
DAA: Fixing the pairing based protocols ?

Liqun Chen1, Paul Morrissey2 and Nigel P. Smart2

1 Hewlett-Packard Laboratories,
Filton Road,
Stoke Gifford,

Bristol, BS34 8QZ,
United Kingdom.

liqun.chen@hp.com
2 Computer Science Department,

Woodland Road,
University of Bristol,
Bristol, BS8 1UB,
United Kingdom.

{paulm, nigel}@cs.bris.ac.uk

Abstract. In [17, 18] we presented a pairing based DAA protocol in the asymmetric setting, along
with a “security proof”. Jiangtao Li has pointed out to us an attack against this published protocol,
thus our prior work should not be considered sound.

In this paper we give a repaired version, along with a highly detailed security proof.

A full paper will be made available shortly. However in the meantime we present this paper for the
community to check and comment on.

1 Introduction

In [17, 18] we presented a pairing based DAA protocol in the asymmetric setting, along with a “security
proof”. Jiangtao Li have pointed out to us an attack against this published protocol. Following this we
re-examined our security proof and found a number of other major attacks on our scheme, and problems
with the “proof”. We also found attacks on the symmetric pairing based protocol of [9] and found similar
mistakes in the security proof of the symmetric pairing based scheme of [9] (despite it being presented
for a different security model).

In trying to repair our protocol we found that the simulation based DAA security model presented in
[7] was missing some crucial details. Indeed the proof of the RSA based scheme in [7] does prove security
of the protocol, but not with respect to the model as explicitly written in the same paper.

Hence, in this paper we give three contributions:

1. A fully detailed simulation based security model for the DAA protocol.
2. A new asymmetric pairing based DAA protocol.
3. A fully detailed security proof of the new scheme in the new model. In particular we present all details

in full so as to avoid the mistakes made in other proofs (which essentially occurred when reduction
algorithms for failure events were not worked out in detail).

A full paper will be made available shortly. However in the meantime we present this paper for the
community to check and comment on. We would welcome feedback and comments on each of the three
contributions, and we wish to apologise to the community for the mistakes in our earlier protocol.

? The second and third author would like to thank EPSRC and the EU funded project eCrypt for partially
supporting the work in this paper. The third author was supported by a Royal Society Wolfson Merit Award.
Most of the work in this paper was done whilst the second author was on placement with HP Labs Bristol.

2 Definitions and Security Models of DAA

2.1 The DAA Players

We refer to each of the entities in a DAA scheme as players. We first describe the types of players we
consider in our model. This set of players is the same set as in [10] and is intended to represent a DAA
scheme in which a given TPM wishes to remotely and anonymously authenticate itself to a given verifier.
Intuitively, the set of players will consist of a set of users, each comprising a Host and a TPM, a set of
issuers, and a set of verifiers to which users want to authenticate their TPM.

We now give a formal description of each of the DAA players:

– A set of users U where each ui ∈ U consists of
• A TPM mi from some set of TPMs M. Each mi ∈M has an endorsement key pair eki = (SKi,PKi)

and seed DAAseedi.
• A Host hi from some set of hosts H. Each hi ∈ H will have a counter value cnti, a set of commit-

ments {comm}i and a set of credentials {cre}i.
– A set of issuers I where each ik ∈ I has a public and private key pair (ipkk, iskk) and a long term

public value Kk. Each ik ∈ I also maintains a list of rogue TPM internal values, we denote this list
by RogueList(ik).

– A set of verifiers V. Each verifier vj ∈ V maintains a set of base names {bsn}j and a list of rogue
TPM internal values RogueList(vj). Each vj may optionally maintain a list of message and signature
pairs received (this can be used to trade memory for computation in linking).

We assume that initially the sets {comm}i, {cre}i are empty for all ui ∈ U. In addition we assume
that the lists RogueList(ik) are empty for all ik ∈ I, and that the lists RogueList(vj) and the sets {bsn}j
are empty for all vj ∈ V.

It is worth describing the various player parameters and how they relate to each other. Generally, at
the time of manufacture, each TPM will have a single endorsement key eki embedded into the TPM chip.
In addition, each TPM generates a TPM-specific secret DAAseedi and stores it in non-volatile memory,
this value will never be disclosed or changed by the TPM. We do not consider choosing and assigning
the values eki and DAAseedi in the setup algorithm, since the setup algorithm is run only by an issuer.
The DAAseedi is generally a 20–byte constant that, together with a given issuer value Kk, allows for the
generation and regeneration of a given value of an internal secret key f . Each TPM can have multiple
possible values for f (at least one per issuer and possible more if a given issuer has more than one value
of Kk). We refer to the set of possible values of f for a given user i as {f}i. Since the TPM has limited
storage requirements it does not store the current value for f ; it regenerates it as required from DAAseedi.
The pair (cnti,Kk) are unique to a given value of f and can be thought of as an index for a particular f
value. For each value of f the TPM will be able to compute many commitments on f . For each value of
f , as we will see later, a given issuer could issue multiple credentials. However, each of these credentials
will be randomisations of each other and hence the pair (cnti,Kk) can be thought of as an identifier for
a given set of credentials. We assume the Host only stores one such credential for a given f value. The
set {bsn}j is used to achieve user controlled linkability of signatures.

2.2 Formal Definition of a DAA Scheme

Informally, a DAA scheme consists of a system setup algorithm, a protocol for users to obtain credentials,
a signing protocol, algorithms for verifying and linking signatures and an algorithm for tagging rogue
TPM values. Our definition is similar to that given in [9] but with some modifications. Specifically, we
give a single protocol for the joining functionality as opposed to multiple protocols, and our signature
functionality is given as a protocol as opposed to an algorithm. Also we have an additional rogue tagging
algorithm.

Definition 1 (Daa Scheme). Formally, we define a Daa scheme to be a tuple of protocols and algorithms
Daa = (Setup, Join, Sign, Verify, Link, RogueTag) where:

2

– Setup(1t) is a p.p.t. system setup algorithm. On input 1t, where t is a security parameter, this
outputs a set of system parameters par which contains all of the issuer public keys ipkk and the
various parameter spaces. This algorithm also serves to setup and securely distribute each of the
issuer secret keys iskk.

– Join(ui, ik) is a three party protocol run between a TPM, a Host and an issuer. In a correct initial run
of the protocol with honest players the Host should obtain an additional valid commitment and an
additional valid credential. In correct subsequent runs one valid credential should be replaced with
another.

– Sign(ui,msg, bsn) is a two party protocol run between a TPM and a Host used to generate a signature
of knowledge on some message msg with respect to some basename bsn. In a correct run of the
protocol with honest players the signature of knowledge will be constructed according to bsn for some
specified verifier that will allow the signature to be linked to other signatures with this same verifier
and basename, unless bsn =⊥.

– Verify(σ,msg, bsn, ipkk) is a deterministic polynomial time (d.p.t.) verification algorithm that allows
a given verifier to verify a signature of knowledge σ of a credential on a message msg computed with
respect to basename bsn and issued by the issuer with public key ipkk. The verification process will
involve checking the signature against the list RogueList(vj). This algorithm returns either accept or
reject .

– Link((σ0,msg0), (σ1,msg1), bsn, ipkk) is a d.p.t. linking algorithm that returns either linked , unlinked
or ⊥. The algorithm should return ⊥ if either signature was produced with a rogue key, return linked
if both are valid signatures on the respective message with respect to the same basename bsn 6=⊥,
and return unlinked otherwise.

– RogueTag(f, σ,msg, bsn, ipkk) is a d.p.t. rogue tagging algorithm that returns true if σ is a valid
signature for message msg and basename bsn produced using a credential issued by the issuer with
public key ipk and using the TPM secret value f and returns false otherwise.

For correctness we require that if

– a user ui ∈ U engages in a run of Join with ik, resulting in ui obtaining a commitment comm on a
TPM secret value f and a credential cre corresponding to f ,

– the user ui then creates two signatures σb on two messages msgb for b ∈ {0, 1} with basename bsn
(which could be ⊥),

– and the secret TPM value used to compute these f is not in RogueList,

then
Verify(σ0,msg0, bsn, ipkk) = Verify(σ1,msg1, bsn, ipkk) = accept

if bsn 6=⊥ then
Link((σ0,msg0), (σ1,msg1), bsn, ipkk) = linked ,

and if bsn =⊥ then
Link((σ0,msg0), (σ1,msg1), bsn, ipkk) = unlinked ,

2.3 The Real/Ideal System based DAA Security Model

In this section we give a detailed description of a slightly modified version of the real/ideal system model
[7] for DAA schemes.

Real System Execution for a DAA Scheme. For the real system we model a set of players consisting
of nU users ui ∈ U each with a host hi and corresponding TPM module mi, a set of nV verifiers vj ∈ V
and a set of nI issuers ik ∈ I. The honest players in the system receive inputs from and send outputs
to the environment Env. Honest players also run cryptographic protocols with each other and perform
cryptographic computations themselves according to the description of the DAA scheme. We model an
adversary A as a p.p.t. algorithm that controls a number of corrupt players. Since the adversary controls
the set of corrupt players it will arbitrarily interact with other players and Env.

Ideal System Execution for a DAA Scheme. In the ideal system we have the same set of players
as in the real system. In addition there exists some trusted third party T . The main difference to the real

3

system is players engage in protocol runs and perform cryptographic computations by passing inputs to
T and receiving outputs from T rather than performing these themselves according to the scheme.

The trusted third party T provides the functionality we want from a secure DAA scheme by main-
taining a number of lists and making decisions based on these lists. These lists include a list CorruptTPM
of endorsement key and counter pairs, a list of signatures issued Signatures, a list of members Members
and a rogue list RogueList.

We assume whenever a TPM is corrupted it tells T by sending its index i (which we use as an identifier)
to T who adds this to CorruptTPM. The entries of Signatures have the form (σ,msg, bsn, i, cnt, ik) and
each is intended to mean T computed a signature σ on the message msg on behalf of the user with
identifier i using internal secret value, corresponding to cnt, for which this user ran the Join protocol
with ik, and that is linkable to all other signatures with the same issuer and basename bsn ∈ {0, 1}∗∪ ⊥
(providing bsn 6=⊥). The entries of RogueList will contain TPM identifier and counter pairs. The list
Members contains TPM identifier, counter and issuer identifier tuples and is essentially a list of those
TPM’s that T has issued credentials to and the issuer on whose behalf these were issued. Intuitively, the
list CorruptTPM is a list of TPM’s for which the adversary has complete control and hence knows all
values of internal secrets for each value of counter. On the other hand, the list RogueList will be a list of
TPM and internal secret pairs that have been compromised. The adversary may only know a single value
of internal secret for a rogue TPM. To this end, T uses CorruptTPM to decide if a given identifier and
counter pair should be added to RogueList or not. The trusted third party then performs the following
functionality on behalf of players:

Setup. Any corrupted TPM modules inform T of this by sending their identifier i to T who adds this to
CorruptTPM.

Join. The host hi contacts T with the identifier i, counter cnt and issuer ik ∈ I. Next T sends cnt to mi

and asks if it wants to join with respect to cnt and ik. The module mi informs T of its decision. Then T
sends to ik the pair (i, cnt), and informs ik if (i, cnt) ∈ RogueList or not. Note T does not add an entry
to RogueList. The issuer ik then makes a decision as to whether (i, cnt) can become a member or not and
informs T of this. If ik decides that (i, cnt) can become a member then T adds (i, cnt, ik) to Members.
Finally T informs hi of the decision.

Sign. A given host hi requests to sign a message msg with basename bsn using a given pair (i, cnt) by
sending to T a tuple (msg, i, cnt, ik).

– If (i, cnt, ik) 6∈ Members for some ik ∈ I then T denies the request and replies to hi with ⊥.
– Else if (i, cnt, ik) ∈ Members for some ik ∈ I then T forwards msg and cnt to mi and asks if it wants

to sign with respect to cnt. If so then T asks hi for a basename with which to produce the signature.
– After receiving bsn the trusted third party T generates a random σ, adds (σ,msg, bsn, i, cnt, ik) to

Signatures and responds to hi with σ.

Verify. A given verifier asks for a verification decision on (σ,msg, bsn, ik) by submitting this tuple to T .

– If ik is corrupt then T refuses the request.
– If there does not exist an entry (σ,msg, bsn, ∗, ∗, ik) ∈ Signatures then T replies with reject .
– Else if the corresponding pair for this signature (i, cnt) ∈ RogueList then T informs vj that msg has

been signed by a rogue TPM and outputs reject .
– Else T replies with accept and the corresponding issuer identity ik.

Link. A given verifier vj requests a linkage decision from T by submitting a tuple ((σ0,msg0), (σ1,msg1),
bsn, ik) to T . If there exists less than two entries on Signatures of the form (σb,msgb, bsn, i, cnt, ik) for
b ∈ {0, 1}, then T returns ⊥. Else if any of the entries on Signatures is such that (i, cnt) ∈ RogueList
then T returns ⊥. Else if there exists two entries on Signatures of the form (σb,msgb, bsn, i, cnt, ik) for
b ∈ {0, 1}, (i, cnt) 6∈ RogueList for each value of b and bsn 6=⊥ then T returns linked . Otherwise T returns
unlinked to vj .

RogueTag. When a party wishes to add an entry to RogueList it submits a tuple (i, cnt, ik) to T . If
i ∈ CorruptTPM and (i, cnt, ik) ∈ Members then T adds (i, cnt) to RogueList and otherwise does not.

4

We now discuss some of the properties of this ideal functionality in more detail. Firstly, notice this
ideal functionality implements the two most important parts of a joining functionality. Namely, a platform
cannot become a member without some interaction with the TPM and without the issuer allowing the
same TPM to join. The only real difference with this and the functionality of [7] is that when a module
is allowed to join an entry is added to Members which includes the issuer with which the module joined.
Within the functionality one should think of the value of i as an identifier for a given user and a given cnt
as one of the internal secrets held; i.e. each value of cnt corresponds to a particular f value in an actual
DAA scheme.

In contrast to [7], our functionality splits Sign,Verify and Link into separate parts rather than giving
them as a whole. As with the model of [7] a host can only sign a message with respect to some counter
if it has already been added to the members list with respect to this counter value. Also, a host cannot
produce a new signature without interaction with a TPM. We note that a host does not have to decide
which verifier it wants to present the signature to at the point of signing.

One of the main differences with our Sign functionality and that of [7] is how the trusted third party
implements it using a list of signatures. The entries of this list contain a randomly chosen signature value,
the basename used to sign, and the counter value and issuer with which the corresponding join protocol
was run. This inclusion of the basename in the signature list entry allows the enforcing of basename
verifiability; the ability of a verifier to check a given signature was produced with respect to a given
basename. This property is not present in the model of [7] yet is an important property for DAA schemes
as a given verifier may have some policy to implement based on basenames used for signatures.

The first thing to notice with our Verify functionality is that if the issuer for which a given signature is
presented for verification is corrupt then the trusted third party refuses to deal with it. Indeed, a corrupt
issuer can issue credentials to any platform it likes, or itself, regardless of whether such a platform contains
a TPM or not. Hence the security model does not cover this case. Notice however that we do allow for the
Join protocol to be run with a corrupt issuer and for signatures to be produced on credentials obtained
in this manner. This allows us to model anonymity of signatures produced; if an honest TPM obtains a
credential from a corrupt issuer then we want that this still remains anonymous and unlinkable where
required. We simply disallow signatures produced in this manner to be presented for verification. This
assumption that such signatures will never be presented for verification is not contained explicitly in the
model of [7], but it is assumed implicitly in the proof contained in [7]. Our model enforces this property
explicitly during the Verify ideal functionality.

In addition to this the Verify ideal functionality implements basename verifiability explicitly; to get a
verification decision a basename has to be presented to the trusted third party and only if this matches
the signature on the list does it give an acceptance decision. This functionality also implements anonymity
whilst still preventing signatures produced by a rogue TPM from correctly verifying. Also, notice that
if a user presents a signature for verification successfully, then they can tell with which issuer the Join
protocol was run. Most importantly, signatures will only verify if an entry was added to Signatures by
the trusted third party. A given signature may also be presented for verification many times as opposed
to just once, or may not be presented for verification at all.

User controlled linkability means that correctly verifying signatures with the same bsn 6=⊥ and with
the same value of f should link together. The functionality captures this by linking two signatures on the
list that use the same basename and counter value. In addition, if the pairs of (bsn, cnt) are different for
a given pair of signatures or if bsn =⊥ then signatures will not link together. For honest users, anonymity
means that a given cannot be linked to the TPM that computed it. In the ideal functionality signatures
are assigned at random, in particular independently of either i or cnt, and verification decisions are also
independent of these.

Securely Implementing Functionality. Intuitively, we say a system is secure if its behaviour is
computationally indistinguishable from a an ideal DAA system. The formal definition of a secure imple-
mentation of a DAA scheme is then as follows.

Definition 2 (Secure Implementation). A given DAA scheme Daa is a secure implementation if for
every computationally bounded environment Env and every p.p.t. adversary A there exists some simulator
S, that controls the same set of players in an ideal–system as A does in a real–system, such that Env

5

cannot distinguish whether it is run in the real–system (and interacts with A) or whether it is run in an
ideal–system (and interacts with S).

We assume the trusted third party T in an ideal system is in some sense “invisible” to the environment
since otherwise the environment can trivially distinguish real from ideal systems. To this end any protocols
for which message are passed through T appear as if they are passed directly between players and
any computations performed by T on behalf of players appear as if they are performed by the players
themselves. In our functionality in particular we require that the signatures chosen by T have the same
shape and structure as in a real world scheme.

3 Pairing Based Cryptography Background

Our main contribution of the paper is a new highly efficient pairing based DAA protocol based on
asymmetric pairings, which corrects a flaw in the proposal of [17]. The reason for using asymmetric
pairings as opposed to symmetric pairings is that the latter’s security levels scale very badly. This poor
scaling is due to the embedding degree being bounded by six for supersingular elliptic curves. Thus with
the wider acceptance of AES style security levels it has been necessary for pairing protocols to also move to
the setting of ordinary elliptic curves, where asymmetric pairings are required. In addition by combining
with the latest implementation choices, such as Barreto-Naehrig curves [3], the Ate-pairing [22] and its
generalisations, and the use of sextic twists, we can obtain very efficient pairing implementations in the
asymmetric setting at high security levels.

Throughout we let G1 = 〈P1〉, G2 = 〈P2〉 and GT be groups of large prime exponent q ≈ 2t for security
parameter t. The groups G1, G2 will be written additively and the group GT multiplicatively. If G is some
group then we use the notation G× to mean the non-identity elements of G. If R is some ring or field we
take R× to mean the non-zero elements of R (non-identity elements for the addition operation).

Definition 3 (Pairing). A pairing (or bilinear map) is a map t̂ : G1 ×G2→GT such that:

1. The map t̂ is bilinear. This means that ∀P, P ′ ∈ G1 and ∀Q,Q′ ∈ G2 that
– t̂(P + P ′, Q) = t̂(P,Q) · t̂(P ′, Q) ∈ GT .
– t̂(P,Q + Q′) = t̂(P,Q) · t̂(P,Q′) ∈ GT .

2. The map t̂ is non-degenerate. This means that
– ∀P ∈ G×1 ∃Q ∈ G2 such that t̂(P,Q) 6= 1GT

∈ GT .
– ∀Q ∈ G×2 ∃P ∈ G1 such that t̂(P,Q) 6= 1GT

∈ GT .
3. The map t̂ is computable i.e. there exist some polynomial time algorithm to compute t̂(P,Q) ∈ GT

for all (P,Q) ∈ G1 ×G2.

All pairing based DAA protocols, ours included, are based on the pairing based Camenisch-Lysyanskaya
signature scheme [14]. This protocol is given by a triple of algorithms, as follows:

– KeyGeneration: The private key is a pair (x, y) ∈ Zq × Zq, the public key is given by the pair
(X, Y) ∈ G2 ×G2 where X = xP2 and Y = yP2.

– Signing: On input of a message m ∈ Zq the signer generates A ∈ G1 at random and outputs the
signature (A,B, C) ∈ G1 ×G1 ×G1, where B = yA and C = [x + mxy]A.

– Verification: To verify a signature on a message the verifier checks whether t̂(A, Y) = t̂(B,P2) and
t̂(A,X) · t̂(mB,X) = t̂(C,P2).

The security of the above signature scheme is related to the hardness of a problem called the bilinear
LRSW assumption [14, 24]. To describe this assumption we first define an oracle OX,Y (·) which on input
f ∈ Zq outputs a triple (A, y ·A, (x + fxy)A) where A←G1, X = x ·P1 and Y = y ·P2. We then have the
following definition.

Definition 4 (bilinear LRSW Advantage). We define the bilinear LRSW advantage AdvbLRSW
A (t)

of an adversary A against (G1, G2, P1, P2, q, t̂) as

Pr

x, y←Zq;X←xP1, Y←yP2; (f,A, B, C)←AOX,Y (·)(G1, G2, P1, P2, X, Y, q, t̂)

∧
(
f 6∈ Q, f ∈ Z×q , A ∈ G1, B = y ·A, C = (x + fxy) ·A

)
where Q is the set of queries that A made to OX,Y (·) and q ≈ 2t.

6

We then say a tuple (G1, G2, P1, P2, q, t̂) satisfies the bilinear LRSW assumption if for any p.p.t.adversary
A its advantage AdvbLRSW

A (t) is negligible in t.
We also define a very closely related assumption which we refer to as the blind bilinear LRSW

assumption. To describe this we define an oracle OB
X,Y (·) which on input F ∈ G1 outputs a triple

(A, y ·A, (xA + rxyF)) where r←Zq, A = rP1 ∈ G1, X = x · P1 ∈ G1 and Y = y · P2 ∈ G2. We note this
is essentially the same as the oracle OX,Y (·) since xA + rxyF = (x + fxy)A where A = rP1 for some
r ∈ Zq and F = fP1 for some value of f ∈ Zq. The only difference is how the requests are made to the
oracle; the value of f is “hidden” from the oracle in the blind case. We then have the following definition.

Definition 5 (Blind Bilinear LRSW Advantage). We define the blind bilinear LRSW advantage
AdvB−bLRSW

A (t) of an adversary A against (G1, G2, P1, P2, q, t̂) as

Pr

x, y←Zq;X←xP1, Y←yP2; (f,A, B, C)←AO
B
X,Y (·)(G1, G2, P1, P2, X, Y, q, t̂)

∧
(
F = fP1 6∈ Q, f ∈ Z×q , A ∈ G1, B = y ·A, C = (x + fxy) ·A

)

where Q is the set of queries that A made to OB
X,Y (·) and q ≈ 2t.

We then say a tuple (G1, G2, P1, P2, q, t̂) satisfies the blind bilinear LRSW assumption if for any p.p.t.
adversary A its advantage AdvB−bLRSW

A (t) is negligible in t.

Notice that the blind bLRSW assumption is at least as strong as the bLRSW assumption and may
be slightly stronger. One can easily translate queries made to OX,Y (·) to queries suitable for OB

X,Y (·)
by multiplying a given f by P1. However, the reverse is only true if one can obtain a given f from
F = fP1. As a result, if the B-bLRSW assumption holds then the bLRSW assumption trivially holds
but the B-bLRSW assumption may hold without the bLRSW assumption holding.

The original bilinear CL signature scheme is given in the symmetric pairing setting (i.e. where G1 =
G2), we have chosen the above asymmetric version (i.e. the precise use of the groups G1 and G2) so as to
reduce the size of the signatures and to have the fastest signing algorithm possible. The key property of
this signature scheme is that signatures are re-randomizable without knowledge of the secret key: given
(A,B, C) one can re-randomise it by computing (rA, rB, rC) for a random element r ∈ Zq.

There is an interesting difference between this signature scheme in the symmetric and the asymmetric
settings. In the symmetric setting the signer, on being given two valid signatures (A,B, C) and (A′, B′, C ′),
is able to tell that they correspond to a randomisation of a previous signature, without knowing what
that message is. He can do this by verifying that A′ = rA,B′ = rB and C ′ = rC, for some value r, by
performing the following steps:

t̂(A′, B) = t̂(A,B′) and t̂(A′, C) = t̂(A,C ′).

This makes use of the fact that the DDH problem is easy in G1 in the symmetric setting.
In the asymmetric setting a signer is unable to determine if two signatures correspond to the same

message, since in this setting the DDH problem is believed to be hard in G1. Indeed one can show that an
adversary who can tell whether (A′, B′, C ′) is a randomisation of (A,B, C), even if the adversary knows
x and y, is able to solve DDH in G1. This difference provides one of the main optimisations of our DAA
scheme below. For later use the formal definition of the DDH problem for G1 is now given:

Definition 6 (G1-DDH). We define the AdvDDH
A (t) of an G1-DDH adversary A against the set of

parameters (G1, G2, P1, P2, q, t̂) as

| Pr [x, y, z←Zq;X←xP1, Y←yP1, Z←zP1;A(G1, G2, P1, P2, X, Y, Z, q) = 1]
− Pr [x, y←Zq;X←xP1, Y←yP1;Z←G1;A(G1, G2, P1, P2, X, Y, Z, q) = 1] |

We then say a tuple (G1, G2, P1, P2, q, t̂) satisfies the DDH assumption for G1 if for any p.p.t.adversary A
its advantage AdvDDH

A (t) is negligible in t. Often this problem in the context of pairing groups is called
the external Diffie–Hellman problem, or the XDH problem.

7

We shall require one other problem to be hard. Namely that the discrete logarithm problem in G1

is hard, even in the presence of an oracle which solves the static computational Diffie–Hellman problem
for the underlying secret in the discrete logarithm problem. We will call this problem Gap-DLP, since
it is similar to the Gap-CDH problem, where one tries to solve the CDH problem with the presence of
an oracle to solve DDH. Note, that in general DLP and the general CDH problem are believed to be
equivalent, hence such a Gap-DLP problem will be easy if the computational Diffie–Hellman oracle is a
general oracle. However, we restrict the oracle to be static. Formally we define:

Definition 7 (Gap-DLP). We define the Gap-DLP advantage AdvGap−DLP
A (t) for G1 of an adversary

A against (G1, G2, P1, P2, q, t̂) as

Pr
[
x;X←xP1;AOx(·)(G1, G2, P1, P2, X, q, t̂)

]
where Ox is the oracle which on input of Y ∈ G1 will return xY and q ≈ 2t.

We then say a tuple (G1, G2, P1, P2, q, t̂) satisfies the Gap-DLP assumption in G1 if for any p.p.t. adversary
A its advantage AdvGap−DLP

A (t) is negligible in t.

4 Pairing Based DAA Schemes

We can now give a detailed description of the our new DAA scheme based on asymmetric bilinear maps.
Before proceeding we note a general point which needs to be born in mind for each of our following
sub-protocols. Every group element received by any party needs to be checked that it lies in the correct
group, and in particular does not lie in some larger group which contains the specified group. This is
to avoid numerous attacks such as those related to small subgroups etc. In asymmetric pairings this is
particularly important since G1 and G2 can be considered as distinct subgroups of a large group G. If
transmitted elements are actually in G, as opposed to G1 and G2, then various properties can be broken
such as anonymity and linkability.

Hence, our security proofs implicitly assume that all transmitted group elements are indeed elements of
the specified groups, this is a point which is often overlooked in many discussions. For the situation under
consideration, namely Type-III pairings [20], efficient methods for checking subgroup membership are
given in [19]. Note, we do not count the cost of these subgroup checks in our performance considerations
later on, as their relative costs can be quite dependent on the specific groups and security parameters
under consideration.

4.1 The Setup Algorithm

To set the system up we need to select parameters for each protocol and algorithm used within the
DAA scheme well as the long term parameters for each Issuer. We assume that prior to any system
setup each TPM has its private endorsement key SK embedded into it and that each issuer has access to
the corresponding public endorsement key PK. We also assume a public key signature scheme has been
selected for use with these keys. On input of the security parameter 1t the setup algorithm executes the
following:

1. Generate the Commitment Parameters parC. For this three groups, G1, G2 and GT , of sufficiently
large prime order q are selected. Two random generators are selected such that G1 = 〈P1〉 and
G2 = 〈P2〉 along with a pairing t̂ : G1 × G2 7→ GT . Next two hash functions H1 : {0, 1}∗ 7→ Zq and
H2 : {0, 1}∗ 7→ Zq are selected and parC is set to be (G1, G2, GT , t̂, P1, P2, q,H1,H2).

2. Generate Signature and Verification Parameters parS. Three additional hash functions are selected:
H3 : {0, 1}∗ 7→ G1, H4 : {0, 1}∗ 7→ Zq and H5 : {0, 1}∗ 7→ Zq. We set parS to be (H3,H4,H5).

3. Generate the Issuer Parameters parI. For each ik ∈ I the following is performed. Two integers are
selected x, y←Zq and the issuer secret key iskk is assigned to be (x, y). Then the values X = x·P2 ∈ G2

and Y = y · P2 ∈ G2 are computed. The issuer public key ipkk is assigned to be (X, Y).
Then an issuer value Kk is computed according to the issuer public values in some predefined manner
(we leave the specific details of how this is done as an implementation detail).
Finally, parI is set to be ({ipkk,Kk}) for each issuer ik ∈ I.

8

4. Publish Public Parameters. Finally, the system public parameters par are set to be (parC, parS, parI)
and are published.

The grouping of system parameters is according to usage. For example the set parC contains all system
parameters necessary for computing commitments and the set parV contains those for any signature
verification computations. The group order q is selected so that solving the decisional Diffie–Hellman
problem in G1 takes time 2t, as does solving the appropriate bilinear LRSW problem with respect to the
pairing t̂, and as does solving the Gap-DLP problem in G1.

We do not specify that issuers supply a proof of correctness of their public keys, i.e. that they know the
underlying secret key value, or that a given user checks the correctness of the issuer public keys. Instead,
during the verification algorithm, the correctness of issuer public keys are verified for any signature
produced from a credential issued by a given issuer.

4.2 The Join Protocol

This is a protocol between a given TPM m ∈M, the corresponding Host h ∈ H and an Issuer i ∈ I. We
first give an overview of how a general Join protocol proceeds. There are 3 main stages to a Join protocol.
First the TPM m generates some secret message f using the value Kk provided by the issuer and its
internal seed DAAseed. We note, for a given issuer a TPM could compute many values of f ; one for each
value of Kk. The TPM then computes a commitment on this value and passes this to its Host who adds
this to the list of commitments for that user and forwards it to the Issuer. In the second stage the issuer
performs some checks on the commitment it receives and, if these correctly verify, computes a credential
such that the correctness of this credential can be checked by the TPM and Host working together. The
final stage of a Join protocol involves the Host and TPM working together to verify the correctness of the
credential. In our case the Host first performs some computations and stores some values related to these
before passing part of the credential on to the TPM prior to verifying the correctness of the credential
and then adding this to the list of credentials for that user.

Our protocol proceeds as shown in Figure 1. The following notes should be kept in mind when
examining this protocol.

– We note that the nonce nI on which the commitment is generated must be one that was sent out by
the issuer. Since the issuer may be running many Join protocols at once the host reminds the issuer
of the value of nI it was sent in commreq and the issuer then checks this against its records. This
checking of the nonce could equally be performed by the server computing a message authentication
code tag on the nonce and verifying this upon reciept of it from a host. This method would require
more computation from an issuer but require less storage space.

– The commitment used to obtain a given credential is essentially a proof of knowledge of the discrete
logarithm of the value F along with a signature on this proof of knowledge. Since only a valid TPM
holding the secret key corresponding to a given public endorsement key can produce such a signature
the host should not be able to obtain a credential without the aid of a TPM. Since only the TPM
knows f then the host should then be unable to produce signatures on this credential without the aid
of the same TPM. This of course assumes that a given issuer actually checks the signature and the
proof of knowledge of the discrete logarithm of F ; if the signature was not checked then a host could
select any value of f it wanted and produced a proof of knowledge of this. The host would then be
able to compute signatures on this credential that correctly verify. Furthermore, we do not consider
the public key signature computations within our performance analysis of the scheme.

– The public key signature scheme used to sign the commitment essentially implements an authenticated
channel from the TPM to the issuer. In reality this need not be a signature scheme and can be replaced
with any authenticated channel; the security of the overall scheme will then depend upon the security
properties of this authenticated channel.

– In contrast with the RSA-based DAA schemes we do not require a relatively complicated proof of
knowledge of the correctness of a given commitment. Instead, the proof of knowledge is provided by
a very efficient Schnorr signature on the value F computed using the secret key f . The credential
computed by ik is then a bilinear CL signature on this commitment.

9

TPM (m) Host (h) Issuer (i)

nI←{0, 1}t

str←X‖Y ‖nI
commreq� commreq� commreq←nI

f←H1(DAAseed‖cnt‖Kk)

u←Zq

U←u · P1; F←f · P1

v←H2(str‖F‖U)

w←u + v · f (mod q)

γ←sigSK(F ||v||w)

comm←(F, v, w, γ) comm, nI- comm, nI- If nI 6∈ {commreq}
then abort

If verPK(γ, (F ||v||w)) = false

then abort

U ′←wP1 − vF

str←X‖Y ‖nI

If F = f · P1 for some

f on the rogue list, or

v 6= H2(str‖F‖U ′)

then abort

r←Zq

A←r · P1; B←y · A
C←(x · A + rxy · F)

B� cre� cre←(A, B, C)

D←f · B D - If t̂(A, Y) 6= t̂(B, P2)

or t̂(A + D, X) 6= t̂(C, P2)

then abort

Fig. 1. The Join Protocol

– Once a credential is issued from i, the TPM and the Host verify that this credential is correctly formed.
This is to avoid performing computations with a credential that is incorrectly formed. The last part of
the protocol therefore performs the verification algorithm from the Camenisch–Lysyanskaya signature
scheme.

– Notice that the host does not perform any checks on the correctness of the value D it receives from
the TPM. Indeed, since we assume it is harder to break into a TPM than it is to break into a host we
do not consider the case of a corrupted TPM and honest host in our security analysis; the host will
always trust communications it receives from its corresponding TPM. If the checks on the credential
using D fail then the host knows this is due to the credential being incorrectly formed rather than
the value of D being incorrectly formed.

4.3 The Signing Protocol

This is a protocol run between a given TPM m ∈M and Host h ∈ H. The objective of the sign protocol
is for m and h to work together to produce a signature of knowledge on some message. The signature
should prove knowledge of a discrete logarithm f , knowledge of a valid credential and that this credential
was computed for the same value f . We note that the Host will know a lot of the values needed in the
computation and will be able to take on a lot of the computational workload. However, if the TPM has
not had its internal value of f published (i.e. it is not a rogue module) then the Host will not know f
and will be unable to compute the whole signature without the aid of the TPM.

10

TPM (m) Host (h)

If bsn =⊥ then J←G1

else J←H3(bsn)

Either nV←{0, 1}t or receive

nV ∈ {0, 1}t from the verifier

t←Zq

R←t · A; S←t · B
T←t · C; β←t̂(S, X)

K = f · J; z←Zq
h, J, β, msg� h←H4(R‖S‖T‖nV)

L←z · J; τ←βz

nT←{0, 1}t

c←H5(h‖msg‖J‖K‖L‖τ‖nT)

s←z + c · f (mod q) (K, c, s, nT) -
σ←(R, S, T, J, K, c, s, nV , nT)

Fig. 2. The Sign Protocol

We let msg denote the message to be signed and bsn denote the base name, both of which may either
be chosen/selected by the host, or passed to the host by the verifier. The protocol then proceeds as in
Figure 2, so as to produce the signature σ.

Again we provide some notes as to the rationale behind some of the steps:

– During the run of the signature protocol two nonces are used: one from the verifier nV and one from
the TPM nT . In most applications of the Sign protocol, the signature is generated as a request from
the verifier, and the verifier supplies its own value of nV , to protect against replays of previously
requested signatures. If a signature is produced in an off-line manner we allow the Host to generate
its own value of nV . These are used to ensure each signature is different from previous signatures
and to ensure no adversarially controlled TPM and Host pair, or no honest TPM and adversarially
controlled Host, can predict or force the value of a given signature.

– Prior to running the protocol the Host decides if it wants σ to be linkable to other signatures produced
for the same verifier. If it does not want the signature to be linkable to any existing or future signatures
then it chooses bsn =⊥. If it decides that it wants the signature to be linked to some previously
generated signatures with this verifier then it sets bsn to be the same as that used for the signature
it wants to link to. Otherwise, if the Host decides it may want future signatures to be able to be link
to this one then it chooses a verifier bsn that it has not used before.

– The use of J and K allows the verifier to identify if the signature was produced by a rogue TPM by
computing fi ·J for all fi values on the rogue list and comparing these to K. This check is performed
during the verification algorithm.

– The value t is used to re-randomise the credential to be signed; if the same randomisation of a
given credential was used twice then any user in the system can trivially link signatures together.
If the original credential (A,B, C) is sent without any re-randomisation then an issuer can trivially
link signatures to users. That the issuer cannot link signatures when such re-randomisation is used
follows from the earlier mentioned property of the Camenisch–Lysyanskaya signature scheme in the
asymmetric setting. Thus it provides two types of linking resistance: It stops any issuer from being
able to link a given signature to a given signer (since issuers know the values of r used to compute
a credential and without t the credential is sent in the clear), and it stops any player in the system
from being able to tell if any two signatures were produced by the same signer (if different values of
bsn are used).

– The Host is trusted to keep anonymity because it is assumed that the Host has the motivation to
protect privacy and also because the host can always disclose the platform identity anyway. However,
the Host is not trusted to be honest for not trying to forge a DAA signature without the aid of TPM.

– The verification of a given signature will require the public key of the issuer that issued the underlying
credential, for which (R,S, T) is a randomisation, and the basename on which the signature was
computed. Recall in our functional definition these are given along with the signature rather than
inside the signature description.

11

4.4 The Verification Algorithm

This is an algorithm run by a verifier v. Intuitively the verifier checks that a signature provided proves
knowledge of a discrete logarithm f , checks that it proves knowledge of a valid credential issued on the
same value of f and that this value of f is not on the list of rogue values. We now describe the details of
our Verify algorithm. On input of a signature σ = (R,S, T, J,K, c, s, nV , nT), a message msg, a basename
bsn and an issuer public key ipkk = (X, Y) this algorithm performs the following steps:

1. Check Against Rogue List. If K = fi · J for any fi in the set of rogue secret keys then return reject.
2. Check Correctness of R and S. If t̂(R, Y) 6= t̂(S, P2) then return reject.
3. Check J computation. If bsn 6=⊥ and J 6= H3(bsn) then return reject.
4. Verify Correctness of Proofs. This is done by performing the following sets of computations:

– ρ†a←t̂(R,X), ρ†b←t̂(S, X) and ρ†c←t̂(T, P2).
– τ †←(ρ†b)

s · (ρ†c/ρ†a)−c

– L†←sJ − cK.
– h†←H4(R‖S‖T‖nV).

Finally if c 6= H5

(
h†‖msg‖J‖K‖L†‖τ †‖nT

)
return reject and otherwise return accept.

We note the verify algorithm ensures the bsn submitted with the signature is the one used by the
TPM to compute K by checking J and K are correctly related to each other, and that J = H3(bsn) for
bsn 6=⊥.

4.5 The Linking Algorithm

This is an algorithm run by a given verifier vj ∈ V which has a set of basenames {bsn}j in order to
determine if a pair of signatures were produced by the same TPM. Signatures can only be linked if they
were produced by the same TPM and the user wanted them to be able to be linked together. Formally,
on input a tuple ((σ0,msg0), (σ1,msg1), bsn, ipkk) the algorithm performs the following steps:

1. Verify Both Signatures. For each signature σb, for b ∈ {0, 1} the verifier runs Verify(σb,msgb, bsn, ipkk)
and if either of these returns reject then the value ⊥ is returned.

2. Compare J and K values. If J0 = J1 and K0 = K1 then return linked , else return unlinked .

It may be the case that one or both signatures input to the Link algorithm have previously been
received and verified by the verifier. Regardless of this we insist that the verifier re-verify these as part of
the Link algorithm since the list of rogue TPM values may have been updated since the initial verification.

Also we note the condition that K0 = K1 ensures only signatures produced with the same basename
and internal f value can be linked together. Since both signatures correctly verify with bsn this means
that in each case the K and J values relate correctly to each other.

Note, our linking algorithm works due to the way that J and K are computed in the signing algorithm.
Also note that anyone who knows bsn can link the two signatures, but they cannot link the signatures to
the signers.

4.6 The Rogue Tagging Algorithm

The purpose of the rogue tagging algorithm is to ensure that an adversary is not able to tag a given value
of TPM internal secret as rogue if the TPM that owns that particular value is not corrupted.

On input a value of f , a signature σ, message msg, basename bsn and issuer public key ipkk the
algorithm proceeds as follows:

1. Verify the Signature. If Verify(σ,msg, bsn, ipkk) = reject then the value ⊥ is returned.
2. Check (J,K) tuple. If K 6= f · J then return ⊥.
3. Check (R,S, T) tuple. If t̂(R + fS,X) 6= t̂(T, P2) then return ⊥ and otherwise add an entry f to the

rogue list.

This algorithm is intended to be run by either a verifier vj or an issuer ik and using its own local list
of rogue values. Notice that the final check ensures the underlying for the signature was produced with
the same value of f as the remainder of the signature.

12

5 Security Proof

In this section we give a security analysis of our DAA scheme.

Theorem 1. Our DAA scheme is secure in the random oracle model under the blind bilinear LRSW
assumption in (G1, G2, P1, P2, t̂), the UF-CMA security of the public key signature scheme used, the
hardness of the gap-discrete logarithm problem in G1 and the hardness of the decision Diffie-Hellman
problem in G1.

Proof. We first give an overview of the proof. To prove the theorem we need to show that for every
adversary A in the real system there exists a simulator S in the ideal system such that the environment
cannot tell which system it is in and such that the adversary cannot tell it is in a simulation. We assume
a given adversary A exists and S has access to A as a black box. When S receives messages from A it
has to simulate the behaviour of the honest players in the real system to A such that A cannot tell it is
run in a simulation. When S receives messages from T it has to simulate the behaviour of corrupt players
in the ideal system to T . In the real system the simulator allows A to perform computations and run
protocols for the corrupted players and controls the random oracles. In each case the simulator has to
respond to queries such that the environment Env cannot tell if it is run in the ideal system with S or in
a real system with A.

To construct the proof we first describe the operation of the simulator S and its interaction with
the environment Env and the adversary A by describing how S handles the communications according
to combinations of player corruptions. We use the notation (ihM) to describe the communication and
computations between a corrupted initiator (lower case i), a corrupt host (lower case h) and an honest
TPM (upper case M). This corresponds to a partially corrupted user communicating with a corrupt issuer.
We then prove that the simulator will not abort outputting “failure X” for X ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Each such failure event corresponds to the adversary being able to solve some hard problem that is
embedded into the interaction between the adversary and simulator. Finally we prove A cannot tell it is
run in a simulation and the environment cannot distinguish if it is run in a real system with A or in an
ideal system with S constructed from A.

Answering Random Oracle Queries. To handle random oracle queries S maintains a number of,
initially empty, lists HListi for i ∈ {1, 2, 3, 4, 5}. Each corresponds to a list of input and output pairs used
in the simulation of one of the 4 random oracles. Queries to each of the random oracles are answered in
the obvious manner.

Simulation of the Setup Algorithm. During the Setup the behaviour of S is according to the cor-
ruption state of the issuer ik running the algorithm. The simulator performs an ideal system setup to T
and a real system setup to A. For the ideal system setup S informs T which modules are corrupted by
sending i to T for each one controlled by S. For the real system simulation to A the simulator performs
the following:

1. First S simulates the generation of the system wide parameters by executing steps 1 to 4 of the Setup
algorithm and storing/passing the parameters to A.

2. For each corrupted issuer ik (case (i)) A will pass the values ipkk to S after performing step 3 of Setup.
For each honest mi the setup is simulated to A by S selecting values for each DAAseedi and setting
cnti = 0. For each corrupted user ui = (mi, hi) the simulator runs the ideal system Join protocol with
ik using cnti = 0. None of the honest parties in the ideal system will note any of this so this does not
give the environment a method of distinguishing the system.

3. For each honest issuer ik (case (I)) the simulator also has to simulate the generation of public and
private key pairs to A. This is done as in step 3 of the Setup algorithm and the relevant values stored
and passed to A. For each corrupted mi the simulator has to simulate the ideal system setup to T by
setting cnti = 0 in the ideal system.

Simulation of the Join Protocol. We are able to distinguish 6 cases of corruption states for players.
In each case the simulator essentially runs the protocol correctly and ensures the ideal and real systems
are consistent. As already mentioned, we do not consider the case of a corrupt TPM and honest host

13

since we assume it is easier to break into a host than a TPM. This reduces our possible number of cases
to consider from 8 to only 6.

Before giving a detailed description of the simulator we first give an informal discussion of the main
security properties enforced in a secure joining protocol from the ideal functionality and how these fit into
the simulator description. In short, if the adversary is able to violate any of these properties in the real
system then the simulator has to abort since it cannot emulate the same behaviour in the ideal system.

Firstly, in the ideal functionality, a host cannot become a member without interaction with a TPM
and without an issuer deciding to allow this particular TPM to join. In terms of our new DAA scheme
this means that, in the case of an honest TPM but an adversarially controlled host, the adversary should
not be able to produce a pair (comm, nI) claiming to be from a given TPM without the help of this
particular TPM. If such a pair is received by the simulator, when acting as an honest issuer, a failure
event is raised. We also want that an adversarially controlled module cannot choose the value of nI used
in a commitment itself and that each such nI issued defines a new commitment. If the simulator, when
acting as an honest issuer, receives a pair (comm, nI) for which it did not send out nI then it simply
aborts as in the protocol. If the same commitment is received with two different nI values then a failure
event is raised. This is regardless of the corruption state of the TPM. One final property present in the
ideal functionality and worth mentioning is that an adversary should not be able to produce a credential
that verifiers for an honest issuer on its own. Such a violation can only be detected when signatures
on such credentials are presented for verification and so we deal with this during the description of the
simulator during the verification protocol.

Case (ihm). Since the issuer and user are corrupted the adversary will perform the roles of each player
without any interaction with S. Signatures on such credentials will never be allowed to be submitted for
verification and so we need not consider this case in the simulation of the verification protocol.
Case (IHM). Since each of the players are honest they will interact with the trusted third party T in the
ideal system. If such a signature is presented to a corrupt verifier in the ideal system then the simulator
can simulate such a signature production in the real system. We describe the details of how this is done
as a case of the Verify algorithm simulation later.
Case (iHM). The issuer is corrupted but the user is not. The simulator has to play the role of the host
and module to A and has to play the role of the issuer to T . The action here is triggered in the ideal
system when S, playing the role of the corrupt issuer, will receive a pair (i, cnt) and information as to
whether the module is tagged as a rogue for that pair from T . Before giving T an answer as to whether
it can join the simulator engages in a run of the Join protocol with the adversary in the real system; the
adversary will make this decision whilst acting as the corrupt issuer in the real system. The simulator
does the following:

– The simulator first plays the role of the honest user ui in the real system by interacting with A who
is playing the role of corrupt issuer ik. The simulator begins a run of the real Join protocol. Since ui is
honest S will know DAAseedi; since the simulator would have selected it during the Setup simulation.
During this the simulator correctly computes and stores a value for comm = (F, v, w, γ).

– Eventually S should receive a credential (if A decides to continue) from A in the real system. The
simulator then computes the required value of D and checks the correctness of this credential. If this
check is passed then, to complete the ideal system Join protocol whilst acting as ik, it informs T that
it allows (i, cnt) to become a member. Otherwise S informs T that (i, cnti) cannot become a member.

Case (Ihm). Here S has to play the part of the honest issuer ik to A who controls a fully corrupted
user ui = (mi, hi) in the real system. In the ideal system S plays the part of the corrupt user ui to T .
The actions of S will be triggered in the real system when it receives a request for a commreq from A.
The decision as to whether this user can join will be made by the honest issuer in the ideal system. The
simulator does the following:

– Selects an appropriate commreq value and sends this to A. It will then receive a pair (comm, nI) from
A and performs the necessary checks on comm. If any of these checks fail then S need do nothing
more.

– If nI was not previous sent out by this issuer during a commreq request then, as in the protocol
description, the simulator aborts this run of the protocol.

14

– Next the simulator performs the verification checks on (comm, nI). If any of these checks fail the
simulator can ignore the pair.

– If (comm, nI) has been received by S before as part of a Join protocol with this issuer, then this
is simply a replay of a previous protocol run. The credential computed from this will be a different
randomisation of the previously issued credential and such a randomisation could in fact be computed
without the issuer. The simulator, acting as the honest issuer in the real system, computes the
credential correctly and responds to A with it. The simulator need do nothing in the ideal system in
this case since there will already by a tuple (i, cnt, ik) on Members for this particular credential; all S
is doing in this case is re-randomising the credential.

– If (comm, nI) is new and a pair (comm, n†I) has been received before as part of a Join protocol run,
passed each of the checks on it and n†I 6= nI then the adversary must be able to find collisions in H2

so S aborts outputting “failure 0”.
– If (comm, nI) is new and a pair (comm†, nI) has been received before during a run of the Join protocol

with this issuer where comm† 6= comm then this simply means a different value of cnt was used in
the computation of f and hence comm†. The simulator then, acting as hi in the ideal system, makes
a joining request to T for (i, cnti + 1, ik) and receives a decision from T as to whether it is allowed to
join or not. If not then S denies the request of A in the real system and otherwise correctly computes
the credential and responds to A with this. The simulator is able to correctly compute this credential
since it knows iskk; it chose it during the Setup simulation for this issuer.

– If (comm, nI) is new and no other pair (comm†, nI) or (comm, n†I) with comm 6= comm† and nI 6= n†I
has been received by this issuer as part of a Join protocol before then the simulator, acting as hi in
the ideal system, makes a joining request to T for (i, cnti + 1, ik) and receives a decision from T as
to whether it is allowed to join or not. If not then S denies the request of A in the real system and
otherwise correctly computes the credential and responds to A with this.

Case (IhM). Here only the host is controlled by the adversary. The simulator will have to play the role
of hi in the ideal system to T and the roles of ik and mi to the adversary in the real system. The action
is trigerred when S receives a request for a commreq from A in the real system and whilst acting as the
honest issuer ik. Again, the ideal system issuer will decide if this user can join or not. The simulator does
the following:

– The simulator, acting as honest issuer ik, first generates nI←{0, 1}t, assigns commreq←nI and returns
this to A.

– The simulator, acting as honest TPM mi, will then receive a value of comm′req from A who is acting
as hi. We note this may be different to the commreq chosen by S in the previous step. The simulator
then correctly computes the TPM side of the join protocol to produce a commitment on nI using f
while acting as mi in the real system. Finally the pair (comm, nI) is passed to A.

– Next S, acting as ik, should receive a pair (comm′, n′I) from A (again A may have modified the pair
passed to it). If n′I was not previous sent out by this issuer during a commreq request then, as in the
protocol description, the simulator aborts this run of the protocol.

– If (comm′, n′I) has been received by S before as part of a Join protocol with this issuer, then this
is simply a replay of a previous protocol run. The credential computed from this will be a different
randomisation of the previously issued credential and such a randomisation could in fact be computed
without the issuer. The simulator, acting as the honest issuer in the real system, computes the
credential correctly and responds to A with it. The simulator need do nothing in the ideal system in
this case since there will already by a tuple (i, cnt, ik) on Members for this particular credential; all S
is doing is re-randomising the credential.

– Next the simulator, whilst acting as the issuer, performs the verification checks on (comm′, n′I). If any
of these checks fail the simulator can ignore the pair. Otherwise the simulator checks if it has sent
out comm′ whilst acting as mi. If not then the host must be able to forge the signature contained
within comm′ so the simulator aborts outputting “failure 1”.

– If (comm′, n′I) is new, from the point of view of the issuer, and a pair (comm′, n†I) has been received
before as part of a Join protocol run, passed each of the checks on it and n†I 6= n′I then the adversary
must be able to find collisions in H2 so S aborts outputting “failure 0”.

15

– If (comm′, n′I) is new, from the point of view of the issuer, and a pair (comm†, n′I) has been received
before during a run of the Join protocol with this issuer where comm† 6= comm then this simply
means a different value of cnt was used in the computation of f and hence comm†. The simulator
then, acting as hi in the ideal system, makes a joining request to T for (i, cnti + 1, ik) and receives
a decision from T as to whether it is allowed to join or not. If not then S denies the request of A
in the real system and otherwise correctly computes the credential and responds to A with this. The
simulator is able to correctly compute this credential since it knows iskk; it chose it during the Setup
simulation for this issuer.

– If (comm′, n′I) is new, from the point of view of the issuer, and no other pair (comm†, n′I) or (comm′, n†I)
with comm′ 6= comm† and n′I 6= n†I has been received by this issuer as part of a Join protocol before
then the simulator, acting as hi in the ideal system, makes a joining request to T for (i, cnti + 1, ik)
and receives a decision from T as to whether it is allowed to join or not. If not then S denies the
request of A in the real system and otherwise correctly computes the credential and responds to A
with this.

Case (ihM). Here S, acting as mi in the real system, simulates a correct run of the Join protocol with
A. In the ideal system S plays the roles of hi and ik for an analogous run of the Join protocol. The
action here is triggered when S, acting as mi in the real system, receives a value of commreq from A. The
decision as to whether this user can join is made by the adversary in the real system. The simulator does
the following:

– In the ideal system the simulator, acting as the corrupt host hi, sends values for identifier, counter
corresponding to the value of f to be used in the real system and issuer identifier to T as a joining
request.

– The simulator will then receive a message from T , whilst acting as ik in the ideal system, to ask if
the counter and identifier value can become a member. The simulator holds off responding on this
for the time being; the adversary will make this decision in the real system.

– In the real system, acting as mi, the simulator first computes a correct value of comm according to
some value of f and then responds to A with comm. If the simulator is sent a value of B in the real
system, whilst acting as mi, then it replies to the trusted third party T in the ideal system, whilst
acting as ik, to inform it that mi can become a member in the ideal system.

– The simulator then computes the value for D in the real system and responds to the adversary with
this.

Simulation of Sign and Verify. Many parts of the simulation of the Sign and Verify protocol are very
closely related and depend upon each other. For this reason, and for greater clarity, we describe these
together. In each case we will make it clear exactly which protocol and combination of player corruption
is being considered.

For the simulation of the Sign protocol there are 4 possible cases for player corruption combinations.
For the Verify protocol there are only two cases of verifier corruption state. However, in each case the
behaviour of the simulator will depend upon the corruption state of the user that produced the signature
and of the issuer with whom the Join protocol was run. We can then distinguish 6 separate cases where the
simulator has to get involved; if the verifier and host have the same corruption state then the verification
operation appears as an internal operation of either the adversary or trusted third party. If the verifier
is corrupt then the host and hence TPM must be honest and if the verifier is honest then at least the
host must be corrupt. This allows us to remove a number of the total possible cases and we describe the
operation of S based on the remaining ones individually.

Before we do describe the details we again give some intuition as to the security properties enforced by
the ideal functionality and how these are covered in the description of the simulator. Recall that during
the simulation of the join protocol the ideal functionality enforces that a member cannot join if an issuer
does not allow it. In real terms this means a user cannot obtain a credential from anywhere other than
an issuer. If a credential was computed by the adversary for an honest issuer then the simulator should
notice such a credential when a randomisation of it is presented for verification with an honest verifier;
it can be recognised either from the value of f used to compute it or by the absence of a corresponding
entry on the members list in the ideal system. If this occurs then the simulator raises a failure event.

16

Other security properties enforced by the ideal functionality include that an adversary cannot forge
DAA signatures from an TPM nor can an adversary subvert basename verifiability when computing DAA
signatures with an honest TPM. Both of these are covered in the description of the simulator during the
verify protocol run with an honest TPM and honest verifier. In each case a failure event is output if the
property is broken by the adversary.

We now describe the details of the simulator according to each user corruption case for both Sign and
Verify.

Case (HM) of Sign. In this case both host and module are honest hence the user will produce the signature
in the real system without any interaction with S. The simulator ensures the ideal system is consistent
with the real system when such a signature is presented for verification to a corrupt verifier.

Case (vHMI) of Verify. Here the simulator would not have noticed this signature production in the ideal
system since the user is completely honest. In this particular case the issuer ik is also honest. The action
here is triggered when S, acting as the corrupt verifier in the ideal system, receives a signature σ on
message msg with respect to bsn from the user ui.

Since the user is completely honest this signature should verify correctly when presented to T ; if not
then S need do nothing more. The simulator S then has to produce a signature in the real system on
behalf of ui that correctly verifies with the corrupt verifier controlled by A. The simulator will either
already have a validly produced credential for the issuer or will simply simulate a run of the Join protocol
for this case to obtain one. The simulator then correctly computes both the TPM and host roles in the
Sign protocol using the same value of f as in the run of the Join protocol for the credential to be signed.
This signature is then passed to the corrupt verifier in the real system for verification.

Case (hm) of Sign. This is similar to the previous case of the Sign protocol simulation. In the real system
the adversary will produce the signature internally and without any interaction with the simulator.
Consistency with the ideal system is ensured when such a signature is presented for verification to an
honest verifier. Again, we deal with this in the description of how S behaves in the Verify protocol.

Case (V hmI) of Verify. The action of S here will be triggered when S receives a signature σ from A on
some message msg with respect to a basename bsn and issuer ik. The simulator first performs a verification
check as in the Verify algorithm description except for the checking for rogue values. If this check fails
then S can just ignore the signature. Otherwise S performs the rogue check.

If the signature fails the rogue check, the simulator is able to obtain the value of f used from the
simulated rogue list SimRogueList. The simulator has to then find which mi to associate the signature to
and ensure that in the ideal system any required signature calls are made and the simulated rogue list,
SimRogueList, agrees with RogueList maintained by T .

Since ik is honest and the signature has correctly verified except for the rogue checking then there
may have been a run of the Join protocol run with the simulator for case (hmI); such a user would have
joined before f was added to RogueList. We know that, since the signature failed the rogue check, fJ = K
for the value of f obtained from RogueList. We also know this value of f corresponds to the credential
that was signed. If this user obtained the underlying credential correctly then there will be a value of F
received by S while acting as ik in a Join protocol such that fP1 = F . The simulator can identify which
platform f corresponds to by checking if fP1 = F for each comm received by ik. Also worth noting is that,
since the simulator knows f , it can check if the underlying credential was issued by ik by checking if there
is some tuple (A,B, C) sent out by ik as part of a Join protocol run such that t̂(A + fB,X) = t̂(C,P2).
We use the value of F received by ik in such a run since this will identify the specific TPM rather than
just link signatures together as would be the case if we used the second check.

If this does not identify the platform then the adversary must have been able to obtain the underlying
credential on f without the help of ik. In this case the simulator aborts outputting “failure 2”.

Once the user has been identified the simulator, acting as ui in the ideal system, makes a call to T
as the host to sign msg with respect to the corresponding cnt and bsn values. The simulator then passes
the received signature to the corresponding verifier in the ideal system. Upon asking for a verification
decision from T this signature will fail on the rogue check part of verification as the actual signature did.

17

This is because a rogue tagging request would have been made to T when f was added to the rogue list
in the real system.

If the signature passes the rogue check this means that although the user is corrupted in the real
system it has yet to be added to RogueList. In the ideal system this corresponds to a TPM module that
has been added to CorruptTPM but no other player has yet made a rogue tagging request to T for the
particular (i, cnt) pair used in the signature.

In this case the simulator is unable to identify which module has signed the message. Indeed, this
should be the case since signatures produced correctly should be unlinkable to a given user. The simulator
instead assigns this pair to some corrupted mi and counter value not on the RogueList. For a correctly
chosen user the environment will be unable to tell the difference between the systems also due to the
anonymity property which is proved in Lemma 3. The simulator does this as follows:

– If there is no module i ∈ CorruptTPM with a corresponding cnt such that (i, cnt, ik) ∈ Members yet
(i, cnt) 6∈ RogueList then the simulator aborts outputting “failure 2”. In this case A must have been
able to obtain a credential that was not issued to it in the real system and use this to produce the
signature.

– If bsn =⊥ then S can select any i ∈ CorruptTPM and value of cnt such that (i, cnt, ik) ∈ Members
and (i, cnt) 6∈ RogueList. Then, acting as the corresponding corrupted host hi in the ideal system, S
initiates the signing of msg with respect to cnt and bsn with T . It will receive a signature and can
send this to the corresponding verifier in the ideal system.

– If bsn 6=⊥ then S has to also ensure it assigns this to a TPM with i ∈ CorruptTPM and counter value
cnt such that (i, cnt) 6∈ RogueList and such that this links to the correct number of signatures with
this same basename. All such signatures from this user and with this issuer will have been built in
the ideal system in this manner. Once a suitable user is selected the simulator simply has to build the
same linkability of signatures structure. By correctly maintaining this the simulator will always be
able to identify a user in the ideal system to assign this signature to. Furthermore, the environment
will be unable to distinguish the real from the ideal system since signatures will be unlinkable to users
yet linkable to each other in the same shape.
Once it has found this user and counter value it initiates a signing of msg with respect to bsn and
cnt with T . Upon receipt of this signature it can present it to the corresponding verifier in the ideal
system.

Case (Hm) of Sign. Since we assume it is harder to break into a TPM than it is to break into a host we
do not consider this case.

Case (hM) of Sign. In this case the TPM is honest and the host controlled by the adversary. The simulator
has to play the role of honest mi in the real system to A and corrupt hi in the ideal system to T . The
action here will be trigerred when S receives a tuple (h, J, β,msg) from A in the real system whilst S is
acting as mi. If no Join protocol has been successfully finished by mi then S rejects the request. Before
computing the TPM part of the signature the simulator, acting as hi in the ideal system, sends a request
to sign to T for the corresponding (msg, i, cnt, ik). If the ideal system TPM does not want to sign the
message then the simulator refuses to sign and otherwise, in the real system, correctly computes the TPM
part of the Sign protocol for the corresponding value of f used in the Join protocol.

Case (V hMI) of Verify. In this case the verifier is honest and the action of S will again be triggered
when it receives a signature σ from A on some message msg with respect to a basename bsn and issuer
ik. The simulator first performs a verification check as in the Verify algorithm description. If this check
fails then S can just ignore the signature.

For the remainder of this case we describe the actions of S based on what it has previously computed
and seen, in terms of the signature and underlying credential, when acting as mi.

The (σ, bsn,msg) tuple. If the tuple (σ, bsn,msg) has been previously submitted to S before whilst
acting as vj then S need do nothing more; this signature should already be assigned to a user in the the

18

ideal system and various checks by S passed. From here onwards we assume there is some part of this
tuple that vj has not seen in any of the signatures it has previously received.

The (R,S, T) tuple. First the simulator checks the tuple (R,S, T) contained within the signature. This
should satisfy two things: firstly the underlying credential should correspond to a value of f held by some
honest mi and the commitment used to obtain it computed during a run of the Join protocol for the case
(hMI). Secondly, the underlying credential should have been computed and issued by ik for some run of
Join for the case (hMI) with the same commitment.

During the Join protocol for the case (hMI) the simulator should have computed a commitment using
some value of f when acting as an honest mi and then computed a credential on this using the private
key for ik whilst acting as ik. The simulator will have a list of all such values of f it has used as an
honest TPM in the Join protocol for case (hMI) and uses this list to identify which user has produced
this signature. It does this by checking if t̂(R + fS,X) = t̂(T, P2) and t̂(R, Y) = t̂(S, P2) or not for each
value of f on its list. Essentially the simulator is checking if the credential used in the signature is a
randomisation of one obtained on the value of f used in the check.

If this condition is not met for one of the f values S has stored then the adversary must be able to
forge a credential from an honest issuer. This is the case since the adversary could have either forged the
signature within the commitment and then obtained the credential correctly from the issuer or forged
the credential production or both. The case of the credential being obtained correctly and the signature
within the commitment being forged would have lead to the simulator aborting with “failure 3” during
the Join protocol simulation. As a result we conclude that the adversary must have at least forged the
credential. The simulator aborts outputting “failure 2” in this case.

The (J,K, c, s, nT) tuple. During a simulated run of the Sign protocol for case (hM) the simulator would
have received a value of J and computed the remainder of the values K, c, s, nT in the signature. The
simulator knows which mi was used to obtain the credential and the corresponding f for this credential
during the Join protocol (otherwise it would have previously aborted outputting a failure event). It then
checks its records for mi to see if it has received J and output K, c, s, nT in response during a Sign protocol
run. If it has seen this tuple before we can deduce the value of nV used by the adversary is the same
as the one in the signature. The value of c is identical to one the simulator computed and the signature
correctly verified with nV ; if a different value of nV was used in the adversaries computations then it
would have had to find a collision in H4.

If the simulator has not computed the tuple (J,K, c, s, nT) then the adversary must be able to compute
signatures on valid credentials without the help of mi. The simulator identifies how this forgery was
computed before outputting a failure event.

First the simulator checks if the value of f , obtained previously, used in the credential computation
is such that K = fJ . If not then the adversary is able to compute signatures using a value of f ′ different
to that used in the credential computation. In this case the adversary would have been able to somehow
subvert the proof of knowledge of f that corresponds to both the credential and the signature. The
simulator aborts outputting “failure 3” Otherwise the adversary is able to forge DAA signatures for a
value of f unknown to it so the simulator aborts outputting “failure 4”.

The (bsn,msg) pair. If all of the above checks are passed by the signature then S needs to ensure the ideal
system is consistent with the real system and that basename verifiability has not been subverted. During
the case (hM) of Sign a tuple of the form (σ̃, msg, bsn, i, cnt, ik) should have been added to Signatures
in the ideal system. The simulator will have a record of all such tuples on this list for this particular
user. If S has no record of such a tuple then the adversary must be able to obtain a signature with
one pair (bsn′,msg′) and then use this to produce a correctly verifying signature on (bsn,msg). To do
this the adversary would have to find a collision in either H3 or H5 so the simulator aborts outputting
“failure 5”. Otherwise the simulator, whilst acting as the corrupt hi in the ideal system, submits the tuple
(σ̃, msg, bsn, i, cnt, ik) to vj for verification. This signature will then correctly verify in the ideal system
when submitted to T by vj .

Simulation of RogueTag. We assume that RogueTag will only be run by S when S is simulating an
honest vj or an honest ik in the real system and is given a tuple (σ, bsn,msg, ipkk, f). The simulator first
checks this is a valid signature on the parameters given and if this check fails rejects the request.

19

Next the simulator checks if the value of f submitted corresponds to the values of J and K within the
signature; if K = fJ or not. If not then the simulator rejects the request. Otherwise the simulator checks
if the value of f submitted corresponds to the underlying credential. If t̂(R + fS,X) 6= t̂(T, P2) then
the adversary must be able to produce a credential with one value f ′ then produce a signature on this
credential using another value f so the simulator aborts outputting “failure 3”. Otherwise the simulator
checks to see whether it has obtained a credential as an honest TPM using the value of f . It does this by
checking if fP1 = F for any of the values of F it has computed in a run of the Join protocol with either
an honest or corrupt host. If so then the adversary must be able to compute discrete logarithms in the
group G1 so the simulator aborts outputting “failure 6”. Otherwise we distinguish the behaviour of the
simulator based on the corruption state of the issuer with public key ipkk.

If this issuer is honest then the value of F such that F = fP1 used to obtain the underlying credential
should have been received within a comm tuple by the simulator whilst playing the role of this issuer. If
not then the adversary must be able to produce credentials without the aid of the issuer so the simulator
aborts outputting “failure 2”. If such a value of comm was received by the issuer and verified with a
public key of an honest TPM then the adversary must have been able to forge signatures used within the
commitment so the simulator aborts outputting “failure 1”. Otherwise we have the case where the TPM
that obtained the credential and produced the signature is corrupt. In this case the simulator adds the
value of f to the rogue list and ensures the ideal system is consistent with the real system. It does this
by making a rogue tagging request to T in the ideal system with the corresponding values of i and cnt;
it can do this since it is able to identify the TPM in the real system.

If the issuer is corrupt then the simulator will have no way of identifying the corrupt TPM that
produced this signature and the underlying credential. It could even be the case that the adversary
produced this credential without the aid of a TPM since the issuer is corrupt and can issue credentials
to any player it likes. The simulator takes no action in this case; the ideal system will be consistent since
the TPM and host must be corrupt and would not have engaged with the trusted third party in the ideal
system to be added to the members list. As a result no entry would be added to the ideal system rogue
list for this member and counter pair.

The proof the theorem then follows from the description of the simulator S and Lemmas 1, 2 and 3.

We then have the following two Lemmas.

Lemma 1. If the blind bilinear LRSW assumption holds for groups G1 = 〈P1〉, G2 = 〈P2〉, GT of large
prime order q and pairing t̂ : G1 × G2 7→ GT , the public key signature scheme used is UF-CMA secure
and the gap-discrete logarithm assumption holds in G1 then S will abort with negligible probability in the
random oracle model.

Proof. To prove this Lemma we look at each failure event in turn and argue that each will occur with
only negligible probability.

Failure 0. For this failure event to occur the simulator must have received two pairs (comm, nI) and
(comm, n†I) such that both pass all of the checks and nI 6= n†I . Informally, this means the nonce provided
by the issuer has not ensured a new commitment value and, in particular, the adversary must have been
able to find a collision in the hash function H2. We now discuss the details in a more formal manner.

Since nI 6= n†I this means str 6= str† yet they share the same value of v. This means v = H2(str‖F‖U) =
H2(str†‖F‖U†) where U may or may not be equal to U†. This would mean a collision in the hash function
H2 but since H2 is modelled as a random oracle this will happen with negligible probability for sufficiently
large q.

Failure 1. This failure event occurs whenever the adversary is able to produce a commitment comm that
verifies as coming from an honest mi yet the TPM mi has not computed the commitment. We argue this
failure event occurs with negligible probability relative to the UF-CMA security of the digital signature
scheme used within the Join protocol.

Informally, to prove this we construct an algorithm which can produce a valid forgery, and hence win
the UF-CMA game against the digital signature scheme, with probability at least that of the probability
of this failure event occurring. We now describe the details.

20

We refer to the algorithm against the UF-CMA security of the digital signature scheme as the simulator
since it has only minor differences to the description of the simulator in the proof of Theorem 1 and to
distinguish it from the adversary in the same proof. At the start of the security game for UF-CMA of
the digital signature scheme the simulator is given a public verification key for the signature scheme
and a signing oracle that uses some hidden signing key corresponding to this public key. We assume the
messages signed are of the form G1||Zq||Zq; in reality there will be some encoding of such elements into
bit strings. The simulator then sets up the simulation with A as it does in the proof of Theorem 1. During
the setup the simulator selects some TPM module mi for which the host hi is corrupt and for which it
hopes this failure event will occur and assigns the public key it was given in the UF-CMA game to be
the public endorsement key of this TPM.

The simulator then behaves exactly as in the proof of Theorem 1 except if, when acting as mi in a
run of the Join protocol, it is asked for a commitment. In this case it uses the signing oracle provided to
it to sign any commitments it sends out to the host.

If this failure event occurs with the honest issuer ik then there must be been some value of commit-
ment sent to ik which the simulator did not ask for a signing query on yet which correctly verifies; the
commitment used to obtain the credential which was signed to cause this failure event. We now argue
this commitment, which we denote comm′ = (F ′, v′, w′), was not submitted as a query to the signature
oracle. Firstly, the signature on the credential produced from comm′ correctly verified with this issuer
hence comm′ must have correctly verified with this issuer and a credential issued on it. As a result, if
comm′ was submitted to the signature oracle by the simulator it would have been during a Join protocol
with this issuer. However, the value f ′ used to obtain F ′ is different from any which correspond to this
issuer and TPM. We know this since the randomised credential in the signature which caused the failure
event did not correspond any of the f values for this issuer. Hence comm′ is different to any that would
have been computed by mi for this issuer and as a result would not have been submitted to the signature
oracle by the simulator.

The simulator identifies comm′ by checking all those received by ik that verify with the public en-
dorsement key corresponding to mi for the one that mi did not query to the signature oracle and then
outputs this as its forgery in the UF-CMA game against the digital signature scheme.

Failure 2. For this failure event to occur the adversary must have been able to obtain a credential from
an honest issuer without the help of this issuer. The adversary has then been able to produce a signature
on this credential that verifies in all but the rogue checking part of the verification. We show this failure
event happens with negligible probability relative to the blind bilinear LRSW assumption by constructing
an algorithm for the B-bLRSW from the adversary A.

Informally, we construct the algorithm for the B-bLRSW from the simulator by using the oracle
OB

X,Y (·) to produce credentials for unknown x, y. Such credentials are used to compute responses for an
honest issuer in Join protocol runs. The algorithm then uses the value of f obtained from the rogue list
checking to construct the solution to the B-bLRSW problem. We now describe the details.

In our description we refer to the algorithm for solving the B-bLRSW problem as the simulator since
it is only a slight variation on the description of the simulator. We then describe the necessary changes
to the previous simulator description to arrive at our algorithm for the B-bLRSW. For the B-bLRSW
problem the simulator will be given a tuple (G1, G2, P1, P2, X, Y, q, t̂) and an oracle OB

X,Y (·). It uses
G1, G2, P1, P2, q, t̂ as the public parameters for the real system setup of the whole scheme and selects one
honest issuer in the real system which for it hopes the adversary will compute the credential underlying
the signature, without the help of the issuer, which causes this failure event. When hosts ask to run the
Join protocol with the issuer the simulator has selected it checks the commitment sent and if it is correct
uses OB

X,Y (·) with input the value of F given in comm to produce the required A,B, C values for the
credential. In this way it can correctly simulate the behaviour of this issuer without knowing the values
of x or y.

When this failure event occurs the simulator will be able to obtain the (R,S, T) tuple used in the
signature and the value of f which this tuple corresponds to from the rogue list.

A credential (R,S, T) will be valid if and only if ρ†c/ρ†a = (ρ†b)
f due to the way the credential is

constructed. The verification algorithm computes τ † = (ρ†b)
s(ρ†c/ρ†a)−c and for this to verify correctly it

21

must equal βz. If the two are equal then we get ρ†c/ρ†a = (ρ†b)
f meaning the credential must be a correctly

computed one.
Finally, this failure event would not have occurred if fP1 was submitted as a query to OB

X,Y (·) hence
we can deduce it was not and the tuple (f,R, S, T) is a valid solution to the B-bLRSW problem.

Failure 3. For this failure event to occur the adversary must have somehow obtained a credential with
respect to a value f ′, yet produced a DAA signature on this credential that verifies with respect to a value
f 6= f ′ such that the DAA signature correctly verified. We argue that this will not happen since the DAA
signature contains a proof of knowledge of a value of f such that K = fJ and t̂(R + fS,X) = t̂(T, P2)
and that this value of f is the same in both cases. This proof of knowledge consists of the verification of
L and τ using the same values of s and c. Thus it is essentially the standard Σ-protocol for equality of
logarithms, and the standard soundness argument implies that f must equal f ′. More explicitly we could
rewind on this failure event, alter the random oracle value c (i.e. fork on c) and then apply the knowledge
extractor for the Σ-protocol to extract f = f ′.

Failure 4. This failure event corresponds to the case (V hMI) of the Verify simulation where S, acting
as the verifier vj in the real system has received a signature from the adversary, playing the role of hi,
which has verified and passed the rogue check.

For this signature the simulator has chosen a value of f as the honest mi and issued a credential on
this as the honest ik. The simulator has then forged the signature on this credential that corresponds to
the value of f used in the credential. We argue this does not happen relative to the gap-DL problem in
G1. Informally, we embed the gap-DL problem into the choice of F in the run of the Join protocol for
the credential underlying the signature. We then use the issuer secret parameters to compute the value
of D in the same protocol run. If the simulator is asked to produce a signature on this credential we use
the Diffie-Hellman oracle provided to produce this. We finally use rewinding on the adversary to extract
the underlying value of f used in the forged signatures and hence solve the gap-DL problem. We now
describe the details.

We refer to the algorithm against the gap-DL as the simulator since it has only minor differences to
the description of the simulator in the proof of Theorem 1 and to distinguish it from the adversary in
the same proof. At the start of the game for the gap-DL the simulator is given a description of a group
and some generator of that group which will be used as a base for the discrete logarithm problem. It is
also given a challenge element of this group and a Diffie-Hellman oracle for the hidden value of f . The
simulator then sets up the simulation as in the proof of Theorem 1 but sets the group G1 to be the group
provided in the DL challenge and the element P1 to be the base/generator of the challenge group. The
simulator then runs the simulation as before except for the following. The simulator selects some run of
the simulation of the Join protocol for which it hopes a signature will be computed and submitted for
verification to cause this failure event. In this simulation of the Join protocol the simulator will receive
some value of commreq from the adversary. Rather than compute f according to the issuer parameters
and compute F from this, the simulator instead performs the following steps:

– Assigns F to be the DL challenge.
– Randomly chooses values for w and v then computes U = wP1 − vF .
– Patches the random oracle for H2 such that v = H2(str‖F‖U).
– Computes a correct signature on this γ and outputs the corresponding commitment comm. Note that

this proof of knowledge will pass all the checks the adversary will make on it.

The simulator will then receive some value of B from the adversary and computes D = ryF (the simulator
knows y and r since ik is honest) then returns this to the adversary.

Then, during any simulations of the Sign protocol for this particular value of f the simulator may
have to compute a signature on this credential; this will be different to the one that causes this failure
event yet the simulator has to produce one that correctly verifies to ensure the adversary cannot tell it
is in a simulation. Essentially the simulator has to forge such a signature for the hidden value of f . For
this situation to occur the simulator will be passed a value of J from the adversary. The simulator then
does the following:

1. First S selects c, s←Zq. If the value of J to be used is one used before for this particular issuer,
cnt, commreq values and TPM, then S uses the same value of K as before and otherwise computes K

22

by querying the DH oracle provided on the value of J and records the (J,K) pair to ensure consistency
with later signatures forged. The simulator then computes L = sJ − cK and H = (s− cf)S where f
is the value used to obtain the credential with the same TPM, cnt, commreq and issuer. The value of
S used will be obtained from the random oracle query to H4 used to obtain h in the signature.

2. The simulator then selects nT and computes τ = t̂(H,X) then patches the random oracle for H5 such
that c = H5(h‖msg‖J‖K‖L‖τ‖nT).

3. The simulator then holds off responding to A until it simulates the part of hi in the ideal system. In
this case, in the ideal system S has to simulate the part of hi to T . It does this by making a request
to T to sign msg with respect to the current value of cnt for i and ik. If T informs S that mi is ready
to sign and requests a basename then S looks up the corresponding basename for J from HList3 then
responds to T with this. The simulator will then receive a signature from T which it stores and and
replies to A, as mi in the real system, with the tuple (K, c, s, nT) computed in the previous steps.

Such a signature will correctly verify and hence the adversary will be unable to tell it is run in a simulation.
If this failure event occurs for this particular issuer and user combination the simulator will be able to

obtain a forged signature σ1 corresponding to the discrete logarithm of F on a randomisation (R,S, T) of
the credential issued during this Join protocol run and using values c1 and s1. The simulator makes a note
of the random oracle query made to H5 to obtain c1. Next the simulator re-starts the adversary using the
exact same input and random tape and answering random oracle queries in the same way as before. When
the random oracle query used to obtain c1 is queried the simulator instead responds with a different value
c2. This will result in a new signature forgery σ2 using values c2 and s2 but with the same values for R,S, T
and the same values for J,K and L; the execution will only fork at the point of the H5 random oracle query
and will be exactly the same up to this point. We then have τ = (ρb)s1(ρc/ρa)−c1 = (ρb)s2(ρc/ρa)−c2

from which we can extract the underlying f as (s1 − s2) · (c1 − c2)−1 (mod q). Note we have to fork on
the H5 query rather than the H4 query since we need the value of τ computed to be the same in both
runs of the adversary.

Finally, since f corresponds to the discrete logarithm of F and the randomisation (R,S, T) of the
credential in which the challenge was embedded we get that f is a valid solution to the gap-DL.

Failure 5. In this case the simulator has worked with the adversary to forge a signature on values
(msg′, bsn′) with an unknown value of f which has then correctly verified using a different (msg, bsn)
tuple. If this failure event occurs then the simulator will be able to determine whether the msg or bsn
on which it verified are different from those used to compute the signature by either checking its records
for a value of msg during a Sign protocol run or by checking the random oracle for H3. If the value of
msg used is different then the adversary has found a collision on H5. If the value of bsn is different then
the adversary has found a collision on H3; the adversary may have used bsn′ in the preimage to H4 but
it must be the case that J = H3(bsn) for the signature to verify yet if this differs from the original case
there must be an entry for the random oracle of H3 with a preimage of bsn′. In either case this failure
event occurs with negligible probability since all hash functions are modelled as random oracles.

Failure 6. Here the adversary is able to obtain the underlying value of f used by an honest TPM in
a run of the Join protocol. We show this failure event occurs with negligible probability relative to the
gap-DL problem in G1. When embedding this problem into the simulation we need to ensure the value of
commitment computed by the simulator and any signatures computed with respect to the corresponding
credential issued are with respect to the same unknown value of f ; if the adversary can compute f then it
can deduce it is in a simulation and may abort rather than submit the rogue tagging request that causes
this failure event. In both cases the DH oracle provided as part of the gap-DL problem is used to embed
the problem into the simulation.

We refer to the algorithm against the gap-DL as the simulator since it has only minor differences to
the description of the simulator in the proof of Theorem 1 and to distinguish it from the adversary in the
same proof. At the start of the game for the gap-DL the simulator is given a description of a group and
some generator of that group which will be used as a base for the discrete logarithm problem. It is also
given a challenge element of this group and a Diffie-Hellman oracle.

The simulator then sets up the simulation as in the proof of Theorem 1 but sets the group G1 to be
the group provided in the gap-DL challenge and the element P1 to be the base/generator of the challenge

23

group. The simulator then runs the simulation as before except for the following. The simulator selects
some honest TPM, counter value and issuer combination; i.e. a tuple corresponding to a choice of f value
for which it hopes the adversary will submit the value of f to cause this failure event. The TPMand host
pair can be either (hM) or (HM) and the corruption state of the issuer is unimportant here; we will
distinguish the behaviour of the simulator on these two only.

In the simulation of the Join protocol for these cases of host and TPM corruption the simulator will
receive some value of commreq from the adversary, acting as a corrupt host, or from itself acting as the
honest host TPM. Rather than compute f according to the issuer parameters and compute F from this,
the simulator instead embeds the gap-DL challenge into the commitment computation as follows:

1. Assigns F to be the gap-DL challenge.
2. Randomly chooses values for w and v then computes U = wP1 − vF .
3. Patches the random oracle for H2 such that v = H2(str‖F‖U).
4. Computes a correct signature on this γ and outputs the corresponding commitment comm. Note that

this proof of knowledge will pass all the checks the adversary will make on it.

The simulator will then receive some value of B from either the adversary or itself and computes D = fB
by submitting B to the DH oracle provided to it as part of the simulation.

Then, during any simulations of the Sign protocol for this particular value of f the simulator has to
forge signatures for the same hidden value of f . If the host is honest then such a forgery will correspond
to a (vHMI) run of the Verify protocol and otherwise will correspond to a (hM) run of the Sign protocol.
In the first case the simulator will get to choose J and otherwise will be passed a value of J from the
adversary. The simulator then does the following:

1. First S selects c, s←Zq. If the value of J to be used is one used before for this particular issuer,
cnt, commreq values and TPM, then S uses the same value of K as before and otherwise computes K
by querying the DH oracle provided on the value of J and records the (J,K) pair to ensure consistency
with later signatures forged. The simulator then computes L = sJ − cK and H = (s− cf)S where f
is the value used to obtain the credential with the same TPM, cnt, commreq and issuer. The value of
S will either have been computed by the simulator (for an honest host) or can be obtained from the
random oracle query used to compute h (for a corrupt host).

2. The simulator then selects nT and computes τ = t̂(H,X) then patches the random oracle for H5 such
that c = H5(h‖msg‖J‖K‖L‖τ‖nT).

3. If the host is corrupt then the simulator holds off responding to A until it simulates the part of hi

in the ideal system. In this case, in the ideal system S has to simulate the part of hi to T . It does
this by making a request to T to sign msg with respect to the current value of cnt for i and ik. If
T informs S that mi is ready to sign and requests a basename then S looks up the corresponding
basename for J from HList3 then responds to T with this. The simulator will then receive a signature
from T which it stores and and replies to A, as mi in the real system, with the tuple (K, c, s, nT)
computed in the previous steps.

4. If the host is honest the simulator forms the signature as σ = (R,S, T, J,K, c, s, nV , nT) and presents
the complete signature to A for verification in the real system.

Finally, since f corresponds to the discrete logarithm of F and the randomisation (R,S, T) of the
credential in which the challenge was embedded we get that f is a valid solution to the gap-DL.

This concludes the proof.

Lemma 2. In an execution of the above system with simulator S no p.p.t. adversary can distinguish if
it’s run in a simulation of the real system for the scheme or if it is run in an actual execution of the
scheme.

Proof. If no failure events occur then the simulator simply correctly simulates the behaviour of honest
players in the real system for values of internal secret parameters that it chooses according to the same
distributions as in the protocol description. The simulator only behaves differently from the protocol
description if a failure event occurs; in this case a problem is embedded in the simulation. In the previous
lemma we showed that each such failure event occurs with negligible probability and hence the adversary
can only tell it is in a simulation with negligible probability.

24

Lemma 3. In an execution of the above system with simulator S no computationally bounded environ-
ment can distinguish if it’s run in the real system with a real adversary or in an ideal system with a
simulator provided the adversary used by S does not abort and the decisional Diffie-Hellman problem is
hard in G1.

Proof. Lemma 1 argued that each of the failure events occurred with negligible probability and hence an
environment cannot distinguish whether it is run in the real or ideal system based on the actions of the
adversary. What it may be able to do is distinguish which system it is in based on what message flows it
sees; what can be learned by an adversary. To prove both systems are indistinguishable by an environment
we hence show that signatures produced in the real system are unlinkable to each other where they are
intended to be since in the ideal system this is always the case. This also proves that signatures are
anonymous: an adversary, given a signature it wants to link to a user, could request signatures from each
user and try to link them to each other and, if successful, break anonymity.

We first introduce some notation. We let σ(u1, f1, cre1(f1), y1) denote a signature produced by platform
u1 using TPM secret value f1. This signature is on a credential cre1 which was issued using issuer secret
value y1 on f1. We note that if two credentials are the same then this means they will have the same
value of f with overwhelming probability for sufficiently large q but two credentials computed with the
same value of f may not be the same. In each case we assume any pair of signatures either have different
basenames or both have bsn =⊥ since each such pair is intended to be unlinkable.

To prove unlinkability we consider pairs of signatures produced by the same platform and intended
to by unlinkable in the real system. For two valid signatures we argue a randomly chosen pair of sig-
natures

(
σ1(u1, f1, cre1(f1), y1), σ2(u1, f1, cre1(f1), y1)

)
are unlinkable from the point of view of the en-

vironment when they are supposed to be if this pair is indistinguishable from a randomly chosen pair
of the form

(
σ3(u1, f1, cre1(f1), y1), σ4(u2, f2, cre2(f2), y1)

)
. In other words we argue that the distribu-

tions
(
σ1(u1, f1, cre1(f1), y1), σ2(u1, f1, cre1(f1), y1)

)
and

(
σ3(u1, f1, cre1(f1), y1), σ4(u2, f2, cre2(f2), y1)

)
are computationally indistinguishable1. Note that we only argue indistinguishability for signatures pro-
duced with credentials from the same issuer since both the adversary and environment can trivially tell
apart signatures on credentials from different issuers by running the verification algorithm with different
issuer public keys; here we argue that this is all they can learn.

Here we assume it is the environment that is trying to distinguish the distributions. With this in mind
we do not allow the environment to see the underlying credentials or the issuer secret values.

we also assume the party that produced the pair of signatures we want to show are unlinkable σ1

and σ2, regardless its corruption state, did this in the the correct manner; for known values of f . We
argue in 3 stages using a sequence of distributions to show distributions of such pairs are computationally
indistinguishable from the target distribution. At each stage we change one component used to produce
one of the signatures in a given pair that form a distribution then argue this is computationally indistin-
guishable from the previous distribution in the sequence. In each step below we underline the changed
variable.

1. We first argue that(
σ1(u1, f1, cre(f1), y1), σ2(u1, f1, cre(f1), y1)

) c
≈

(
σ3(u1, f1, cre(f1), y1), σ4(u1, f2, cre(f1), y1)

)
.

Firstly, we show the signature σ4 can be produced by the simulator using its powers over the random
oracle. The simulator, using a valid credential on f1, computes J then K = f2J and selects s and
c at random. It then computes H as (s − cf1)F and τ as t̂(H,X) where F can be obtained from
the randomised credential used in the signature. The simulator then computes L as sJ − cK. The
simulator can then patch the random oracle for h5 so that the required c value is output and hence
the signature will verify.
For the first distribution we will have J1 6= J2 with overwhelming probability from the assumptions
we make on the choice of bsn in each signature. These signatures will contain values (J1,K1 = f1J1)
and (J2,K2 = f1J2). For some value of α ∈ Zq we will have that J2 = αJ1 and hence this distribution
will contain a Diffie-Hellman tuple (f1J1 = K1, αJ1 = J2, αf1J1 = K2) in G1.

1 We use the notation
c
≈ to denote that two distributions are computationally indistinguishable.

25

For the second distribution we will not have such a Diffie-Hellman tuple since f1 6= f2. This is the only
difference between the distributions. Hence if the environment can distinguish these two distributions
then it can solve the DDH in G1.

2. Next we argue that(
σ1(u1, f1, cre(f1), y1), σ2(u1, f2, cre(f1), y1)

) c
≈

(
σ3(u1, f1, cre(f1), y1), σ4(u1, f2, cre(f2), y1)

)
.

In this case we have already shown that σ2 can be produced by the simulator. We do not need to
show the signature σ4 can be can be produced by the simulator since this sort of signature can be
validly produced by any party with knowledge of f2.
We let crei = (Ai, Bi, Ci) be the credential used in the computation of σi. We let (Ei, Gi) denote the
signature components of σi. For the first pair of signature we will have E1 6= E2 with overwhelming
probability.
These signatures will contain values (E1, G1 = αE1) since G1 = t1C1 = (1 + y1f1)xt1A = αE1 where
α = x(1 + y1f1). We will also have (E2, G2 = αE2) since f1 is used for the second signature also. For
some value of β ∈ Zq we will have that E2 = βE1 and hence within these two signatures we will have
a Diffie-Hellman tuple (αE1 = G1, βE1 = E2, αβE1 = G2) in G1.
The second pair of signatures have one signature on a credential produced with a different value of
f . In this case the α value in the two signatures will be the same with only negligible probability
because of this. The same tuple (G3, E4, G4) is then not a valid Diffie-Hellman tuple. This is the
only difference between the two distributions. Notice also that in the first distribution the pair of
signatures may be issued on different credentials. They will form a valid Diffie-Hellman tuple so long
as the issuer secret values are the same and the f value used to issue the credential is also the same.
Hence if the environment can distinguish these two distributions then it can solve the DDH in G1.
Notice also that this argument covers the case of changing the value of x used by the issuer and so
we do not argue this separately.

3. Finally we argue that(
σ1(u1, f1, cre(f1), y1), σ2(u1, f2, cre(f2), y1)

) c
≈

(
σ3(u1, f1, cre(f1), y1), σ4(u2, f2, cre(f2), y1)

)
.

This is trivially true since each of the pairs of signatures are computed in the same way; with different
values of f . Neither will have valid Diffie-Hellman tuples.

As a result we conclude(
σ1(u1, f1, cre(f1), y1), σ2(u1, f1, cre(f1), y1)

) c
≈

(
σ3(u1, f1, cre(f1), y1), σ4(u2, f2, cre(f2), y1)

)
which completes the proof.

References

1. M. Backes, M. Maffei and D. Unruh. Zero knowledge in the applied Pi–calculus and automated verification of
the direct anonymous attestation protocol. In IEEE Symposium on Security and Privacy – SSP’08, 202–215,
2008.

2. S. Balfe, A. D. Lakhani and K. G. Paterson. Securing peer-to-peer networks using trusted computing. In C.
Mitchell, editor, Chapter 10 of Trusted Computing. IEEE London, 271–298, 2005.

3. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In Selected Areas in
Cryptography – SAC 2005, Springer-Verlag LNCS 3897, 319–331, 2006.

4. D. Boneh, E. Brickell, L. Chen and H. Shacham. Set signatures. Manuscript, 2003.
5. D. Boneh, E. Brickell and H. Shacham. Set signatures. Manuscript, 2003.
6. E. Brickell. An efficient protocol for anonymously proving assurance of the container of a private key. Sub-

mission to the Trusted Computing Group, 2003.
7. E. Brickell, J. Camenisch and L. Chen. Direct anonymous attestation. Proceedings of the 11th ACM Confer-

ence on Computer and Communications Security. ACM Press, 132–145, 2004.
8. E. Brickell, J. Camenisch and L. Chen. Direct anonymous attestation in context. In C. Mitchell, editor,

Chapter 5 of Trusted Computing. IEEE London, 143–174, 2005.

26

9. E. Brickell, L. Chen and J. Li. Simplified security notions for direct anonymous attestation and a concrete
scheme from pairings. Cryptology ePrint Archive. Report 2008/104, available at http://eprint.iacr.org/

2008/104.
10. E. Brickell, L. Chen and J. Li. A new direct anonymous attestation scheme from bilinear maps. In Trusted

Computing - Challenges and Applications – TRUST 2008, Springer-Verlag LNCS 4968, 166–178, 2008.
11. E. Brickell and J. Li. Enhanced privacy ID: A direct anonymous attestation scheme with enhanced revocation

capabilities. In Proceedings of the 6th ACM Workshop on Privacy in the Electronic Society (WPES 2007).
ACM Press, 21–30, 2007.

12. J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical aspects. In Security in
Communication Networks – SCN 2004. Springer-Verlag LNCS 3352, 122–135, 2004.

13. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In Security in Communications
Networks – SCN 2002, Springer-Verlag LNCS 2576, 268–289, 2003.

14. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In
Advances in Cryptology – CRYPTO 2004, Springer-Verlag LNCS 3152, 56–72, 2004.

15. J. Camenisch and M. Michels. A group signature scheme based on an RSA-variant. Technical Report RS-98-
27, BRICS, University of Aarhus, 1998.

16. L. Chen. A scheme of group signatures with revocation evidence - a proposal for TCG. Submitted to the
Trusted Computing Group in May 2003.

17. L. Chen, P. Morrissey and N. P. Smart. Pairings in trusted computing. In Pairings in Cryptography – Pairing
2008, Springer-Verlag LNCS 5209, 1–17, 2008.

18. L. Chen, P. Morrissey and N. P. Smart. On proofs of security of DAA schemes. In Provable Security – ProvSec
2008, Springer-Verlag LNCS 5324, 167–175, 2008.

19. L. Chen, Z. Cheng and N.P. Smart. Identity-based key agreement protocols from pairings. Int. Journal of
Information Security, 6, 213–242, 2007.

20. S. Galbraith, K. Paterson and N.P. Smart. Pairings for cryptographers. Discrete Applied Mathematics, 156,
3113–3121, 2008.

21. H. Ge and S.R. Tate. A Direct Anonymous Attestation Scheme for Embedded Devices. Proceedings of Public
Key Cryptography – PKC 2007, Springer-Verlag LNCS 4450, 2007.

22. F. Hess, N.P. Smart and F. Vercauteren. The Eta pairing revisited. IEEE Transactions on Information
Theory, 52, 4595–4602, 2006.

23. A. Leung and C. J. Mitchell. Ninja: Non-identity based, privacy preserving authentication for ubiquitous
environments. In Ubiquitous Computing, Springer-Verlag LNCS 4717, 73–90, 2007.

24. A. Lysyanskaya, R. Rivest, A. Sahai and S. Wolf. Pseudonym systems. In Selected Areas in Cryptography –
SAC 1999, Springer-Verlag LNCS 1758, 184–199, 1999.

25. B. Smyth, L. Chen and M. Ryan. Direct Anonymous Attestation (DAA): Ensuring privacy with corrupt
administrators. In Security and Privacy in Ad hoc and Sensor Networks – ESAS 2007, Springer-Verlag LNCS
4572, 218–231, 2007.

26. Trusted Computing Group. TCG TPM specification 1.2. Available at http://www.trustedcomputinggroup.
org, 2003.

27

