlog de+4n−16d+12]+d[4`])(t+1) ∼
4(n log d + 3d log d)`t bit.

Complexity (cf. Table 1). The circuit-based instantiation of ObliviousLinearSelect needs the same number of
moves as the underlying OT protocol as the garbled circuit can be sent with the last message of the OT
protocol. The asymptotic communication complexity of the circuit-based ObliviousLinearSelect protocol as
shown in Table 1 is that of the OTn` protocol (OT) plus the size of the garbled circuit given above (GC).
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Security. The circuit-based instantiation of ObliviousLinearSelect is secure against malicious C and semi-
honest S in the standard model. This follows directly from the corresponding security of Yao’s garbled
circuit [LP04].

A.2 Hybrid Instantiation - Technical Details

In the hybrid instantiation of the ObliviousLinearSelect protocol described in §3.4, S constructs a circuit C
with L′ inputs corresponding to γ mod L′ and k outputs w1, .., wd′ : First, the L′ least significant bits of
R are subtracted from the inputs corresponding to γ mod L′ resulting in y = ȳ`′

d′ || . . . ||ȳ`′

1 with an integer
subtraction circuit (SUB). Then, each ȳ`′

i , 1 ≤ i ≤ d is compared with its corresponding threshold t̂`
′

i with an
integer comparison circuit (CMP>). The circuit can be generated automatically with the compiler of [PSS09]
into a garbled circuit of size |C̃| = |SUB|+ d′|CMP>| = (8L′ + d′(4`′))(t + 1) ∼ 12L′t bit.

B Garbled LBP Construction for Tiny LBPs

As alternative to the improved method of [BPSW07] described in §3.3 (Algorithm 1 and Algorithm 2), the
garbled LBP can be constructed using a single Yao gate with d inputs as described next. The garbled LBP L̃
needs to obliviously map the garbled inputs w̃1, .., w̃d to the corresponding classification label c as explained
in §3.2. This can trivially be implemented with a Yao gate with d inputs which encrypts for each of the 2d

possible input combinations the index of the corresponding label. As the total number of classification nodes
is z − d, their index can be encoded with dlog(z − d)e bits. Hence, the overall size of the garbled gate is
|L̃′| = 2ddlog(z− d)e ∼ 2d log(z− d) bits. As the size of this alternative construction for garbled LBPs grows
exponentially in d, this is feasible for tiny LBPs only. While – in contrast to the method described in §3.3 –
this method reveals the number of classification nodes and their labels but hides the length of the evaluation
path without need for padding with dummy decision nodes.

C Security and Correctness Claims and Proofs

Correctness of SecureEvalPrivateLBP is easiest to verify by considering its components. By correctness, we
mean the requirement that, upon completion of the protocol execution, two honest parties produce the
correct output.

Firstly, observe that both our proposed implementations of ObliviousLinearSelect are indeed correct. Ver-
ification of this is somewhat tedious, but straightforward. The circuit-based protocol is based on Yao’s GC
construction, and its correctness verification is similar to that of GC. Our hybrid ObliviousLinearSelect algo-
rithm additionally makes use of homomorphic encryption; the correctness of this amendment is easily seen
as well.

Further, given the correctness of ObliviousLinearSelect, the CreateGarbledLBP/EvalGarbledLBP pair allows
to correctly evaluate L̃. This can be easily verified through the method of construction and blind evaluation
of the garbled LBP L̃. Indeed, EvalGarbledLBP simply unravels the encryptions and permutations added by
CreateGarbledLBP. Since ObliviousLinearSelect correctly provides the decryption keys corresponding to the
parties’ inputs, C obtains the correct classification label c = L(x`).

Security Proofs. We now prove the security properties of our constructions. All of the proofs are standard,
and we omit the most tedious details. However, full proofs are readily obtained from our presentation.
We show security in the semi-honest setting, with respect to standard simulation-based definitions (e.g.,
Goldreich [Gol04]). When we say “protocol π is secure”, we mean “protocol π securely implements the
(implied) ideal functionality”. We explicate this statement for our main Theorem 3. We first show security
of both ObliviousLinearSelect variants.

Theorem 1 (ObliviousLinearSelect — Circuit-Based). The circuit-based ObliviousLinearSelect protocol is
secure against semi-honest adversaries.
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Proof. We first note that the circuit C that S construct is independent of the parties’ inputs, and is public.
Further, standard GC construction and execution using a secure OT protocol (cf. §2.1) is secure in the
semi-honest model. We refer the reader to multiple existing constructions and proofs in the literature (e.g.,
[LP04,PSS09]). This completes the proof of the theorem. ut

Theorem 2 (ObliviousLinearSelect — Hybrid). The hybrid ObliviousLinearSelect protocol is secure against
semi-honest adversaries.

Proof. The proof of security is simple, but somewhat tedious; it is similar to corresponding proofs in
[BPSW07]. At the high level, C’s security follows from the fact that C only sends encrypted data, and
from the security of employed OT. S’s security follows from the method of construction of the garbled cir-
cuits and the homomorphic manipulations, and from the security of employed OT. ut

Let L be a LBP, as defined in Definition 1. We are interested in secure evaluation of the following
functionality, where d is the total number of decision nodes of L, and e is the the number of nodes that have
been evaluated before reaching a classification node (depth of evaluation path).

Functionality 1
fLBPEval(x`,L) = ((L(x`), d, e), empty string)) (2)

We note that we allow C to learn d and e, since hiding these values carries high cost, and for the simplicity
of presentation. If desired to keep these values private, dummy nodes can be inserted in the LBP L to pad
and thus partially hide both d and e. This is a standard simple technique, and we do not further discuss it.
Our proofs can be trivially modified to accommodate this addition.

Theorem 3 (Security). Let ObliviousLinearSelect be secure in the semi-honest model (cf. Theorems 1 and
2). Then Protocol SecureEvalPrivateLBP evaluates Functionality 1 securely in the semi-honest model.

Proof. The proof of Theorem 3 is similar to existing proofs of security of GC and OBDD, such as those of
[LP04,KJGB06]. At the highest level, C’s security follows from the security of the underlying OT. Indeed, C
does not send anything other than the messages of the OT protocol. S’s security follows from the security
of OT, as well as from the method of garbling the LBP L, allowing C to follow a single evaluation path.
Further, the structure of the LBP remains hidden from C since the node pointers are encrypted.

Formal proof of security requires construction of simulators SimS and SimC , which produce a view
indistinguishable from the views S and C have respectively. Recall, a semi-honest party’s view consists of its
input, used randomness, and the messages it received.

First consider the case that S is corrupt. We construct a simulator SimS that, given the input L, and the
output ⊥, simulates VIEWS . SimS uses the simulator guaranteed by the secure ObliviousLinearSelect as fol-
lows. SimS , given the input L, runs CreateGarbledLBP, and feeds the appropriate output of CreateGarbledLBP
into the simulator of ObliviousLinearSelect. SimS ’s output consists of SimS ’ input L, the randomness used
to run CreateGarbledLBP, and whatever ObliviousLinearSelect’s simulator output. It is easy to see that this
simulation is indistinguishable from the real view VIEWS (where the indistinguishability is computational
(resp. statistical) if the output of ObliviousLinearSelect’s simulator is computationally (resp. statistically)
close to its respective real view).

Now consider the case that C is corrupt. This case is a little more involved, but is standard nonetheless.
We construct a simulator SimC that, given the input x`, and the output L(x`), simulates VIEWS . Notice
that, in particular, C expects to receive a garbled LBP L̃, together with the wire values that correspond to
C’s inputs. That is, when evaluated, L̃ should produce L(x`). The main simulation challenge is that SimC

does not know L, and thus cannot simply honestly generate L̃ by running CreateGarbledLBP. We show how
to generate a fake garbled L̃′ that evaluates to L(x`), yet is indistinguishable from a real L̃. Once this is
accomplished, the remainder of the simulation is easy (calling simulator of ObliviousLinearSelect and plugging
its output).

Recall, we allow C to learn the size (more specifically, the number of decision nodes) d of L, and the
depth e of the evaluation path. Therefore, this information is made available to SimC . SimC then constructs
L̃′ that always evaluates to L(x`), regardless of what L actually does. SimC builds it by first generating,
a (garbled) evaluation path of length e. Each path node is generated according to Algorithm 1, with the
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following exceptions. First, the path terminates with the encrypted node containing two classification labels
– encryptions of L(x`). Second, each path node’s encrypted pointers point to the same (next) node on the
path.

Once the path is generated, SimC generates a number of fake nodes (so that the total number of nodes is
d). These nodes are properly formatted random encryptions of random values – they will never be reached
by the evaluation procedure, and they are indistinguishable from the real nodes. Finally, we note that SimC

actually places the nodes in random order and adjusts the pointers of the nodes that lie on the evaluation
path accordingly. This completes the description of SimC .

It is not hard to see that the view generated by SimC is computationally indistinguishable from the real
execution. This is done using a standard hybrid argument over the nodes of LBP, similarly to the proof pre-
sented in [KJGB06]. As in [KJGB06], ultimately, the hybrid argument boils down to the indistinguishability
of the real node, and the simulated node, containing two encryptions (with different keys) of identical values.
We observe that if the encryption Enc is semantically secure, or if Enc is a PRFG, then the “non-revealed”
encryptions of the two nodes are indistinguishable. Looking at it from another angle, a distinguisher that tells
apart real and simulated nodes, can be used to construct a distinguisher for PRFG (or semantically-secure
encryption).

Finally, SimC uses the constructed simulated LBP L̃′ to provide inputs to the simulator of the view of C
of ObliviousLinearSelect. For each node i, SimC randomly chooses a bit bi, and uses wbi

i as the secret to be
output by ObliviousLinearSelect. Then the output of the simulator is plugged into the output of SimC .

This completes the outline of the proof. ut
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