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Abstract. In early 2000’s, Rivest [Riv00,MR02] and Micali [MR02] in-
troduced the notion of transitive signature, which allows a third party to
generate a valid signature for a composed edge (vi, vk), from the signa-
tures for two edges (vi, vj) and (vj , vk), and using the public key only.
Since then, a number of works, including [MR02,BN02,Hoh03,SFSM05,BN05],
have been devoted on transitive signatures. Most of them address the
undirected transitive signature problem, and the directed transitive sig-
nature is still an open problem. S. Hohenberger [Hoh03] even showed that
a directed transitive signature implies a complex mathmatical group,
whose existence is still unkown. Recently, a few directed transitive sig-
nature schemes [Yi07,Nev08] on directed trees are proposed. The draw-
backs of these schemes include: the size of composed signature increases
linearly with the number of recursive applications of composition and
the creating history of composed edge is not hidden properly. This paper
presents DT T S—a Directed -Tree-Transitive Signature scheme, to ad-
dress these issues. Like previous works [Yi07,Nev08], DT T S is designed
only for directed trees, however, it features with constant (composed) sig-
nature size and privacy preserving property. G. Neven [Nev08] pointed
out constant signature size is an essential requirement of the original di-
rected transitive signature problem raised by Rivest and Micali. In this
sense, our scheme DT T S is the first transitive signature scheme on a di-
rected tree. We also prove that DT T S is transitively unforgeable under
adaptive chosen message attack in the standard model.

1 Introduction

In 2000, Rivest [Riv00] introduced the notion of homomorphic signatures (for-
malized in [JMSW02,ACdMT05] etc.) and proposed an open problem on the
existence of directed transitive signatures. Later, Micali and Rivest [MR02] pro-
posed the first undirected transitive signature scheme, and raised the directed
transitive signature as open problem again and officially. A transitive signature
scheme aims to authenticate the transitive closure of a dynamically growing
graph [Yi07]. The scheme works in this way: a signer has a pair of public/private
signing key, and is able to sign a new vertex or edge when it is generated at any
time. Unlike standard digitial signature, the transitive signature scheme sup-
ports a transitive property. That is, given the signatures σi,j and σj,k of edges
(vi, vj) and (vj , vk) respectively, anyone can produce a signature σi,k for com-
posed edge (vi, vk) using the public key only, where vi, vj , and vk are vertices,



and (vi, vj), (vj , vk) are edges in a graph. If the graph is undirected, such scheme
is called undirected transitive signature scheme; if the graph is directed, it is
called directed transitive signature scheme.

Since Rivest’s talk in 2000, a number of undirected transitive signature
schemes [MR02,BN02,SFSM05,BN05,WCZ+07] have been proposed. However,
the directed transitive signature is still an open problem [Hoh03,Nev08], al-
though some plausible directed transitive signature schemes [KT03,Yi07,Nev08]
on restricted directed graphs, like directed tree, have been proposed. Y. Xun et
al. [YTO04] pointed out that Kuwakado-Tanaka transitive signature scheme [KT03]
on directed trees is not secure under chosen message attack by proposing a
forgery attack. Y. Xun [Yi07] also proposed a transitive signature schemeRSADT S
on directed trees , but the (composed) signature size is not constant. G. Neven [Nev08]
pointed out that it would be much easier to construct a directed transitive sig-
nature scheme (on directed tree) if the signature size is allowed to grow linearly,
and gave a simple scheme as a demonstration. So far, to our knowledge, there is
no known transitive signature scheme on directed trees, which is provably secure
and has constant signature size. Table 1 and Table 2 compare various transitive
signature schemes appeared in literatures with DT T S and AOP-DT S proposed
in this paper, from different aspects.

Scheme Signing cost Verification

cost

Composi-

tion cost

Signature

size

Compos-

ed Sig-

nature

size

Supported

Graph

DLT S
[MR02]

2 stand. sigs. 2
exp. in G

2 stand. verifs
1 exp. in G

2 adds in Zq 2 stand. sigs 2
points in G 2
points in Zq

constant undirected
graph

RSAT S-1
[MR02]

2 stand. sigs. 2
RSA encs

2 stand. verifs
1 RSA enc.

O(|n|2) ops 2 stand. sigs. 3
points in Z

∗

n

constant undirected
graph

FactT S-1
[BN05]

2 stand. sigs
O(|n|2) ops

2 stand. verifs
O(|n|2) ops

O(|n|2) ops 2 stand. sigs 3
points in Z

∗

n

constant undirected
graph

GapT S-1
[BN05]

2 stand. sigs 2
exp. in Ĝ

2 stand. verifs
1 Sddh

O(|n|2) ops 2 stand. sigs. 3
points in Ĝ

constant undirected
graph

RSADT S 2 stand. sigs 2 stand. verifs ≤ |M | ops 2 stand. sigs increase directed tree
[Yi07] 1 exp. in 〈G〉 1 exp. in 〈G〉 2 points in 〈G〉

1 label δi,j ≤
M

DT T S ≤ 2 stand. sigs 2 stand. verifs 1 exp. in Z
∗

n 2 stand. sigs. constant directed tree
2 exp. in Z

∗

n 2 exp. in Z
∗

n 3† points in Z
∗

n (Arborescence)

AOP-
DT S

O(|V |2) 1 stand. verif O(|V |2) 1 stand. sig constant generic di-
rected graph

Table 1. Performance comparision among transitive signature
schemes [BN05,Yi07]. †: The left labels in a signature can be reduced us-
ing a hash function (Section 3.3).



In RSADT S, each edge (i, j) is associated with a random number ri,j as
the label. Given two adjacent edges (i, j) and (j, k) and their signatures, anyone
with public key can produce a signature for the composed edge (i, k), whose
label is the integer product ri,j × rj,k. If we apply the transitive property re-
cursively, the length of the label of the newly composed edge increases linearly
with the depth of the recursion. Furthermore, the integer multiplication reveals
some information about the creating history of the newly composed edge: if the
original random numbers chosen by the signer are small, then adversaries could
factorize the integer product; otherwise the bit-length of the product may reveal
significant information about the number of multiplications, which implies the
length of the path used to create the composed edge.

The directed transitive signature scheme DT T S on directed tree proposed in
this paper, is inspired by the relation between transitive signature and redactable
signature (Chang et al. [CLX09]), and is different from previous schemes at least
in these aspects: (1) It is provably secure under adaptive chosen message attack;
(2) The length of signature of a composed edge is constant; (3) The creating
hisotry of a composed edge is hidden properly; (4) The directed tree supported
by DT T S is slightly more restricted (precisely, every vertex has at most one
incoming edge) than that of RSADT S (See Section 2); (5) When the transitive
property is applied recursively on a path, for example path i1 → i2 → i3 → i4,
the order of recursive applications is predetermined. That is, compose a signature
for (i1, i3) first from signatures of edge (i1, i2) and edge (i2, i3), then compose
a singature for (i1, i4) from signatures of edge (i1, i3) and edge (i3, i4). This is
because, in DT T S, Comp requires the second edge is original, i.e. signed directly
by the orignal signer. Note that the last difference does not restrict the power
of transitive property of DT T S. Instead, this difference can be treated as a
feature, and can be utilized to provide the signer with control on composition
(See Section 3.3 for details).

Scheme AOP-DT S authenticates all ordered pairs of vertices in a generic
directed graph with a constant size signature. It can achieve whatever generic
directed transitive signature can achieve, as long as the composition operation
can access some state maintained by the signer. This scheme illustrates that
generic directed transitive signature is feasible, if the problem setting is relaxed
slightly.

1.1 Contributions of this paper

Directed transitive signature is a hard open problem. We attack this problem
from different angles in different simplified but meaningful settings. The contri-
butions of this paper include:

1. We present DT T S as the first directed transitive signature scheme on di-
rected trees with constant signature size (Section 3.1).

2. We prove that DT T S is transitively unforgeable under adaptive chosen mes-
sage attack in standard model and the creating history of composed signature
is hidden properly (Section 3.2).



Scheme Assumptions for Provable Se-

curity

Privacy Preserv-

ing

How to

grow?

Persis-

tent

Vertex?

DLT S
[MR02]

Security of standard signature
scheme; Hardness of iscrete loga-
rithm in prime order group

Perfect,Transparent Arbitrarily No

RSAT S-1
[MR02]

Security of standard signature
scheme; RSA is secure against one-
more-inversion attack

Perfect,Transparent Arbitrarily No

FactT S-1
[BN05]

Security of standard signature
scheme; Hardness of factoring

Perfect,Transparent Arbitrarily No

GapT S-1
[BN05]

Security of standard signature
scheme; One-more gap Diffie-
Hellman assuption

Perfect,Transparent Arbitrarily No

RSADT S
[Yi07]

Security of standard signature
scheme; RSA Inversion Problem in
a Cyclic Group is hard

No (due to integer
multiplication)

From a sin-
gle source

No

DT T S Security of standard signature
scheme; Strong RSA Problem is
hard

Computational,Non-
Transparent

From a sin-
gle source

Yes

AOP-
DT S

Security of the underlying
redactable signature scheme

Perfect, Transparent Arbitrarily No

Table 2. All of these schemes are transitive unforgeable under adaptive chosen-
message attack in standard model [BN05]. Section 3.3 introduces the concept of
“persistent vertex”.



3. We point out that the directed transitive signature on generic graph could
be a feasible problem, if we relax the requirement of transitive signature such
that composition operation (Comp) could access the state maintained by the
signer (TSign). The scheme AOP-DT S illustrates this idea (Section 4). We
also prove that AOP-DT S is transitively unforgeable and privacy preserv-
ing.

2 Definitions

Notations. Let N = {1, 2, 3, 4, 5, . . .} be the set of integers. The notation x← a

denotes that x is assigned a value a, and x
$
←− S denotes that x is randomly

selected from the set S. Let Prime be the set of all odd prime numbers.

Graph. Let G = (V, E) be a simple directed graph with a set V of nodes (or
vertices) vi’s and a set E of directed edges. In this paper, we focus on directed
trees. Note that there exist different definitions of directed tree in the literature:
(1)A directed tree is a directed graph that would be a (undirected) tree if ignoring
the direction of edges; (2)A directed tree (or Arborescence) is a directed graph,
where edges are all directed away from a particular vertex. The second definition
is slightly more restricted than the first one. In this paper, we adopt the second
definition for directed tree and the term “directed tree” refers to arborescence
by default. Y. Xun [Yi07] adopted the first definition of directed tree.

A transitive closure of a directed graph G = (V, E), is a directed graph,

denoted as G̃ = (V, Ẽ), where (vi, vj) ∈ Ẽ if and only if there is a directed path
from vertex vi to vertex vj in graph G.

Directed Transitive Signature Scheme. A directed transitive signature scheme
DT S = (TKG, TSign, TVf, Comp) is specified by four polynomial-time algo-
rithms, and the functionality is as follows [BN05,Yi07]:

– The randomized key generation algorithm TKG takes as input 1k, where k

is the security parameter, and returns a pair of keys (tpk, tsk), where tpk is
the public key and tsk is the private key.

– The signing algorithm TSign could be randomized or/and stateful. TSign

takes the private key tsk, two vertices vi and vj , and returns a value called
an orignal signature of the edge (vi, vj) relative to tsk. If stateful, it maintains
a state which it updates upon each invocation.

– The deterministic verification algorithm TVf, given tpk, two vertices vi, vj

and a candidate signature σ, returns either TRUE or FALSE. We say that σ is
a valid signature of edge (vi, vj) relative to tsk, if the output is TRUE.

– The deterministic composition algorihtm Comp takes as input tpk, two di-
rected edges (vi, vj) and (vj , vk) and two signatures σi,j and σj,k, and returns
either a composed signature σi,k of the composed edge (vi, vk), or ⊥ to indi-
cate failure.



An edge e is called original edge if e ∈ E, or composed edge if e ∈ Ẽ−E. All
original edges are signed by the signer using TSign and tsk, and all composed
edges could be indirectly signed by anyone using Comp and tpk.

Two different views of Transitive Signatures. Transitive signatures are orig-
inally designed to authenticate a transitively closed graph in an economic way,
i.e. sign as least as possible number of vertices and edges to authenticate a transi-
tively closed graph. Viewed from another angle, transitive signatures are actually
redactable signatures on growing graph (Figure 1). The redaction operation can
be implemented straightforwardly just using the composition operation Comp.

(a) Transitive Closure (b) Redaction

Fig. 1. This graph illustrates the two different views of transitive property. In
Subfigure (a), composed edges represented by dashed lines are signed indirectly
by applying composition operation Comp. In this graph of 10 vertices and 29
edges, 9 original edges are signed directly using TSign, and the signatures of the
other 20 composed edges (dashed line) can be saved due to transitive property.
In Subfigure (b), a vertex represented by the dashed circle is redacted from the
graph, and the edges connecting its parent and children are created and signed
by applying Comp.

Correctness, Security and Privacy. We slightly modify the definitons of cor-
rectness and security of (directed) transitive signature scheme in [BN05,Yi07]
to adapt for DT T S. We also formalize the definition of privacy of transitive
signatures when viewed as redactable signatures.

Experiement 1 defines ExpCorrect
DT S,A for correctness of DT S and Experiment 2

defines Expdtu−cma
DT S,F for security of DT S. ExpCorrect

DT S,A outputs TRUE, if all queries
made by A are legitimate, and A can make a TSign query or Comp query
which can cause TSign or Comp to generate an invalid signature. The exper-
iment Expdtu−cma

DT S,F outputs 1 if and only if F succeeds in producing a forgery. The



advantage of F in its adaptive chosen message attack on DT S is defined as

Advdtu−cma
DT S,F (k) = Pr

[
Expdtu−cma
DT S,F (k) = 1

]

where k ∈ N and the probability is taken over all random choices made in the
experiment Expdtu−cma

DT S,F . Experiment 3 defines Exp
privacy
DT S , which is used to define

privacy preserving property for transitive signatures when viewed as redactable
signatures.

Definition 1 (Correctness). A transitive signature scheme DT S = (TKG, TSign,

TVf, Comp) is correct, if for any (computationally unbounded) algorithm A and
every k ∈ N,

Pr
[
ExpCorrect
DT S,A = TRUE

]
= 0.

Experiment 1 ExpCorrect
DT S,A defines correctness of transitive signature scheme DT S =

(TKG, TSign, TVf, Comp) for directed tree.

1: (tpk, tsk) ← TKG(1k)
2: S ← ∅; Legit ← TRUE; NotOK ← FALSE

3: Run A with its oracles until it halts, replying to its oracle queries as follows:
4: if A makes TSign query on (vi, vj) then

5: if vi = vj ∨ (vi, vj) ∈ E then

6: Legit ← FALSE

7: else

8: Let σ be the output of TSign oracle
9: S ← S ∪ {(vi, vj , σ)}

10: if TVftpk(vi, vj , σ) = FALSE then

11: NotOK ← TRUE

12: if A makes Comp query on vi, vj , vk, σi,j , σj,k then

13: if (vj , vk) is not an original edge ∨ vi, vj , vk are not all distinct ∨ (vi, vj , σi,j) 6∈ S ∨
(vj , vk, σj,k) 6∈ S then

14: Legit ← FALSE

15: else

16: Let σi,k be the output of Comp oracle
17: if σi,k = ⊥ then

18: Legit ← FALSE

19: else

20: S ← S ∪ {(vi, vk, σi,k)}
21: if TVftpk(vi, vk, σi,k) = FALSE then

22: NotOK ← TRUE

23: When A halts, output (Legit ∧NotOK) and halts

Definition 2 (Security). A transitive signature scheme DT S = (TKG, TSign,

TVf, Comp) is transitively unforgeable under adaptive chosen message attack, if
the function Advdtu−cma

DT S,F (k) is negligible in k for any adversary F whose running
time is polynomial in k.

Definition 3 (Privacy). A transitive signature scheme DT S = (TKG, TSign,

TVf, Comp) is non-transparent and computational privacy preserving (respec-
tively, transparent and computational privacy preserving), if for any ℓ > 1 (re-
spectively, ℓ > 0), Xℓ and X1 (respectively, X0) are computationally indistin-
guishable (w.r.t. k), where X1, Xℓ are defined as follow



Experiment 2 Exp
dtu−cma
DT S,F

defines security of transitive signature scheme DT S =

(TKG, TSign, TVf, Comp) for directed tree.

1: (tpk, tsk) ← TKG(1k)
2: S ← ∅; Legit ← TRUE

3: Run F with its oracles until it halts, replying to its oracle queries as follows:
4: if F makes TSign query on (vi, vj) then

5: if vi = vj ∨ (vi, vj) ∈ E then

6: Legit ← FALSE

7: else

8: Let σ be the output of TSign oracle
9: S ← S ∪ {(vi, vj , σ)}

10: if F makes Comp query on vi, vj , vk, σi,j , σj,k then

11: if (vj , vk) is not an original edge ∨ vi, vj , vk are not all distinct ∨ (vi, vj , σi,j) 6∈ S ∨
(vj , vk, σj,k) 6∈ S then

12: Legit ← FALSE

13: else

14: Let σi,k be the output of Comp oracle
15: S ← S ∪ {(vi, vk, σi,k)}
16: Forger F , with access to tpk and S, outputs (v′, u′, σ′): (v′, u′, σ′)← F(tpk, S).
17: Let E ← {(vi, vj) | ∃(vi, vj , σ) ∈ S}; V = {v | ∃u, (u, v) ∈ E ∨ (v, u) ∈ E}

18: Let graph G = (V, E) and its transitive closure eG = (V, eE)

19: if Legit = FALSE ∨ (v′, u′) ∈ eE ∨ TVf(v′, u′, σ′) = FALSE then

20: return 0
21: else

22: return 1

1. Run TKG to generate public/private key: (tpk, tsk)← TKG(1k).
2. Randomly generate v0, v1.
3. For any c ≥ 0,

Xc ← Exp
privacy
DT S (tpk, tsk, c, v0, v1)

Remark

1. DT S is statistical privacy preserving, if “computationally indistinguishable”
is replaced with “statistically indistinguishable” in Definition 3.

2. DT S is perfect privacy preserving, if “computationally indistinguishable” is
replaced with “identical” in Definition 3.

3. If DT S is transparent privacy preserving, then given an authenticated graph
signed by DT S, any advesary (computationlly bounded if DT S is compu-
tational privacy preserving) cannot distinguish orignal signatures from com-
posed signatures. If DT S is non-transparent privacy preserving, then given
an authenticated graph signed by DT S, any advesary may be able to dis-
tinguish orignal singatures from composed signatures, but could not obtain
any information about the creating history of a composed signature.

3 DT T S: Transitive Signature on Directed Tree

3.1 The scheme

Let SDS = (SKG, SSign, SVf) be a standard signature scheme (For example, the
signature scheme proposed by Goldwasser et al [GMR88]). We define the directed
transitive signature scheme DT T S = (TKG, TSign, TVf, Comp) as follows.



Experiment 3 Exp
privacy

DT S
outputs a composed signature for edge (v0, v1) by composing a path of

length (ℓ + 1) recursively.

1: Input: (tpk, tsk, ℓ, v0, v1)
2: Generate random vertex ui, 0 < i < ℓ + 1, and let u0 = v0, uℓ+1 = v1.
3: Set the state of TSign to a random state.
4: for j ← 0; j ≤ ℓ; j ← j + 1 do

5: Make TSign query on (uj , uj+1) against tsk and obtain the signature σj,j+1

6: for j ← 2; j ≤ ℓ + 1; j ← j + 1 do

7: Make Comp query on u0, uj−1, uj , σ0,j−1, σj−1,j against tpk and obtain signature σ0,j

8: return σ0,ℓ+1.

TKG(1k). The key generation algorithm TKG taking 1k as input, runs as
follows:

1. Run SKG(1k) to generate a key pair (spk, ssk).
2. Choose a RSA modulus n = pq, such that p = 2p′ + 1, q = 2q′ + 1, p, q, p′

and q′ are all prime, and |p| = |q|. Let λ(n) = lcm(p− 1, q − 1).
3. Choose an element g from Z∗n, such that the multiplicative order of g modulo

n is p′. Let 〈g〉 denote the subgroup of Z∗n generated by g. Let P denote the
set of all odd primes in Zp′ , i.e. P = Zp′ ∩ Prime.

4. Output tpk = (spk, n) as the public key and tsk = (ssk, λ(n), p′, g) as the
private key.

TSigntsk(vi, vj). The signing algorithm TSign maintains a state (V, E, L, Π, ∆, Σ):

– V ⊂ {0, 1}∗ is a set of queried nodes;
– E ⊂ V × V is a set of directed edges;
– The function L : V → P × Z∗n assigns to each node v ∈ V a public label

L(v), which consists of a prime (called left label, denoted as LL(v)) from
P and an element (called right label, denoted as LR(v)) from Z∗n (L(v) ≡
(LL(v), LR(v)));

– The set Π records all prime numbers chosen in the signing process;
– The function ∆ : E → Z

∗
n assigns to each edge (vi, vj) ∈ E a label δi,j ;

– The function Σ : V → {0, 1}∗ assigns to each node v ∈ V a standard
signature Σ(v).

Initially, all of V , E and Π are empty sets. When invoked on input vi, vj (vi 6= vj)
and tsk, the signing algorithm TSign runs as follows:

1. Case 1: vi, vj 6∈ V , i.e. neither vertex vi or vertex vj is signed.

(a) Choose ri randomly from P−Π : ri
$
←− P−Π . Update Π : Π ← Π∪{ri}.

(b) The left label LL(vi) of vi is: LL(vi) ← ri. The right label LR(vi) of vi

is: LR(vi)← gri mod n.

(c) Choose rj randomly from P−Π : rj
$
←− P−Π . Update Π : Π ← Π∪{rj}.

(d) The left label LL(vj) of vj is: LL(vj)← rj . The right label LR(vj) of vj

is: LR(vj)← LR(vi)
rj mod n.

(e) Σ(vi)← SSignssk(vi, ri, LR(vi)); Σ(vj)← SSignssk(vj , rj , LR(vj)).
(f) The certificate of vi is: C(vi)← (vi, ri, LR(vi), Σ(vi)). The certificate of

vj is: C(vj)← (vj , rj , LR(vj), Σ(vj))



(g) The label of the edge (vi, vj) is: ∆(vi, vj)← g.

2. Case 2: vi ∈ V, vj 6∈ V , i.e. vertex vi is signed already but vertex vj is not
signed yet.

(a) Let the certificate of vi be C(vi) = (vi, ri, LR(vi), Σ(vi)), where ri =
LL(vi).

(b) Randomly choose rj from P−Π : rj
$
←− P−Π . Update Π : Π ← Π∪{rj}.

(c) The left label LL(vj) of vj is: LL(vj) ← rj . The right label of vj is
LR(vj)← LR(vi)

rj mod n.
(d) The certificate of vertex vj is C(vj) ← (vj , rj , LR(vj), Σ(vj)), where

Σ(vj)← SSignssk(vj , rj , LR(vj)).

(e) The label of the edge (vi, vj) is: ∆(vi, vj)← LR(vi)
1
ri mod n.

3. Case 3: vi 6∈ V, vj ∈ V , i.e. vertex vj is signed already but vertex vi is not
signed yet.

(a) Let the certificate of vj be C(vj) = (vj , rj , LR(vj), Σ(vj)), where rj =
LL(vj).

(b) Randomly choose ri from P−Π : ri
$
←− P−Π . Update Π : Π ← Π∪{ri}.

(c) The left label LL(vi) of vi is: LL(vi) ← ri. The right label of vi is:

LR(vi)← LR(vj)
1

rj mod n.
(d) The certificate of vertex vi is: C(vi) ← (vi, ri, LR(vi), Σ(vi)), where

Σ(vi)← SSignssk(vi, ri, LR(vi)).

(e) The label of the edge (vi, vj) is: ∆(vi, vj)← LR(vi)
1
ri mod n.

For all cases, update V and E: V ← V ∪{vi, vj}, E ← E ∪{(vi, vj)}, and output
(C(vi), C(vj), ∆(vi, vj)) as the signature of (vi, vj).

TVftpk(vi, vj , σi,j). The verification algorithm TVf, when revoked on input
tpk, nodes vi, vj and a candidate signature σi,j on directed edge (vi, vj), runs as
follows:

1. Parse σi,j as (Ci, Cj , δi,j). Parse Ci as (vi, ri, LR,i, σi)) and parse Cj as
(vj , rj , LR,j, σj).

2. If SVfspk((vi, ri, LR,i), σi) = FALSE or SVfspk((vj , rj , LR,j), σj) = FALSE,
then reject.

3. Accept if δ
rirj

i,j ≡ LR,j (mod n).

Comptpk(vi, vj , vk, σi,j , σj,k). The composition algorithm Comp, when invoked
on input tpk, nodes vi, vj , vk, and two signatures σi,j and σj,k, runs as follows:

1. Parse σi,j as (Ci, Cj , δi,j) and σj,k as (C′j , Ck, δj,k).
2. If Cj and C′j are different, output ⊥ and abort.
3. Parse Ci, Cj , Ck as (vi, ri, LR,i, σi), (vj , rj , LR,j, σj) and (vk, rk, LR,k, σk) re-

spectively.
4. If SVfspk((vi, ri, LR,i), σi) = FALSE or SVfspk((vj , rj , LR,j), σj) = FALSE or

SVfspk((vk, rk, LR,k), σk) = FALSE, output ⊥ and abort.



5. If LR(vj)
rk 6≡ LR(vk) mod n, output ⊥ and abort1.

6. Compute δi,k ← δ
rj

i,j mod n.
7. Output (Ci, Ck, δi,k) as the signature of edge (vi, vk).

Figure 2 shows the left and right labels associated with eavery vertex vi.

r3, g
r1r2r3

r4, g
r1r2r3r4

w1, g

w0, g
1

w1

r1, g
r1

r2, g
r1r2

s1, g
r1r2s1

w3, g
w2w3

w2, g
w2

s2, g
r1r2s1s2

Fig. 2. This figure shows the left label LL(v) and right label LR(v) associated
with every vertex v. Note this graph grows from the vertex represented by the
dark circle.

Remarks.

1. DT T S assumes Case 1 of TSign will occur only once — when the very first
edge is queried and signed. Except the first edge, any newly queried edge
must have one adjacent node signed and the other unsigned yet. This implies
that the graph grows from the first signed vertex.

2. As long as the graph G = (V, E) is a tree, the case that vi, vj ∈ V , i.e.
both vi and vj are queried before, should never occur during the execution
of TSign.

3. When composing edges (vi, vj) and (vj , vk), Comp assumes that (vj , vk) is
an original edge which is signed by the signer. This implies that the order
of recursive applications of Comp on a path is predetermined. This feature
allows the signer to have some control on the composition (See Section 3.3).

1 This means the Comp algorithm requres that the second edge (vj , vk) is an original
edge, i.e. signed by the signer, instead of edge generated by composing a path.



4. There is a way to distinguish original edge, which is signed by the signer,
from composed edge, which is signed by applying Comp. That is, (vi, vj) ∈ Ẽ

is original, if LR(vi)
rj ≡ LR(vj) mod n; otherwise, it is composed.

3.2 Security and Privacy

Theorem 1. DT T S = (TKG, TSign, TVf, Comp) as defined in Section 3.1 is
transitively unforgeable under adaptive chosen message attack, assuming the
standard signature scheme SDS = (SKG, SSign, SVf) is unforgeable under adap-
tive chosen message attack and the Strong RSA problem is difficult.

Assumption 1 Let n = pq, p = 2p′+ 1 and q = 2q′+ 1, where p, q, p′, q′ are all
prime, and |p| = |q|. Let g ∈ Z∗n be an element with multiplicative order modulo
n equal to p′. The following two random variables X and Y are computationally
indistinguishable,

– Randomly and independently choose a, b from Zp′ ∩Prime, X ← gab mod n,

– Randomly and independently choose c, from Zp′ ∩ Prime, Y ← gc mod n.

Note Assumption 1 is implied by Decisional Diffie-Hellman assumption in the
cyclic sub-group of Z∗n.

Theorem 2. DT T S = (TKG, TSign, TVf, Comp) is non-transparent and com-
putational privacy preserving, under Assumption 1.

3.3 Variances

In this subsection, we give some variant schemes based on DT T S using different
techniques. Note that these techniques can be combined together.

Control on Redaction In some applications, it could be very desirable to
make some particular vertex persistent, so that no one, except the signer, can
redact a persistent vertex from a signed graph. For example, in the hierarchy of
chain of command, some particular person should never be crossed.

DT T S allows the signer to have control on which vertices are persistent and
which are not (Figure 3). To add a non-persistent vertex, just follow the scheme
described in Section 3.1. To add a persistent vertex vi (for example, the vertex
represented by the dark circle in Figure 3), the signer adds a dummy vertex u

(for example, the vertex represented by the dashed circle in Figure 3(a)) as vi’s
only child (so any child of vi actually becomes the child of u), and then redacts
this dummy vertex u using Comp algorithm.



(a) The signing process (b) The resulting graph

Fig. 3. This graph illustrates how to make a vertex (represented by the dark
circle) persistent. In Subfigure (a), to make the vertex represented by the dark
circle persistent, we introduce a dummy vertex, which is represented by the
dashed circle. In Subfigure (b), dashed edges connecting the persistent vertex
and its children are signed indirectly using Comp, so Comp cannot take these
edges as the second input.

Reduce the signature size using hashing Similar as in Bellare et
al. [BN05], we could reduce the signature size via hashing. Let h(·) be a divi-
sion intractable hash function as defined in Gennaro et al. [GHR99]. By defining
LL(vi) = h(vi), we could remove ri from the certification C(v) of the vertex v.
However, we cannot eliminate the right label of a vertex using the same tech-
nique. Indeed, the value of the right label of a vertex relies on the path from the
very first signed vertex to itself. This makes DT T S a naturally stateful siginning
algorithm. We cannot convert DT T S to a stateless signning algorithm using the
technique introduced in Bellare et al. [BN05].

4 AOP-DT S: Authenticate all Ordered Pairs

In this section, we present a directed transitive signature scheme AOP-DT S on
generic directed tree, which allows the composition operation Comp to access
some state variable (precisely, σ) maintainted by the signer TSign.

Let G = (V, E) represent the directed graph, and G̃ = (V, Ẽ) represent

the transitive closure of G. Note G keeps changing, so does G̃. Let RSS =
(RKG, RSign, RVf, Redact, Union) be a redactable signature scheme on sets of
objects, which supports the following two features

– Union: Given signatures of two sets S1 and S2, one can produce the signature
for set S1∪S2 using public key only. Precisely, the output of Union(S1, σ1, S2, σ2)
is a valid signature for the set S1 ∪ S2.

– Set Difference (or Redaction): Given a signature of a set S, one can produce
the signature for set S−A for any set A using public key only. More precisely,
the output of Redact(S, σ, A) is a valid signature of the set S −A.



Johnson et al. [JMSW02] gave an example of such redactable signature scheme
(Sig in Section 5 of [JMSW02]).

Scheme AOP-DT S works in this way: (1) Sign Ẽ using RSS to obtain the
signature σ; (2) Once a new edge (vi, vj) is added, sign {(vi, vj)} usingRSS , and

update V, E, Ẽ and its signature σ; (3) From signature σ and graph G, anyone

can produce a valid signature for any edge e ∈ Ẽ. The details are as follows.

1. KG(1k): Run RKG(1k) to generate a key pair (pk, sk). Output (pk, sk).

2. TSignsk(vi, vj): The signing algorithm TSign maintains a state (V, E, Ẽ, σ),

where V is a set of quried vertices, E ⊂ V × V is a set of directed edges, Ẽ

is the transitive closure of E, and σ is the signature of Ẽ under RSS w.r.t.
sk.
(a) Let A be an empty set. For any u, v ∈ V , if (u, vi) ∈ Ẽ, then add (u, vj)

into A; if (vj , v) ∈ Ẽ, then add (vi, v) into A; if both (u, vi) ∈ Ẽ and

(vj , v) ∈ Ẽ, then add (u, v) into A.
(b) Sign the set A: σA ← RSignsk(A).

(c) Update state: σ ← Unionpk(Ẽ, σ, A, σA); V ← V ∪ {vi, vj}; E ← E ∪

{(vi, vj)}; Ẽ ← Ẽ ∪A.
(d) The signature of edge (vi, vj) is: σi,j ← RSignsk({(vi, vj)}).

3. TVfpk(vi, vj , s): Return RVfpk({(vi, vj)}, s).

4. Comppk(vi, vj , σ, Ẽ): Here σ and Ẽ are state variables maintained by TSign.

(a) If (vi, vj) 6∈ Ẽ, output ⊥ and abort.

(b) s← Redactpk(Ẽ, σ, Ẽ − {vi, vj}). Output s.

Note Ẽ can be generated from the graph G, which is public. So the only necessary
state variable that Comp need access, is σ, which is the signature of the set Ẽ

and of constant size.

Theorem 3. AOP-DT S is transitively unforgeable under adaptive chosen mes-
sage attack, assuming RSS is unforgeable under adaptive chosen message attack.

Theorem 4. AOP-DT S is transparent and perfect privacy preserving.

5 Conclusion

In this paper, we gave the first directed transitive signature scheme DT T S on
directed trees, which is inspired by the relationship between transitive signa-
tures and redactable signatures. Unlike previous schemes, DT T S features with
constant signature size and privacy preserving property. We also gave a directed
transitive singature scheme AOP-DT S on generic directed graph, in the simpli-
fied setting where composition operation Comp can access some state variable (of
constant size) maintained by the signer TSign. We proved that both DT T S and
AOP-DT S are transitively unforgeable and privacy preserving under reasonable
assumptions. In summary, we solved the open problem of directed transitive sig-
nature in different relaxed settings, although in general the directed transitive
signature remains open problem.
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