
Practical pseudo-collisions for hash functions
ARIRANG-224/384

Jian Guo1, Krystian Matusiewicz2, Lars R. Knudsen2, San Ling1, and
Huaxiong Wang1

1 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore
{guojian,lingsan,hxwang}@ntu.edu.sg

2 Department of Mathematics,
Technical University of Denmark, Denmark

{K.Matusiewicz,Lars.R.Knudsen}@mat.dtu.dk

Abstract. In this paper we analyse the security of the SHA-3 candi-
date ARIRANG. We show that bitwise complementation of whole regis-
ters turns out to be very useful for constructing high-probability differ-
ential characteristics in the function. We use this approach to find near-
collisions with Hamming weight 32 for the full compression function as
well as collisions for the compression function of ARIRANG reduced to 26
rounds, both with complexity close to 20 and memory requirements of
only a few words. We also provide possible differentials which could give
29 or 34 step reduced semi-free start collision with complexity less than
birthday bound. We use near collisions for the compression function to
construct pseudo-collisions for the complete hash functions ARIRANG-
224 and ARIRANG-384 with complexity 223 and close to 20, respectively.
We implemented the attacks and provide examples of appropriate pairs
of H, M values.

Keywords: practical pseudo-collision, step-reduced collision, ARIRANG

1 Introduction

ARIRANG [1] is one of the first-round candidates in the SHA-3 compe-
tition organized by NIST. It is an iterated hash function that uses a
variant of the Merkle-Damg̊ard mode augmented by a block counter. The
compression function is a dedicated design that iterates a step transfor-
mation that can be seen as a target-heavy unbalanced Feistel network [7].
Its construction seems to be influenced by an earlier design called FORK-
256 [3] with the important difference of using a bijective function based
on a layer of S-boxes and an MDS mapping as the source of non-linearity.
This prevents attacks similar to the ones developed for FORK-256 [5, 4,
2] from working on ARIRANG. A single sequence of 40 steps rather than
four parallel branches makes it immune to meet-in-the-middle attacks [6].



Our contributions In this paper we report results of our security assess-
ment of ARIRANG. The initial observation that motivated our analysis
was the fact that differences created by complementing (flipping) all bits
in a register propagate quite nicely through the function due to a partic-
ular interaction of the layer of S-boxes and an MDS mapping. We were
able to exploit this fact to derive a range of attacks on the compres-
sion function and extend some of them to attacks on the complete hash
function.

After a short description of ARIRANG given in section 2 we explain in
details our ideas of managing all-ones differences in section 3 and show
how to find conforming messages in section 4. After that, we describe
two attacks on ARIRANG. In section 5 we show how to find collisions for
26 out of 40 steps of the compression function with complexity close to
the cost of computing a single hash value of ARIRANG. Next, we show in
Section 6 that by injecting all-ones difference in one of the chaining values
we can easily (with complexity close to one evaluation) obtain 32-bit (resp.
64-bit) near collisions for the full compression function of ARIRANG-256
(resp. ARIRANG-512). We use the freedom of selecting in which chaining
register we want to have differences to convert those near-collisions for
the compression function to pseudo-collisions for the full hash functions
ARIRANG-224 and ARIRANG-384 which we can obtain with complexity
223 and close to 20 respectively. Finally, we discuss some open problems
and conclude in Section 8. Our results are summarized in Table 1.

Table 1. Summary of the results of this paper.

Compression function

Result Complexity Example

32-bit near-collision for full ARIRANG-256 compress 1 Y

64-bit near-collision for full ARIRANG-512 compress 1 Y

26-step collision for ARIRANG-256/512 1 Y

Hash function

Result Complexity Example

pseudo-collision for full ARIRANG-224/384 hash 223 / 1 Y

2 Brief description of ARIRANG

We start with providing a minimal description of ARIRANG necessary
to understand our attacks. More details can be found in the original
submission document.



Compression function The fundamental building block of the hash
function ARIRANG-256 (ARIRANG-512) is the compression function that
takes 256-bit (512-bit) chaining value and 512-bit (1024-bit) message
block and outputs a new 256-bit (512-bit) chaining value. The function,
depicted in Fig. 1, consists of two main parts: the message expansion
process and the iteration of the step transformation.

W
σ(2), W

σ(3)

W
σ(0), W

σ(1)

H M

step 1

step 2

step 20

step 21

step 22

step 40

W
σ(38), W

σ(39)

W
σ(40), W

σ(41)

W
σ(42), W

σ(43)

W
σ(78), W

σ(79)

message

expansion

Fig. 1. Compression function of ARIRANG.

The message expansion function takes as input 16 words of the mes-
sage M0, . . . , M15 and produces 80 expanded message words in two stages.
First, 32 words Wi are generated according to the procedure described in
Alg. 1, where Ki are word constants and ri are fixed rotation amounts.
Our attacks do not depend on their actual values. Next, these 32 words
are used 80 times, two in each step transformation, in the order defined
by the function σ described in Table 2.

The iterative part uses the step transformation to update the state
of 8 chaining registers, A, B, . . . , H. First, the input chaining values
H[0], . . . , H[7] are loaded into chaining registers A, . . . , H. Then, the
step tranformation is applied 20 times. After 20 steps, the initial chaining
value is XOR-ed to the current chaining values and the computation is
carried on for another 20 steps. At the end, the usual feed-forward is
applied by XOR-ing initial chaining values to the output of the iteration.



Algorithm 1 Generation of expanded message words in ARIRANG.
for i = 0, . . . , 15 do

Wi ← Mi

end for

W16 ← (W9 ⊕ W11 ⊕ W13 ⊕ W15 ⊕ K0) ≪ r0

W17 ← (W8 ⊕ W10 ⊕ W12 ⊕ W14 ⊕ K1) ≪ r1

W18 ← (W1 ⊕ W3 ⊕ W5 ⊕ W7 ⊕ K2) ≪ r2

W19 ← (W0 ⊕ W2 ⊕ W4 ⊕ W6 ⊕ K3) ≪ r3

W20 ← (W14 ⊕ W4 ⊕ W10 ⊕ W0 ⊕ K4) ≪ r0

W21 ← (W11 ⊕ W1 ⊕ W7 ⊕ W13 ⊕ K5) ≪ r1

W22 ← (W6 ⊕ W12 ⊕ W2 ⊕ W8 ⊕ K6) ≪ r2

W23 ← (W3 ⊕ W9 ⊕ W15 ⊕ W5 ⊕ K7) ≪ r3

W24 ← (W13 ⊕ W15 ⊕ W1 ⊕ W3 ⊕ K8) ≪ r0

W25 ← (W4 ⊕ W6 ⊕ W8 ⊕ W10 ⊕ K9) ≪ r1

W26 ← (W5 ⊕ W7 ⊕ W9 ⊕ W11 ⊕ K10) ≪ r2

W27 ← (W12 ⊕ W14 ⊕ W0 ⊕ W2 ⊕ K11) ≪ r3

W28 ← (W10 ⊕ W0 ⊕ W6 ⊕ W12 ⊕ K12) ≪ r0

W29 ← (W15 ⊕ W5 ⊕ W11 ⊕ W1 ⊕ K13) ≪ r1

W30 ← (W2 ⊕ W8 ⊕ W14 ⊕ W4 ⊕ K14) ≪ r2

W31 ← (W7 ⊕ W13 ⊕ W3 ⊕ W9 ⊕ K15) ≪ r3

Table 2. Ordering σ of expanded message words Wi used in step transformations.

i σ(i) i σ(i) i σ(i) i σ(i)

0, 1 16, 17 20, 21 20,21 40, 41 24, 25 60, 61 28, 29
2, 3 0, 1 22, 23 3, 6 42, 43 12, 5 62, 63 7, 2
4, 5 2, 3 24, 25 9,12 44, 45 14, 7 64, 65 13, 8
6, 7 4, 5 26, 27 15, 2 46, 47 0, 9 66, 67 3, 14
8, 9 6, 7 28, 29 5, 8 48, 49 2, 11 68, 69 9, 4

10, 11 18, 19 30, 31 22,23 50, 51 26, 27 70, 71 30, 31
12, 13 8, 9 32, 33 11,14 52, 53 4, 13 72, 73 15, 10
14, 15 10, 11 34, 35 1, 4 54, 55 6, 15 74, 75 5, 0
16, 17 12, 13 36, 37 7,10 56, 57 8, 1 76, 77 11, 6
18, 19 14, 15 38, 39 13, 0 58, 59 10, 3 78, 79 1, 12



The step transformation updates chaining registers using two ex-
panded message words Wσ(2t), Wσ(2t+1) as follows

T1 ← G(256)(At ⊕ Wσ(2t)),

Bt+1 ← At ⊕ Wσ(2t),

Ct+1 ← Bt ⊕ T1,

Dt+1 ← Ct ⊕ (T1 ≪ 13),

Et+1 ← Dt ⊕ (T1 ≪ 23),

T2 ← G(256)(Et ⊕ Wσ(2t+1)),

Ft+1 ← Et ⊕ Wσ(2t+1),

Gt+1 ← Ft ⊕ T2,

Ht+1 ← Gt ⊕ (T2 ≪ 29),

At+1 ← Ht ⊕ (T2 ≪ 7).

This transformation is illustrated in Fig. 2. In ARIRANG-256, it uses a
function G(256) which splits 32-bit input value into 4 bytes, transforms
them using AES S-Box and feeds the result to the AES MDS transforma-
tion, as presented in Fig. 3. ARIRANG uses the same finite field as AES,
defined by the polynomial x8 +x4 +x3 +x+1. MDS mapping for 256 bit
variant is defined as

MDS256 =









z z + 1 1 1
1 z z + 1 1
1 1 z z + 1
z + 1 1 1 z









.

In ARIRANG-512, an analogous function G(512) is defined using a layer
of 8 S-boxes and an appropriate 8 × 8 MDS matrix.

13

23

29

7

Wσ(2t) Wσ(2t+1)

At Bt Ct Dt Et Ft Gt Ht

At+1 Bt+1 Ct+1 Dt+1 Et+1 Ft+1 Gt+1 Ht+1

Fig. 2. Step transformation of ARIRANG updates the state of eight chaining registers.



S

S

S

S

MDS256

Fig. 3. Function G(256) of ARIRANG-256 uses four AES S-Boxes followed by AES
MDS mapping.

Hash function The hash function ARIRANGis an iterative construction
closely following the original Merkle-Damg̊ard mode. The message is first
padded by a single ‘1’ bit followed by an appropriate number of zero bits
and a 64-bit field containing the length of the original message. After
padding and appending block length field, the message is divided into
512-bit blocks and the compression function is applied to process each
of the blocks one by one. The construction has one additional variable
compared to the plain Merkle-Damg̊ard mode. A new variable that stores
the current message block index is introduced and its value is XOR-ed into
chainings before each appliaction of the compression function. However,
this does not affect our attacks.

3 All-one differences

From the description of ARIRANG-256, it is clear that it uses only three
essential building blocks: XORs, bit rotations and the function G(256),
which is the only part non-linear over F2.

Let us focus on the function G(256) first. First, note that for the AES
S-Box input difference of 0xff maps to output difference 0xff with prob-
ability 2−7, the two values x for which S(x) ⊕ S(x ⊕ 0xff) = 0xff are
0x7e, 0x81.

The second observation is that for the 256-bit MDS mapping all the
vectors of the form (a, a, a, a) are fixed points since a·z+a(z+1)+a+a = a.

This means all-one difference will map to all-one difference through
MDS256. In turns, there are 16 32-bit values x such that

G(256)(x) ⊕ G(256)(x ⊕ 0xffffffff) = 0xffffffff

and the probability of such a differential is 2−28.
This means we can consider a differential that uses only all-one dif-

ferences in active registers. The big advantage of such differences is that
they are rotation invariant, so we can easily model differentials like that
by replacing all the rotations and function G(256) with identity.



MDS mapping for ARIRANG-512 is different and all-ones is not its
fixed-point, but after combining S-box layer with MDS, we get the dif-
ferential of the same type with probability 2−56, so the same principle
applies to the larger variant as well.

To minimize the complexity of the attack, we need to use as few
active G(256)-functions as possible in the part of the function where we
cannot control input values to them. Since there are only 216 possible
combinations of all-one differences in message words and 224 combinations
including chaining registers H[0], . . . , H[7], it is easy to enumerate them
all using a computer search.

4 Message Adjustments

The method used to find messages that make the differences in the actual
function to follow the differential can be called a message adjustment
strategy.

We have full control over the message words W0, . . . , W15. Through
combinations of the message words, we can still control some of the mes-
sages Wi for 16 ≤ i ≤ 31. We can modify the messages used in the first 4
steps freely, yet leaving the output chaining values of 4-th step unchanged
by modifying the corresponding input chaining values H[0], . . . , H[7].

For example, changing W2 and H[6] by the same amount (⊕ both
with a same value) will keep the output of step 3 stable. Beyond step 4,
if we change the value of W6 in step 5, we still make the output of step
5 stable by changing the H[4] by a same amount. However this change
will be propagated by the right G function in step 1, we can fix this
by changing the H[5], H[6] and H[7] by proper values, respectively. This
method applies to W7 in step 5 similarly. In step 6, if W19 is changed, we
can still keep the output after step 6 stable. We achieve this by ⊕ with
H[7] by the same amount of the change. Note that this difference will be
propagated through the left G function in step 2 (Note we can only do
this when the left G in step 2 is not active). We can fix this by ⊕ with
H[0], H[1], H[2] by proper values, respectively. Then the change in H[0]
will be propagated through the G function in step 1. We then fix this by
⊕ with H[0], H[1], H[2] by proper values. Similar method applies to W18

in step 6.

5 Collisions for reduced round compression function

A search for collision configuration that minimizes the overall number of
active G(256) functions shows that the best strategy is to flip all message
words. Then throughout the whole compression function only 16 out of 80



G(256) are active. When we restrict the attention to steps 20-40 (the part
which almost certainly is beyond any message-modification techniques)
we can find a configuration with only 5 active G(256) and in fact only 3
in steps 22-40. Details of minimal paths are summarized in Table 3. The
second characteristic with probability 2−140 in steps 21-40 shows that the
claim made in [1, section 6.2, page 37] that “there is no collision producing

characteristics which has a probability higher than 2−256 in the last two

rounds” is based on assumptions that do not hold in practice.

Table 3. Results of search for collision characteristics in ARIRANG-256

type minimize min. value diffs in message words

collisions total active G 16 0,. . . ,15 (all)
collisions active G rounds 20-40 5 2,3,7,8,9,13

Even though using all-one differences does not seem to allow for find-
ing good collision differentials for the full compression function, one can
use them to mount an attack on its reduced-round variants. In the rest of
this section we illustrate it with a method that instantly finds collisions
for 26 steps of ARIRANG-256.

5.1 Finding Step Reduced Collision Differential

To find the optimal path for reduced-round attack, we searched the all-one
differentials using the following criteria.

1. We count the number of active G from step 11, as we have a complete
control over the first 10 steps,

2. there are only differences in message words, not in chaining values,
3. the differential should give round reduced collision,
4. the differential should have minimum number of active G,
5. preferably, the active G-s should appear as early as possible.

The search result shows a differential with differences in message words
M4, M6, M8, M10 and the corresponding active G is shown in Table 4,
steps after 16 are not shown because there is no active G between step
16 and step 26 and we do not consider steps after step 26.

5.2 Finding Step Reduced Collisions

To find the example of the 26-step reduced collision, we need to deal
with all those active G so that the input to the active G are one of those



Table 4. 26-step reduced collision characteristics in ARIRANG

Step W (left) Active G (left) W (right) Active G (right)

1 W16 W17

2 W0 W1

3 W2 W3

4 W4 X W5

5 W6 X W7 X

6 W18 X W19

7 W8 W9 X

8 W10 X W11 X

9 W12 X W13 X

10 W14 X W15 X

11 W20 W21 X

12 W3 W6

13 W9 X W12

14 W15 W2

15 W5 X W8

all-one difference pairs. As our algorithm runs in a determinstic way, we
actually force the input to a chosen pair (γ, γ̄) = (81818181, 7E7E7E7E).
In the first 10 steps, whenever there is an active G, we can fix the input
by modifying the immediate message word. After step 10, we follow the
algorithm below:

1. For active G in step 11, we change W21 to the proper value by modi-
fying W1 and W3 by the same amount so that W18 does not change,
we compensate the change of W1 and W3 using the method in section
4.

2. For active G in step 13, we modify the message word W6, which is
used one step before. We modify W2 also by a same amount so that
W19 is constant, and then compensate the changes.

3. For active G in step 15, we modify W5 directly. We compensate the
change of W5 and W18.

As we can see the algorithm is determinstic, so the complexity is 1 with
no memory requirements. An example of the chaining values and a pair
of messages obtained using this procedure is shown in Table 5.

6 Pseudo-collisions for ARIRANG-224 and
ARIRANG-384

If we relax the condition of no difference at the output of the compression
function we can find much better differentials. A near-collision attack



Table 5. 26-step reduced collision for ARIRANG-256 with differences in M only.

input H C0E5A81E 952A32CB 730C4EB7 78730E23 757D7CAC 00000000 D69B0F52 D69B0F52

M
D69B0F52 78730E23 D69B0F52 730C4EB7 E3E3E3E3 952A32CB 1A1A1A1A 49494949

00000000 02020202 D3DCBDB8 D9BDE3CB 562D250E 9B9F0611 662E4BD8 E75B0B2F

M’
D69B0F52 78730E23 D69B0F52 730C4EB7 1C1C1C1C 952A32CB E5E5E5E5 49494949

FFFFFFFF 02020202 2C234247 D9BDE3CB 562D250E 9B9F0611 662E4BD8 E75B0B2F

output of step 26 B4931778 F1615E8C 0E3756B9 93ED3536 4EBCBBFE 86C9ADD8 34334617 340155F6

for the complete compression function makes use of the three particular
features of the compression function of ARIRANG. The first one is the
existence of all-ones differentials. The second element that enables our
attack is the fact that in the first steps we can manipulate chaining values
and message words to adjust input values of G-functions, similarly to the
message modification strategy. Finally, we exploit the double-feed-forward
feature of the compression function (cf. Fig. 1) to restrict the differences
to only first half of the steps.

Once we have such near-collisions for the compression function, we can
use them to construct pseudo-collisions for the complete hash function
ARIRANG-224 and ARIRANG-384. This is possible thanks to the details
of message padding and the way the final digest is produced. Because
the final hash value is just a truncated chaining value, we can introduce
the chaining differences in the register which is going to be truncated
when producing the digest. Also, the padding and appending the length
information does not use a separate message block but rather a few last
words of a block. This means we need to deal with only one message
block with the last three words determined by the padding scheme and
the message length.

We will talk about ARIRANG-224, however our attack is not specific
to it, so it also works for ARIRANG-384.

6.1 Finding Near Collision Differential

Based on the same idea and model as used for searching the collision,
we did the search for finding near collisions and we observed an interest-
ing phenomenon. With input differences in a single chaining variable, we
could get differentials that go through the first twenty steps and collapse
back to the same register at step 20. Then after the middle feed-forward,
there is no difference in chaining registers and nothing happens until the
final feed-forward. Only then the initial difference is injected again and re-
sults in an output difference restricted to only one register, 32 bits in case
of ARIRANG-256. Actually all configurations with differences in chaining



variables behaves similarly, we can treat them as conbinations of single
differece.

With difference in H[7], we find it is easy to find the appropriate chain-
ing values and messages. And advantage of this differential is, H[7] of
the final output is discarded for ARIRANG-224 and ARIRANG-384, hence
instead of near collision, it gives collisions. The differential with corre-
sponding active G is listed in Table 6 and the detailed picture of it can
be found in Fig 4. There is no active G after step 18, and there is no
difference in the output before the final feed-forward. Steps after 18 are
not listed in Table 6.

Table 6. Active G functions in H[7] near collision characteristics for ARIRANG.

Step W (left) Active G (left) W (right) Active G (right)

1 W16 W17

2 W0 X W1

3 W2 W3 X

4 W4 X W5 X

5 W6 W7

6 W18 W19

7 W8 W9 X

8 W10 W11 X

9 W12 W13

10 W14 W15

11 W20 W21

12 W3 X W6

13 W9 W12 X

14 W15 X W2 X

15 W5 W8

16 W22 W23

17 W11 W14 X

18 W1 W4 X

6.2 Finding Chaining Values and Messages

The algorithm used to solve the near collision starts with setting all mes-
sages and chaining values to be a random value, here we make use of
0. To get pseudo-collisions for the complete hash function, we need to
consider the message padding and the encoding of the block length. In
ARIRANG, the message pading is performed by appending ’1’ followed
by as many zeros as necessary and the message length is encoded in the
last two words. To accommodate for this, we use 13 word long message



which we can manipulate freely and fix M13 = 10 · · · 02 and M14, M15 to
contain encoded length (which is 13 · 32 for ARIRANG-224 and 13 · 64 for
ARIRANG-384). Thanks to that, the input to the compression function
is consistent with the definition of the hash function and we still have a
complete control over 13 message words M0, . . . , M12. Now we can focus
on finding a message pair that follows the differential in the compression
function and we proceed as follows.

1. Steps 1-9, whenever there is an active G, we force the input to the
G to γ ((γ, γ̄) is one of good input pairs to G(256)) by modifying the
immediate W values.

2. Step 12, we modify W3. Note that W3 is also used in step 3 and 6
(W18), we can compensate this change using the method described
before.

3. Step 13, we modify W20 through W0, we also modify W2 so that W19

keeps stable. We compensate the change of W0 and W2 again using
the described method.

4. Step 14, left active G can be dealt with using W6 and W2.
5. Step 15, right active G can be choosing a random W9, we compensate

the change of W9 used in step 7 by modifying H[6]. However the input
to the left G in step 3 changes, we compensate this using W19 in step
6, H[0] and H[1] in step 1. Again input to left G in step 1 changes
as H[0] changes, we compensate as done for change of W7. Note W19

can only be changed indirectly, here we use W2 and then compensate
using H[6]. We repeat this step until we find the right active G in step
14 is good. Note we can do the compensation work only after a good
value is found.

6. step 17, we modify W5 which is used in step 15. Then we compensate
the change of W5 and W18

7. Step 18, the active G is dealt with by using W4 and W0.

The only active G left is the one in step 15. We leave this to a chance
by looping over different W9. This requires 228 tries, which is equivalent
to around 223 (251 for ARIRANG-384) calls to the compression function
as we only need to compute two G functions in the loop and there are
80 such computations in the compression function. Examples shown in
Table 7 can be found in few seconds on a standard computer, and the the
algorithm has no memory requirements apart from a few words used for
intermediate variables.

6.3 Collisions for ARIRANG-384

We can find collisions for ARIRANG-384 the same way as done for ARI-

RANG-224. However, the corresponding complexity of 251 is too high for



Table 7. Collision Example for ARIRANG-224.

input H 969F43DE 781BBD62 E6E7CEC7 075AF1AC EE30CDD2 670D94E4 7AD337C6 60026A7A

input H’ 969F43DE 781BBD62 E6E7CEC7 075AF1AC EE30CDD2 670D94E4 7AD337C6 9FFD9585

M
43F40822 00000000 22EE1F96 30B48FFB AD6E028F 958F43D5 5819FFF7 00000000

00000000 34B65233 00000000 C16DE896 00000000 80000000 00000000 000001A0

output H CBF6A53B 0D7EB2CB ACFD326A 2BA6E962 4C2087AA 2ABD938A 221AED0E

output H’ CBF6A53B 0D7EB2CB ACFD326A 2BA6E962 4C2087AA 2ABD938A 221AED0E

output H ⊕ H’ 00000000 00000000 00000000 00000000 00000000 00000000 00000000

a standard computer to handle. To get over this difficulty, we can use the
fact that the final transform for ARIRANG-384 is done by discarding the
last two chaining values, i.e. H[6] and H[7]. So besides H[7]-differential,
we can also consider H[6]-differential and H[6−7]-differential (Indeed this
also gives near collisions with outputs differ in H[6] and H[7]). Thanks
to a different positions of active G-functions, it turns out that the H[6]-
differential can be solved with complexity 1. Table 8 lists the active G
for this differential. Note that this differential works for all instances of
ARIRANG. So this also gives another solution for finding 224/256 near
collision for ARIRANG-256 with complexity 1.

Table 8. Active G functions in H[6] near collision characteristics for ARIRANG.

Step W (left) Active G (left) W (right) Active G (right)

1 W16 W17

2 W0 W1

3 W2 X W3

4 W4 W5 X

5 W6 X W7 X

6 W18 W19

7 W8 W9

8 W10 W11 X

9 W12 W13 X

10 W14 W15

11 W20 W21

12 W3 W6

13 W9 X W12

14 W15 W2 X

15 W5 X W8 X

16 W22 W23

17 W11 W14

18 W1 W4 X

19 W7 W10 X



Referring to table 8, we can solve this differential (finding chaining
values and messages) using the following procedure:

1. Step 1-9 can be handled as usual.
2. Step 13, we modify W6 in step 12. We compensate the change of W6

and W19

3. Step 14, we modify W2 directly and then compensate the change of
W2 and W19

4. Step 15, for the left active G, we modify W5 and compensate; for the
right active G, we modify W8. Note that the change of W8 can be
compensated similarly as done for W19.

5. Step 18, we modify W4 and W0 simutaneously.
6. Step 19, we modify W1 as used in step 18 and W7 simutaneously.

As shown above, every step in the algorithm is determinstic, hence it
gives complexity close to 1. Experiments also support the result, collisions
can be found in terms of µs. An example of collision for ARIRANG-384 is
shown in Table 9, note it is also 448/512 near collision for ARIRANG-512.

Table 9. Pseudo-collision example for ARIRANG-384.

input H
BA36BCB93BFD8D20 6B951DB399EB2EDC 1950E807876279AE AF16B3C9901076DC

62372888DECEB1E5 939957A5F4B4EE05 AA31DB9CB0EF684C 49B72A01D8C86B6F

input H’
BA36BCB93BFD8D20 6B951DB399EB2EDC 1950E807876279AE AF16B3C9901076DC

62372888DECEB1E5 939957A5F4B4EE05 55CE24634F1097B3 49B72A01D8C86B6F

M

B5127D606F0860D8 3E2BD987F6626D29 4EF941810127832F 0000000000000000

B5127D606F0860D8 A8FF942B50A3F3F8 A99E61F4B41D9347 F6E3114F3EAAA5E1

AFE28E981D9AE700 0000000000000000 C80D9570708720C3 AD8760D00E4D14C8

0000000000000000 8000000000000000 0000000000000000 0000000000000340

output H
5939B28C23F6435F BFA7FC0F59F0BFF7 FBF8D1923EED2060 AE79BE18FC078E32

F4CE359791C979E7 543F7F214A45D0A9 193A61B727F9BC5A 3E8CFA173B9D48B2

output H’
5939B28C23F6435F BFA7FC0F59F0BFF7 FBF8D1923EED2060 AE79BE18FC078E32

F4CE359791C979E7 543F7F214A45D0A9 E6C59E48D80643A5 3E8CFA173B9D48B2

7 Possible Extensions

With the similar method above, we can see that it is reasonable to count
the active G from step 21, as most of the time, we can handle the first
20 steps using the message adjustment or with low complexity. We did
the search and found two interesting configurations (0xA4A6 and 0x0210,
where i-th bit of the configuration indicates whether there is difference in
M [i]) which gives 29-step reduced and 34-step reduced collisions with 1
active G at step 15 and 2 active G at step 21 and 23, respectively. These



two configuration may give step-reduced collisions with complexity less
than birthday bound. With configuration 0xE14333 we may find [2-37]
step reduced pseudo-collision as there are only 4 active G after step 20
and the active G in step 21 seems easy to deal with. With configuration
0x238C, we may find semi-free start collision as there are 5 active G after
step 20 and seems those 3 active G in step 21 and 23 can be dealt with by
modifying the chaining values. We have enough freedom, i.e. 8 chaining
words and 16 message words, we need some good algorithm to utilize all
these freedom so that above configurations can be solved efficiently.

Some investigation shows that simiar idea of message adjustment
could be used to find collisions based on semi-free start collision. Note
that when messages are modified, chaining values are modified accord-
ingly. We can do the reverse: modify the chaining values to those we re-
quired, and change the messages accordingly, this may gives us two/more
block collisions. The second block are semi-free start collisions with con-
ditions on 7 or less chainings, the first block is to generate chainings in
order to find a match required by second block.

8 Conclusions

We presented a range of attacks on ARIRANG. They all use the same
type of differential based on flipping all bits in a register and the fact
that all-one differences propagate with non-zero probability through the
non-linear function G(256) and are not affected by all the other building
blocks of the function.

This approach allowed us to find collisions for step-reduced compres-
sion function and pseudo-collisions for the hash function. Even though
this method seems to be effective when looking for collisions for up to
around 30 steps, we do not see a way to extend it to a collision attack on
the full hash function at the moment.

A possible alternative approach would be to consider other types of
differences. Note that we can get high-probability local collision patterns
by having only one S-box active inside of G(256) and cancelling the (dense)
output differences in later steps by appropriate differences in message
words. With this approach we can have up to 18 S-boxes active in the
part of the function beyond our message-modification control to beat the
birthday bound. The main difficulty seems to find a superposition of such
local patterns that agrees with the message expansion process.

One could also think about a ways to “patch” the design to defend
against our attacks. It seems that the double feed-forward is not a good
idea as it enabled us to skip half of the steps of the function in our
pseudo-collision attack. Moreover, it should not be possible to use all-ones



differences that easily. To this end, one could either break the symmetry of
rotations somewhere (perhaphs in the message expansion process as seen
in SHA-256 that uses also shifts in addition to rotations) or modify the
MDS mapping to make sure that none of the possible output differences of
the layer of S-boxes obtained for all-one input difference maps to all-ones
difference through the MDS. However, all those fixes are quite ad-hoc and
address only one particular attack strategy exploited in this paper.

References

1. D. Chang, S. Hong, C. Kang, J. Kang, J. Kim, C. Lee, J. Lee, J. Lee, S. Lee,
Y. Lee, J. Lim, and J. Sung. ARIRANG: SHA-3 Proposal. NIST SHA-3
candidate, available from http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

documents/ARIRANG.zip.
2. S. Contini, K. Matusiewicz, and J. Pieprzyk. Extending FORK-256 attack to the

full hash function. In Proc. ICICS 2007, volume 4861 of LNCS, pages 296–305.
Springer, Dec 2007.

3. D. Hong, J. Sung, S. Lee, D. Moon, and S. Chee. A new dedicated 256-bit hash
function. In Fast Software Encryption – FSE’06, LNCS. Springer-Verlag, 2006.

4. K. Matusiewicz, T. Peyrin, O. Billet, S. Contini, and J. Pieprzyk. Cryptanalysis of
FORK-256. In Fast Software Encryption – FSE’07, volume 4593 of LNCS, pages
19–38. Springer, 2007.

5. F. Mendel, J. Lano, and B. Preneel. Cryptanalysis of reduced variants of the FORK-
256 hash function. In Topics in Cryptology – CT-RSA 2007, volume 4377 of LNCS,
pages 85–100. Springer, 2007.

6. M.-J. Saarinen. A Meet-in-the-Middle collision attack against the new FORK-256.
In Progress in Cryptology – INDOCRYPT 2007, volume 4859 of LNCS, pages 10–17.
Springer, 2007.

7. B. Schneier and J. Kesley. Unbalanced Feistel networks and block cipher design. In
D. Gollmann, editor, Fast Software Encryption – FSE’96, volume 1039 of LNCS,
pages 121–144. Springer-Verlag, 1996.



B0 C0 D0 E0 F0 G0 H0

13
23

29
7

W9, W11, W13, W15 ⇒ W16 W17 ⇐ W8, W10, W12, W14

A0

B1 C1 D1 E1 F1 G1 H1

13
23

29
7

W0 W1

A1

B2 C2 D2 E2 F2 G2 H2

13
23

29
7

W2 W3

A2

B3 C3 D3 E3 F3 G3 H3

13
23

29
7

W4 W5

A3

B4 C4 D4 E4 F4 G4 H4

13
23

29
7

W6 W7

A4

B5 C5 D5 E5 F5 G5 H5

13
23

29
7

W1, W3, W5, W7 ⇒ W18 W19 ⇐ W0, W2, W4, W6

A5

B6 C6 D6 E6 F6 G6 H6

13
23

29
7

W8 W9

A6

B7 C7 D7 E7 F7 G7 H7

13
23

29
7

W10 W11

A7

B8 C8 D8 E8 F8 G8 H8

13
23

29
7

W12 W13

A8

B9 C9 D9 E9 F9 G9 H9

13
23

29
7

W14 W15

A9

B10 C10 D10 E10 F10 G10 H10

13
23

29
7

W14, W4, W10, W0 ⇒ W20 W21 ⇐ W11, W1, W7, W13

A10

B11 C11 D11 E11 F11 G11 H11

13
23

29
7

W3 W6

A11

B12 C12 D12 E12 F12 G12 H12

13
23

29
7

W9 W12

A12

B13 C13 D13 E13 F13 G13 H13

13
23

29
7

W15 W2

A13

B14 C14 D14 E14 F14 G14 H14

13
23

29
7

W5 W8

A14

B15 C15 D15 E15 F15 G15 H15

13
23

29
7

W6, W12, W2, W8 ⇒ W22 W23 ⇐ W3, W9, W15, W5

A15

B16 C16 D16 E16 F16 G16 H16

13
23

29
7

W11 W14

A16

B17 C17 D17 E17 F17 G17 H17

13
23

29
7

W1 W4

A17

B18 C18 D18 E18 F18 G18 H18

13
23

29
7

W7 W10

A18

B19 C19 D19 E19 F19 G19 H19

13
23

29
7

W13 W0

A19

H1 H2 H3 H4 H5 H6 H7

Fig. 4. Differential path in steps 1-20 used to find near-collisions in the compression
function. There are no differences in steps 21-40.


