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Abstract. Efficient zero-knowledge proofs of knowledge (ZK-PoK) are
basic building blocks of many practical cryptographic applications such
as identification schemes, group signatures, and secure multiparty com-
putation. Currently, first applications that critically rely on ZK-PoKs
are being deployed in the real world. The most prominent example is Di-
rect Anonymous Attestation (DAA), which was adopted by the Trusted
Computing Group (TCG) and implemented as one of the functionalities
of the cryptographic Trusted Platform Module (TPM) chip.

Implementing systems using ZK-PoK turns out to be challenging, since
ZK-PoK are, loosely speaking, significantly more complex than standard
crypto primitives, such as encryption and signature schemes. As a result,
implementation cycles of ZK-PoK are time-consuming and error-prone,
in particular for developers with minor or no cryptographic skills.

In this paper we report on our ongoing and future research vision with the
goal to bring ZK-PoK to practice by making them accessible to crypto
and security engineers. To this end we are developing compilers and
related tools that support and partially automate the design, implemen-
tation, verification and secure implementation of ZK-PoK protocols.

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol be-
tween a prover and a verifier, which allows the prover to convince the verifier
that he knows a secret value that satisfies a given relation (proof of knowl-
edge property), without the verifier being able to learn anything about the
secret (zero-knowledge property). For a formal definition we refer to [BG93].
There are fundamental results showing that all relations in NP have ZK-PoK
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[DFK+93,GMW91,IKOS07,PRS02]. The corresponding protocols are of theoret-
ical relevance, but are much too inefficient to be used in practical applications.

In contrast to these generic, but practically useless protocols, there are var-
ious protocols which are efficient enough for real world use. Essentially, all ZK-
PoK protocols being used in practice today are based on so called Σ-protocols.
What is typically being proved using basic Σ-protocols is the knowledge of a
preimage under a homomorphism (e.g., a secret discrete logarithm). Yet, there
are numerous considerably more complex variations of these preimage proofs.
These ZK-PoK proof techniques play an important role in applied cryptography.
In fact, many practically oriented applications use such proofs as basic building
blocks. Examples include identification schemes [Sch91], interactive verifiable
computation [CM99], group signatures [Cam98], secure watermark detection
[ARS05], and efficient secure multiparty computation [LPS08] – just to name
a few.

While many of these applications typically only exist on a specification level, a
direction of applied research has produced first applications using ZK-PoKs that
are deployed in the real world. The probably most prominent example is Direct
Anonymous Attestation (DAA) [BCC04], which was adopted by the Trusted
Computing Group (TCG), an industry consortium of many IT enterprises, as a
privacy enhancing mechanism for remote authentication of computing platforms.

Another example is the identity mixer anonymous credential system [CH02],
which was released by IBM into the Eclipse Higgins project, an open source
effort dedicated to developing software for user-centric identity management.
Identity mixer is probably one of the most advanced protocol suites supporting
the “transient relationship paradigm”.

Up to now, design, implementation and verification of the formal crypto-
graphic security properties (i.e., zero-knowledge and proof of knowledge prop-
erty) as well as code security properties (e.g., security against buffer overflows,
race conditions, side channel vulnerabilities) is done “by hand”. In fact, past
experiences, e.g., during the design and implementation of the preceding two
examples, have shown that this is a time consuming and error prone task. This
has certainly to do with the fact that ZK-PoK are considerably more complex
than other crypto primitives such as signature- and encryption schemes or hash
functions.

The goal of our ongoing and future research is to bring ZK-PoK to practice
by making them accessible to crypto and security engineers. To this end we
are working on compilers and related tools that support and partially automate
the design, implementation, verification, and secure implementation of ZK-PoK
protocols. For instance the compiler which is part of our toolbox, will take as
input a high-level specification of the goals of a ZK-PoK, automatically find
a corresponding protocol, and output its implementation in, e.g., Java or C
code. We have already developed and implemented a language and compiler
that automates the latter step from protocol specification to code generation.
Finding a protocol from a high-level specification is subject of ongoing research.
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Also, we are working on tool-based support for the verification of the security
properties of ZK-PoK.

In the following we describe the challenges pertaining to using ZK-PoK in
practice in Sec. 2 and give an overview of a solution blueprint and first results
on solving these challenges in Sec. 3.

1.1 Related work

ZK-PoK were introduced in [GMR85], and the first efficient protocols for preim-
age proofs in groups of known order were given in [Sch91,GQ90]. Unified frame-
works for preimage proofs in known order groups were given in the following by
[CDS94,CS97b,Bra97,BS02]. A profound analysis of the ΣΦ-protocol was per-
formed by Cramer [Cra96].

The first efficient solution for proofs in unknown order groups was given in
[FO97] and has been corrected by Damg̊ard and Fujisaki [DF02]. Subsequently,
other variants overcoming some of their restrictions have been proposed. In very
recent work, a long overdue unified framework for exponentiation homomor-
phisms in arbitrary groups was given by Camenisch et al. [CKY09].

An efficient way to combine arbitrary Σ-protocols was described by Cramer
et al. [CDS94].

To bridge the gap between theory and practice, a first prototype of a zero-
knowledge compiler was started in [Bri04,CRS05], and was later extended in
[BCK+08]. Yet, its authors state explicitly that it was designed as a proof of
concept prototype only. This prototype handles proofs in known order groups
only, and includes neither a verification tool nor extensions to achieve concurrent
ZK or non-interactivity. Unfortunately, multiple proofs are combined in a very
inefficient way only. Furthermore, the input language of this compiler is less
intuitive than ours.

Our input language was inspired by the commonly used notation of Ca-
menisch and Stadler [CS97a]. Yet, this is an inprecise and ambiguous notation.
Therefore we augment it by the missing parts such as group descriptions, etc.

As basic building blocks we apply the techniques from [Sch91,GQ90,Cra96] in
known order groups, proofs in unknown order groups are done by applying those
from [DF02,BCK+08]. Predicates are combined using the method described in
[CDS94] instantiated with Shamir’s secret sharing scheme [Sha79]. To obtain
non-interactive ZK and concurrent ZK we use the Fiat-Shamir heuristic [FS87].

Similar work to ours was performed in the field of secure function evalu-
ation [MOR03,MNPS04]. Their compilers allow to specify the function to be
evaluated in a high-level language, and output executable code. In principle,
zero-knowledge proofs could be realized by secure function evaluations. Yet, the
resulting protocols are significantly less efficient than those generated by our
compiler.

Compiler support for an efficient and secure low-level implementation of cryp-
tographic primitives resistant against software side-channels [BP05] and appli-
cations to elliptic curve cryptography [BMP07] is provided by Cryptography
Aware language and cOmpiler (CAO) [BNPS05].
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2 Challenges

In the following paragraphs we will describe the main challenges that ZK-PoK
pose to crypto engineers and protocol designers, which we aim to tackle with
our compiler suite.

Let us introduce some notation first. By the semantic goal of a ZK-PoK we
refer to what a prover wants to demonstrate in zero-knowledge. For instance,
the semantic goal can be to prove knowledge of a discrete logarithm of a group
element with respect to another group element. A more complex goal is to prove
that a given cipher-text encrypts a valid (with respect to some given public
key) signature on a specific message. By a ZK-PoK protocol (specification) we
refer to the actual description of a protocol (i.e., the operations of prover and
verifier and the messages being exchanged). For instance, the well known Schnorr
protocol [Sch91] realizes the first semantic goal mentioned above, and verifiable
encryption protocols [Ate04] realize the latter. It is important to note that given
a semantic goal, there can be many different protocols realizing that goal; also
sometimes one does not know how to construct an efficient protocol realizing a
goal (which does not mean that there is no better protocol than using a generic
protocols for NP statements). Finally, by a (protocol) implementation we refer
to actual code (e.g., in C or Java) realizing a specification.

Now, let us turn to the challenges mentioned above.

Designing ZK-PoK. On a conceptual level ZK-PoK are easy to grasp and intu-
itive: formulating the semantic goal of a ZK-PoK is an easy task for a protocol
designer. It essentially boils down to formulating the requirements of a ZK-PoK.
Yet, finding a protocol specification realizing a semantic goal is in many cases
difficult or impossible for people who don’t have extensive expertise in the field.
As a result, we believe that unlike other, less complex crypto primitives (such as
encryption, signatures, etc.), ZK-PoK are not part of the toolbox of many crypto
engineers. This in turn lets us conjecture that the potential of novel applications
that can be built using ZK-PoK is only poorly exploited.

Why is it actually often hard to find a ZK-PoK protocol meeting a semantic
specification? The main problem is the lack of a unified, modular, and easy to
understand theoretical framework underlying the various ZK-PoK protocols and
proof techniques. As a result there is no methodological formal way to guide cryp-
tographic protocol designers. In fact, there is a large number of tricks and tech-
niques “to prove this and that”, yet combining various tricks and preserving the
security properties (i.e., the ZK and PoK properties) is not straightforward and
is non-modular. The composition of techniques often needs intricate knowledge
of the technique at hand, and may also require modification of the technique.
For instance some techniques only work under certain algebraic assumptions and
preconditions. These can be conditions on the order of the algebraic group and
group elements being used, conditions on whether the prover knows the factor-
ization of a composite integer, distributions of protocol inputs etc. The algebraic
conditions in turn require tuning protocol parameters. As a result, finding and
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designing ZK-PoK protocols is a heuristic process based on experience and a de-
tailed understanding of the techniques being used. In contrast, encryption and
signature schemes and other primitives can be composed in a modular way and
are easily accessible to designers.

Efficiency of implementation process. The step going from the protocol specifica-
tion of a ZK-PoK to its protocol implementation is often considered to be trivial
from a conceptual point of view. Yet in practice it is not. In fact, experiences
made while implementing, e.g., a prototype of the identity mixer [CH02,CL01]
protocols have shown that a manual implementation can be tedious and error
prone and easily takes person weeks. Moreover, protocol specifications are often
written by cryptographers while the implementation is done by SW engineers.
This “skill gap” may lead to implementation errors. The former often don’t care
sufficiently or don’t have the skills to cope with implementation issues and their
specifications may be slightly incomplete; the latter may have a hard time to
assess implementation decisions, which depend on cryptographic subtleties.

Additionally, minor changes in the semantic goal often result in fundamental
changes of the resulting protocol.

Efficiency of code. Getting efficient code, in terms of computation time, memory
usage, size of messages sent over the network, number of message exchanged
etc., can be of great concern when using ZK-PoK. The choice of the resource to
optimize may greatly differ depending on the actual device on which the code is
run. For instance, parts of the prover’s algorithm in the DAA protocol [BCC04]
are run inside a relatively simple and low cost TPM chip while the verifier’s
algorithm may run on a powerful computer.

There are at least two places where one can optimize ZK-PoK. On a high-
level, there is potential for optimization by finding the most efficient protocol
specification realizing a given semantic goal (this type of optimization is closely
related to the “designing ZK-PoK” issue described above). On a lower level one
can optimize the code implementing a given protocol, much like the optimization
performed by compilers for conventional programming languages like C, Java
etc., whereas one should specially focus on the optimization of crypto operations.

Optimization in general, requires substantial experience and an intricate un-
derstanding of the runtime environment.

Correctness and security of implementations. The correctness and security of
the protocol implementations is primordial. One can distinguish two classes of
correctness and security properties. One are the cryptographic security proper-
ties, which are formalized mathematically and are present already on a protocol
specification level. These properties are: correctness (the protocol works when
prover and verifier are honest), zero-knowledge and proof of knowledge. At the
current state of the art, the crypto community will not accept a ZK-PoK pro-
tocol, unless these properties are formally proven on a specification level. These
proofs are often non-trivial and certainly tedious and time consuming, and as a
result there exist various published protocols that contain flaws in their security
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analysis. For instance the security proof in [FO97] was incomplete as outlined
and corrected in [DF02].

Of course one also needs to assert that those security properties are indeed
assured by the implementation of the protocol (i.e., that an implementation
correctly reflects the specification).

Of equal importance are security issues that occur at an implementation
level. These include security against generic implementation errors like buffer
overflows, race conditions etc., but also crypto specific code problems, such as
side-channel vulnerabilities. Getting these code security issues right requires sub-
stantial know-how, which is often not part of the skill set of developers.

3 Solution blueprint and results

In the following we give a brief description of our compiler suite (see Fig. 1),
and sketch how it can be used for resolving the challenges explained above. Also
first results achieved for each of these challenges will be described.

From a usage perspective, our compiler suite takes a description of the se-
mantic goal in a high-level language, and outputs a protocol implementation
together with a formal proof of its correctness. From a technical point of view,
the compiler is divided into three parts, which we want to discuss briefly now:

– The compiler will take a description of the semantic goal in a high-level lan-
guage as input, and translate it into a protocol specification in a first compiler
step (the high-level compiler) by choosing the most appropriate techniques to
meet the user’s requirements. This protocol specification describes a unique
protocol, without containing the exact algorithms or single messages to be
exchanged, etc.

– In a second step, the protocol compiler will expand this protocol specification
into C or Java code, as well as LATEX-code for documentation purposes.

– Both compiler steps will add annotations, including information about deci-
sions made, to their output. The semantic goal, the protocol specification and
its implementation will be given to the protocol verification toolbox, which
using those annotations will formally verify that the implementation indeed
realizes the semantic goal in a secure way.

Let us now turn to how we plan to tackle the problems stated in Sec. 2.
The “efficiency of implementation process” and “efficiency of code” chal-

lenges are equally important but less difficult to achieve than the two others; we
therefore only discuss them briefly.

Efficiency of implementation process. This goal is achieved inherently by our
compiler based approach, as the implementation is automatized. Our first pro-
totype runs within less than one second, and we expect the final version to run
within a couple of seconds. To ease usage of our compiler suite, a tool-chain with
a consistent user interface could be given to our compiler. This could be based
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Fig. 1. Architecture of our framework for automatic generation and verification of
ZK-PoK protocols.

on an IDE such as Eclipse and support the developer by syntax highlighting,
performance testing, etc.

The input language is inspired by the notation introduced in [CS97a]. Yet, to
remove unambiguities, some more information has to be added to this language.

Let us consider the following example:

ZKPoK

[
(χ) : y = gχ

]
specifies a proof of knowledge of the discrete logarithm x ∈ G of y ∈ H in base
g ∈ H. This notation does not contain any information about the groups G,H,
the order of g, y, or the knowledge error that has to be achieved.

Still, from having the above protocol description and knowledge about the
groups, etc., it’s straightforward to obtain the input of our compiler, such as:

01: ProtocolInputs{
02: Declaration := Prime(1024) p; Prime(160) q;
03: G=Zmod+(q) x; H=Zmod*(p) g, y;
04: ProverPrivate := x;
05: ProverPublic := p,q,g,y;
06: VerifierPublic := p,q,g,y;
07: }
08:

09: ChallengeLength := 80;
10: ProtocolComposition := P_1;
11:

12: Def SigmaPhi P_1 {
13: Homomorphism (phi : G -> H : (a) |-> (g^a));
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14: ChallengeLength := 80;
15: Relation ((y) = phi(x));
16: }

Lines 01-07 declare the protocol inputs and describe which values are known
to which party. If for example the verifier did not know a public parameter,
it would be sent by the prover in a synchronization step. Lines 09-10 declare
the knowledge error that has to be reached, and how the predicates should be
composed. Finally, lines 12-16 describe the only predicate in this example. This
description is a direct analogon to the Camenisch-Stadler notation [CS97a].

Efficiency of code. As mentioned above, the “efficiency of code” challenge has
to be dealt with on two levels. On a high level, the compiler has to find the
most efficient protocol specification meeting a given semantic proof goal. The
choice of the proof technique to use will depend on the priorities the user gives
to communicational- respectively computational complexity, as there is often a
tradeoff between those. A deeper discussion is given in the next paragraph. On
a low level, we’ll provide a compiler backend that outputs code in the CAO
(“Cryptography Aware language and cOmpiler”) language [BNPS05]. This is a
language and a compiler geared towards the generation of an efficient and secure
low-level implementation of cryptographic primitives; CAO is also being devel-
oped within the CACE project.

Let us discuss the remaining challenges in more detail.

Designing ZK-PoK. At the moment we are designing a high-level language in
which the semantic goal of a ZK-PoK together with its non-functional proper-
ties can be formulated in a user-friendly way. The language is inspired by the
well-known Camenisch-Stadler notation [CS97a] which is used to formulate the
intended semantic goal. We enrich this with non-functional properties which
allow to specify optimization goals (e.g., optimize computational or communi-
cational complexity) and the security level (e.g., knowledge error, tightness of
the statistical zero-knowledge property, etc.) of the protocol being generated. In
this high-level language, we abstract away as many technical details as possible
to ease design and usage of ZK-PoK for non-experts.

In our architecture (cf. Fig. 1) the high-level compiler is responsible for find-
ing a protocol specification that realizes the semantic proof goal and simultane-
ously takes into consideration the user’s non-functional specifications. To enable
the compiler to make “good” decisions, the compiler backend reports the costs
on a specific target platform upwards to the high-level compiler. For example
efficient interval proofs can be realized either with the techniques of [Bou00] or
[Lip03] with different costs.

To be able to actually build a compiler for the semantics of that high-
level language we are currently working on a unified theoretical framework for
the various ZK-PoK techniques. For this, we extend the existing theory for
zero-knowledge proofs which by now mainly deals with known order groups
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[Bra97,BS02,Cra96,CDS94]. Our extended theoretical framework is capable to
cope with arbitrary combinations of protocols in hidden order groups (e.g., RSA
groups) as well [BCM05,CKY09,DF02]. To this end, we have conceived the new
Σexp protocol [BCK+08], which yields efficient ZK-PoK in a more modular man-
ner than the existing protocols [BCM05,CKY09,DF02].

A first prototype of our compiler and semantic language [BCK+08] imple-
ments a subset of the envisaged compiler framework. It already supports the gen-
eration of various crypto-systems such as Pedersen commitments/verifiable se-
cret sharing [Ped92], Schnorr authentication/signatures [Sch91], electronic cash
[Bra94,CFT98,Oka95], group signatures [CL04], or ring signatures [CDS94].

Correctness and security of implementations. One of our main goals concerning
the security of the code output by the compiler, is to formally verify the zero-
knowledge and proof of knowledge properties. To this end we are developing a
protocol verification toolbox as part of our compiler framework (see Fig. 1). Its
task is to accomplish a semi- or (ideally) fully automatic formal verification of
these properties.

We currently focus on the proof of knowledge property. The toolbox takes as
input the user’s description of the semantic goal and the protocol implementation
(output by the compiler). It then interprets this information in order to assemble
a proof goal for the Isabelle/HOL theorem prover [PNW93]. The theorem prover
then formally verifies whether the protocol is indeed a proof of knowledge for
the given goal (by constructing a knowledge extractor).

One step towards automating this verification process is to consider the most
relevant proof strategies used in existing published proofs and to develop corre-
sponding proof tactics for the theorem prover. Also, to facilitate this automated
verification, the different parts of our compiler (i.e., the high-level compiler re-
spectively the protocol compiler) annotate helper data to the code they output.

We have already formally verified the proof of knowledge property for basic
protocols such as those in [DF02,Sch91] and generic AND– and OR– composi-
tions among those. Currently, we are tackling more complex protocols.

Last but not least, also to assert code security properties (e.g., against buffer
overflows and side channel attacks) we rely on the verified compiler backend
to output CAO-code [BNPS05] (see above). The CAO language is designed to
automatically generate secure implementations resistant against software side-
channels.
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