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Abstract. While sequential hashing is o en used in practice and requires relatively
lessmemory than tree hashing, the la er has several advantages such as parallelism
and a lower cost of hash value recomputation when only a small part of the input
changes. In this paperwe consider the general case of tree hashingmodes thatmake
use of an underlying (sequential) hash function. We formulate a set of four simple
conditions, which are easy to implement and to verify, for such a (either sequen-
tial or tree) hashing mode to be sound. We provide a proof that for any hashing
mode satisfying these four conditions, the advantage in differentiating it from an
ideal monolithic hash function is upper bounded by q2/2n+1 with q the number of
queries to the underlying hash function and n the length of the chaining values. We
show how to apply tree hashing modes to sequential hash functions in an optimal
way, demonstrate the applicability of our conditions with two efficient and simple
tree hashing modes and provide a simple method to take the union of tree hash-
ing modes that preserves soundness. It turns out that sequential hashing modes
using a compression function (i.e., a hash function with fixed input length) can be
considered as particular cases and, as a by-product, our results also apply to them.
For three of the four conditions (parameter-completeness is trivial for sequential
modes), we discuss the different techniques for satisfying them, thereby shedding
a new light on several published modes.
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1 Introduction

Most hash functions are iteratedwhere themessage blocks are processed sequen-
tially and the processing of a block requires all previous blocks to be processed.
This severely limits the efficient use of multi-processors when hashing a single
(long) message. By adopting tree hashing, several parts of the message may be
processed simultaneously and parallel architectures can be usedmore efficiently
in the hashing of a single message. Tree hashing has other advantages: on the
condition that chaining values are kept, adapting the hash of a message a er
modifying only a small part of it can be done with much less effort than for a se-
quential hash function. On the other hand, tree hashing uses more memory and
may be less advantageous than sequential hashing for small messages.

Nevertheless, tree hashing can always be implemented sequentially or only
partially exploiting the parallelism available in the chosen tree structure. Except
for thememory footprint and for short messages, it can be advantageous to use a
tree enabling a high level of parallelism and let the target platform organize the
computation to take advantage of this parallelism or less.

Tree hashing was already introduced in [14] and in [10] a tree hashing mode
was proposed provably collision-resistant if the underlying compression func-
tion (i.e., a hash function with fixed input length) is collision-resistant. In this



paper, we treat the general case of tree hashing modes that call a hash function
without restrictions on its input or output length. These modes can be used to
construct tree hashing when a sequential hash function is available. Clearly, our
treatment remains valid for compression functions.

Our aim is to formulate a number of simple conditions for such a tree hashing
mode to be sound. For the soundness, we base ourselves on the indifferentiabil-
ity framework introduced by Maurer et al. in [13] and applied to hash functions
by Coron et al. in [9]. In general, an indifferentiable construction can replace the
ideal primitive (here a random oracle) in any cryptosystem without loss of secu-
rity. Also, indifferentiability guarantees the resistance of the construction against
generic a acks, i.e., a acks that work independent of the underlying function.

Clearly, sequential hashing can be seen as a particular case of tree hashing,
where all nodes of the tree except a single leaf node have degree one. The main
goal of sequential hashing modes is to construct a variable-input-length (VIL)
hash function from a function with fixed input and output length such as a com-
pression function, a permutation or a block cipher.

Hence the security of sequential and tree hashing modes can be analyzed
using the same techniques, and the simple conditions we formulate also apply
to sequential hashing modes.

1.1 Previous work

Provable security of tree hashing was already investigated in [17] and indiffer-
entiability proofs have been given, e.g., for the mode used in MD6 [16]. Our pa-
per was inspired by the proofs in [16] that were quite specific for the mode of
use adopted in MD6. Our goal was to formulate a set of simple conditions that
should be easy to verify and implement, sufficient for a tree hashing mode to
be sound. We presented the ideas that lie at the basis of this paper for the first
time in [7]. In the meanwhile the authors of [16] independently set out to do the
same thing and the results of their work surfaced in the pre-proceedings of Fast
So ware Encryption Workshop 2009 and was later slightly refined in the pro-
ceedings version [11]. Not unsurprisingly, the conditions in this paper and those
in [11] turn out to be very similar.

Despite this similarity, we believe this paper has a substantial added value
with respect to prior work, including [11], for the following reasons. First, while
[11] only covers the case of an inner hash function that is a compression function,
we cover the case of inner hash function with variable input length. This allows
taking an existing hash function as inner hash function and building a tree mode
on top of it.

Second, [11] only covers the case of an inner hash functionwith a fixed output
length and the output length of the outer hash function is limited by the output
length of the inner hash function. In our treatment, both inner hash function and
outer hash functions have indefinite output length. Apart from the obvious ad-
vantages in use cases such as mask generation functions, this allows us to prove
indifferentiability from an random oracle with indefinite output length, rather
than a truncated random oracle. Moreover, as discussed in Section 7.1, the vari-
able output length of the inner hash function allows a be er trade-off between
security and efficiency.
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Third, our set of conditions are less strict than those in [11] and hence allow
more freedom in the definition of the mode. We provide a more detailed com-
parison between our conditions and those of [11] in Section 4.2.

And finally, the bound we achieve on the success probability of differentiat-
ing the tree hashing mode from an ideal hash function is as tight as theoretically
possible (see Section 3). The bound in [11] is a factor 4r + 2 higher, with r is the
number of chaining values that fit in the input of the inner hash function (e.g.,
r = 4 in MD6 [16] and r = 3 in SHA-2 [15]).

1.2 Organization of the paper

The remainder of this paper is organized as follows.We first provide a definition
of tree hashing modes in Section 2. A er giving an upper bound on soundness
due to the birthday bound in Section 3, we introduce in Section 4 a set of sim-
ple and easy-to-verify conditions for tree hashing modes that result in sound
tree hashing and compare our conditions with the properties defined in [11]. Af-
ter adapting the indifferentiability se ing of [9] to tree hashing in Section 5, we
provide in Section 6 an indifferentiability proof valid for any tree hashing mode
satisfying our conditions.

In Section 7, we discuss how a tree hashing mode can be built on top of a
sequential hash function, provide two examples of sound tree hashing modes
and give a simple method to take the union of tree hashingmodes that preserves
soundness. In Section 8, we show that the conditionswe propose for tree hashing
modes also make sense for sequential hashingmodes. We discuss the techniques
used for satisfying tree-decodability, message-completeness and (avoiding the
need for) final node domain separation.

Finally, Appendix A provides some illustrations related to Section 4 and Ap-
pendix B gives further remarks on the cost measure defined in Section 5.2.

2 Tree hashing mode

Most hash functions are constructed in a layered fashion. Typically, a hash func-
tion has a variable input length and a fixed output length. There is a mode of use
that processes the input and in turn calls an underlying function F. Usually, this
underlying function is a compression function.

In this section we generalize this idea. We do not impose limits to the input
or output length of the underlying function called the inner hash function and de-
noted by ℱ . Our generalization allows for dealing with hierarchical hash func-
tions obtained by applying a tree hashing mode to an inner hash function that is
itself sequential. Still, our treatment is generic enough to also cover the case of
Merkle-Damgård style hashing with ℱ a compression function (see Section 8).

The combination of a tree hashingmode 𝒯 and an inner hash functionℱ defines
a hash function 𝒯 [ℱ ] thatwe call the outer hash function. In general, the outer hash
function has variable input and output lengths.

A tree hashing mode and the resulting outer hash function may be param-
eterized. For example, one may put as parameter the height of the tree or the
degree of the nodes (see, e.g., Section 7.2).
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2.1 Hashing as a two-step process
The tree hashing mode specifies for any given parameter choice and message
length the number of calls to ℱ and how the inputs in these calls must be con-
structed from the message and the output of previous calls to ℱ . For a given
input (M, A), the result is the hash h = 𝒯 [ℱ ](M, A).

We express tree hashing as a two-step process:
Template construction The mode of use 𝒯 generates a so-called tree template Z

that only depends on the length ∣M∣ of the message and the parameters A.
We write Z = 𝒯 (∣M∣, A). The tree template consists of a number of virtual
strings called node templates. Each node specifies for a call toℱ how the input
must be constructed frommessage bits and the output of previous calls to ℱ
(see Section 2.3).

Template execution The tree template Z is executed by a generic template in-
terpreter 𝒵 for a specific message M and a particular ℱ to obtain the output
h = 𝒯 [ℱ ](M, A). The interpreter produces an intermediate result called a tree
instance S consisting of node instances. Each node instance is a bitstring con-
structed according to the corresponding node template and presented to ℱ .
We write S = 𝒵 [ℱ ](M, Z). The hash result is finally obtained by h = ℱ (S∗),
where S∗ is a particular node of S, called the final node (see Section 2.2).

Hence h = 𝒯 [ℱ ](M, A) is a shortcut notation to denote first Z = 𝒯 (∣M∣, A) then
S = 𝒵 [ℱ ](M, Z) and finally h = ℱ (S∗).

In this paper we only consider tree hashing modes that can be described in
this way. However, this is without loss of generality.While we split the function’s
input in the parameters A and the message content M, this is only a convention.
If the tree template has to depend on the value of bits in M, and not only on
its length, the parameters A can be extended so as to contain a copy of such
message bits. In other words, the definition of the parameters A is just a way
to cut the set of possible tree templates into equivalence classes identified by
(∣M∣, A). As far as we know, all hashing modes of use proposed in literature
allow a straightforward identification of the parameters that influence the tree
structure.

2.2 The tree structure
The node templates of a tree template Z are denoted by Zα, where α denotes its
index. Similarly, node instances are denoted by Sα. As such, the nodes of tree
templates and tree instances form a directed acyclic graph and hence make a
tree.

Related to the tree topology, we now introduce some terminology and con-
cepts. These are valid both for templates and instances andwe simply say “node”
and “tree”.
– A node may have a unique parent node. We denote the index of the parent of
nodewith index α byparent(α). (We assume that the node indexes α faithfully
encode the tree structure, so that the function parent can work alone on the
index given as input.) In a tree all nodes have a parent except one; we call this
the final node and use the index ∗ to denote it. By contrast, we call the other
nodes inner nodes.
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– We say the node with index α is a child of the node with index parent(α). A
node may have zero, one or more childs. We call the number of childs of a
node its degree and a node without childs a leaf node.

– We say that a node Zα is an ancestor of a node Zβ if α = parent(β) or if Zα is
an ancestor of the parent of Zβ. In other words, Zα is a parent of Zβ if there
exists a sequence of indices α0, α1, αd−1 such that α = α0, αi−1 = parent(αi)
and αd−1 = parent(β). We say Zβ is a descendent of Zα and d is the distance
between Zα and Zβ. Clearly, the final node has no ancestors and a leaf node
has no descendents.

– Every node Zα is a descendent of the final node and the distance between the
two is called the height of α. The final node has by convention height 0. The
height of a tree is maximum height over all its nodes.

– We denote the restriction of a tree Z to a set of indices J as the subset of its
nodes with indices in J and denote it as ZJ . The restriction is a subtree if it
contains a node of which all other nodes in the restriction are descendent.
We call a subtree a final subtree if it contains the final node. We call a subtree a
leaf subtree if for each node it contains, it also contains all its descendents. Note
that a leaf subtree is fully determined by the index of the single node that is
the ancestor of all the nodes it contains. We call a subtree a proper subtree of
a tree if it does not contain all its nodes.

2.3 Structure of node templates

A node template Zα is a sequence of template bits Zα[x], 0 ≤ x < ∣Zα∣, and in-
structs the forming of a bitstring called the node instance Sα in the following
way. Each template bit has a type and the following a ributes (and purpose),
depending on its type:

Frame bits Represent bits fully determined by A and ∣M∣ and covers padding,
IV values and coding of parameter value A. A frame bit has a single a ribute:
its binary value. Upon execution, the template interpreter𝒵 assigns the value
of Zα[x] to Sα[x].

Message pointer bits Represent bits taken from themessage.Amessage pointer
bit has a single a ribute: its position. The position is an integer in the range
[0, ∣M∣ − 1] and points to a bit position in a message string M. Upon execu-
tion,𝒵 assigns the message bit M[y] to Sα[x], where y is the position a ribute
of Zα[x].

Chaining pointer bits Represent bits taken from the output of a previous call to
ℱ . A chaining pointer bit has two a ributes: a child index and a position. The
child index β identifies a node that is the child of this node and the position
is an integer that points to a bit position in the output of ℱ . Upon execution,
𝒵 assigns chaining bit ℱ (Sβ)[y] to Sα[x], with β the child index a ribute of
chaining pointer bit Zα[x] and y is its position a ribute. (A chaining value is
the sequence of all chaining bits coming from the same child.)

We refer to Section 7.2 for two simple examples illustrating these concepts. Exe-
cution of a tree template for a specific message M and function ℱ now just con-
sists of executing its node templates, where each template node Zα is executed
only a er its childs are. This results in a tree instance S with nodes Sα.
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3 The birthday bound and the size of chaining values

In this section we show that collisions in chaining values result in behavior not
observed in a random oracle and hence impose an upper bound on the strength
of the tree hashing mode.

Let us try to produce a collision in the output of 𝒯 [ℱ ]. Consider two inputs
(M, A) and (M′, A) with messages of equal length. As ∣M∣ = ∣M′∣ they will
have the same tree templates Z = Z′ = 𝒯 (∣M∣, A). For some fixed index α, we
construct pairs of messages that differ only in bits that are mapped to Zα and
its descendents (e.g., if Zα is a leaf node, they only differ in a single node). This
difference can only propagate to the final node via the chaining bits with child
index α in its parent node. Let the number of these chaining bits be denoted by
nα. For the two messages, these chaining bits will consist of a selection of output
bits from ℱ (Sα) and ℱ (S′α) respectively. Hence, a collision in the output of ℱ
restricted to these nα bits implies an output collision in 𝒯 [ℱ ].

Assuming that ℱ behaves like a random oracle, the success probability of
having a collision in its output restricted to n bits a er trying N inputs is

1−
N−1

∏
i=0

(
1− i

2n

)
≈ 1− exp

(
−N(N − 1)

2n+1

)
.

If N < 2−n/2 this is upper bounded by:

N(N − 1)
2n+1 .

This reasoning is independent of the value of α, so an upper bound to this success
probability imposes a lower bound on the length of the shortest chaining value
in the tree. We can therefore logically expect a tree hashing mode to have the
same length for all chaining values.

Our definition of templates allows for composing chaining values using bits
of arbitrary positions of the output of ℱ . If we assume ℱ generates its bits in a
sequential fashion, the most efficient way is to take the first n output bits of ℱ ;
we denote by ℱn the truncation of ℱ to its first n output bits. In the following we
will assume that ℱn is used for computing the chaining values.

Note that this birthday bound limits the achievable security one can expect
from such a hashing mode. Proved in Section 6.2, Theorem 1 actually achieves
this bound and is thus as tight as theoretically possible.

4 Sufficient conditions for sound tree hashing

In this section we formulate four conditions that a tree hashing mode 𝒯 should
satisfy. In Section 6 we will prove that the strength of a tree hashing mode that
satisfies these four conditions equals the birthday bound. The first three condi-
tions stem from the ability to generate collisions. The last condition prevents a
generalization of length extension.

We start by defining the concept of inner collisions.
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Definition 1. An inner collision in 𝒯 [ℱ ] is a pair of inputs (M, A) and (M′, A′)
such that their corresponding tree instances are different: S ∕= S′ but have equal final
node instances S∗ = S′∗.

With an inner collision, the output of 𝒯 [ℱ ] is equal for all output bits, not just
the first n bits.

A collision of ℱn can be used to generate an inner collision in 𝒯 [ℱ ]. How-
ever, an inner collision does not necessarily imply an output collision of ℱn. For
instance, let us try to produce an inner collision without a collision in ℱn. Con-
sider two inputs (M, A) and (M′, A′) leading to tree templates Z and Z′. The
values of (∣M∣, A) and (∣M′∣, A′) are chosen in such a way that for all nodes Zα

we have Zα = Z′α, except for a particular node Zβ and its descendents. Node
Zβ has one descendent Zγ and Z′β is a leaf node. Additionally, Zβ and Z′β have
the same length and in the positions where there are chaining pointer bits in Zβ,
there aremessage pointer bits in Z′β. For a given M, we can now compute all node
instances; this includes the chaining bits in Sβ by instantiating its descendent Sγ

and evaluating ℱn(Sγ). We can then construct M′ such that S′β = Sβ and S′α = Sα

for all other nodes in Z′. As S has one more node than S′, the tree instances are
not equal and hence we have an inner collision. This is illustrated with a simple
example in Figure 2, Appendix A.

In this case, the inner collision is only possible because the node templates
Zβ and Z′β are different. A simple way to avoid this situation is mandating that
𝒯 is tree-decodable.

Definition 2. A mode of use 𝒯 is tree-decodable if for all tree instances S generated
with 𝒯 (i.e., there is an input (M, A) and a function ℱ such that S = 𝒵 [ℱ ](M, Z)
with Z = 𝒯 (∣M∣, A)), given any proper final subtree SJ , one can identify at least one
node index β ∕∈ J, the chaining pointer bits in SJ with child index β and their position
a ribute. We call the index β an expanding index of SJ .

This definition includes the case where, given just a node instance, one can iden-
tify the chaining values and their a ributes in that node, or the case where this
is possible given the node instance and all its ancestors.

We can now prove the following lemma, leading to our first condition.

Lemma 1. When 𝒯 is tree-decodable and 𝒯 uses the first n bits ofℱ as chaining values,
an inner collision in 𝒯 [ℱ ] implies an output collision in ℱn.

Proof. Let S ∕= S′ produce an inner collision. Now, let J define a final subtree SJ
and a final subtree S′J such that SJ = S′J and they have an expanding index β with
Sβ ∕= S′β. We have that Sparent(β) = S′parent(β) and the chaining values with child
index β are fully determined by SJ . It follows that ℱ (Sβ) = ℱ (S′β) and hence we
have an inner collision.

We must now prove that there exists a set J such that SJ = S′J and it has an
expanding index β such that Sβ ∕= S′β. We do this in a recursive way. We have
per definition S∗ = S′∗ and hence we can take initially J = {∗}, clearly defining
a final subtree.

We can now repeat the following procedure until a set J is found that satisfies
the conditions above. If J defines a final subtree, tree-decodability guarantees
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that there exists an expanding index β. If there exists an expanding index β such
that Sβ ∕= S′β we have found our J. Otherwise, we expand J by adding β: J =

J ∪ {β}. Clearly, this J again defines a final subtree with SJ = S′J . This process
can only stop in two ways: either for the current set J an expanding index β is
found with Sβ ∕= S′β, or J covers all nodes indices of S and S′. In the la er case
S = S′ contradicts our initial assumption S ∕= S′. ⊓⊔

Condition 1 𝒯 is tree-decodable.

Naturally, we can have an output collision in 𝒯 [ℱ ] without an inner colli-
sion if there are message bits that are not mapped to any template node or if
two template trees resulting from two different messages of the same length and
different parameters, are equal in all frame bits and chaining pointer bits, but
not in message pointer bits. For that reason we introduce the concept ofmessage-
completeness.

Definition 3. A mode of use 𝒯 ismessage-complete if for any tree instance S gener-
ated with 𝒯 , one can fully determine the input message M.

Message-completeness implies that for every message length ∣M∣ and every pa-
rameter value A, one can determine from S the position a ribute of all message
pointer bits in Z = 𝒯 (∣M∣, A) and every position i in [0, ∣M∣ − 1] occurs at least
once in Z.

Condition 2 𝒯 is message-complete.

Similarly, we can have an output collision in 𝒯 [ℱ ]without an inner collision
if the tree instance does not allow to fully determine the tree parameters A.

This leads to the condition for 𝒯 that for all inputs (M, A), the resulting tree
instance S fully determines A. We call this property parameter-completeness.

Condition 3 𝒯 is parameter-complete.

The final condition is related to a property that generalizes length extension
to tree hashing. Assume we have two trees S and S′ corresponding with inputs
(M, A) and (M′, A′)with a particular property. First of all, S′ has the same topol-
ogy as a leaf subtree SJ of S containing a node Sα and all its descendents. Second,
there is a one-to-one mapping ψ between the indices of S′ and the elements of
J that preserves the parent-child relation: parent(ψ(β)) = ψ(parent(β)) and for
which ψ(α) = ∗. Finally, we have Sψ(β) = S′β.

As Sα = S′∗, we have 𝒯 [ℱ ](M′, A′) = ℱ (S′∗) = ℱ (Sα). Hence, one can com-
pute 𝒯 [ℱ ](M, A)without knowing themessage bits of M mapped to the subtree
SJ and just knowing 𝒯 [ℱ ](M′, A′). This is illustrated with a simple example in
Figure 3, Appendix A.

This property is not present in a random oracle. It can be avoided in several
ways, such as fixing the topology of the trees. However, the simplest method is
to have domain separation between final and inner nodes: this makes S′∗ = Sα

impossible as they are in different domains. This leads to the following condition:
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Condition 4 𝒯 enforces domain separation between final and inner nodes. In other
words, 𝒯 is such that for any (M, A) and (M′, A′) and for any node index α ∕= ∗
in 𝒯 (∣M∣, A) we have S∗ ∕= S′α, where S and S′ correspond with inputs (M, A) and
(M′, A′), respectively.

A simple way to implement domain separation is to start (or end) each node
with a frame bit indicating whether it is a final or inner node. Note that if ℱ is a
random oracle, this is equivalent to saying that the function applied to the final
node is a different one than the function applied to the inner nodes and hence
is similar to an output transformation. In our indifferentiability proof there is
however no restriction to the output length of this function.

4.1 Applicability

We show that, given a tree hashing scheme, it is easy to verify that it satisfies the
four conditions.

There are a few cases where tree-decodability can be directly checked. For in-
stance, the structure of the tree can be fixed, or it is determined by the parameters
A encoded as frame bits in the final node. In these cases, the knowledge of S∗ is
enough to tree-decode the whole tree instance and the condition is immediately
verified.

It is also possible that the structure of the tree is determined by S∗ up to the
degree of the nodes. In Section 7.2, we will see an example where the degree of
the final node grows with the message size. In another example, the number of
message pointer bits in a leaf is variable. In both cases, tree-decodability comes
down to checking that the size of the node instances allows to fully determine
the tree structure.

In general, one has to start verifying tree-decodability by checking that the
final node can be decoded, for all (M, A). Then, one follows the definition, by
checking that for each final subtree one can find an expanding index. Finally, the
leaves must be identified as such and the decoding must terminate.

Verifying message-completeness is a ma er of checking that all message bits
are processed in some node, for all (∣M∣, A) and that the size of nodes and their
frame bits allow to determine the position a ribute of all message pointer bits.
Parameter-completeness usually means that A can be recovered from the tree
topology or from its encoding in frame bits, and checking final node domain
separation follows directly from the tree hashing scheme definition.

For some concrete examples, we refer to Sections 7.2 and 8.

4.2 Comparison with tree based modes of Dodis et al.

The five “required properties of Mode of Operation” listed in [11] correspond to
a large extent with our four condition, but not quite.

First, the condition unique parsing is similar to our condition tree-decodability.
However, according to the definition in [11], unique parsing of any node instance
that may occur in a tree instance implies that it must be possible to identify the
chaining pointer bits, frame bits and message pointer bits with just access to the
node instance itself. This is a restricted case of our tree decodability. While for
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unique parsing the node instance coding is either fixed or must contain some
frame bits fully specifying its composition, in tree-decodability only the chaining
pointer bits of a single expanding index β must be found. For doing this infor-
mation may derived from the part of the tree that has already been decoded. In
general, our condition requires less frame bits to be inserted and thus allows for
a be er trade-off between flexibility and efficiency.

Second, the property root predicate fully coincides with our condition on do-
main separation between final node and inner nodes.

Third, there is no equivalent for the property straight-line program structure in
our conditions. Rather, it corresponds to our definition of a tree hashingmode in
Section 2. At first sight the two definitions of tree hashing modes are rather dif-
ferent. This is however just a difference in presentation. In this paper we clearly
distinguish two parts in the input: a message part M of which only the length
has an impact on the tree template, and a parameter part that determines the tree
template. In [11] there are presented as a single input called “message” and no
distinction is made between the two types of input. As discussed in Section 2,
our definition allows a large amount of flexibility and can actually implement
any “straight-line program structure”.

Fourth, there is no equivalent either for the property final output processing in
our conditions. It says that the output of applying the inner hash to the final node
undergoes a function ζ that must be an “efficiently computable, regular func-
tion” for which “the set of all preimages ζ−1(h) must be efficiently sampleable
given h”. An example of such a function is truncation (chopping) of the output
and it seems that this function is introduced as a generalization of truncation
to accommodate an outer hash function output length different from the inner
hash function output length. In our approach we study indifferentiability from a
random oracle with variable output length and the need for such a complication
does not appear. Clearly, truncating the output does not harm indifferentiabil-
ity as it gives an adversary less information. Moreover, the application of any
balanced function (as ζ above) to the output also preserves indifferentiability.

Finally, the property message reconstruction corresponds with our two condi-
tions message-completeness and template-completeness.

4.3 Property preserving aspects

Independently of the indifferentiability result proved below, some properties
hold when the four conditions of Section 4 are satisfied.

First, producing a collision in the first m output bits of 𝒯 [ℱ ](M, A) implies
either an m-bit collision inℱ (S∗) or an inner collision. In the la er case, Lemma 1
implies that one produces a collision in ℱn. Therefore, the tree hashing mode
preserves the collision resistance of the inner hash function.

Then, a similar idea applies to the (second) preimage a ack. Given an m-bit
output value s, an adversary who can find an input (M, A) such that the first m
bits of 𝒯 [ℱ ](M, A) are s can reconstruct the tree node instances and compute
the final node S∗. She is thus able to find a (second) preimage on the inner hash
function ℱ .
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5 The indifferentiability framework

The indifferentiability framework was introduced by Maurer et al. in [13] and is
an extension of the classical notion of indistinguishability. It deals with the inter-
action between systems where the objective is to show that two systems cannot
be told apart by an adversary able to query both systems but not knowing a pri-
ori which system iswhich. It was applied byCoron et al. to iterated hash function
constructions in [9]. The first system contains two subsystems: the hash function
construction and the compression function. The second system contains as one
of its subsystems an ideal function that has the same interface as the hash func-
tion construction in the first system. As both systems must have equal interfaces
towards the distinguisher, the second systemmust have a subsystem offering the
same interface as the compression function. This subsystem is called a simulator.

For hash function constructions, a random oracle usually serves as an ideal
function. We use the definition of random oracle from [3]. A random oracle, de-
notedℛ𝒪, takes as input binary strings of any length and returns for each input
a random infinite string, i.e., it is a map from Z∗2 to Z∞

2 , chosen by selecting each
bit ofℛ𝒪(s) uniformly and independently, for every s.

5.1 The distinguisher’s se ing

We study the indifferentiability of a tree hashing mode 𝒯 , calling an ideal inner
hash function ℱ , from an ideal outer hash function 𝒢. This leads to the se ing
illustrated in Figure 1. The systemat the le is 𝒯 [ℱ ] andℱ , and the adversary can
make queries to both subsystems separately, where the former in turn calls the
la er to construct its responses. The distinguisher has the following interfaces to
this system:

– ℋ taking as input (M, A, ℓ) with M a binary string, i.e., M ∈ Z∗2 , A the value
of the mode parameters and ℓ the requested output length, and returning a
binary string y ∈ Zℓ

2;
– ℐ taking as input (s, ℓ) with s a binary string s ∈ Z∗2 and ℓ the requested
output length, and returning a binary string t ∈ Zℓ

2.

When queried at the interface ℋ with a query (M, A, ℓ), the le system returns
y = 𝒯 [ℱ ](M, A) truncated to ℓ bits.When queried at the interface ℐ with a query
(s, ℓ), it returns t = ℱ (s) truncated to ℓ bits.

The system at the right consists of an ideal hash function 𝒢 implementing the
interface ℋ and of a simulator 𝒮 implementing the interface ℐ . When queried
with a query (M, A, ℓ), 𝒢 returns y = 𝒢(M, A) truncated to ℓ bits. From the re-
quirement that ideally the outputs corresponding to two different inputs (M, A)
and (M′, A′) are independent, we construct this ideal hash function as 𝒢 =
ℛ𝒪 ∘ ℰ , where ℰ is a (deterministic) encoder and ℛ𝒪 a random oracle. The en-
coder ℰ converts the input (M, A) to a binary string s in an injective way, which
is then transmi ed to the random oracle.

The output of 𝒮 should look consistentwithwhat the distinguisher can obtain
from the ideal hash function 𝒢, like if 𝒮 was ℱ and 𝒢 was 𝒯 [ℱ ]. To achieve that,
the simulator can query 𝒢, denoted by 𝒮 [𝒢]. Note that the simulator does not
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Fig. 1. The differentiability setup

see the distinguisher’s queries to 𝒢. Summarizing, 𝒮 implements the interface ℐ
and when queried with (s, ℓ), it responds with t = 𝒮 [𝒢](s, ℓ).

Indifferentiability of 𝒯 [ℱ ] from the ideal function 𝒢 is now satisfied if there
exists a simulator 𝒮 such that no distinguisher can tell the two systems apart
with non-negligible probability, based on their responses to queries it may send.

In this se ing, the distinguisher can send queries Q to both interfaces. Let 𝒳
be either (𝒯 [ℱ ],ℱ ) or (𝒢,𝒮 [𝒢]). The sequence of queries Q to 𝒳 consists of a
sequence of queries to the interface ℋ, denoted Qℋ and a sequence of queries
to the interface ℐ , denoted Qℐ . Qℋ is a sequence of triplets Qℋ,i = (Mi, Ai, ℓi),
while Qℐ is a sequence of couples Qℐ ,i = (si, ℓi).

For a given set of queries Q and their responses 𝒳 (Q), we define the 𝒯 -
consistency as the property that the responses to theℋ interface are equal to those
that one would obtain by applying the tree hashing mode 𝒯 to the responses to
the ℐ interface (when the queries Qℐ suffice to perform this calculation), i.e., that
𝒳 (Qℋ) = 𝒯 [𝒳 (Qℐ )](Qℋ). Note that 𝒯 -consistency is per definition always sat-
isfied by the system on the le but not necessarily by the system on the right.

5.2 The cost of queries

The differentiability bounds provided in [9] are expressed as a function of the
total number q of queries and their maximum input lengths. In [5] a bound is
expressed as a function of a cost, that is proportional to the total length of the
queries and their responses. In this paper we use a third approach: we quantify
the contribution of the queries to ℋ and to ℐ using a common unit, which is
a query to the interface ℐ . This is motivated by the fact that queries to ℋ and
queries to ℐ behave very differently when addressing (𝒯 [ℱ ],ℱ ): a query to ℋ
may require many calls to ℱ , while a query to ℐ , when applied to ℱ , requires
only a single call.

The cost q of queries to a system 𝒳 is the total number of calls to ℱ it would
yield if𝒳 = (𝒯 [ℱ ],ℱ ), either directly due to queriesQℐ , or indirectly via queries
Qℋ to 𝒯 [ℱ ]. The cost of a sequence of queries is fully determined by their number
and their input.

– Each query Qℐ ,i to ℐ contributes 1 to the cost.
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– Each query Qℋ,i = (Mi, Ai, ℓi) to ℋ costs a number f𝒯 (∣Mi∣, Ai), depending
on the tree hashing mode 𝒯 , the mode parameters Ai and the length of the
input message ∣Mi∣. The function f𝒯 (∣M∣, A) counts the number of calls 𝒯 [F]
needs to make to ℱ from the template produced for parameters A and mes-
sage length ∣M∣. Note that f𝒯 (∣M∣, A) is also the number of nodes produced
by 𝒯 (∣M∣, A).

In addition, we define the cost not to take into account duplicate queries. Two
queries Qℐ ,i = (si, ℓi) and Qℐ ,j = (sj, ℓj) with si = sj are counted as one, and
cost as much as a single query (si, max(ℓi, ℓj)). Similarly, two queries Qℋ,i =
(Mi, Ai, ℓi) and Qℋ,j = (Mj, Aj, ℓj) with Mi = Mj and Ai = Aj are counted as
one, and cost asmuch as a single query (Mi, Ai, max(ℓi, ℓj)). Note that this is only
an a posteriori accounting convention rather than a suggestion to replace over-
lapping queries by a single one. This convention only benefits to the adversary
and is thus on the safe side regarding security; see also Appendix B for some
additional discussion.

5.3 Definition

We can now adapt the definition as given in [9] to our se ing.

Definition 4 ([9]). A tree hashing mode 𝒯 with oracle access to an ideal hash function
ℱ is said to be (tD, tS, q, ϵ)-indifferentiable from an ideal hash function 𝒢 if there exists
a simulator 𝒮 [𝒢], such that for any distinguisher 𝒟 it holds that:

∣Pr [𝒟[𝒯 [ℱ ],ℱ ] = 1]− Pr [𝒟[𝒢,𝒮 [𝒢]] = 1] ∣ < ϵ.

The simulator has oracle access to 𝒢 and runs in time at most tS. The distinguisher runs
in time at most tD and has a cost of at most q. Similarly, 𝒯 [ℱ ] is said to be indifferentiable
from 𝒢 if ϵ is a negligible function of the security parameter n.

6 Indifferentiability proof

In this section, we always assume that the conditions presented in Section 4 are
fulfilled by the tree hashing mode 𝒯 . We first describe the simulator and its gen-
eral goal. We then prove the indifferentiability results by means of a series of
lemmas and a final theorem. We follow a proof technique very similar to the one
we introduced in [5]. Finally we discuss how our conditions also guarantee the
preservation of collision resistance and (second) preimage resistance.

6.1 The simulator and input extraction

The simulator 𝒮 [𝒢] has two tables. First, it keeps track of the queries in a list T of
couples (s, c) with s, c ∈ Z∗2 . Second, it memorizes a set Pn ⊆ Zn

2 of n-bit values
that the simulator cannot use as an output to Qℐ queries for inner nodes. Both T
and Pn are initialized to the empty set.

We say that a final node instance s is message-bound if the table T allows to
reconstruct the corresponding input (M, A). This is an important concept in our
proof. Algorithm 1 a empts to extract the input (M, A) from T and a given final
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node, by reconstructing the complete tree instance using the known pairs (s, c)
in T. When s is message-bound, it returns the corresponding M and A; in this
case, Conditions 1, 2 and 3 imply that this algorithm always succeeds (see also
Lemma 3). If not, it returns a chaining value whose preimage could not be found
in the table T (line 9). With a tree instance that could not have been produced by
the tree hashing mode, an error is returned (line 13).

Algorithm 1 𝒯 -decoding
1: input: s and table T
2: output:message M and tree parameters A, or status code
3: Initialization: J = {∗} and S∗ = s
4: while SJ has an expanding index β do
5: Let c be the chaining value corresponding to β extracted from SJ
6: if there is an entry (s′, t) ∈ T with the first n bits of t equal to c then
7: Let J = J ∪ {β} and Sβ = s′
8: else
9: return “dead end at c”
10: end if
11: end while
12: if SJ does not have valid coding to be a tree instance generated with 𝒯 then
13: return “invalid coding”
14: else
15: Extract the message M and parameters A from the tree instance SJ
16: return (M, A)
17: end if

Algorithm 2 implements the simulator. It stores in T the queries and their
responses as (s, c) couples, and uses the c part (possibly truncated) to build the
response for a subsequent querywith the same s. As a general rule, if two queries
(s, ℓ1) and (s, ℓ2) are sent with ℓ2 > ℓ1, the second query only extends the c part
to ℓ2 bits. Depending on the type of queries, the simulator takes the following
actions:

– For inner node instances, it avoids collisions in the first n output bits using
the set Pn (lines 14-15). This set is built from inner node queries and final node
queries that are not message-bound (see below).

– For final node instances:
∙ When s is message-bound, it calls 𝒢 to guarantee 𝒯 -consistency (line 8).
∙ When s is not message-bound, it returns random bits. Furthermore, the
simulator makes certain that such an s does not become message-bound
later on; this would break 𝒯 -consistency. This is achieved by adding to Pn
a chaining value not known during the 𝒯 -decoding of s (line 10); such a
chaining value will therefore never be returned again for an inner node
instance and s can never become message-bound (see also Lemma 4).

6.2 The proof

Lemma 2. If Pn ∕= Zn
2 , the simulator avoids collisions in the first n output bits when

queried with inner node instances.
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Algorithm 2 The simulator 𝒮 [𝒢]
1: input: (s, ℓ) (interface ℐ)
2: output: string in Zℓ

2
3: Let t such that (s, t) ∈ T, or t = ∗, the empty string, if no such (s, t) exists in T
4: if ∣t∣ < ℓ then
5: if s is a final node instance then
6: 𝒯 -decode s using T
7: if decoding returned (M, A) then
8: Set t to the first ℓ bits of 𝒢(M, A)
9: else if decoding returned “dead end at e” then
10: Set Pn ← Pn ∪ {e}
11: end if
12: else {s is an inner node instance}
13: if ∣t∣ < n then
14: Choose t randomly and uniformly from Zn

2 ∖ Pn
15: Set Pn ← Pn ∪ {t}
16: end if
17: end if
18: Append max(ℓ− ∣t∣, 0) uniformly and independently drawn random bits to t
19: Add (s, t) to the table T, replacing any previous entry whose first component is s
20: end if
21: return t truncated to its first ℓ bits

Proof. As it can be seen in lines 13–16 of Algorithm 2, the simulator stores the
first n bits of the output in Pn and avoids returning any value in Pn for any other
inner node instance. ⊓⊔
Lemma 3. If Pn ∕= Zn

2 , the reconstruction of (M, A) from a message-bound final node
is possible and there is only one possible (M, A).

Proof. First, note that when queried with the same inner node instance but dif-
ferent lengths, (s, ℓ1) and (s, ℓ2), the simulator returns consistent values in the
first min(ℓ1, ℓ2) bits. In line 13 of Algorithm 2, the condition ∣t∣ < n is actually
equivalent to t = ∗, as line 14 always generates n bits, so these n bits are never
regenerated for the same s. And line 19 keeps in memory the longest response
given so far; consequently, any pair (s, c) in T can only grow by appending bits
to the c component.

The 𝒯 -decoding algorithm depends only on answers to inner node instances,
whose consistence is shown above. Furthermore, together with Lemma 2, the
pair (s′, t) at line 6 of Algorithm 1 is either not found or can be retrieved without
ambiguity. ⊓⊔
Lemma 4. Given queries Qℐ to the simulator 𝒮 [𝒢] described in Algorithm 2 and Qℋ
to 𝒢, it returns 𝒯 -consistent responses, unless Pn = Zn

2 .

Proof. The proof is by induction. We assume that the simulator has received a
sequence of queries and that up to now it has returned 𝒯 -consistent responses.
Initially this is the case when the simulator has not received any queries at all.
Wewill now prove that if Pn ∕= Zn

2 , the simulator will return a response such that
the whole set of queries and responses remain 𝒯 -consistent.

Thanks to the domain separation between final and inner nodes, the simu-
lator can distinguish between these two kinds of queries and we can consider
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these two cases separately. To rephrase the definition, 𝒯 -inconsistency would
imply that there is a query to the simulator for a final node instance S∗ that is
message-bound to (M, A) and such that its response 𝒮 [𝒢](S∗) is different from
𝒢(M, A).

When querying a final node S∗ and it is message-bound, Lemma 3 shows that
(M, A) is unambiguously retrieved and 𝒮 queries 𝒢(M, A) to make its response
𝒯 -consistent per construction (line 8 ofAlgorithm2).When querying a final node
and it is not message-bound, there is no information in the Qℐ queries and their
responses to show the inconsistency.

When querying an inner node, 𝒯 -inconsistency cannot be shown using the
response to this very query, as it cannot be compared to a query to the ℋ in-
terface. However, the simulator could result in 𝒯 -inconsistency if this new re-
sponse would make the response t to (s, ℓ), a previously queried final node, 𝒯 -
inconsistent. Now there are two possibilities:

– s was message-bound to some input (M, A)when the query was sent. In this
case, 𝒯 -inconsistency could only come from an inner collision that would
allow to 𝒯 -decode the final node s to another input (M′, A′) ∕= (M, A). But
Lemma 1 shows that this would imply a collision in the first n output bits for
inner nodes, and this is not possible thanks to Lemma 2.

– s was not message-bound when the query was sent. Here 𝒯 -inconsistency
could only come from the final node s becoming message-bound due to the
new query. However, for every such final node s, a chaining value c was
added to Pn, preventing s from becoming message-bound in later queries.

It follows that the simulator guarantees 𝒯 -consistency for all queries Q unless
Pn = Zn

2 . ⊓⊔
Lemma 5. Any sequence of queries Qℋ can be converted to a sequence of queries Qℐ ,
where Qℐ gives at least the same amount of information to the adversary and has no
higher cost than that of Qℋ.

Proof. For each query Qℋ,i = (Mi, Ai, ℓi), we can produce the template from Ai
and ∣Mi∣. This template determines exactly how the query Qℋ,i can be converted
into a set Qℐ of f𝒯 (Ai, ∣Mi∣) queries to interface ℐ . From the definition of the cost,
it follows that the cost of Qℐ cannot be higher than that of Qℋ; the cost can be
lower if there are redundant queries in Qℐ . ⊓⊔
Lemma 6. The advantage of an adversary in distinguishing between ℱ and 𝒮 [𝒢] with
the responses to a sequence of q < 2n queries Qℐ is upper bounded by:

ϵn(q) = 1−
q−1

∏
i=0

(
1− i

2n

)
.

Proof. The advantage is defined as Adv(𝒜) = ∣Pr[𝒜[ℱ ] = 1] − Pr[𝒜[𝒮 [𝒢]] =
1]∣. We provide an upper bound of the advantage by computing the variational
distance between the two statistical distributions. Actually, we are interested
only in the first n output bits of the responses; the other bits are uniformly and
independently generated by 𝒮 and ℱ in all cases.
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Since ℱ is a random oracle, the responses to q different queries are indepen-
dent and uniformally distributed over Z2

n. By inspecting Algorithm 2, the sim-
ulator always returns uniform values for final node instances. For inner node
instances, the simulator chooses it from the set Zn

2 ∖ Pn. Each query can add at
most one element to Pn. The response to the i-th query is chosen from at least
2n − i + 1 values. A er q queries, there are at least (2n)(q) (where a(n) denotes
a!/(a− n)!) possible responses, each with equal probability 1/(2n)(q). This gives

Adv(𝒜) ≤ 1− (2n)(q)
2nq = ϵn(q). ⊓⊔

We have now all the ingredients to prove our main theorem.

Theorem 1. A tree hashing mode 𝒯 [ℱ ] that uses ℱn for the chaining values and satis-
fies Conditions 1, 2, 3 and 4, is (tD, tS, q, ϵ)-indifferentiable from an ideal hash function,
for any tD, tS = O(q3), q < 2n and any ϵ with ϵ > ϵn(q).

Proof. We consider an adversary that is more powerful than required; the bound
we prove is also valid for the actual adversary who cannot do be er. For a given
cost, the adversary can issue the queries Qℐ and Qℋ in any order she wishes.
A er she is done, we give her for free additional queries Q′ℐ derived from the
queries Qℋ as in Lemma 5 and their responses. Since the queries Q′ℐ are issued
at the end of the process, they have no impact on the state of the simulator 𝒮
when issuing the original queries Qℐ .

From Lemma 5, the queries Qℐ ∪ Q′ℐ do not have a cost higher than that of
Qℐ ∪ Qℋ. Since q < 2n, we are sure that Pn ∕= Zn

2 in the simulator even a er
issuing the free extra queries Q′ℐ . As a consequence, Lemma 4 guarantees 𝒯 -
consistency of all the queries Qℐ ∪Qℋ ∪Q′ℐ . This means that the responses to the
queries Qℐ ∪ Q′ℐ give the same information as those to Qℐ ∪ Qℋ ∪ Q′ℐ . We can
therefore concentrate on the distinguishing probability using only the queries
Qℐ = Qℐ ∪Q′ℐ and their response 𝒳 (Qℐ ).

For any fixed sequence of queries Qℐ , we look at the problem of distinguish-
ing the random variable ℱ (Qℐ ) from the random variable 𝒮 [𝒢](Qℐ ). Lemma 6,
upper bounds the advantage to ϵn(q).

We have tS = O(q3) as for each of the q queries, the simulator may have
to 𝒯 -decode q node instances, each requiring to look up in a table of at most q
entries. ⊓⊔

If q is significantly smaller than 2n, we can use the approximation 1− x ≈ e−x

for x ≪ 1 to simplify the expression for ϵn(q):

ϵn(q) ≈ 1− e−
q(q−1)
2n+1 <

q(q− 1)
2n+1 ≈ q2

2n+1 .

7 Application to tree hashing

One can build a tree hashing mode calling a compression function, where it
is assumed to behave as a finite-input-length (FIL) random oracle. The typi-
cal block cipher based compression function constructions, such as the Davies-
Meyer mode, are trivially differentiable from a random oracle and are therefore
not covered by our proof. On the other hand, it has been shown in [16,11,5] that
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a random permutation can be converted to a FIL random oracle simply by fixing
part of its input and truncating its output.

In the following subsection we discuss the alternative approach of using a
tree hashing mode calling a sequential hash function. This is followed by two
simple examples of tree hashingmodes and amethod to combine different hash-
ing modes into one.

7.1 Tree mode calling a sequential hash function

Sequential hashingmodes typically come either with a security claim or an indif-
ferentiability proof with a differentiating advantage bound of the form N2/2c+1,
where N relates to the number of queries to the underlying function f and c is a
security parameter (e.g., the length of the inner chaining values or the capacity).

If we use a tree hashing mode (outer mode) calling a sequential hash mode
(innermode) calling an underlying function f , the total differentiating advantage
is the sumof the outer advantage q2/2n+1 and of the inner advantage N2/2c+1. To
measure the cost of an adversary, we choose as unit the evaluation of the function
f since in practice it bears the bulk of the computationalworkload. In this context,
the best an adversary can do is to choose messages in the outer mode that result
in short node instances (e.g., r blocks). We assume that a call to the sequential
hash function results in only a small constant number r of calls to f , leading to
q = rN.

For an underlying function of given dimensions, one can now determine the
optimal values of the chaining value size n and of the security parameter c for
providing a given security level. We do the exercise for a sponge function [4,5].
Assume we have a permutation f and we want to limit the total differentiating
advantage to N2/2c′+1 for some target value c′. We further assume that r = 1, i.e.,
the tree hashing mode allows the adversary to query small node sizes at the cost
of only one evaluation of the permutation f . The optimal choice of parameters in
this case is to use the sponge construction with capacity equal to c = c′ + 1 and
a tree hashing mode with chaining values of length n = c′ + 1.

With a tree hashingmode, a sequential hash functionmodewith an indefinite
output length, such as the sponge construction, may come in handy. For a hash
function with digest size m, (second) preimage resistance of 2m requires that c ≥
2m. On the other hand, an optimal choice of parameters as above requires that
n = c ≥ 2m output bits are used as chaining values, more than the available
digest size m.

7.2 Two simple examples

We now present two simple examples of tree hashing modes. These two modes
are also discussed in [6], where they are instantiated with the K sponge
function. In both modes, the tree parameters A = (H, D, B) are composed of the
height H of the tree, the degree D of the nodes and the leaf block size B.

All nodes end with a frame bit indicating whether it is a final or an inner
node. Also, the tree parameters A are encoded in the final node (e.g., as frame
bits before the last one).
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In the first mode, the degree of the final node grows as a function of the mes-
sage length, while the leaves have a fixed number of message pointer bits. The fi-
nal node is connected to

⌈ ∣M∣
BDH−1

⌉
balanced trees, each of height H− 1 and degree

D. The leaf nodes Zα consist of B message pointer bits covering the B positions
(or less if not enough bits in the message) starting from B ∑H−1

i=0 αiDH−1−i. The
(non-leaf) inner nodes have D chaining blocks of length n.

In the second mode, the tree has a fixed size but the leaves input a variable
number of message pointer bits. The tree is a balanced tree of height H and
all (non-leaf) nodes have degree D. The leaf nodes Zα, α = α0∣∣α1∣∣ . . . ∣∣αH−1,
consist of sequences of B-bit message blocks where the j-th block covers the
B positions (or less if not enough bits in the message) starting from B(jDH +

∑H−1
i=0 αiDH−1−i). The (non-leaf) nodes have D chaining blocks of length n. This

mode is easy to use when the number of parallel processes is know in advance.
The compression functions on each of the DH leaves can be fetched with B-bit
blocks in parallel.

Both modes are clearly message-complete and parameter-complete (as A is
encoded in the final node). Moreover, they implement final node separation. Ad-
ditionally, they are tree-decodable as the tree structure can be fully determined
from A encoded in the final node and from the length of the node instances.

7.3 Taking the union of tree hashing modes

We can take the union 𝒯union of n tree hashing modes 𝒯i in the following way.
Aunion is given by a choice parameter indicating the mode i composed with the
tree parameters Ai for the particular mode. In the union mode it is sufficient to
additionally code in the final node for each of the modes the choice parameter i
such that it can be uniquely decoded in order to preserve soundness.

For instance, taking the union of the twomodes presented in Section 7.2 sim-
ply takes the addition of a binary choice parameter and coding it as a frame bit
in the final node right before the final bit.

Conversely, restricting the range of tree parameters of a given tree hashing
mode does not impact its soundness. When fixing the value of the tree parame-
ters of a sound tree hashing mode to a single value, it becomes indifferentiable
from a random oracle (i.e., there is no more need for the encoder ℰ , see Sec-
tion 5.1).

8 Implications for sequential hashing

Sequential hash function modes can be seen as a special case of tree hashing
modes,where the tree reduces to a single linear sequence, the inner hash function
has fixed input length and the parameters are empty. Therefore, the conditions
for tree hashing modes introduced in Section 4 can be applied to sequential hash
functions.

Parameter-completeness is always satisfied as there are no parameters. In this
section we present the techniques for satisfying the remaining three conditions
and discuss a number of published modes in this context.
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Clearly, a sequential mode has a single leaf node and the size of all nodes
is equal to the input length of the compression function. We limit ourselves to
modes inwhich all nodes but the leaf andfinal nodes (andpossibly the one before
the final one, called pre-final) contain a chaining value, a message block and some
frame bits in a fixed layout. Clearly, the leaf node has no chaining value and the
message block in the final node (or the one before) may be shorter.

Most techniques we discuss introduce frame bits, which cause an overhead
as they either require a larger compression function or take the place of message
or chaining bits. In the following, we measure the overhead by the number of
frame bits added.

Note that in all these cases our conditions are sufficient ifℱ behaves as a (FIL)
random oracle, and the case of ℱ being an ideal cipher in Davies-Meyer mode is
not covered. In [16,11] an indifferentiable construction is provided to construct
a FIL random oracle from a random permutation.

8.1 Satisfying tree-decodability

For tree-decodability it is important to recognize whether a given node instance
is the leaf node, the final node or the pre-final node. This is trivial for the final
and pre-final nodes thanks to their position in the tree. For the leaf node this is
however not the case. We distinguish three techniques:

Domain separation We include in each node a frame bit that codes whether it is
the leaf node or not. The overhead is a single bit per node and is proportional
to the message length.

Length coding We use frame bits in the final node to code the height of the leaf
node. A variant, coding of themessage length, is o en calledMerkle-Damgård
strengthening, and allows computing the height of the leaf node. Length cod-
ing implies the adoption of a coding convention for integers. Typically, this
integer is coded in a fixed-length field imposing an upper limit to the mes-
sage length that may be supported by a mode. The overhead is independent
of the message length and is log2(X/m) bits with X the maximum message
length and m the length of message blocks.

Initial Value (IV) In the bit positions where other nodes have a chaining value,
we put in the leaf node a block of frame bits with a value specified in the
mode. When template-decoding a node, one can now check for the presence
of the IV to determine whether it is the leaf node or not. This resolves tree-
decodability in all cases except an non-leaf node in which a chaining value
occurs with value IV. To cover this case we need to slightly modify our sim-
ulator and this results in a marginally different bound. We discuss this in
Section 8.4. The overhead is independent of the message length: n bits.

In the basic mode of [10], non-leaf nodes consist of the concatenation of a chain-
ing value, a single frame bit with value 1 and a message block Xi. In the leaf
node an all-zero IV takes the place of the chaining value and the single frame bit.
Hence tree-decodability is guaranteed by domain separation between leaf node
and the other nodes. Additionally, [10] proposes a variant where the single frame
bit equal to 1 is not present and tree decodability fully relies on the presence of
the IV in the leaf node.
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8.2 Satisfying message-completeness

In a sequential mode the message bits are simply mapped sequentially to the
message blocks of the individual nodes. The problem thus comes down to deter-
mining the message length. If it does not have an IV, the leaf node may have a
larger message block than the other nodes. As any message length shall be sup-
ported, the final (or pre-final) node may have a shorter message block and the
remaining bit positions are filled with frame bits (padding). To uniquely deter-
mine the message length, we distinguish two techniques:

Reversible padding We perform padding to the message to result in a multiple
of the message block length. Typically a single frame bit with value 1 is ap-
pended and aminimum number of frame bits with value 0 to have amultiple
of the message block length. The overhead is in the range [1, m] bits and does
not scale with the message length.

Length coding We code the length of the message in the final node, or append
it to the message. To fit the node lengths, some additional padding must be
performed. The overhead does not scale with the message length and is in
the range [log2(X/m), log2(X/m) + m− 1].

8.3 Satisfying final node domain separation

For final node separation we distinguish the following techniques:

Frame bit We include in the nodes a single frame bit that codeswhether the node
is the final one or not. The overhead is 1 bit per message block. This method
was proposed in [9] as a method to implement input prefix-free coding.

IV In the bit positions where other nodes have a chaining value, we put in the fi-
nal node a block of frame bits with a value specified in themode. This implies
that the chaining valuemust be put elsewhere in the node and this goes at the
cost of the message block. We discuss this case in Section 8.4. The overhead
is independent of the message length: n bits.

8.4 Relying on IV values for indifferentiability

Assume for tree-decodability that recognizing the leaf node relies on the pres-
ence of an IV. Then our simulator may generate an inner collision without a col-
lision in the compression function. We give a simple example. Assume that the
simulator upon receipt of a query with a node with message block µ and con-
taining the IV has by chance generated the IV as response. The distinguisher can
then query 𝒢 with two messages: a message M and a message µ∣M and if it re-
turns different responses, she knows it is 𝒢 and not 𝒯 . The probability that the
responses are different is 1− 2−ℓ, with ℓ the number of requested bits, and hence
themode of use is differentiated. Actually Lemma 4 does not hold due to the fact
that it relies on tree-decodability via Lemma 1.

However, it is easy to fix it by slightly adapting the simulator. It suffices to
initialize the set Pn to {IV} rather than the empty set. Then the simulator avoids
{IV} as a chaining value and tree-decodability is repaired.

Similarly, if final node recognition is based on the presence of a value IV2, the
simulator can in principle erroneously recognize an inner node as a final node
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when the chaining value it contains happens to be IV2. This is problematic for
Lemma 2 as this may result in an inner collision. One can see why by inspect-
ing the simulator in Algorithm 2. Upon receipt of a query with an inner node
instance, the set Pn is used to avoid inner collisions in line 14. Upon receipt of
a query with a final node instance (or erroneously identified as such) there are
two possibilities: either the node is message-bound and it queries 𝒢 for the re-
sponse, or it generates a random response (line 18). In either case, elements in Pn
are not excluded as possible responses and hence if the query is an inner node
erroneously identified as a final node, inner collisions may be generated. It is
also problematic for Lemma 4 as there it is essential to distinguish between inner
nodes and final nodes. However, these problems disappearwhen IV2 is included
initially in Pn: the presence of IV2 now guarantees that in line 5 of Algorithm 2
an inner node instance is always correctly recognized as such.

So, the initialization of Pn to the set of IV values fixes Lemma 2, Lemma 3 and
Lemma 4 and has no impact on Lemma 5. However, it does have an impact on
the bound in Lemma 6. So Theorem 1 remains valid but with a different bound.
Let us denote the number of IV values defined in the mode by z and denote the
bound by ϵn(q, z). Note that we define ϵn(q) = ϵn(q, 0).

If the set Pn is initialized with z IV instances, the response to the i-th query
is chosen from at least 2n − i + z + 1 values rather than 2n − i + 1 values. This
yields the following expression for the bound:

ϵn(q, z) = 1−
q+z−1

∏
i=z

(
1− i

2n

)
< 1− exp

(
(q + z)(q + z− 1)

2n+1

)
≈ (q + z)2

2n+1 .

Typically z is small (1 or 2) and, for large values of q, it holds that ϵn(q, z)/ϵn(q)
is very close to 1. We conclude that counting on IV values for satisfying tree-
decodability and final node domain separation goes only at a negligible deteri-
oration of the bound.

On the other hand, relying on a particular IV for tree-decodability introduces
the possibility to have inner collisions without a collision in the inner function
and hence collision resistance is no longer preserved.

In [2] the so-called enveloped Merkle-Damgård (EMD) transform was pre-
sented that makes use of IVs and that preserves collision resistance. It has a par-
ticular IV in the leaf node and another IV in the final node. However, it does not
require the IV in the leaf node for tree-decodability as it also appends the mes-
sage length to the padded message. Our indifferentiability proof is valid with a
bound ϵn(q, 2). Note that this bound is be er than the one given in [2].

The EMD transform can be seen as an improved version of twomodes previ-
ously proposed in [9]. These modes are called NMAC and HMAC respectively
and are inspired by the MAC function constructions with the same name pub-
lished in [1]. In NMAC, tree-decodability is realized with an IV in the leaf node.
Final node domain separation is avoided by applying a so-called independent
function to the hash output of the final node. In practice this would typically be
realized with the same compression function, but having domain separation. In
HMAC, leaf and final nodes can be recognized by the presence of an IV. One
can distinguish between the two by the presence of an all-zero block in the leaf
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node. In the final node there is a chaining value in that place. For NMAC, our
indifferentiability proof is valid with a bound ϵn(q, 1) and for HMAC ϵn(q, 3) .

8.5 IVs as a public resource

The value of the IVs can either be part of the definition of themode 𝒯 , or a public
resource like the compression function ℱ . So far, we have considered the former
approach, and IVs are implemented as frame bits. In the la er approach, the IVs
are not known in advance, but they have to be queried, either by the mode 𝒯 or
by an adversary.

Concretely, we can consider the IVs as part of the definition of the compres-
sion function ℱ . If z IVs are used by the mode, we can extend the domain of the
compression function with z artificial elements {♦1, . . . ,♦z} and consider the IV
values as the images throughℱn of these new elements, i.e., IVi = ℱn(♦i). In the
mode, pu ing IVi in a leaf node or in the final node is then modeled as pu ing
chaining bits pointing to a new node whose input is ♦i. (A node with an IV is
now no longer a leaf node but rather the parent of a leaf node containing ♦i as
frame “bits”.)

The difference between the two approaches is rather philosophical, and we
see this simply as a different way to model the introduction of IVs. Choosing
between the two is rather a ma er of taste.

With IVs as a public resource, the original four conditions apply directly,
without the need to adapt the simulator, but at the price of an artificial extension
of the domain of ℱ . Here, the bound is again ϵn(q, 0), as no IV has to be put in
Pn, but instead the burden of learning about the IVs goes to the adversary, who
does not know them in advance and has to make z more queries. Another dif-
ference is that a collision of a chaining value with an IV implies a collision in the
compression function, applying Lemma 1 directly, with the extended domain of
ℱ .

8.6 Techniques for avoiding final node domain separation

Reserving a frame bit for domain separation between final and inner nodes is
sometimes perceived as too costly. Techniques are proposed in literature to pre-
vent length extension a acks without final node domain separation. Remark-
ably, the techniques we have seen so far appear to cost more than final node
domain separation. Three proposed techniques are:
Chopping By chopping s bits from the output, i.e., reducing the output to n− s

bits, length extension requires guessing s bits. In [8] the following differen-
tiability bound is proven for certain sequential modes calling a compression
function and chopping s bits:

(3(n− s) + 1) Q
2s +

Q
2n−s−1 +

q2

2n+1 ,

with q the total number of calls to the compression function andQ the number
of calls to the outer hash function. When chopping half of the bits, i.e., s =
n/2, this yields:

(3(n + 2)Q
2(n/2)+1

+
q2

2n+1 .
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For Q < 2n/2 this differentiability bound is very close to the optimum. How-
ever, chopping reduces the output length to n − s, increasing the success
probability of finding an output collision a er q queries by a factor 2s and
leading to an expected workload of 2(n−s)/2 rather than 2n/2. If a resistance
level 2c/2 is desired against all generic a acks including generating collisions,
the best one can achievewith chopping is taking n ≈ 3c/2 and s ≈ n/3. So for
the same security level 2c/2, this method results in an overhead of about c/2
bits per node as compared to amode that does final node domain separation.

Tweaking This method consists of tweaking the chaining value in the final node
by a simple function. A typical tweak is the addition of a non-zero constant X.
This method was proven indifferentiable in [12]. When looking at it from the
perspective of our indifferentiability proof, in this construction the simulator
cannot distinguish between inner and final nodes. However, we can adapt
our simulator to avoid inner collisions and guarantee 𝒯 -consistency also for
this case; upon receipt of a query s to which it returns t, it stores in Pn both
t and t⊕ X and the chaining value present in s. This adds three values to Pn
for each query and leads to a bound that is a factor 3 larger than the optimum
one (but still smaller than the one proven in [12]). Hence, this suggests that
this method is also less efficient than final node domain separation.

Pre-pending the message length By coding themessage length in the leaf node,
length extension is prevented. Note that independently leaf node identifica-
tion must be guaranteed with a dedicated frame bit or an IV. This method
is not covered by our conditions. It was proposed in [9] as a form of prefix-
free input coding and proven indifferentiable. The overhead of this method
is limited. However, this method has an important drawback that makes it
impractical for many applications: the message length must be known in ad-
vance.

The simplest sequential hashing mode that is sound is the following. All but
the leaf and final nodes consist of an m-bit message block, an n-bit chaining value
and two frame bits (coding final/inner node and leaf/non-leaf node). The leaf
node has no chaining value but an n + m bit message block. The final node has
an incomplete message block of length in [0, m− 1] followed by a single frame
bit with value 1 and up to m− 1 frame bits with value 0 (for padding).

9 Conclusions

In this paperwe have given a set of sufficient conditions for both tree and sequen-
tial hashing modes to be sound. If these conditions are satisfied, the differentia-
bility bound is as tight as theoretically possible: it is only limited by the length
of chaining values and independent of the output length. While the conditions
were mainly aimed at tree hashing, they shed a different light to most published
sequential hashing modes.
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A Illustrations

In this section we illustrate two undesired properties of tree hashing modes ex-
plained in Section 4 to introduce two of the four conditions for sound tree hash-
ing. We give some figures of templates generated by somemode of use. The way
these templates have been generated by the mode of use are out of scope of this
section. Note also that these templates illustrate undesired properties and hence
the modes of use that would produce them are per definition not sound.

We use the following conventions.We depict message/chaining/frame blocks
rather than individual bits, where a block is just a sequence of consecutive bits.
Frame blocks are depicted by white rectangles with its value indicated, message
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Fig. 2. Example of an inner collision without a collision in ℱ

blocks by light grey rectangles and their position in the message indicated, and
chaining blocks by dark grey rectangles with an indication of their child. An
output is depicted by a rounded rectangle. The nodes are identified with their
indices and the relation between the nodes is additionally indicated by arrows,
symbolizing the application of ℱ during template execution for a concrete input
M.

The first property is related to the existence of inner collisions in the absence
of collisions in the output of ℱ and is illustrated in Figure 2. The figure depicts
two templates that are generated by a mode of use 𝒯 for two different message
lengths. All nodes have as first two bits frame bits with value 01. The template
on the le has four nodes: three leaf nodes of height 1 and a final node that takes
an input block and the chaining values corresponding to the three leaf nodes.
The template on the right has three nodes: two leaf nodes of height 1 and a final
node that takes an input block and the chaining values corresponding to the two
leaf nodes. Note that the final node of the right template has a message block
(indicated by M′0) in the place where the final node of the le template has the
concatenation of a message block M0 and a chaining block CV2. We can exploit
this fact to construct an inner collision fromanymessage Mwith lengthmatching
the le template. As can be seen in the figure, it suffices to form M′ by replacing
in M the block M1 by ℱ (01∣M1).

The second property, a generalization of length-extension to tree hashing, is
illustrated in Figure 3. Given the output of h = 𝒯 [ℱ ](M) of some message M,
length-extension is the possibility to compute the output of 𝒯 [ℱ ](M′) with M a
substring of M′, only knowing h and not M itself. Figure 3 depicts two templates
corresponding with two different message lengths. The templates have a binary
tree structure. The template at the le has three nodes: two leaf nodes and a final
node containing the chaining values corresponding to the two leaf nodes. The
template at the right has seven nodes: four leaf nodes, two intermediate nodes
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Fig. 3. Example of the generalization of length extension to tree hashing

each containing the chaining values corresponding to two leaf nodes and a final
node containing the chaining values of the intermediate nodes. Note that the
chaining block CV0 in the final node of the right template corresponds with the
hashing output of the le template. As can be seen in the figure, given the hash
output h of amessage Mwith lengthmatching the le template, one can compute
the hash output of any message M′ = M∣M2∣M3 with length matching the right
template without knowledge of M.

B Remarks on the cost

The cost measure introduced in Section 5.2 aims at counting on an equal footing
both queries to ℋ and queries to ℐ . We wish to illustrate this by comparing two
examples of distinguisher.

The first distinguisher uses only the ℐ interface to produce a collision in ℱn
(or in the simulator). Assuming a collision is produced, two messages can be
build, so as to turn this collision into an inner collision in 𝒯 but not in 𝒢. This
a ack takes about 2n/2 queries. (If a er 2n/2 a empts no collision has been found,
the distinguisher may suspect it is not querying ℱ but a simulator.)

The second distinguisher uses only the ℋ interface and a empts to exhibit
an inner collision directly. When talking to 𝒯 , such an inner collision can occur,
but when talking to 𝒢, an inner collision does not even exist (with the requested
output length sufficiently large to detect such an inner collision with arbitrary
certainty). More specifically, the distinguisher queries theℋ interface with equal
tree parameters A and messages Mi that vary only in one leaf, which is chosen
to have the maximum height H in the tree. To obtain an inner collision, it is suf-
ficient to get a collision at any of the H nodes on the way from the leaf to the
final node. The distinguisher needs about 2n/2/H queries to hit an inner colli-
sion. Hence, in this context a query toℋ appears to be a factor H more powerful
than a query to ℐ .
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The cost function that counts calls to ℱ and discards duplicate queries as
one, brings the two distinguishers to amore equal footing. The first distinguisher
succeeds at a cost of about 2n/2. The queries of the second distinguisher could
be performed at the level of the ℐ interface, the tree mode 𝒯 being simulated by
the distinguisher. In this case, each query toℋ translates into f𝒯 (∣M∣, A) queries
to ℐ . However, the strategy of the second distinguisher is such that only H Qℐ
queries differ for each of the 2n/2/H Qℋ queries. Hence the cost of Qℐ for the
second distinguisher is also about 2n/2.
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