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We propose a lightweight RFID authentication protocol that supports forward and backward se-

curity. The only cryptographic mechanism that this protocol uses is a pseudo-random number

generator (PRNG) that is shared with the backend Server. Authentication is achieved by exchang-
ing a few numbers (3 or 5) drawn from the PRNG. The protocol is optimistic with constant lookup

time, and can be easily adapted to prevent online man-in-the-middle relay attacks. Security is

proven in the UC security framework.
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1. INTRODUCTION

Radio Frequency Identification (RFID) is a promising new technology that is widely
deployed for supply-chain and inventory management, retail operations and more
generally, automatic identification. The advantage of RFID over barcode tech-
nology is that it does not require direct line-of-sight reading. RFID readers can
interrogate tags at greater distances, faster and concurrently. Furthermore, one of
the most important advantages of RFID technology is that tags have read/write
capability, allowing stored information to be altered dynamically.

To promote the adoption of RFID technology and support interoperability, EPC-
Global [EPC Global] has ratified the EPC Class 1 Gen 2 (EPCGen2) standard for
RFID deployments. This defines a platform for RFID protocol interoperability, and
supports basic reliability guarantees, provided by an on-chip 16-bit pseudo-random
number generator (PRNG) and a 16-bit Cyclic Redundancy Code (CRC16). The
EPCGen2 standard is designed to strike a balance between cost and functionality,
with less attention paid to security.

Several RFID authentication protocols that address security issues have been pro-
posed in the literature (we refer the reader to a comprehensive repository available
online at [Avoine 2010]). Cryptography especially designed for constrained devices
is called lightweight, or low-cost, cryptography. Most lightweight protocols use
hash functions [Sharma et al. 2003; Ohkubo et al. 2003; Henrici and Müller 2004;
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Avoine and Oechslin 2005; Dimitriou 2006; Molnar et al. 2006], which are beyond
the capability of low cost tags and not supported by EPCGen2. Some protocols
use pseudo-random functions [Burmester et al. 2006; van Le et al. 2007; Burmester
and de Medeiros 2008], or PRNGs (as in [Burmester and de Medeiros 2008; Eun
Young Choi and Lim 2008]), mechanisms that are supported by EPCGen2, but are
not optimized for EPCGen2 compliance. Thus, new lower complexity (flyweight)
protocols that are suitable for EPCGen2 platforms are needed.

Some researchers have adopted a systematic approach designed to capture spe-
cific security requirements by using privacy models (e.g., [Paise and Vaudenay 2008;
Juels and Weis 2009; Michahelles et al. 2007; Avoine et al. 2007], computational
models (e.g., [Vaudenay 2007]), or symbolic models (e.g., [Arapinis et al. 2008]).
In this article we propose to use a formal specifications based framework that cap-
tures these models and addresses composability issues. This extends earlier work
presented in [Burmester and de Medeiros 2009] to capture more general functional-
ities, such as refreshment and backward security, appropriate for lightweight RFID
deployments. There is comparatively little work on RFID protocols in this frame-
work, see e.g., [Burmester et al. 2006; Burmester et al. 2006; van Le et al. 2007;
Burmester et al. 2008a; 2008b; Burmester and de Medeiros 2009; Burmester et al.
2009; Burmester et al. 2009].

Our main contribution in this article is to present a novel low cost lightweight
RFID protocol that supports mutual authentication with forward and backward se-
curity [Barak and Halevi 2005]. The protocol is optimistic with constant lookup
time, and can be implemented on an EPCGen2 platform. Authentication is achieved
by exchanging a few numbers (3 or 5) drawn from the PRNG that is shared with
the back-end Server. Forward security protects past tag interrogations from being
linked to a captured tag. Tags are not tamper-resistant, and therefore the adversary
can access the private data of a captured tag. Backward security protects future
tag interrogations from traffic analysis (correlation) attacks in which the adversary
uses information leaked by tags to determine their inner state. Such attacks exploit
the fact that the state of lightweight tags has low entropy. An important feature
of this protocol is that RFID tags can pre-compute their response to Server chal-
lenges, and therefore the Server can detect online man-in-the-middle relay attacks
by controlling the round-trip time of a challenge-response.

We then extend the universally composable (UC) security framework for RFID
systems presented recently in this journal [Burmester et al. 2009], to capture lightweight-
to-flyweight RFID applications, and in particular forward and backward security
with refreshment. We conclude by showing that our protocol UC-realizes mutual
authentication and session unlinkability with forward and backward security. We
note that UC-security supports modular deployments, a feature essential for most
ubiquitous applications.

Our contributions

—An analysis of recently proposed EPCGen2 protocols (Section 4).

—A Flyweight RFID protocol that provides optimistic mutual authentication with
session unlinkability which extends work in [Burmester et al. 2009; Burmester
and Munilla 2009] (Section 5).
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—A tag refreshment mechanism, that extends the functionality of the Flyweight
protocol to capture forward and backward security (Section 6).

—An implementation that addresses online relay attacks (Section 7).

—An implementation that secures the EPCGen2 Inventory protocol (Section 8).

—A UC framework that adapts the model in [Burmester and de Medeiros 2009]
to capture availability,2 mutual authentication and session unlinkability with
forward and backward security (Section 9).

—A security proof and security reductions (Section 10).

1.1 A motivating paradigm

Alice wants to purchase an RFID card. Two versions are available: A $1 card for
10 interrogations and a $10 card for unlimited interrogations. She purchases the
former. For her money she gets:

Availability. The card uses five numbers drawn from an on-chip PRNG to authen-
ticate Alice. Up to 50 numbers can be drawn before correlation attacks become an
issue: she is allowed 10 sessions.

Session unlinkability. The adversary cannot link sessions separated by an autho-
rized interrogation.

The card prevents Steve, the stalker, from stealing her numbers. However Mark,
the man-in-the-middle, has found a way to deplete the card. Alice gets only two
authentications. She does not want to break-up with Mark so she buys the $10
Card. This time after two authentications—Mark is at it again, Voila! the card
morphs into a brand new RFID card. This happens over and over again, whenever
the card is depleted, even when Mark causes it and Alice is not in the range of
an authorized reader (“quantum refreshing”). Steve and Mark give up. Mischief
doesn’t work. However Alice is now concerned about using her BlackBerry while
getting authenticated (she is obsessed with multitasking). Ran, the analyst, assures
her that the card uses a protocol that remains secure when composed with other
protocols.

2. RFID DEPLOYMENTS

An RFID deployment involves tags, readers and a backend Server. Tags are wireless
transponders that typically have no power of their own and respond only when they
are in an electromagnetic field, while readers are transceivers that generate such
fields. Tags are physically constrained devices that cannot execute concurrently—
this will make our analysis in Section 9 much simpler. Readers implement a radio
interface to tags and a high level interface to a backend Server. The Server is a
trusted entity that processes private tag data. Readers do not store locally any
private data and the channels that link them to the Server are assumed to be
secure—hardware constraints are not so tight here, and common security protocols
can be used (SSL/TLS).

2Protocols that employ shared security mechanisms may be subject to de-synchronization attacks.
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2.1 Threats and Attacks

There are several general types of adversarial attacks on RFID deployments. Below
we list the most important ones.

(1) Tag disabling (an availability attack): The adversary causes tags to assume a
state from which they can no longer function.

(2) Tag cloning (an integrity attack): The adversary captures the identifying infor-
mation of a tag.

(3) Tag tracking (privacy): The adversary traces tags from their protocol flows.
(4) Replay (integrity): The adversary uses the tag’s response to a reader’s challenge

to impersonate the tag.
(5) Man-in-the-middle offline attacks (integrity): The adversary interposes between

a tag and a reader and exchanges their (possibly modified) messages.

There are also attacks on RFID systems that are usually excluded from the security
model used, such as:

Online man-in-the-middle relay attacks [Bengio et al. 1991; Kim et al. 2008]: these
are similar to the offline attacks above, with the exception that the adversary relays
messages online.

Side Channel and Power Analysis [Mangard et al. 2007] attacks: The adversary
exploits information gained by the physical implementation of protocols.

Such attacks are usually prevented by using “out of system” protection mechanisms.

In this paper we are concerned with attacks that target low cost RFID tags,
in particular attacks that: exhaust the states of a tag, link tag interrogations,
disambiguate past tag interrogations of a corrupted tag, disambiguate future tag
interrogations of a compromised tag and, online relay attacks.

2.2 Priorities, Constraints and Optimizations

In the context of RFID applications, nearly every factor having impact on tag
resources and capabilities is important. Apart from this, with EPCGen2 compliant
systems, one must also take into account the execution time of the protocol: for
many applications the number of tags identified per second is crucial (e.g., in supply
chains). Thus, we aim to minimize requirements for: (i) non-volatile RAM on the
tag, (ii) tag code (gate count) complexity, (iii) tag computation requirements, (iv)
tag turn-around-time, (v) the number of rounds in reader-tag interactions, (vi) the
message size in reader-tag interactions, (vii) the server real-time computation load,
and (viii) the server storage requirements.

Finally, we observe that mechanisms such as public key cryptosystems, tamper-
resistant shielding, and on-board clocks are not considered realistic for low-cost
applications. Furthermore symmetric-key cryptographic systems such as hash func-
tions or encryption schemes are beyond the capability of most lightweight applica-
tions. Even, pseudo-random functions (PRF) based on PRNG (as in [van Le et al.
2007; Burmester et al. 2009]) are too slow for EPCGen2 applications (to generate
an n-bit output of a PRG by running a PRNG as in [Goldreich et al. 1986] requires
2n numbers to be drawn).
, Vol. V, No. N, January 2010.
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2.3 Design Requirements

In designing our lightweight RFID protocol, we set to achieve the following goals:

Efficiency. Protocols must be lightweight: many RFID platforms can only imple-
ment highly optimized symmetric-key cryptographic techniques. Furthermore,
the overhead should be minimal, in particular when the system is not under
attack—we call this optimistic performance. Finally the lookup time for the
Server should be constant, or at most logarithmic (in the number of tags).

Availability. RFID systems are vulnerable to attacks that aim to incapacitate tags,
i.e., force them into a state from which they cannot recover. De-synchronization
attacks target availability. Such vulnerabilities are often exacerbated by the
wireless and human-imperceptible nature of RFID tags, allowing them to be
manipulated at a distance by covert readers.

Mutual authentication. Client authentication is a process in which one party, the
Server S, is assured of the identity of another party, the client (a tag T ), by
acquiring corroborative evidence. We have anonymous client authentication when
the identity of T remains private to third parties that may eavesdrop on the
communication or invoke the protocol and interact with the parties directly. We
have mutual authentication if both S and T are authenticated. In our protocol
the Server is implicitly authenticated: that is, the assurance for tags is only
implicit.

Session unlinkability. The adversary cannot link any two interrogations of a tag
if, the tag either updated its state in the first, or updated it in an intermediate
interrogation.

Forward Security. Past tag outputs, prior to refreshment, cannot be disambiguated
by the adversary even if the adversary can access the full internal state of the
tag (the state of the tag’s PRNG and its private key) after it is refreshed.

Backward Security. Future tag outputs, after refreshment, cannot be disambiguated
by the adversary even if the adversary knew the state of the tag’s PRNG (e.g.
by analyzing its outputs) before it was refreshed.

Concurrent Security. RFID systems are nearly always highly concurrent (a large
number of tags are interrogated concurrently [EPC Global ]). It is important
therefore to address security in concurrent environments where the adversary
can adaptively manipulate communications.

Modularity and Re-usability. Protocols are often analyzed under the implicit as-
sumption of operating in isolation, and therefore may fail in unexpected ways
when used in combination with other protocols (for example, in [Burmester and
de Medeiros 2009] a proven secure route discovery protocol becomes insecure
when executed concurrently with itself). Since RFID tags are components of
larger systems, it is important to require that security is preserved when the pro-
tocols are executed in arbitrary composition with other (secure) protocols. This
type of security is provided by the universal composability (UC) framework.

3. THE EPCGEN2 STANDARD

EPCGen2 defines the physical and logical requirements for a passive-backscatter,
Interrogator-talks-first, radio-frequency identification system operating in the 860
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- 960 MHz range. The system comprises Interrogators (readers) and tags. Inter-
rogators manage tag populations using three basic operations: select —choose a
tag population, inventory —identify tags, and access —read from and/or write to
a tag.

The Inventory Protocol has (at least) 4 passes that involve: a Query, a 16-bit num-
ber RN16, an acknowledgment ACK(RN16), and EPCdata (a tag’s identifying

Interrogator Tag

Query -

RN16�

ACK(RN16)-

EPCdata�

Fig. 1. The 4-pass EPCGen2 Inventory Protocol.

data)—see Figure 1. The Interrogator starts by sending a Query that includes a
parameter Q ∈ [0 : 15]. A random-slotted collision algorithm (the “Q-protocol”)
is used to singulate tags. Tags that receive Query load a random Q-bit number
into a slot counter, and decrease this counter whenever they receive the command
QueryRep. When their counter is zeroed, tags send a random number RN16 to
the Interrogator. When the Interrogator detects a reply from a tag, it sends an
acknowledgment ACK(RN16), which requests from the tag its PC (protocol con-
trol), EPC (electronic product code), and a CRC16 (cyclic redundancy code). If
the Tag does not receive a valid ACK(RN16) (possibly because of a collision), it
transitions to its initial state and the process is repeated. Tags may also store a
32-bit Kill Password, and a 32-bit Access Password.

Tags implement a 16-bit cyclic redundancy code (CRC16) and a 16-bit random or
pseudo-random number generator (PRNG). CRCs are error-detecting codes that
check faults during transmission. A CRC maps arbitrary length inputs A =
(A0, A1, . . . , Am−1) onto n-bit outputs as follows: first the input is represented
by a polynomial A(x) = A0 + A1x + · · · + Am−1x

m−1 over the finite field GF (2),
and then its remainder is computed modulo an appropriate generator polynomial
g(x) of degree n (if m < n, zeroes are added to make up the difference). EPCGen2
uses the CRC-CCITT generator g(x) = x16 + x12 + x5 + 1, and an implementation
that XORs and appends fixed bit patterns. In particular, we have:

CRC16(A) = [ (A(x)+
m−1∑

i=m−16

xi)·x16 ] mod g(x) = A(x)x16 mod g(x) + CRC16(0),

where CRC16(0) =
∑m+15

m xi modg(x) is a fixed polynomial. Since the modulo
g(x) operator is a homomorphism, CRC16 is semi-linear. That is, for numbers
, Vol. V, No. N, January 2010.
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A,B, we have:

CRC16(A + B) = CRC16(A) + CRC16(B) + CRC16(0).

Therefore the CRC16 of a sum of numbers can be computed from the CRC16s of the
numbers. Consequently CRC16 by itself will not protect data against intentional
alteration. Its functionality is to support error detection, in particular with respect
to burst errors, not security.

A cryptographic PRNG is a deterministic function that outputs a sequence of
numbers indistinguishable from random. Two components can be distinguished in
a PRNG: a state and an algorithm generate (or g). To draw a random number
from a PRNG, state is input to generate: the output is a new value for state and
the random number. EPCGen2 does not detail how to implement this PRNG
but specifies minimum randomness criteria. These guarantee a reasonable level
of pseudo-randomness, except for the “collision requirement” that specifies that a
drawn number RN16 should not be predictable with probability better than 0.025%,
given the outcomes of prior draws. This bound is rather crude for cryptographic
PRNGs: too high when only one number is drawn and too low when many numbers
are drawn (e.g., more than a cycle of the PRNG). In general we have to make certain
that the entropy of a PRNG is sufficient and/or regularly refreshed to prevent
correlation attacks. We refer the reader to [Burmester and de Medeiros 2008] for
further discussion regarding these security criteria.

4. AN ANALYSIS OF RECENTLY PROPOSED EPCGEN2 PROTOCOLS

We consider five recently proposed EPCGen2 compliant protocols and show that
they either fall short of their claimed security, have weaknesses that may be ex-
ploited by an adversary, or are unduly complex.

(1) The Chen-Deng protocol [Chen and Deng 2009]. This is subject to a replay
attack because the flows of the Reader and tag use independent randomness
(for details see [Burmester et al. 2009]).

(2) The Sun-Ting protocol Gen2+ [Sun and Ting 2009]. This is also subject to a re-
play attack because only the tag provides randomness (for details see [Burmester
et al. 2009]).

(3) The Qingling-Yiju-Yonghua protocol [Qingling et al. 2008]. This protocol
uses CRC16 as a cipher. So private information can easily be manipulated,
and only one eavesdropped interrogation is needed to clone a tag (for details
see [Burmester et al. 2009]).

(4) Seo-Baek propose two protocols [Seo et al. 2005].

(a) The first is subject to a replay attack (causing de-synchronization) because
tag authentication does not involve any randomness from the Reader. Only
one eavesdropped interrogation is needed. Again CRC16 is used as a cipher,
so private information can be manipulated.

(b) The second is also subject to a replay attack because the randomness of the
flows is determined entirely by the tag. Only one previous impersonation
of a Reader (sending a query) is needed.
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(5) The Choi-Lim anti-cloning protocol [Eun Young Choi and Lim 2008]. In this
protocol each tag T shares three private 32-bit values with the Server S: a kill
password PWkill, an access password PWaccess and a tag serial number Tsn.
Below we describe a simplified version:

(a) S ⇒ R → T : Q, a query.
T : Select a 32-bit random number Rt and:

(b) T → R ⇒ S : M1 = Rt ⊕ PWkill.
S : Select a 32-bit random number Rr and:

(c) S ⇒ R → T : M2 = Rr⊕PWaccess and M3 = RNG(Rt⊕Rr)⊕PWaccess.
T : get Rr from M2. Compute RNG(Rt⊕Rr) and check M3. If it is correct:

(d) T → R ⇒ S : M4 = RNG(RNG(Rt ⊕Rr))⊕ Tsn.
S : check that M4 is correct. If it is correct, accept T as an authorized tag.

This protocol has two weaknesses: (a) the Reader can be impersonated, and
(b) it is subject to a related-key attack [Burmester and de Medeiros 2008]. For
the impersonation attack, the adversary A first eavesdrops on an interrogation
to get: Q,M1,M2,M3,M4, and then impersonates the Reader R as follows:
when T sends a new M ′

1, A computes M ′
2 = M2 ⊕M ′

1 ⊕M1, and M ′
3 = M3,

and sends these to T . These are clearly valid. Although the Choi-Lim protocol
does not claim mutual authentication, if this service is not provided, it is unduly
complex —see e.g. [Burmester and de Medeiros 2008].
For the related-key attack, observe that the adversary can obtain “cipher-
texts” M4 (=RNG(K ⊕ Ni) ⊕ Tsn) and “plaintexts” M3 (=Ni) that are
related by the key PWaccess (=K). Note also that the number of the plaintexts-
ciphertexts pairs is not bounded because the adversary can impersonate the
Reader (attack (a)).

One may argue that because EPCGen2 supports only a very basic PRNG, any
protocol that complies with this standard is potentially vulnerable, for example
to ciphertext-only attacks that exhaust the range of the values of protocol flows.
While this is certainly the case, such attacks may be checked by refreshing key
material and/or constraining the application (e.g., the life-time of tags).

5. FLYWEIGHT RFID AUTHENTICATION

We first present a basic RFID authentication protocol which we call Flyweight. In
this protocol, each tag T shares with the backend Server S a (loosely) synchronized
PRNG (same algorithm, key, seed), say gtag = gtag(state). T is authenticated by
exchanging either three (optimistic case), or five consecutive numbers drawn from
gtag. Five numbers are required only when the interrogation was previously inter-
rupted (i.e., when the first number was already used: alarm is ON). The security
of the protocol is based on the fact that: (i) it is hard for the adversary to pre-
dict the next number drawn from a PRNG, and (ii) parties T , S are synchronized
at all times. Synchronization is guaranteed by making certain that T ,S always
share at least one number. The protocol is presented Figure 2. It supports mu-
tual authentication, a certain degree of privacy (session unlinkability), forward and
, Vol. V, No. N, January 2010.
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(1) R→ T : Query

T : Set alarm←cnt, cnt← 1. Broadcast RN1.

(2) T → R ⇒ S : RN1

S : Check if RN1 is in DB.

If RN1 = RNcur
1 for an item in DB then set alarm′ ← cnt′, cnt′ ← 1, and

broadcast RN2.

Elseif RN1 = RNnext
1 for an item in DB then set alarm′ ← 0, update, and

broadcast RN2.
Else abort.

(3) S ⇒ R → T : RN2

T : Check RN2.

If RN2 is correct then draw five successive numbers from gtag , assign them

to the variables RN3, RN4, RN5 (volatile), RN1, RN2, and set cnt← 0.
If alarm = 0 then broadcast RN = RN3.

Else broadcast RN = RN4.

Else abort.

(4) T → R ⇒ S : RN

S : Check the received value RN .
If RN = RN3 and alarm′ = 0 then update and Accept the tag as the

authorized T .

Elseif RN = RN4 then broadcast RN3, store RN5 and update.
Else abort.

(5) S ⇒ R → T : RN3

T : Check RN3.

If RN3 is correct and alarm = 1 then broadcast RN5.

Else abort.

(6) T → R ⇒ S : RN5

S : Check RN5.

If RN5 is correct then update and Accept the tag as the authorized T .
Else abort.

Fig. 2. The basic Flyweight RFID protocol.

backward security (the resilient version), and is provably secure, as we shall see in
Sections 9, 10.

Each tag T stores in non-volatile memory two numbers, gtag(state) (the current
state), a refresh key K, and a 1-bit flag cnt: (RN1, RN2, gtag(state),K, cnt). The
Server S stores in a database DB for each T an ordered list containing:

—six numbers (RN cur
1 , RNnext

1 , RN2, RN3, RN4, RN5),
—a tag identifier IDtag, gtag(state), the refresh key K, and
—a 1-bit flag cnt′.

The lists in DB are doubly indexed by RN cur
1 and RNnext

1 respectively. To initialize
the values of its variables, T draws two successive values RN1, RN2 from gtag(state)
and sets cnt← 0. S draws six successive numbers from the PRNG of each tag and
assigns their values to the variables in the lists of the tags:

RN cur
1 , RN2, RN3, RN4, RN5, RNnext

1 (in this order),
, Vol. V, No. N, January 2010.
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Configuration A:

S

PRNG stream RN1 RN2 RN3 RN4 RN5 RN ′
1 RN ′

2 RN ′
3 RN ′

4 RN ′
5

T

Configuration B:

S

PRNG stream RN1 RN2 RN3 RN4 RN5 RN ′
1 RN ′

2 RN ′
3 RN ′

4 RN ′
5

T

?

cur

?

next

6

?

cur

?

next

6

Fig. 3. Synchronizing the pseudo-random streams of S and T .

and sets cnt′ ← 0. To update a list, S uses the function update for which: RN cur
1 ←

RNnext
1 , the five values RN2, RN3, RN4, RN5, RNnext

1 are updated by drawing new
numbers from gtag(state), and cnt′ ← 0.

Synchronization. At all times the Server S shares with each tag T at least
one number: either RN1 = RN cur

1 or RN1 = RNnext
1 . We distinguish two cases

identified by Configuration A and Configuration B in Figure 3. S, T each use
a block of five successive numbers from their pseudo-random stream (drawn from
their PRNGs) for each session. Configuration A describes the normal state, when
the previous flow was not interrupted: in this case S, T use the same block. When
T receives RN2, it sends RN3 or RN4 and moves to the next block. If the message
of T (RN3 or RN4) is interrupted, then Configuration B will be the initial state
for the next session. Otherwise, S receives T ’s message and also moves ahead to
the next block, returning to Configuration A. When the initial state is described
by Configuration B then S receives RNnext

1 and will advance to the next block. It
must be noted that the synchronization process is independent of the authentication
process: i.e., the parties can advance along the stream and get synchronized even
when the authentication was not completed successfully. The adversary may try
to de-synchronize T by challenging it with a Query, or the number RN2 obtained
by using a man-in-the-middle attack on S, T . In the first case T will not update
its stored values, so it will share RN1 = RN cur

1 with S. In the second, T updates
its values and will share RN1 = RNnext

1 with S (RN ′
1 in Figure 3). The protocol

prevents any further updating by T before S does: T can only update its values
when it is prompted by RN2 (RN ′

2 in Figure 3).

Optimistic behavior. When the adversary is passive then only three numbers
have to be exchanged to authenticate a tag T . If an active adversary tries to
replay flows, this will cause T to activate alarm, and two additional numbers will
be needed (Pass 5 and Pass 6). Observe that the numbers RN3, RN4 and RN5

are always fresh (never sent more than once), because at this point S and T have
already updated their pseudo-random values for the next interrogation.
, Vol. V, No. N, January 2010.
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Constant Lookup time. The Server needs to perform at most two lookups in
the database DB (for RN cur

1 and RNnext
1 ) to identify T . The cost of a simple key

lookup in DB using Linear Hashing is O(1) [Zhang et al. 2009].

Timers. We have not included timers to simplify the presentation. However in
any implementation these are needed to close sessions. Parties should abort if no
response is received after sending a challenge within a certain time Tabort. If the
timers are precise enough, they can be used to thwart online man-in-the-middle
relay attacks (cf. Section 2.1). The more accurate Tabort is, the harder the attacks
become [Munilla et al. 2006]. Naturally, an active attack that involves relaying
flows between protocol parties faster than Tabort will succeed. In Section 7 we will
explain how to deal with these attacks in more detail.

Implementation complexity. There are several efficient implementations of
PRNGs appropriate for lightweight RFID applications. The shrinking generator of
Coppersmith, Krawczyk and Mansour [Coppersmith et al. 1994], which is based on
linear feedback shift registers, has been estimated to require only 1435 logic gates,
517 clock cycles and 64B memory (clock frequency 100KHz), and achieves 128 bit
security [Lee and Hong 2006].

More recently, a hardware implementation LAMED-EPC [Peris-Lopez et al. 2009]
specifically tailored for EPCGen2 applications has been proposed. This is estimated
to require 1566 logic gates, 194 clock cycles (100KHz), 64B memory. It is EPCGen2
compliant.

Note that PRNGs are typically a few orders faster than pseudo-random func-
tions (PRFs) and therefore RFID implementations that use PRNGs will run faster
(PRFs can be generated from PRNGs [Goldreich et al. 1986]).

Session unlinkability. The only instances in which the adversary can link ses-
sions are those in which the tag is prevented from accessing an authorized reader.
In such cases the tag outputs the same number RN1 each time, so these flows can
be linked. On receiving a response RN2 from the reader the tag will update its
stored values, and its flows become unlinkable.

6. RESILIENT FLYWEIGHT RFID PROTOCOL

6.1 Refreshing Random Number Generators

Our protocol uses (loosely) synchronized PRNGs that can be refreshed. PRNGs
are refreshed to ensure resilience against traffic analysis attacks that exploit the
correlation between successive numbers drawn from a PRNG (state entropy leak-
age). That is, to ensure that the adversary cannot predict with probability better
than a certain threshold p0:

(1) the next number drawn (e.g., by using an exhaustive analysis of all possible
states that produce the tag’s output), and/or

(2) the state of the PRNG,

until the tag is next refreshed. For a detailed discussion on security issues of
PRNGs see [Barak and Halevi 2005; Kelsey et al. 1998]. Furthermore, as we shall
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see, refreshing a PRNG will restrict the impact of a compromised state.3

Refreshing a PRNG involves updating state with fresh (high entropy) randomness—
see Figure 4. In our protocol this randomness is provided by the Server when
needed: e.g., when the probability that the state of the PRNG of the tag is com-
promised is higher than a certain threshold (this will depend on the specific features
of the implemented PRNG).

randomness refresh state- -

generate

6

- pseudo-random number

�

6

key

?

Fig. 4. Refreshing the state of a PRNG.

To refresh the state of a PRNG, we combine it with randomness and input this
to a keyed refresh function to get:

stateref = refresh(K;R, state),

where K is the refresh key and R randomness. In the following definition we
distinguish between corrupted and compromised tags. A tag T is corrupted if
the adversary has access to its PRNG (its state) and the refresh key K; T is
compromised if the adversary has access only to its PRNG (can predict the numbers
drawn from its PRNG).

Definition 6.1. Let A be the adversary, T a tag that is refreshed and H a history
of tag interrogations captured by A.

—Forward security. Suppose that T gets corrupted after it is refreshed: then the
adversary cannot disambiguate the outputs of T in H captured prior to refresh-
ment.

—Backward security. Suppose that T gets refreshed after it was compromised:
then the adversary cannot disambiguate the outputs of T in H captured after
refreshment.

Definition 6.2. Resiliency: A refresh function supports resiliency for an RFID
system if it guarantees forward and backward security.

6.2 Adding resiliency to the Flyweight protocol

We now describe the modifications to the Flyweight protocol needed to refresh the
PRNGs of tags. For each tag the Server uses a 1-bit trigger refresh and stores
additionally five numbers:

—A high entropy random number R

3The term “compromised state” is used here in a broad sense: it specifies the information captured
by the adversary in a correlation attack used to predict the next number drawn from a PRNG.

The prediction is probabilistic, not necessarily deterministic.
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—Numbers NA (start of refresh), NB (end of refresh)
—Numbers RN5′ (a message authentication code for R) and N0 (initial point)

Current Streams q q q q qRN1

A state′

stateref

RN2 RN3 RN4 RN5

6refresh

Refresh Streamq q q qs
B

RNnext
1RN ′

5 RN2RN3

Fig. 5. Transition from the Current to the Refresh Stream.

In Figure 5 we illustrate the process of refreshing a stream generated by a shared
PRNG. A and B mark the start and end of the refreshing.

The modifications are presented in Figure 6. Only Flow 3 is affected, with the
reader sending two numbers R,RN ′

5 instead of R2. Normal execution indicates that
the pass is executed as in the basic protocol, presented in Figure 2.

To refresh a tag the Server generates a random number R, and sets: refresh
ON, the initial point N0 ← RN cur

1 , the start refresh number NA ← RNnext
1 , and

the end refresh number NB and RN ′
5 to null. When the start number is received

(RN1 = NA), the server computes RN ′
5 and NB = RNnext

1 on the Refresh Stream
(Figure 5), and broadcasts R,RN ′

5. If NA is received again, the Server broadcast
the same R,RN ′

5 (never RN2). The number RN ′
5 authenticates both the refresh

session and the random number R. If the tag gets R,RN ′
5 (a message format with

two numbers) then it draws numbers from gtag(state) to get state′, which it re-
freshes to get its own evaluation of RN ′

5. If there is a match the protocol continues
normally. In the following session all numbers drawn will be on the Refresh Stream
(RN1 = NB). When NB is received, both tag and Server have refreshed and the
process has finished. The tag’s computations for checking the value of RN ′

5 are
done in volatile memory: the tag must keep the original state of its PRNG in non-
volatile memory in case there is a mismatch, so that it can reset to its initial state.

Synchronization. In the resilient Flyweight protocol at all times the Server S
shares with each tag T at least one number: either NA or NB. The adversary may
try to de-synchronize T by trying to force it to advance on the current stream while
the Server S updates and advances on the refreshed stream—Figure 5. However,
this is not possible since T would need RN2 to advance on the current stream and
this number is never sent by S, which will repeatedly send R, RN5′ (Flow 3) until
it gets the correct RN (Flow 4) or NB (Flow 2). If the tag updates—and sends RN
or NB, this is because it has checked R, RN5′ and refreshed its PRNG properly.

Compromising PRNGs. PRNGs are refreshed to prevent the adversary from
compromising their state, and predict each bit of the next number drawn with
probability significantly better than 0.5. If the adversary succeeds in compromising
the state of the PRNG of a tag before it gets refreshed then it can impersonate
that tag, and/or de-synchronize it (by getting the Server to update through inter-
rogation). Typically such attacks exploit the inadequate frequency of refreshing,
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S : set refresh ON, generate a random number R, assign N0← RNcur
1 , NA← RNnext

1 ,
NB ← ⊥ and RN ′

5 ← ⊥

(1) R→ T : Query

T : Normal execution.

(2) T → R ⇒ S : RN1

S when refresh ON: Check if RN1 is in DB
If RN1 = N0 then Normal execution

Elseif RN1 = NB then set refresh OFF and Normal execution

Elseif RN1 = NA then,
If RN1 = RNnext

1 then update

If RN5′ = ⊥ then set stateref ← refresh (K; R, state′). Draw two numbers
and assign to RN5′ and RNnext

1 .
Set alarm′ ← cnt′, cnt′ ← 1. Broadcast R, RN ′

5 .
Else abort

(3) S ⇒ R → T : R, RN ′
5 (Refresh Pass)

T : Check the format of the received message.

If it corresponds to “refresh” (two numbers) then,
Store the current state of gtag . Draw 3 numbers from gtag(state) and assign

their values to RN3, RN4, RN5 (volatile). Draw an extra number to get state′,
and set stateref ← refresh(K; R, state′).
Draw one number from gtag(stateref ).

If it is RN ′
5 then draw two more numbers and assign their values to RN1, RN2.

If alarm = 0 then broadcast RN = RN3.
Else broadcast RN = RN4.

Else reset the state of gtag and abort.
Else Normal execution.

(4) T → R ⇒ S : RN (RN3 or RN4)

S : Normal execution.

(5) S ⇒ R → T : RN3

T : Normal execution.

(6) T → R ⇒ S : RN5

T : Normal execution.

Fig. 6. The resilient Flyweight RFID protocol.

or the low entropy of the seed of the PRNG. They cannot be considered attacks
on the Flyweight protocol itself, which is proven secure in Section 9, but on the
security parameters used. However, the implementation of refresh (if this is done
properly) restricts the impact of such impersonation attacks until the next refresh-
ing. The adversary cannot compute the refreshed state without knowing the refresh
key K. This can be used by the Server S to revive a genuine tag which now is de-
synchronized (a zombie tag). S accepts previously used (since the last refreshing)
values (RN1), but it forces the tag T to refresh again at this point. Only if T is
genuine and knows K, will it be able to refresh state correctly.

Another possible way to refresh the PRNG of a tag with entropy from the Server
involves flipping the order of the numbers drawn, e.g., RN2 and RN3, so that one
bit of the state of the tag (determined by a counter) is refreshed. This would
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support resilience against correlation attacks if the information leaked when five
numbers are drawn from a PRNG is no more than one bit. We shall discuss the
security of our protocol in Section 9.

7. ONLINE RELAY ATTACKS

Distance bounding protocols based on round-trip delay measurements are the main
defense against attacks related to proximity verification. These estimate the prop-
agation time as accurately as possible so as to determine the distance between the
reader and tag. Determining the processing time is essential in order to isolate the
propagation component from the overall measured time, and therefore variable pro-
cessing times constitute a major problem for distance bounding. Apart from being
invariable, the processing time must be as short as possible since an adversary could
overclock the tag to absorb the delay introduced by his own devices. Thus, the Fly-
weight protocol with its fixed nearly-zero processing delay is particularly suitable
to protect against online man-in-the-middle relay attacks (Section 2.1). This is
because in the Flyweight protocol every tag pre-computes its response (RN/RN5

drawn from its PRNG) to the challenge of the reader (RN2/RN3).
To estimate the round-trip time of a challenge-response we use temporal leashes [Hu

et al. 2006]. The reader must have an accurate clock, but there is no need for the
tags to have clocks (depending on the implementation we may require the Server
to have a clock that is synchronized with the clock(s) of the reader(s)). Let δ0

be a temporal bound calculated using a distance bound (the allowable reader-tag
broadcast range), the propagation speed of the wireless medium (i.e., the speed
of light) and the tag processing time (which includes the time taken to detect the
challenge and transmit the response). If the challenge (RN2/RN3) of the reader is
sent at time t1 and the response of the tag (RN/RN5) is received at time t2, then
the reader will only accept it when t2 − t1 ≤ δ0. If the delay introduced by the
adversary’s devices is greater than δ0 then online relay attacks will be prevented:
i.e., the adversary will not be able to relay the messages without being detected.

This simple way to address online relay attacks and the constant lookup time,
highlight the extended functionality that is provided by sharing a synchronized
RFID stream as opposed to sharing a private number (key)—captured by “quantum
refreshing” in the introductory motivating paradigm.

8. AN EPCGEN2 IMPLEMENTATION

The EPCGen2 Inventory protocol has 4 passes for identification (acknowledged
state): Query, RN16, Ack(RN16) and EPCdata (Section 2, Figure 1). To en-
able mutual authentication we replace RN16 by RN1, Ack(RN16) by RN2 and
EPCdata by RN3 (optimistic case). We illustrate the modifications in Figure 7.
On the left is the 4-pass EPCGen2 Inventory protocol, while on the right is the
proposed Flyweight Inventory protocol. Note that the latter requires two additional
passes for secure mutual authentication when the adversary is active (RN1 has been
used—alarm is ON).

To ensure that it is hard to find the state of an EPCGen2 PRNG by using an
exhaustive search over all possible state values that produce a given sequence of
numbers, the entropy of the state of PRNG must be sufficiently large. If a 32-bit
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Reader Tag

Query -

RN16�

Ack(RN16)-

EPCdata�

Reader Tag

Query -

RN1�

RN2 -
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Fig. 7. The 4-pass EPCGen2 Inventory (left) and the proposed Flyweight Inventory.

state4 with refreshment provides adequate security then we may use the following
simple implementation:

refresh(K;R, state) = gtag(K ⊕R⊕ state),

where R is a 32-bit random number and K the 32-bit Access Password. At this point
one may think that if the PRNG is used as a pseudo-random function (PRF), then
many other solutions (apart from the Flyweight protocol) are feasible. However,
one has to be careful: PRNGs when used as PRF may be subject to related-key
attacks [Burmester and de Medeiros 2008]. That is, if g is a PRNG and k a key then
there are no guarantees that g(k⊕x) (or g(k, x)) is a secure message authentication
code (MAC) for x (at least, not until proven). In a related-key attack, the adversary
uses values drawn from g(k, ·) (or g(·)), whose keys are related (in this case, the
same), to infer information about the next numbers drawn. If the adversary can
choose the values of x then the problem is far worse, because the adversary can
perform adaptive attacks. Most protocols that use a PRNG to generate message
authentication codes (e.g., [Choi et al. 2009; Huang and Ku 2009]) are subject
to such attacks. This problem is prevented in the Flyweight protocol by using
synchronized PRNGs, since the value of state is not known by the adversary, and
changes dynamically. To conclude we note that one may use a provable secure (but
slower) alternative,

PRFtag(K ⊕R⊕ state),

where PRFtag is the PRF defined by gtag [Goldreich et al. 1986].

8.1 Collisions

We have collisions during Inventory and in DB. With Inventory collisions, several
tags in the operating range of the reader respond to the same Query. This is solved
in EPCGen2 by using the Q-protocol in which a random Q-bit number is loaded
into a slot counter and decreased with each interrogation (Section 3): the tags
respond when it is zeroed. In our case we use the bits of RN1 instead of Q (alarm
is activated if these bits are used more than once)

With collisions in DB several tags share the same RN1. In this case the Server
receives RN1 but does not know which of the RN2’s in DB must be sent because

4This does not affect the length of the outputs, which can still be of 16 bits.
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several numbers are possible. The easiest way to deal with this, is to modify the
protocol and have a backup RN backup

1 . In this case the parties use blocks of six
pseudo-random numbers. Then, when the Server detects a collision, it sends a new
command QueryB, requesting the tag to send RN backup

1 . By using extra numbers,
the probability of collision can be reduced as much as needed.

However, the protocol can be modified to deal with collisions without requiring
an extra number RN backup

1 . We propose the following solution. Suppose there is a
collision in DB for RN1. The Server tries to identify T by sending RN2’s which
were previously used (for which alarm = 1). If the tag responds with RN4, then T
is identified, and the six-pass protocol is executed. If RN2 was not previously used
by T , then the Server sends RN5 to inform the tag T of the collision. When T
gets RN5 in the second pass, it exchanges RN2 with RN5, and proceeds normally.
Tags for which RN5 was sent prior to identification get marked by the Server and
their identification must be performed without using such RN5: that is, with four
passes in the optimistic case or in a new updated session.

Finally, we could have the unlikely event when several tags that share the same
RN1 are interrogated simultaneously (simultaneous collision in the Inventory and
in DB). In this case the Server would not detect the collision during the Inven-
tory (constructive interference), and the Server would deal with it as a collision in
DB. The Server sends a previously used RN2 or RN5. The tag (among the ones
present) whose value coincides with this (RN2 or RN5) will answer and will be
identified. The remaining tags get identified one-at-a-time in the same way (with
new Queries).

9. SECURITY

Our formal security specifications are: mutual authentication, and session unlink-
ability with forward and backward security. Since RFIDs are often used as com-
ponents of more complex systems, we focus on security frameworks that support
Universal Composability (UC). The choice of cryptographic primitives to imple-
ment the protocols must take into consideration: (i) the need for computationally
lightweight solutions that adhere to the hardware-imposed constraints of the plat-
form, and (ii) scalability, when the number of devices is large. We will use the
security framework proposed in [Burmester et al. 2009], which we extend to accom-
modate our particular specifications.

We adopt the Byzantine threat model. All parties including the adversary A are
modeled as probabilistic polynomial-time Turing machines (PPTs). A controls the
delivery schedule of all communication channels, and may eavesdrop into, or mod-
ify, their contents and may also initiate new communication channels and directly
interact with honest parties. For convenience, in our proofs below, we will identify
the readers with the Server.

9.1 The security framework

The universal composability (UC) framework specifies a particular approach to
security proofs for protocols π, and guarantees that proofs that follow this approach
remain valid if π is, say, composed with other protocols (modularity) and/or under
arbitrary concurrent protocol executions (including with itself). The UC framework
defines a real world simulation, an ideal world simulation, a simulator Ssim that
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translates runs of π from the real world to the ideal world, and an interactive
environment Z, a PPT, that captures whatever is external to the current protocol
execution. The components of a UC formalization are:

(1) A mathematical model of real executions of protocol π in which the honest
parties execute as specified, whereas adversarial parties can deviate from π
arbitrarily. These are controlled by the adversary A that has full knowledge of
the state of adversarial parties, and can arbitrarily schedule the communication
channels and activation periods of all parties, and interact with Z in arbitrary
ways.

(2) An idealized model of executions, where the security properties of protocol π
depend on the behavior of a trusted functionality Fπ. Fπ controls the ideal
world adversary Â so that it reproduces as faithfully as possible the behavior
of A.

(3) A proof that, for each A there is a simulator Ssim that translates real world
protocol runs of π in the presence of A into ideal world runs of π in the presence
of Â such that, no environment Z can distinguish whether A is communicating
with a instance of π in the real world or Â is communicating with Fπ in the
ideal world.

In the UC framework Z is the first party to be activated. It instantiates the protocol
parties and the adversary A.

9.2 Mutual authentication with session unlinkability

Mutual authentication with session unlinkability in the UC framework is captured
by the parties (the Server and tags) having access to an ideal functionality which we
denote by Fasu . Fasu formally defines the security specifications for, availability,
mutual authentication and session unlinkability, in protocols for which the Server
and tag share a (loosely) synchronized PRNG. It is presented in Figure 8. Fasu

specifies protocols for which the tags determine the interrogation subsession. Below
we describe the basic components and attributes of the ideal world simulation.

Sessions. A single session spans the entire lifetime of our system. It consists of
several concurrent subsessions which are Initiated by the protocol parties, which
in turn get initiated by the environment Z. While the Server and tags initiate
subsessions, the adversary controls the concurrency and interaction between sub-
sessions. All parties involved in a subsession of the authentication scheme are given
a unique identifier sid by Z (sid includes identifying data of tags, private data etc).

Concurrency. Tags are constrained devices that cannot execute concurrently. In
the ideal world this is captured by restricting tags to one subsession identifier s at
a time. The adversary cannot Initiate the same tag concurrently.

Availability. In the real world this requires that a tag is always available for
interrogation. In the ideal world this is captured by assigning to each Initiated
tag a subsession identifier s and making it available for interrogation by invoking
commands Update(s), Accept(s), Impersonate(s) or Corrupt(s).

Mutual authentication. Successful authentication in the real world is the re-
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Functionality Fasu

Fasu only accepts commands with the session identifier sid

Upon input Initiate at server. Record init(server) if there is no such record and output

init(server) to the adversary.

Upon input Initiate at tag. If tag is corrupted then ignore. Else, generate a new subsession
identifier s. If there is no record init(s′, tag) or update(s′, tag) then record init(s, tag)

and session id(tag) = (s) (a list). Else discard the record, record init(s, tag), append s to
session id(tag) and output session id(tag) to the adversary.

Upon request Update(s) from the adversary. SFunctionaIf there is a record update(tag)

then ignore. Else if there is a record init(s, tag) then remove it, generate a record

update(s, tag), discard all entries from session id(tag) and record update(tag) at tag.

Upon request Accept(s) from the adversary. If there is a record update(s, tag) then remove
it and record accept(tag) at server.

Upon request Impersonate(s) from the adversary. If tag is corrupted then record

accept(tag) at server.

Upon request Corrupt(s) from the adversary. If there is a record init(s, tag) or
update(s, tag), then mark tag as corrupted and remove state(tag).

Fig. 8. Ideal mutual authentication with session unlinkability.

sult of sharing common secrets: the Server can corroborate values produced by the
tag as a function of a (loosely) synchronized shared PRNG and conversely. The
choice of the tag to be authenticated is determined by A. To guarantee that the
PRNG remains synchronized, mutual authentication in the real world requires that
the tag update its state. In the ideal world this is captured by invoking command
Accept (Item 4, Figure 8). To get a tag with subsession identifier s authenticated,
command Update(s) must have been invoked. The true identity of a tag is given
to the server, but not A. This limits A to invoking and scheduling the protocol
at each party.

Session unlinkability. In the real world session unlinkability requires that given
any two tag interrogations, if the tag has updated its state in the first, or in an inter-
mediate interrogation, then the adversary cannot link these with probability better
than negligible. The adversary can link interrogations that have not been updated
(they have the same value) until the next successful updating. In the ideal world
this is emulated by acquiring access to a list of identifiers session id(tag) of all pre-
ceding incomplete subsessions returned by the functionality by invoking Initiate
at the tag (Item 2, Figure 8). The only information revealed to the adversary
by the functionality is the subsession identifiers of tags: no information regarding
the tag itself is revealed. Once a tag with subsession identifier s is successfully
Updated in the ideal world, all earlier subsessions identifiers (in session id(tag))
of the same tag are discarded by the functionality (Item 3, Figure 8).

Tag corruption. In the real world tags may get corrupted by the adversary, who
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can then access their full state. This is emulated in the ideal world by invoking
command Corrupt (Item 6, Figure 8). The functionality maintains for each tag a
list state(tag) of all subsession records concerning tag. This list is discarded by the
ideal functionality upon corruption of the tag when invoking command Corrupt.
Consequently in the ideal world, control of a corrupted tag is passed on to the
adversary.

Activation sequence. The receiving party of any message is activated next. If
no output is produced while processing an incoming message then by convention
the environment Z is activated next.

9.3 Capturing forward and backward security

To capture tag resilience we need two more commands: Compromise and Re-
fresh. Invoking Compromise(s), where s is a subsession identifier of tag, results
in tag getting marked as compromised by the functionality. Compromised tags
can be successfully Impersonated by the adversary until they are Refreshed,
when they get de-synchronized—zombie tags. Such tags cannot be Impersonated
by the adversary unless command Compromise is invoked again. The functional-
ity Frasu is presented in Figure 9. The additional attributes are:

Forward security. In the real world this requires that past protocol flows, prior
to refreshment, look random even if the tag gets corrupted after Refreshment. In
the ideal world this is emulated by requiring that after Refresh(s) all entries in
session id(tag) are discarded, so past sessions look random (Item 4, Figure 9).5

Backward security. In the real world this requires that future tag outputs, after
refreshment, look random to an adversary even if the adversary can access the state
of the PRNG of the tag (e.g., by analyzing its outputs) before it is refreshed. In the
ideal world tag compromise is emulated by invoking command Compromise. Tags
that get compromised are marked by Fasu as such, and therefore can be successfully
Impersonated by the adversary (Item 6, Figure 9). However after Refreshment
a compromised tag is marked zombie and cannot be Impersonated.

10. MAIN RESULTS AND PROOFS

We first consider the security of the basic protocol.

Theorem 10.1. The Flyweight RFID protocol realizes the UC-functionality Fasu .

Proof. To prove that the Flyweight protocol realizes Fasu we must show that
Condition 3 in Section 9.1 holds, that is, there is a simulator Ssim that translates real
world protocol runs into ideal world runs such that these cannot be distinguished
by Z. Our simulator Ssim :

5The ideal world specifications for Refresh and Update are essentially the same—except for

zombie tags. In our UC framework with a PPT distinguisher (environment) Z, this is reflected

in the real world simulation. To capture resilience to entropy leakage resulting from correlation
attacks on the numbers drawn from a PRNG one has to use concrete security reductions, as in

Section 10.1, 10.3.
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Functionality Frasu

Frasu has session identity sid and only accepts commands with the same sid.

Upon input Initiate at server. Record init(server) if there is no such record and output

init(server) to the adversary.

Upon input Initiate at tag. If tag is corrupted then ignore. Else, generate a new subsession
identifier s. If there is no record init(s′, tag) or update(s′, tag) then record init(s, tag)

and session id(tag) = (s) (a list). Else discard the record, record init(s, tag), append s to
session id(tag) and output session id(tag) to the adversary.

Upon request Update(s) from the adversary. If there is a record update(tag) then ignore.

Else if there is a record init(s, tag) then remove it, generate a record update(s, tag), discard

all entries in session id(tag) and record update(tag) at tag.

Upon request input Refresh(s) at server. If there is a record update(tag) then ignore. Else
if there is a record init(s, tag) then remove it, generate a record update(s, tag), discard all

entries in session id(tag) and if tag is compromised then mark it zombie, unless it already

has this designation, and record update(tag) at tag.

Upon request Accept(s) from the adversary. If there is a record update(s, tag) then remove it
and record accept(tag) at server.

Upon request Impersonate(s) from the adversary. If tag is corrupted then record accept(tag)

at server. If there is a record init(s, tag′) or update(s, tag′) and tag is compromised, but
not zombie, then remove it and record accept(tag) at server.

Upon request Compromise(s) from the adversary. If there is a record init(s, tag) or

update(s, tag) and tag is not compromised then mark it compromised.

Upon request Corrupt(s) from the adversary. If there is a record init(s, tag) or

update(s, tag), then mark tag as corrupted and remove state(tag).

Fig. 9. Ideal resilient authentication.

—Simulates a copy Â of the adversary and copies ̂server of the Server, and t̂ag of
each tag initialized by Z, and activated by the adversary.

—Adds/removes values to/from a database D̂B of ̂server that contains persistent
values of adversarially controlled tags as well as the transient values of honest
tags. The simulated interactions between Fasu and Â, ̂server, t̂ag are detailed in
Figure 10.

—Faithfully translates real world messages between {A, Server,tag} into their ideal
world counterparts between {Â, ̂server, t̂ags} as specified by the Flyweight pro-
tocol. This is detailed in Figure 11. In this simulation the ideal world adversary
Â invokes send(s, r, t̂ag) to send to t̂ags the number r, and send(s, r′, ̂server)
to send to ̂server the number r′.

—Simulates the interactions with Z, i.e., the externally visible part of the protocol.
More specifically, it invokes Fasu with command Accept(s) when the real world
adversary forwards unmodified inputs between honest tags and the Server, and
Impersonate(s, tag) when the real world adversaryA succeeds in authenticating
adversarially controlled tags.
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Simulated interactions by Ssim , I

Upon init(server) from Fasu . Send init(server) to Â.

Upon session id(tag) from Fasu . If session id(tag) = (s) then create a new tag named t̂ags,

and generate flow(s)=(r1, r2, r3, r4, r5). Give (s, flow(s)) to t̂ags and store it in D̂B together

with session id(tag) using the identity t̂ags. Else, if s′ is the first identifier in session id(tag)

then: assign s to t̂ags = t̂ags′ and set flow(s) = flow(s′). Send session id(tag) to Â.

Upon update(s) from t̂ags or ̂server in subsession s. Send Update(s) to Fasu .

Upon Accept(t̂ag) from ̂server in subsession s (t̂ag ∈ D̂B). If t̂ag is adversarially controlled
then send Impersonate(t̂ag) to Fasu .

Elseif s is the identifier for which t̂ag = t̂ags then send Accept(s) to Fasu .

Upon Â requesting Corrupt at t̂ags. Mark t̂ags as corrupted and store its state in D̂B
permanently. In all future executions the output of t̂ags is determined by the adversary. Send

Corrupt(s) to Fasu .

Fig. 10. Interactions between Fasu and Â, ̂server, t̂ag.
—Ssim prevents the ̂server from outputting accept(tag) in the ideal world when
A tampers with messages created by honest tags in the real world.

Observe that if the RNGs of tags generate true random numbers then the flows of
the Flyweight protocol are uniformly distributed and independent. Under this as-
sumption the real and ideal world simulations might differ only when the simulator
Ssim intervenes to prevent Accept(t̂ag) in the ideal world. For this to happen
the messages created by honest tags in the real world must have been tampered by
A, so that there is a collision between the (tampered) real world outputs of tag
and the idealized outputs of t̂ags in a subsession s. Since we assume that RNGs
are truly random, the adversary cannot count on this happening with more than
negligible probability.

More concretely, this will happen with probability at most 21−nmL, where n is
the length of the random numbers generated, m is the number of tags managed
by the Server, and L is the total number of tag interrogations. This is negligible
in the security parameter n if we assume that m and L are polynomially bounded
in n. It follows that if Z can distinguish real simulations with pseudo RNGs from
ideal simulations, then it can also distinguish real simulations with pseudo RNGs
from real simulations with true RNGs. This will lead to a contradiction, if the
numbers generated by a pseudo RNG are indistinguishable from random by a PPT
adversary.

10.1 A concrete security reduction, I

A security reduction must relate distinguishing real-vs-ideal worlds to distinguishing
pseudo-vs-true randomness. To accomplish this, faithfully simulate the real world
and use Z as a distinguisher. For a true RNG, we get the ideal simulation subject to
collisions, for which the probability is at most 21−nmL. If we also take into account
the advantage AdvRNG(q, t) of distinguishing a pseudo RNG from a true RNG, in
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Simulated interactions by Ssim , II

Upon request init( ̂server) from Â. ̂server sends query to Â.

Upon request send(s, t̂ag) from Â. If no numbers in flow(s) of t̂ags in D̂B have been marked

then t̂ags marks r1 and sends r1 to Â.

Upon request send(s, r1, ̂server) from Â. If r1 is the first unmarked number in flow(s) of

t̂ags in D̂B then ̂server marks r1, r2 in flow(s) and sends r2 to Â.

Upon request send(s, r2, t̂ag) from Â. If r2 is the first unmarked number in flow(s) of t̂ags

in D̂B then:

If |session id(tags)| = 1 then t̂ags marks r2, r3, outputs update(s) and sends r = r3 to Â.

Else t̂ag marks r2, r4 and sends r = r4 to Â.

Upon request send(s, r, ̂server) from Â. .

If r = r3 is the first unmarked number in flow(s) of t̂ags in D̂B and |session id(tags)| = 1

then ̂server marks all remaining values in flow(s), outputs update(s) and accept(t̂ags).

Elseif r = r4 is the first unmarked number in flow(s) of t̂ags in D̂B then ̂server marks

r3, r4 and sends r = r3 to Â.

Upon request send(s, r3, t̂ag) from Â. If r3 is the first unmarked number in flow(s) of t̂ags

in D̂B and |session id(tags)| > 1 then t̂ags marks the remaining numbers and sends r5 to Â.

Upon request send(s, r5, ̂server) from Â. If r5 is the only unmarked number in flow(s) of

t̂ags in D̂B then ̂server marks it and outputs update(s) and accept(t̂ags).

Fig. 11. Interactions between Â, ̂server, and t̂ag.

which q is the number of numbers drawn from RNG, and t the computational time
(steps) taken to draw a number, then the advantage of distinguishing real from
ideal is bounded by, 21−nmL + AdvRNG(mL,T + mL), where T is the combined
time complexity of Z and A.

10.2 Resiliency

The refresh functionality endows the Flyweight RFID protocol with forward and
backward security.

Theorem 10.2. The Flyweight RFID protocol with refresh functionality UC-
realizes Frasu if refresh supports resiliency.

Proof. We extend the proof of Theorem 10.1 to capture the specifications of
Frasu . Ssim simulates copies of parties Â, ̂server, t̂ag, objects D̂B, triggers etc,
and faithfully translates real world runs between {A, Server, tag} into their ideal
world counterparts between {Â, ̂server, t̂ags}, adhering to the specifications of
Frasu . The refresh functionality requires one additional Refresh item for the sim-
ulations in Figure 10—see Figure 12. Also, flow(s) in Item 2 has one more number:
flow(s) = (r1, r2, r

′
5, r3, r4, r5). For the simulations in Figure 11, to deal with the

case when refresh is ON, the Send(s, r1, ̂server) command, Item 3, Figure 11,
needs to be modified and a new Send(s, r, r′5, t̂ag) item added—see Figure 13.
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Additional simulated interactions, I

Upon Refresh at t̂ags in subsession s. If there is a record session id(tag) that contains s

then send Refresh(s) to Frasu .

Fig. 12. Interactions between Fasu and Â, ̂server, t̂ag.
Resilience against forward security attacks in the real world follows from our as-

Additional simulated interactions, II

Upon request send(s, r1, ̂server) from Â. If there are numbers r1, r2 in flow(s) of t̂ags in

D̂B and no number has been marked then: If refresh is OFF then ̂server marks r1, r2 and

sends r2 to Â. If refresh is ON then ̂server marks r1, r2, r′
5 and sends (r, r′

5) to Â.

Upon request send(s, r, r′
5, t̂ag) from Â. If r2 is the first unmarked number in flow(s) then

t̂ags marks r2, r′
5, r3, outputs Update, and sends r3 to Â.

Fig. 13. Interactions between Â, t̂ag.

sumption that refresh is resilient (Definition 6.1). In the ideal world linking past
flows separated by refreshment is prevented by the functionality Frasu even if the
tag gets compromised (the entries in record session id(tag) are discarded—Item 4,
Figure 9).

Resilience against backward security is similar. In the real world it follows from
our assumption that refresh is resilient (Definition 6.1). In the ideal world linking
future flows separated by refreshment is prevented by the functionality Frasu (again
Item 4). Thus, as in Theorem 1, the environment Z cannot distinguish the real
from the ideal simulations.

10.3 A concrete security reduction, II

Let AdvRNG(n, q, t, s) be a lower bound on the probability of predicting the next
n-bit number drawn from a PRNG of a tag, if no more than q numbers are drawn
from it, with t, s bounds on the time and space complexity. If we assume that the
Server refreshes all tags prior to q numbers being drawn from their PRNGs, then
the probability of distinguishing real from ideal world executions is bounded by:

21−nmL + AdvRNG(n, q, t, s).

10.4 A resilient refresh function

We give an informal proof that the function

refresh(K;R, state) = gtag(K ⊕R⊕ state)

proposed in Section 8 supports resiliency. Let RNGm be a family of PRNGs (de-
fined by the parameter m) for which the probability that a drawn number can be
distinguished from random is no better than p0, provided no more than M numbers
are drawn, given a history of numbers drawn earlier from this and other generators.
, Vol. V, No. N, January 2010.
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Let Xm ∈ RNGm and Ym be the refreshed PRNG. The state of Ym is randomized,
so it is uniform in RNGm. We claim that one cannot distinguish pairs of numbers
drawn from (Xm, Ym) from random pairs, with probability better than p0, if no
more than M numbers are drawn from Xm, Ym. Suppose, by contradiction, that
one can distinguish (x, y), (x′, y′), . . . , from random with probability better than
p0. Then a Distinguisher can use Ym (a random generator in RNGm) as an oracle
to distinguish x, x′, . . . , from random with probability better than p0. This is a
contradiction. This also implies unlinkability: if x drawn from Xm can be linked
to x′ in history with probability better than p0, then it is not random.

11. CONCLUSION

Secret sharing (sharing a key) and threshold cryptography (sharing a cryptographic
function) are powerful cryptographic mechanisms that support fault-tolerant multi-
party communication and computation. Similarly sharing clocks, even if these are
only loosely synchronized, will thwart replay attacks.

In this paper we have shown that by sharing a loosely synchronized stream of
pseudo-random numbers we can implement a lightweight authentication mechanism
that: (i) guarantees session unlinkability with forward and backward security and
(ii) thwarts man-in-the-middle relay attacks, in a strong security framework. Fur-
thermore, for appropriate implementations, we can guarantee that the failure rate
is kept below a given threshold through regular refreshing.
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