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Abstract In this paper we propose an efficient multivariate public key cryp-
tosystem based on permutation p-polynomials over finite fields. We first char-
acterize a class of permutation p-polynomials over finite fields Fqm and then
construct a trapdoor function using this class of permutation p-polynomials.
The complexity of encryption in our public key cryptosystem is O(m3) multi-
plication which is equivalent to other multivariate public key cryptosystems.
However the decryption is much faster than other multivariate public key
cryptosystems. In decryption we need O(m2) left cyclic shifts and O(m2) xor
operations.

Keywords Multivariate Cryptography · Permutation Polynomials · Linear
Polynomials

1 Introduction

Public key cryptography is used in e-commerce for authentication and secure
communication. The most widely used cryptosystems RSA and ECC (elliptic
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curve cryptosystems) are based on the problem of integer factorization and
discrete logarithm respectively. Improvements in factorization algorithm and
computation power demands larger bit size in RSA key. At present the rec-
ommended key size is of 1024 bits which may have to be increased to 4096
bits by 2015 [1]. Larger key size makes RSA less efficient for practical applica-
tions. ECC are more efficient as compared to RSA, but its shortest signature
is of 320 bits which is still long for many applications [2]. Although RSA
and ECC have these drawbacks, they are still not broken. But in 1999 Peter
Shor [4] discovered a polynomial time algorithm for integer factorization and
computation of discrete logarithm on quantum computers. Thus once we have
quantum computers the cryptosystems based on these problems can no longer
be considered secure. So there is a strong motivation to develop public key
cryptosystems based on problems which are secure on both conventional and
quantum computers. Multivariate cryptography can be a possible option ap-
plicable to both conventional and quantum computers (see [9]). In multivariate
cryptography the public key cryptosystems are based on the problem of solving
system of nonlinear equations which is proven to be NP-complete. MIC*, the
first practical public key cryptosystem based on this problem was proposed
in 1988 by T. Matsumoto and H. Imai (see [12]). The MIC* cryptosystem
was based on the idea of hiding a monomial x2l+1 by two invertible affine
transformations. This cryptosystem was more efficient than RSA and ECC.
Unfortunately this cryptosystem was broken by Patarin in 1995[13]. In 1996
[14] Patarin gave a generalization of MIC* cryptosystem called HFE. However
in HFE the secret key computation was not as efficient as in the original MIC*
cryptosystem. The basic instance of HFE was broken in 1999[16]. The attack
uses a simple fact that every homogeneous quadratic multivariate polynomial
has a matrix representation. Using this representation a highly over defined
system of equations can be obtained which can be solved by a new technique
called relinearization [16]. Other possible attacks on the HFE scheme can be
found in [17], [18] and [19]. Patarin [15] investigated whether it is possible to
repair MIC* with the same kind of easy secret key computations. He designed
some cryptosystems known as Dragons with multivariate polynomials of total
degree 3 or 4 in public key (instead of 2) with enhanced security and with
efficiency comparable to MIC*. In Dragon cryptosystems the public key was
of mixed type of total degree 3 which is quadratic in plaintext variables and
linear in ciphertext variables. However Patarin found [15] that Dragon scheme
with one hidden monomial is insecure.

A public key scheme based on the composition of tame transformation
methods (TTM) was proposed in 1999[23]. This scheme has been broken in
2000[24], where the cryptanalysis is reduced to an instance of the Min-Rank
problem that can be solved within a reasonable time. In 2004 Ding [20] pro-
posed a perturbed variant of MIC* cryptosystem called PMI. The PMI system
attempts to increase the complexity of the secret key computations in order
to increase security, using a system of r arbitrary quadratic equations over
Fq with the assumption that r << n, where n is the bitsize. The PMI Cryp-
tosystem was broken by Fouque, Granboulan and Stern [21]. The trick of the
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attack on PMI is to use differential cryptanalysis to reduce the PMI system
to the MIC* system. A cryptosystem called Medium Field Equation (MFE)
was proposed in 2006[25] and was broken by Ding in 2007[26] using high or-
der linearization equation attack. For a detailed introduction of multivariate
public key cryptography, we refer the interested readers to [9]. An interesting
introduction of hidden monomial cryptosystems can be found in reference[10].

Designing secure and efficient multivariate public key cryptosystem contin-
ues to be a challenging area of research in recent years. In this paper we present
a new method for designing efficient multivariate public key cryptosystem by
overcoming all the known attacks. We are using permutation p-polynomials
to construct a non-linear trapdoor function. Like Dragon cryptosystems the
public key in our cryptosystem is of mixed type but it is possible to reduce the
public key size by writing it as two sets of quadratic multivariate polynomials
[15]. In our cryptosystem the decryption is possible by using only O(m2) left
cyclic shifts and O(m2) xor operations and this results in much faster decryp-
tion. The complexity of encryption is equivalent to other multivariate public
key cryptosystems that is O(m3) multiplications, where m is the bit size. The
outline of our paper is as follows. In section 2 we give preliminaries and in sec-
tion 3 we characterize a class of permutation p-polynomials. Then in section 4
we present our cryptosystem. In section 5 we give the security analysis of our
cryptosystem and in section 6 we discuss the efficiency of our cryptosystem.
We compare our cryptosystem with HFE in section 7.Finally we conclude in
section 8.

2 Preliminaries

Let q be a prime power and let Fq denote the finite field of order q. We will
denote an extension of Fq of degree m by Fqm . An element ϑ ∈ Fqm is said
to be normal over Fq if the elements ϑ, ϑq, . . . , ϑqm−1

form a basis of Fqm over
Fq. In that case the set B = {ϑ, ϑq, . . . , ϑqm−1} is called a normal basis of Fqm

over Fq. Any element x of Fqm can be expressed as x =
∑m−1

i=0 xiϑ
qi

where
xi ∈ Fq. Thus Fqm can be identified by Fm

q , the set of all m-tuples over Fq,
and x ∈ Fqm can be written as (x0, x1, . . . xm−1). If we take the normal ba-
sis representation of finite field Fqm over Fq, then the operation x 7→ xq is
(xm−1, x0, . . . , xm−2) which is just one left cyclic shift of (x0, x1, . . . , xm−1).
Hence the cost of exponentiating by q is negligible. From now on we will take
normal basis representation of finite field Fqm over Fq with respect to nor-
mal basis B. When q = 2, we define the weight of x as the number of 1’s in
(x0, x1, . . . , xm−1), and denote it by w(x).

A polynomial f over Fq is called a permutation polynomial of Fq if the
polynomial f induces a one-one map on Fq onto itself. Permutation polyno-
mials have been a subject of study for almost one and a half century see [6],
[7] and Chapter 7 of [8]. A polynomial L(x) ∈ Fqm [x] is called a p- polynomial
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or linearized polynomial over Fq if

L(x) =
k∑

i=0

αix
qi

. (1)

The p-polynomial L(x) satisfies the following: L(β + γ) = L(β) + L(γ) and
L(aβ) = aL(β) for all β, γ ∈ Fqm and a ∈ Fq. Thus, L : x 7→ L(x) is a linear
operator of the vector space Fqm over Fq. Consequently, L(x) is a permutation
polynomial of Fqm if and only if 0 is the only root of L(x) in Fqm .

Corresponding to an element α = (α0, α1, . . . , αm−1) of the finite field Fqm ,
we define a p-polynomial Lα(x) on Fqm as

Lα(x) =
m−1∑

i=0

αix
qi

. (2)

It is known that each function on Fqm is given by a unique polynomial of
degree at most qm − 1 (see chapter 7 of [8]). Since the polynomial Lα(x) is
of degree at most qm − 1, the distinct polynomials Lα(x) are all distinct as
functions on Fqm .

Definition 1 Suppose α = (α0, α1, . . . , αm−1) and β = (β0, β1, . . . , βm−1),
αi, βi ∈ Fq, are two elements of finite fields Fqm . We define the convolution
α ∗ β of α and β by

α ∗ β = (γ0, γ1, . . . , γm−1)

where

γk =
m−1∑

i=0

αi mod mβ(k−i) mod m.

Suppose Lα◦Lβ denotes the composition of linearized polynomials Lα and Lβ .
Then it can be easily verified that Lα ◦Lβ = Lα∗β . Therefore we can conclude
that the linearized polynomials Lα(x) form a semigroup with identity. Let
L(m) denote the group of all invertible linearized polynomials Lα(x) over Fqm .
In section 3, we will identify L(m) with an appropriate subgroup of the general
linear group GL(m,Fq). Moreover we will characterize elements of L(m) for
certain values of m and thereby show that the groups L(m) are quite large.

3 Characterization of the group L(m), for m = 2k

A characterization of a linearized polynomial to be a permutation was given
by Dickson [3], which is as follows:

Theorem 1 [3] The linearized polynomial

L(x) =
m−1∑
s=0

csx
qs ∈ Fqm [x]
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is a permutation polynomial of Fqm if and only if
∣∣∣∣∣∣∣∣∣∣

c0 cq
m−1 cq2

m−2 · · · cqm−1

1

c1 cq
0 cq2

m−1 · · · cqm−1

2
...

...
...

. . .
...

cm−1 cq
m−2 cq2

m−3 · · · cqm−1

0

∣∣∣∣∣∣∣∣∣∣

6= 0. (3)

An m×m matrix A over a field F is said to be circulant if it has the form

A =




a0 am−1 am−2 · · · a1

a1 a0 am−1 · · · a2

...
...

...
. . .

...
am−1 am−2 am−3 · · · a0


 . (4)

Let ek denote the kth column of the identity matrix I and R be the ma-
trix (e2, e3, . . . , em, e1) obtained by a permutation of columns of I. Clearly
m is the least positive integer such that Rm = I. Let a denote the vector
(a0, a1, . . . , am−1)T and A the circulant matrix as in equation (4). Then we
have

A = (a,Ra,R2a, . . . , Rm−1a) (5)
= a0I + a1R + a2R

2 + . . . + am−1R
m−1. (6)

We will denote the circulant matrix A by cir(a0, a1, . . . ,
am−1). The product of any two circulant matrices A and B, where A =
cir(a0, a1, a2, . . . , am−1) and B = cir(b0, b1, b2, . . . , bm−1) is again circulant:

AB = cir(d0, d1, d2, . . . , dm−1),

where dk =
m−1∑

i=0

ai(mod m)bk−i(mod m). (7)

It is known that the inverse of a nonsingular circulant matrix is circulant (see
[5]). Thus the nonsingular circulant matrices over a field F form a subgroup of
the general linear group of F. In view of equation (5), we note that this group
is abelian. We denote this group by C(F,m).

Lemma 1 For m ≥ 1, the groups C(Fq,m) and L(m) are isomorphic.

Proof. We define a mapping φ : L(m) → C(Fq, m) as follows:

φ(Lα) = cir(α0, α1, . . . , αm−1)

where α = (α0, α1, . . . , αm−1). Since αi ∈ F2 in Theorem 1, the determinant in
(3) is that of the circulant matrix cir(α0, α1, . . . , αm−1). Thus Lα is invertible if
and only if cir(α0, α1, . . . , αm−1) is nonsingular. In other words, φ is a bijection.
It follows from equation (7) that φ is a group homomorphism. ut
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Proposition 1 If m = 2k for some k ≥ 0, then the polynomial Lα(x) is a
permutation of Fqm if and only if w(α) is odd.

Proof. Let α =
∑m−1

i=0 αiq
i. If w(α) is even, then Lα(x) has 0 and 1 as roots,

and therefore is not a permutation. Next suppose that w(α) is odd. Then

cir(α0, α1, α2, . . . , αm−1)2
k

= (α0I + α1R + α2R
2, . . . + αm−1R

m−1)2
k

= α0I + α1R
2k

+ α2(R2k

)2 + . . . + αm−1(R2k

)m−1

= α0I + α1I + α2I + . . . + α2k−1I = I.

This implies that cir(α0, α1, . . . , αm−1) is invertible and therefore in view of
Lemma 1, Lα(x) is a permutation polynomial. ut

In the proof of above proposition we are taking q = 2, the proof is same
for any q of the form ps, s ≥ 1 and m = pk . In that case the condition ‘w(α)
is odd’ will be replaced by

∑m−1
i=0 αi 6= 0 in Fq.

Corollary 1 Let Fqm is a finite field, with m = 2k, k ≥ 0. Let Lj
α(x) denote

the jth times composition of Lα(x) with itself. If weight of α is odd, then the
inverse polynomial of Lα(x) is L2k−1

α (x).

Proof. The result follows by noting that
(cir(α0, α1, . . . , αm−1))2

k

= I. ut
Lemma 1 implies, in particular, that the group L(m) is abelian. Since

there are 2m−1 different α with odd weight, L(m) has order 2m−1 when m =
2k. For q = 2, the converse of proposition 1 is true and can be seen in the
following proposition.

Proposition 2 Let the integer m be such that Lα(x),
α = (α0, α1, . . . , αm−1), is a permutation polynomial over Fqm whenever w(α)
is odd. Then m = 2k for some k ≥ 0.

Proof. Since Lα(x) is not a permutation polynomial when w(α) is even, we
have 2m−1 as the order of L(m) and therefore that of C(F2,m).
Now R = (e2, e3, . . . , em, e1) is an element of C(F2, m) of order m. Thus m
divides 2m−1 and has the required form. ut

Lemma 2 Fqm is finite field and α, β are two elements of Fqm . Let α =
(α0, α1, α2, . . . , αm−1) and β = (β0, β1, β2, . . . , βm−1) then we have Lα(β) =
Lβ(α).

Proof. The proof of this lemma is consequence of the fact that
cir(α0, α1, . . . , αm−1)(β0, β1, . . . , βm−1)T = cir(β0, β1, . . . , βm−1)(α0, α1, . . . ,
αm−1)T and Lα(β) = cir(α0, α1, . . . , αm−1)(β0, β1, . . . , βm−1)T. ut

Proposition 3 Suppose α = (α0, α1, . . . , αm−1) is an element of Fqm over
Fq. Then α is normal element of Fqm over Fq if and only if Lα(x) is a per-
mutation polynomial of Fqm .
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Proof. Suppose α is normal element of Fqm over Fq. Then for all y ∈ Fqm

there exist x ∈ Fqm such that y = Lx(α) or y = Lα(x). This implies Lα(x) is
a permutation of Fqm . Conversely suppose that Lα(x) is permutation of Fqm .
Then Lα(x) = Lx(α) = y has a unique solution for all y ∈ Fqm . This implies
that α is a normal element Fqm over Fq. ut

Thus we see that there is a one-one correspondence between normal el-
ements of Fqm over Fq and the linear permutation polynomials of the form
Lα(x). Using the above proposition we can easily count the normal elements
of Fqm over Fq.

Corollary 2 Let Fqm is a finite field, with m = pk, k ≥ 0. Then total number
of normal elements of Fqm over Fq is qm − qm−1, that is for m = 2k, q = 2
the number of normal elements are 2m−1. ut
Suppose α is normal element of Fqm over Fq and f ∈ L(m), then it can be
easily verified that f(α) is also normal element. Thus in view of proposition
3, we can state the following corollary:

Corollary 3 Suppose for α ∈ Fqm , Lα(x) is permutation polynomial of Fqm

and f ∈ L(m) is any arbitrary element, then Lf(α)(x) is also a permutation
polynomial of Fqm . ut

4 Public key Cryptosystem

In this section we present our multivariate public key cryptosystem using re-
sults from the previous section. Our cryptosystem will work in any arbitrary
finite field Fqm , m = pk. But for practical view point we need only q = 2, so
we will assume that q = 2 and m = 2k. To obtain the quadratic polynomials
we use the convolution of bits. We have seen that convolution of binary bits is
equivalent to the composition of corresponding p-polynomials. We know that
composition of two permutation p-polynomial is a permutation p-polynomial
so the convolution of two odd weight binary strings is an odd weight binary
string. For x ∈ Fqm , (x)t denotes the t times convolution of x with itself.
The set of all odd weight element of Fm

q is denoted by OFm
q . To describe our

cryptosystem systematically we need the next two lemmas.

Lemma 3 Suppose x = (x0, x1, . . . , xm−1) is an element of Fm
q . If (x)t =

(h0, h1, . . . , hm−1), then hi are non-linear functions of xi of degree w(t), where
w(t) denotes the Hamming weight of t.

Proof: Since x2
i = xi and by definition of convolution, the bits of (x)2 are lin-

ear function of xi and it can be verified easily that if (x)2 = (c0, c1, . . . , cm−1),
then c2i+1 = 0 and c2i = xi + xm/2+i. By definition of convolution the
bits of (x)3 will be quadratic multivariate polynomials. This implies that if
G = (g0, g1, . . . , gm−1) and gi are non linear polynomials of degree d and sup-
pose (G)2

l

= (g
′
0, g

′
1, . . . , g

′
m−1) and (g

′′
0 , g

′′
1 , . . . , g

′′
m−1) denotes the value of

(G)2
l+1, where l ≥ 1 then the degrees of g

′
i and g

′′
i are d and d + 1 respec-

tively. This proves the lemma. ut
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Lemma 4 The function defined by h(x) = (x)t, where t is co-prime to m is
a bijection from OFm

q to OFm
q itself.

Proof. Since t and m are co-prime, there exist integers r and k such that
t.k = 1 + r.m. Suppose y = h(x) = (x)t, this implies that Ly = L(x)t = Lt

x

or Lk
y = Lrm+1

x . But by proposition 1 we know (Lx)m = Lϑ, where Lϑ is the
identity mapping. Thus we have Lx = Lk

y = L(y)k or x = (y)k. This proves
the lemma. ut

4.1 Public Key Generation

Consider a message of m − 1 bit string (x0, x1, . . . , xm−2), where m is of the
form 2k. We adjoin an additional bit xm−1 to make the weight odd. After
decryption one can just ignore the last bit xm−1. So we can assume that mes-
sage X = (x0, x1, . . . , xm−1) is an m bit odd weight element of the finite field
F2m . Suppose Lα, Lβ , Lγ and Lδ, Lη are elements of the group L(m) and Lξ,
Lζ are elements of the group L(2m). Let π1,π2, π3, π4 and π5 be random
permutations of {0, 1, 2, . . . , m − 1}, and π6, π7 be random permutations of
{0, 1, 2, . . . , 2m− 1}. Now compute T

′
1 = Lα ◦ π1, T

′
2 = Lβ ◦ π2, T

′
3 = Lγ ◦ π3,

T
′
4 = Lδ ◦ π4, T

′
5 = Lη ◦ π5, T

′
6 = Lξ ◦ π6 and T

′
7 = Lζ ◦ π7, where Lα′ ◦ πi

denotes the composition of ÃLα′ and the permutation πi, for 1 ≤ i ≤ 7 and α′ ∈
{α, β, γ, δ, η, ξ, ζ}. Now define the affine transformation Tr(X) = T

′
r(X)+σr for

1 ≤ r ≤ 7 where σr for 1 ≤ r ≤ 5 is an even weight element of F2m and σ6, σ7

are even weight element of F22m . Note that if X is an odd weight element of fi-
nite field F2m , then T

′
r(X) and Tr(X) are also odd weight element of F2m . Thus

Tr(X) is a bijection of OF2m . Now compute X
′
= T1 (X), X

′′
= T2 (X). Again

compute T3

(
(X

′
)2 ∗X

′′
)

and T4

(
X
′ ∗X

′′
)

+ T5

(
(X

′
)2 ∗X

′′
)
. Suppose the

quadratic polynomials fi and fm+i denote the ith bits of T3

(
(X

′
)2 ∗X

′′
)

and

T4

(
X
′ ∗X

′′
)

+ T5

(
(X

′
)2 ∗X

′′
)

respectively in the normal basis representa-

tion. Suppose ϑ
′
is the normal element of finite fields F22m and B

′
denotes the

normal basis of F22m over F2 corresponding to the normal element ϑ
′
. Now

consider the 2m bits (f0, f1, . . . , f2m−1) as an element of F22m corresponding
to the basis B

′
. Ciphertext Y = (y0, y1, . . . , y2m−1) is an element of odd weight

in F22m . Suppose Z = T6 (Y ). Suppose λ and σ are elements of F22m of even
and odd weight respectively. Then by lemma 4 the function λ + σ ∗ (Z)2m−1

is a bijection of OF22m . The relation between plaintext and ciphertext is:

T7 (f0, f1, . . . , f2m−1) = λ + σ ∗ (Z)2m−1

i.e., F (X) = λ + σ ∗ [T6(Y )]2m−1 (8)

From equation 8 and using corollary 1 and using the fact that convolution
operation is distributive over addition in finite fields, that is, a ∗ (b + c) =
a ∗ b + a ∗ c for a, b, c ∈ F22m , Alice has the following relation between the
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plaintext and ciphertext:

T7 (f0, f1, . . . , f2m−1) ∗ Z + λ ∗ Z + σ = 0 (9)

Equation 9 gives the 2m polynomial equations of total degree 3 in variables
{x0, x1, . . . , xm−1; y0, y1, . . . , y2m−1} but only of degree 1 in variables yi. Thus
we get 2m equations of the form

∑
aijkxixjyk +

∑
bijxiyj +

∑
cijxixj +

∑
dkyk

+
∑

ekxk + fl (10)

Terms aijklxixjyk and bijlxiyj and dkyk always will be there, others terms
may not be there. The equation 10 is of degree three, so in one equation of
the form 10, there will be O(m3) terms and we have 2m equations, so total
size will be of O(m4), which is large. But it is possible to reduce the size of
polynomial equations shown in 10 up to O(m3) by writing it as a two sets
of public polynomials containing only quadratic terms (without changing the
security since this can be done in polynomial time) see [15]. Thus the public
key will be two sets of 2m quadratic equations of the form:

∑
gkyk +

∑
bijxiyj +

∑
dkyk +

∑
ekxk + fl

where
gk =

∑
hijkxixj

The results in section 3 are true for any arbitrary prime power number q so
the public key size can be further reduced by taking m which is not too large
(for example m=32) and q which is not too small.

4.2 Secret Key

The linear transformations (T1, T2, T3, T4, T5, T6, T7) and finite fields elements
(λ, σ) are the required secret keys.

4.3 Encryption

If Bob wants to send a message M = (x0, x1, . . . , xm−1) to Alice, he substitutes
the plaintext vector in the public key and solves the resulting linear equations
for the ciphertext Y = (y0, y1, . . . , y2m−1). Bob will get a unique ciphertext
because our encryption function is injective. Given a ciphertext Y , the public
equations are nonlinear in xi. It follows from equation 8 that our encryption
function is:

E(X) = Y = T−1
6

[ (
(F (X) + λ) ∗ (σ)2m−1

)2m−1
]
,

where F (X) = T7(f0, f1, . . . , f2m−1).
(note that ((t)2m−1)2m−1 = t in F2m .)
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Theorem 1 The encryption function E is well defined and bijective from
OF2m to E(OF2m), where E(OF2m) denotes the set of all imaged elements
of OF22m .

Proof. Suppose X1, X2 ∈ OF2m . It is easy to verify that X1 = X2 implies
E(X1) = E(X2). Now we assume that E(X1) = E(X2) that is
T−1

6

[ (
(F (X1) + λ) ∗ (σ)2m−1

)2m−1
]

= T−1
6

[ (
(F (X2) + λ) ∗ (σ)2m−1

)2m−1
]

i.e.,
(
(F (X1) + λ) ∗ (σ)2m−1

)2m−1 =
(
(F (X2) + λ) ∗ (σ)2m−1

)2m−1.
Note that (F (X1) + λ) ∗ (σ)2m−1 and (F (X2) + λ) ∗ (σ)2m−1 are elements of
OF22m , so by lemma 4 we have

(F (X1) + λ) ∗ (σ)2m−1 = (F (X2) + λ) ∗ (σ)2m−1

Now taking the convolution both sides by σ and noting that (σ)2m = ϑ′, the
identity of convolution. We have

F (X1) = F (X2)

i.e, T3

(
(X

′
1)

2 ∗X
′′
1

)
= T3

(
(X

′
1)

2 ∗X
′′
1

)
and T4

(
X
′
1 ∗X

′′
1

)
+T5

(
(X

′
1)

2 ∗X
′′
1

)

= T4

(
X
′
2 ∗X

′′
2

)
+ T5

(
(X

′
2)

2 ∗X
′′
2

)
. From these two relations we have

(X
′
1)

2 ∗X
′′
1 = (X

′
2)

2 ∗X
′′
2

and
X
′
1 ∗X

′′
1 = X

′
2 ∗X

′′
2

that is
X
′
1 ∗ (X

′
2 ∗X

′′
2 ) = X

′
2 ∗ (X

′
2 ∗X

′′
2 )

which implies
X
′
1 = X

′
2 =⇒ X1 = X2.ut

4.4 Decryption

To recover the original message M from the ciphertext Y = (y0, y1, . . . , y2m−1)
Alice uses her private key (T1, T2, T3, T4, T5, T6, T7, λ, σ) and the relation 8.
First she computes Z = T6 (Y ). To compute (Z)2m−1 efficiently she takes the
linearized polynomial corresponding to Z and takes an element of group L(m)
and its inverse, say Lα and L−1

α , and then repeatedly computes LZ(α), L2
Z(α),

. . . , L2m−1
Z (α). Note that L2m−1

Z (α) = L(Z)2m−1(α). But by lemma 2, we have,
L(Z)2m−1(α) = Lα((Z)2m−1). Thus (Z)2m−1 = L−1

α

(
L2m−1

Z (α)
)
. Thus com-

putation of convolution of finite field elements can be done using only left
cyclic shifts and xor operations and therefore it is very efficient. From now
onwards we will be using this efficient technique to compute convolution. Now
Alice computes Z

′
= λ + σ ∗ (Z)2m−1 and then ∆ = T−1

7 (Z
′
). Suppose ∆ =

(δ0, δ1, . . . , δ2m−1), ∆1 = (δ0, δ1, . . . , δm−1), ∆2 = (δm, δm+1, . . . , δ2m−1). Now
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Alice has T3

(
(X

′
)2 ∗X

′′
)

= ∆1 and ∆2 = T4

(
X
′ ∗X

′′
)

+T5

(
(X

′
)2 ∗X

′′
)
.

Now she computes X
′ ∗ X

′′
= T−1

4

(
∆2 + T5

(
T−1

3 (∆1)
))

and (X
′
)2 ∗ X

′′
=

T−1
3 (∆1) Now Alice does the following computations, she computes LX′∗X′′ (α)

and L(X′ )2∗X′′ (α). Suppose θ = LX′∗X′′ (α). Now Alice takes the linearized
polynomial corresponding to θ that is Lθ and computes the inverse of Lθ.
By corollary 1 we know that L−1

θ = Lm−1
θ and we can compute Lm−1

θ very
efficiently by the procedure described above using only left cyclic shifts and
xor operations on bits. Now we have L(X′ )2∗X′′ (α) = LX′ (θ) and by lemma
2 we have LX′ (θ) = Lθ(X

′
). Now Alice computes X

′
= L−1

θ (Lθ(X
′
)) and

X = T−1
1 (X

′
) is the required secret message.

5 The Security of the proposed Cryptosystem

In this section we discuss the security of the proposed cryptosystem. In gen-
eral it is very difficult to prove the security of a public key cryptosystem
[31], [32]. For example if the public modulus of RSA is decomposed into
its prime factors then the RSA is broken. However it is not proved that
breaking RSA is equivalent to factoring its modulus, see [33]. In this sec-
tion we will give some security arguments and evidence that our cryptosys-
tem is secure. Most of the multivariate public key cryptosystems use the
structure t(f(s(x))), where t and s are secret invertible linear transforma-
tion and f(x) is a quadratic non linear function. Hiding f(x) by two lin-
ear transformations is not working very effectively (see the attack of Kip-
nis and Shamir on HFE [16]). We are using a different structure and we
will prove that our structure is more secure than the t(f(s(x))) structure.
In our cryptosystem the function f(x) is (x ∗ x ∗ x, x ∗ x + x ∗ x ∗ x) so
t(f(s(x))) = t (s(x) ∗ s(x) ∗ s(x), s(x) ∗ s(x) + s(x) ∗ s(x) ∗ s(x)). We are tak-
ing simpler case, suppose we are not using the transformations T3, T4 and
T5 then in our structure, will be T7 (F1(X), F2(X)), where F1(X) = T1(x) ∗
T1(x) ∗ T2(x)and F2(X) = T1(x) ∗ T2(x) + T1(x) ∗ T1(x) ∗ T2(x). It is clear
that if T1 = T2 then our structure will be equivalent to t(f(s(x))). Thus if it
is possible to attack our structure then it is also possible to attack t(f(s(x)))
structure. This proves that our structure is more secure than the commonly
used structure, that is t(f(s(x))), in multivariate cryptography. Moreover our
quadratic part of plaintext is hidden because in our cryptosystem the pub-
lic polynomials are the m bit representation of F (X) ∗ Z + λ ∗ Z + σ where
F (X) = T7(f0, f1, . . . , f2m−1) and Z = T6(Y ). From F (X) ∗ Z + λ ∗ Z + σ
it is not possible to compute either F (X), Z, λ and σ because F (X) ∗ Z is
equivalent to the composition of corresponding p-polynomials and in general
it is very difficult to decompose the composition of two functions. We are us-
ing affine transformations, so the bitwise representation of F (X) ∗ Z will give
the terms of the form dkyk + ck also. So it is not possible to find λ and σ
from the public key. Here we discuss some known attacks developed for multi-
variate cryptosystems and we will show that those attacks are not applicable
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to our cryptosystem. The attacks discussed in this section are Grobner basis,
univariate polynomial representation, Linearization, Relinearization, XL and
FXL algorithms.

5.1 Linearization Equation Attacks

Let F = {f0, f1, . . . , fm−1} be any set of m polynomials in Fq[x0, x1, . . . , xm−1].
A linearization equation for F is any polynomial in Fq[x0, x1, . . . , xm−1 :
y0, y1, . . . , ym−1] of the form

m−1∑

i=0

m−1∑

j=0

aijlxiyj +
m−1∑

i=0

bilxi +
m−1∑

j=0

cjlyj + dl (11)

where l = 0, 1, . . . ,m− 1.
This attack was first successfully applied by Patarin in [13] to break the
Matsumoto-Imai cryptosystem C∗ [12]. The idea of Patarin was to notice that
if a function is defined as F : x → xqi+1, then a relation between plaintext
(x0, x1, . . . , xm−1) and ciphertext (y0, y1, . . . ,
ym−1) of the form shown in equations (11) can be established, where aij , bi, cj

and dl are unknown coefficients. By taking at least (m + 1)2 different plain-
text and ciphertext pairs a linear system of equations can be established
and solved. We are not taking any function of the form xqi+1. Moreover
in our cryptosystem the plaintext and ciphertext are connected by the re-
lation (8) and T6, λ and σ are secrets. So in our case it is not possible to
obtain a relation of the form (11). However, somebody can try to find a
relation which is linear in xi and nonlinear in yj . We will prove that this
line of attack is not possible as the degree of the inverse function is very
high. From the relation (8) we have (f0, f1, . . . , f2m−1) = T−1

7 (Z
′
). Note that

Z
′

= λ + σ ∗ (Z)2m−1 and Z = T6 (Y ) so T−1
7 (Z

′
) will give w(2m − 1)

degree non-linear polynomials in ciphertext variables. Suppose T−1
7 (Z

′
) =

(Z0, Z1, . . . , Z2m−1). Then we have the following relations between plaintext
and ciphertext T3

(
X
′ ∗X

′ ∗X
′′
)

= (Z0, Z1, . . . , Zm−1) and T4

(
X
′ ∗X

′′
)

+

T5

(
X
′ ∗X

′ ∗X
′′
)

= (Zm, Zm+1, . . . , Z2m−1). Using these two relations one
can get the following relation between the plaintext and ciphertext:

X
′ ∗ T−1

4 ◦ T5

(
Z
′)

+ T−1
4 (Zm, Zm+1, . . . , Z2m−1) = Z

′′
(12)

here X
′
= T1 (X) and Z

′′
= T−1

3 (Z0, Z − 1, . . . , Zm−1) and T1, T2, T3, T4, T5, T6

are unknown linear transformations. Note that the relation (12) is of total
degree w(2m − 1) + 1, w(2m − 1) degree in ciphertext and one degree in
plaintext. Most crucially the degree of relation (12) is not constant but func-
tion of m. Thus to attack the cryptosystem we need Gaussisn reduction on
O

(
mw(2m−1)+1

)
terms which is impractical for bit size greater than or equal

to 64 because for m = 64, w(2m− 1) + 1 = 8.
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5.2 Attacks with Differential Cryptanalysis

Differential cryptanalysis has been successfully used earlier to attack the sym-
metric cryptosystem. In recent years differential cryptanalysis has emerged
as a powerful tool to attack the multivariate public key cryptosystems too.
In 2005 [21] Fouque, Granboulan and Stern used differential cryptanalysis to
attack the multivariate cryptosystems. The key point of this attack is that
in case of quadratic polynomials the differential of public key is a linear map
and its kernel or its rank can be analyzed to get some information on the
secret key. For any multivariate quadratic function G : Fn

q → Fm
q the dif-

ferential operator between any two points x, k ∈ Fn
q can be expressed as

LG,kG(x + k) − G(x) − G(k) + G(0) and in fact that operator is a bilinear
function. By knowing the public key of a given multivariate quadratic scheme
and by knowing the information about the nonlinear part (xqi+1) they showed
that for certain parameters it is possible to recover the kernel of LG,k. This
attack was successfully applied on Ding’s cryptosystem [20] and afterwards us-
ing the same technique Dubois, Fouque, Shamir and Sterm in 2007 [27] have
completely broken all versions of the SFLASH signature scheme proposed by
Patarin, Courtois, and Goubin [22]. In our cryptosystem we are not using any
polynomial of the form xqi+1. Moreover the public key in our system is not
quadratic but of total degree 3, quadratic in plaintext variables and degree one
in ciphertext variables. Substituting the ciphertext gives quadratic plaintext
variables but in that case it will be different for different ciphertexts. So to
attack our cryptosystem by the methods of [21] and [27] is not feasible.

5.3 Univariate polynomial representation of Multivariate Public Polynomials

As the encryption function is from finite field F2m to finite field F22m so we can
not directly represent the encryption function by a polynomial. But it is possi-
ble by introducing dummy variables xm, xm+1, . . . , x2m. In our cryptosystem
the relation between the plaintext and ciphertext is F (X) = λ + σ ∗ (Z)2m−1,
F (X) = T7(f0, f1, . . . , f2m−1). We have Y = T−1

6 (G(X)) where, G(X) =(
(F (X) + λ) ∗ σ2m−1

)2m−1. Note that F (X) is non linear of degree 2, so that
T−1

6 (G(X)) will give 2m multivariate polynomials of degree 2.w(2m− 1). By
lemma 3.3 of [16] the degree of univariate polynomial representation is not
constant but it is function of m. Thus the degree and the number of nonzero
terms of the univariate polynomial representation of encryption function are
both O(mm) . The complexity of root finding algorithms e.g. Berlekamp al-
gorithm, is polynomial in the degree of the polynomial. This results in an
exponential time algorithm to find the roots of univariate polynomial. There-
fore this approach is less efficient than the exhaustive search.
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5.4 Grobner Basis Attacks

After substituting the ciphertext in public key one can get 2m quadratic equa-
tions in m variables and then Grobner basis techniques can be applied to solve
the system. The classical algorithms for solving the system of multivariate
equations is Buchberger’s algorithm for constructing Grobner basis see [11].
Theoretically it can solve all the multivariate quadratic equations. However
its complexity is exponential in the number of variables, although there is
no closed-form formula for it. In the worst case the Buchberger’s algorithm
is known to run in double exponential time and on average its running time
seems to be single exponential (see [28]). There are some efficient variants F4

and F5 of Buchberger’s algorithm given by Jean-Charles Faugere (see [29] and
[30]). The complexity of computing a Grobner basis for the public polynomials
of the basic HFE scheme is not feasible using Buchberger’s algorithm. However
it is completely feasible using the algorithm F5. The complexities of solving
the public polynomials of several instances of the HFE using the algorithm F5

are provided in [19]. Moreover it has been expressed in [19] “a crucial point
in the cryptanalysis of HFE is the ability to distinguish a randomly algebraic
system from an algebraic system coming from HFE”. Instead of using any
polynomial of special form we are using convolution operation to construct
the public polynomials. Moreover our public key is of mixed type, this mean
for different ciphertexts we will get different system of quadratic polynomial
equations, so in our public key the quadratic polynomials looks random. We
have already seen that the degree of univariate polynomial representation of
encryption function is proportional to m. It is explained in [19] that in this
case there does not seem to exist polynomial time algorithm to compute the
Grobner basis. Hence to attack our cryptosystem by Grobner basis method is
not feasible.

5.5 Relinearization, XL and FXL Algorithms

It is now clear that attack of [16] is not applicable to our cryptosystem. How-
ever the adversary may directly apply the Relinearization, XL or FXL algo-
rithm. The main problem in applying the techniques to solve the quadratic
equations directly is that our public key is of mixed type, this means for dif-
ferent ciphertexts we have to solve the different system of quadratic non linear
equations. In the following we show that to attack the cryptosystem by this
approach is not possible.

The Relinearization technique is developed in [16] for solving over defined
system of quadratic equations. Unfortunately (or fortunately) it is shown in
[28] that the Relinearization technique is not as efficient as one may expect
since many of newly generated equations are dependent. Hence the XL (ex-
tended relinearization) technique has been proposed in [28]. It is claimed to
be the best algorithm for solving over defined multivariate equations. However
when the number of equations is m+r for some 1 ≤ r ≤ m then XL has expo-
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nential complexity [28]. In our cryptosystem r = m. Hence the XL algorithm
can not be directly used to attack our cryptosystem. A variant of the XL algo-
rithm called FXL, was introduced in [28]. In this algorithm some variables are
guessed to make the system slightly over defined. Then the XL algorithm is
applied. The main question is how many variables must be guessed. Although
more guesses make the system more unbalanced they add to the complexity of
the algorithm. The optimum number of guesses is provided in [28]. Using this
optimum value the FXL has the exponential complexity for solving the system
of public polynomials in proposed cryptosystem. Hence The FXL algorithm is
not applicable to our cryptosystem.

6 Complexity and number of operations for encryption and
decryption

In this section we give complexity of the encryption and decryption of our
cryptosystem.

6.1 Encryption

The public key in our cryptosystem consists of 2m equations of the form (10).
There are O(m2) terms of the form xixj in each 2m equations of the public key
so the complexity of evaluating public key at message block x0, x1, . . . , xm−1

is O(m3). The next step of encryption is to solve the 2m linear equation in 2m
ciphertext variables y0, y1, . . . , y2m−1. This can be done efficiently by Gaussian
elimination in O(m3) complexity. Hence the total complexity of encryption is
O(m3).

6.2 Decryption

In our cryptosystem decryption is very fast. In decryption we are using the
operations: permutation of bits, xor and left cyclic shifts of bits. In this section
we will count the total number of operations to describe the exact efficiency
of our cryptosystem. To operate Ti or T−1

i , 0 ≤ i ≤ 5 on a m bit string we
need one permutation on bits and at most m − 2 left cyclic shifts and m xor
operations. To operate Ti or T−1

i , for i = 6, 7 on a 2m bit string we need
one permutation on 2m bits and at most 2m− 2 left cyclic shifts and 2m xor
operations. To compute (Z)2m−1, where Z is 2m bit string, we need at most
(2m− 1)(2m− 2) + 2m− 2 left cyclic shifts and at most (2m− 1)2 + 2m− 1
xor operations. Thus to compute L−1

θ where θ is m bit binary string we need
at most (m− 1)(m− 2)+m− 2 left cyclic shifts and at most (m− 1)2 +m− 1
xor operations. Thus we see that in decryption we need O(m2) xor operations
and O(m2) left cyclic shifts operations.
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7 Comparison with HFE

In our cryptosystem the complexity of encryption is O(m3), i.e., equivalent to
that of HFE. But the decryption is faster than HFE. In HFE the decryption is
slow because one needs to compute the roots of a polynomial. The decryption
complexity of HFE is O

(
n4d2log(d)

)
where d is the degree of HFE polynomial.

Note that for security reasons one can not take smaller degree. Due to this
the decryption process in HFE is slow. In our cryptosystem we are using left
cyclic shifts and xor operations resulting much faster decryption process. In
our cryptosystem we need O(m2) left cyclic shifts and O(m2) xor operations
to decrypt a message. Public key size of HFE is of O(m3) terms. In our cryp-
tosystem public key size is bigger than HFE but it is also of O(m3) as it is
possible to write public key as two sets of quadratic public polynomials. Se-
cret key generation in our public key cryptosystem is faster than HFE because
for secret keys we have to select random odd weight and even weight binary
strings and random permutations.

8 Conclusion and Future Work

In this paper we show how permutation p-polynomials can be used to design an
efficient public key cryptosystem. We characterize permutation p-polynomials
over finite field Fqm for m = pkand use these to construct a trapdoor function.
Computations with these polynomials are fast which makes them useful. As
far as we know these permutation p-polynomials were never used before to
design a public key cryptosystem. In our cryptosystem the public key is of
mixed type of total degree three, two in plaintext variable and one in cipher
text variable. However it is possible to reduce the public key size by writing
it as a two sets of quadratic polynomials. Further investigations to develop
an efficient cryptosystem using these permutation p-polynomials with public
of two degree in plaintext variable can be an interesting topic of future work.
The bit size in our public key cryptosystem is of the form 2k. It is desirable to
extend this cryptosystem for an arbitrary bit size with same level of efficiency.
This can be done by characterizing permutation p-polynomials over finite field
Fqm for arbitrary m and by giving efficient method to find their inverse.
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10 Appendix

Example 1. x+x2+x4, x+x2+x8, x2+x4+x8 are permutation polynomials
of F24 and their inverses are x+x4+x8, x+x2+x8 and x2+x4+x8 respectively.
x+x2 +x4, x+x2 +x8 and x+x2 +x4 +x8 +x16 are permutation polynomials
of F28 and their inverses are x2 +x4 +x16 +x32 +x128, x+x4 +x32 +x64 +x128

and x2 + x8 + x64 respectively.
Here is the toy example of our public key cryptosystem.

Example 2. We are taking the finite field F24 and λ = 0 and σ = (1, 0, 0, 0, 0, 0,
0, 0). Suppose ϑ

′
is the normal element of F28 and we are taking the normal ba-

sis representation of F28 with respect to ϑ
′
. Suppose T1 = π1 =

(
0 1 2 3
2 0 3 1

)
and

T2 = π2 =
(

0 1 2 3
3 2 1 0

)
and T3, T4, T5 are x+x2 +x4, x2 +x4 +x8, x+x2 +x8

respectively, T6 = π6 =
(

0 1 2 3 4 5 6 7
3 1 5 0 4 2 6 7

)
and T7 = π7

(
0 1 2 3 4 5 6 7
5 3 7 2 1 0 4 6

)
.

Message M = (x0, x1, x2, x3),
T1(M) = M

′
= (x2, x0, x3, x1) and T2(M) = M

′
= (x3, x2, x0, x1). We com-

pute all the bits of M
′∗M ′′

. Suppose [M
′∗M ′′

]i denotes the ith bit of M
′∗M ′′

.
We obtain, [M

′ ∗ M
′′
]0 = x2x3 + x0 + x3x1 + x1x2, [M

′ ∗ M
′′
]1 = x2 + x1,

[M
′ ∗M ′′

]2 = x3+x1x0+x2x1+x0x2, [M
′ ∗M ′′

]3 = x2x0+x0x1+x2x3+x1x3.
Now compute all the bits M

′ ∗ M
′ ∗ M

′′
. The bits of M

′ ∗ M
′ ∗ M

′′
are

[M
′∗M ′∗M ′′

]0 = x2x3+x0x1+x3+x1, [M
′∗M ′∗M ′′

]1 = x0+x2+x0x1+x2x3,
[M

′ ∗M
′ ∗M

′′
]2 = x0x3 +x1x2, [M

′ ∗M
′ ∗M

′′
]3 = x0x3 +x1x2. (f0, f1, f2, f3)

denotes the bits of T3(M
′ ∗ M

′ ∗M
′′
) and (f4, f5, f6, f7) denotes the bits of

T4(M
′ ∗ M

′′
) + T5(M

′ ∗ M
′ ∗ M

′′
), we have f0 = x3x2 + x0x1 + x3 + x1,

f1 = 1 + x0x3 + x1x2, f2 = 1 + x0x3 + x0x1, f3 = x0 + x2 + x3x2 + x1x2, f4 =
x0+x0x3+x3x2+x1x3, f5 = 1+x0+x2x3+x3x0, f6 = x3+x2x0+x1x2+x0x1,
f7 = 1+x0x1+x0x2+x3x1+x2x3. Ciphertext Y = (y0, y1, y2, y3, y4, y5, y6, y7)
is an element of F22m . T6(Y ) = Z = (y3, y1, y5, y0, y4, y2, y6, y7). Note that
ϑ
′

= (1, 0, 0, 0, 0, 0, 0, 0). Suppose P0, P1, P2, P3, P4, P5, P6, P7 denote the bits
of T7(f0, f1, f2, f3, f4, f5, f6, f7)∗Z+ϑ

′
. We compute all the Pi, so the required

public key is :
P0 = 1 + y0(x0x1 + x1x2) + y1(x0x2) + y2(x0x3 + x2x3) + y3(x2x3 + x0x3) +
y4(x0x3 +x1x3)+y5(x2x3 +x0x3 +x1x3)+y6(x1x2 +x2x3 +x1x3)+y7(x0x1 +
x1x3)x0y3+x1y3+x0y7+x2y7+x2y6+x0y6+y2+y4+x1y0+x3y0+x0y5+x1y1

P1 = y0(x2x3 +x0x3 +x1x3)+ y1(x0x3 +x2x3)+ y2(x0x3 +x1x3)+ y3(x0x1 +
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x1x2)+y4(x0x1+x1x2)+y5(x0x2)+y6(x0x3+x2x3)+y7(x2x3+x1x2+x0x2+
x1x3)+x0y0+x0y1+x0y3+x0y7+x1y1+x1y4+x1y5+x2y3+x2y7+x3y4+y2+y6

P2 = y0(x0x2)+ y1(x0x1 +x1x2)+ y2(x0x1 +x1x2)+ y3(x2x3 +x1x3 +x0x2 +
x1x2)+y4(x0x3+x2x3+x1x3)+y5(x2x3+x0x3)+y6(x0x3+x1x3)+y7(x0x3+
x2x3)+x0y1+x0y3+x0y4+x0y5+x1y0+x1y2+x1y5+x2y1+x2y3+x3y2+y6+y7

P3 = y0(x0x3 + x2x3) + y1(x0x2 + x1x2 + x2x3) + y2(x0x3 + x2x3 + x1x3) +
y3(x2x3 + x0x3) + y4(x0x2) + y5(x0x1 + x1x2) + y6(x0x1 + x1x2) + y7(x0x3 +
x1x3)+x0y0+x0y1+x0y2+x0y5+x1y0+x1y4+x1y6+x2y1+x2y5+x3y6+y3+y7

P4 = y0(x0x1+x1x2)+y1(x2x3+x0x3)+y2(x0x2)+y3(x1x3+x0x3)+y4(x0x3+
x2x3) + y5(x2x3 + x0x2 + x1x3 + x1x2) + y6(x1x3 + x2x3 + x0x3) + y7(x0x3 +
x2x3)+x0y0+x0y4+x0y5+x0y6+x1y4+x1y2+x1y7+x2y0+x2y5+x3y7+y1+y3

P5 = y0(x0x2 + x1x2 + x1x3 + x2x3) + y1(x0x3 + x1x3) + y2(x0x3 + x2x3) +
y3(x0x1+x1x2)+y4(x0x1+x1x2)+y5(x2x3+x0x3)+y6(x0x2)+y7(x2x3+x0x3+
x1x3)+x0y0+x0y2+x0y4+x0y7+x1y2+x1y3+x1y6+x2y0+x2y4+x3y3+y1+y5

P6 = y0(x0x3 +x2x3)+ y1(x0x1 +x1x2)+ y2(x0x1 +x1x2)+ y3(x2x3 +x0x3 +
x1x3) + y4(x0x2 + x1x3 + x2x3 + x1x2) + y5(x0x3 + x1x3) + y6(x0x3 + x2x3) +
y7(x0x2) + x0y2 + x0y3 + x0y4 + x0y6 + x1y1 + x1y6 + x1y7 + x2y2 + x2y4 +
x3y1 + y0 + y5

P7 = y0(x0x3+x1x3)+y1(x0x3+x1x3+x2x3)+y2(x0x2+x2x3+x1x2+x1x3)+
y3(x0x2)+y4(x2x3+x0x3+x0x2)+y5(x1x2+x0x1)+y6(x0x1+x1x2)+y7(x2x3+
x0x3)+x0y1+x0y2+x0y6+x0y7+x1y3+x1y5+x1y7+x2y2+x2y6+x3y5+y0+y4

The public key looks large, however it is possible to reduce the size of public
key containing only quadratic terms. The public key can be written as two
sets of public polynomials containing only quadratic terms. We have
P
′
0 = 1 + y0g1 + y1g0 + y2g4 + y3g4 + y4g5 + y5g3 + y6b + y7g5 + x0y3 + x1y3 +

x0y7 + x2y7 + x2y6 + x0y6 + y2 + y4 + x1y0 + x3y0 + x0y5 + x1y1

P
′
1 = y0g3 + y1g4 + y2g5 + y3g1 + y4g1 + y5g0 + y6g4 + y7g2 + x0y0 + x0y1 +

x0y3 + x0y7 + x1y1 + x1y4 + x1y5 + x2y3 + x2y7 + x3y4 + y2 + y6

P
′
2 = y0g0 + y1g1 + y2g1 + y3g2 + y4g3 + y5g4 + y6g5 + y7g4 + x0y1 + x0y3 +

x0y4 + x0y5 + x1y0 + x1y2 + x1y5 + x2y1 + x2y3 + x3y2 + y6 + y7

P
′
3 = y0g4 + y1g6 + y2g3 + y3g4 + y4g0 + y5g1 + y6g1 + y7g5 + x0y0 + x0y1 +

x0y2 + x0y5 + x1y0 + x1y4 + x1y6 + x2y1 + x2y5 + x3y6 + y3 + y7

P
′
4 = y0g1 + y1g4 + y2g0 + y3g5 + y4g4 + y5g2 + y6g3 + y7g4 + x0y0 + x0y4 +

x0y5 + x0y6 + x1y4 + x1y2 + x1y7 + x2y0 + x2y5 + x3y7 + y1 + y3

P
′
5 = y0g2 + y1g5 + y2g4 + y3g1 + y4g1 + y5g4 + y6g0 + y7g3 + x0y0 + x0y2 +

x0y4 + x0y7 + x1y2 + x1y3 + x1y6 + x2y0 + x2y4 + x3y3 + y1 + y5

P
′
6 = y0g4 + y1g1 + y2g1 + y3g3 + y4g2 + y5g5 + y6g4 + y7a0 + x0y2 + x0y3 +

x0y4 + x0y6 + x1y1 + x1y6 + x1y7 + x2y2 + x2y4 + x3y1 + y0 + y5

P
′
7 = y0g5 + y1g3 + y2g2 + y3g0 + y4g7 + y5g1 + y6g1 + y7g4 + x0y1 + x0y2 +

x0y6 + x0y7 + x1y3 + x1y5 + x1y7 + x2y2 + x2y6 + x3y5 + y0 + y4

Where g0 = x0x2, g1 = x0x1 + x1x2, g2 = x2x3 + x1x2 + x0x2 + x1x3,
g3 = x2x3 + x0x3 + x1x3, g4 = x2x3 + x0x3, g5 = x0x3 + x1x3, g6 =
x2x3 + x1x2 + x0x2, g7 = x2x3 + x0x3 + x0x2 and b = g0 + g2. Suppose
M = (0, 0, 0, 1) is the plaintext message. Substituting this in above pub-
lic equation we get linear equations, y2 + y4 + y0 = 1, y2 + y4 + y6 = 0,
y2 + y6 + y7 = 0, y3 + y6 + y7 = 0, y1 + y3 + y7 = 0, y1 + y3 + y5 = 0,
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y0 + y1 + y5 = 0, y0 + y4 + y5 = 0. Solving these linear equations by Gaussian-
elimination we get (y0, y1, y2, y3, y4, y5, y6, y7) = (0, 1, 0, 0, 1, 1, 1, 1), which is
the required ciphertext.


