
New Parallelizable Schemes for Message Authentication Using
Pseudorandom Functions

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

February 20th, 2009
Revised: July 27th, 2009

Abstract. We consider the construction and analysis of pseudorandom functions (PRF) for message
authentication. Earlier work due to Bernstein and Vaudenay show how to reduce the analysis of PRFs to
some probability calculations. We revisit this result and use it to prove a general result on constructions
which use a PRF with “small” domain to build a PRF with “large” domain. This result is used to analyse
new parallelizable schemes for PRF construction.
Two new schemes are described. An earlier parallel construction called the protected counter sum
(PCS) had been proposed by Bernstein. PCS uses a keyed compressing function rather than a block
cipher. We describe a new construction which works with keyed compressing function and compared
to PCS requires lesser number of invocations. The variant where the compression function is replaced
by a block cipher leads to an improved version of the well known PMAC algorithm. The improvements
consist in removing the requirement of a discrete log computation in the design stage of PMAC leading
to an easily reconfigurable family of algorithms; and providing faster masking functions for software
implementations.
All our constructions are in the stateless setting, i.e., a setting where the sender and the receiver do not
share any state (apart from the common secret key). One of the aspects of our work is the simple and
direct approach to the analysis of PRFs. In particular, we avoid the extensive and heavy machinery of
game-playing technique which is used in most papers on this topic.

Keywords: pseudorandom function, message authentication, protected counter sum, PMAC.

1 Introduction

Authentication is one of the two basic tasks of cryptography with encryption being the other. In
the symmetric key setting, the sender and the receiver share a common secret key K. Given a
message x, the sender uses K to generate a tag, called a message authentication code (MAC), and
sends (x, tag) to the receiver. The receiver uses K to verify that (x, tag) is a properly generated
message-tag pair. In most cases, verification is simply to regenerate the tag on x and compare to
the received value. The tag authenticates the message, or, in other words, it provides an assurance
to the receiver that the message x was indeed sent by the sender. A method for tag generation and
verification is called a MAC scheme.

An attack on a MAC scheme amounts to forging a message-tag pair, i.e., to find a valid pair
which was not generated by the tag generation algorithm. An attacker (also called an adversary) is
said to be successful if he can indeed generate such a pair. It is usually assumed that the adversary
can obtain some tags on messages of his choosing. In other words, the adversary is allowed to ask the

sender to authenticate some messages (chosen by the adversary) and provide the corresponding tags
to the adversary. This is modelled by considering the tag generation algorithm to be instantiated by
a secret key (unknown to the adversary) and provided as an oracle to the adversary. The adversary
interacts with this oracle by providing messages and obtains the corresponding tags. At the end of
the interaction, the adversary outputs a “new” pair (x, tag), i.e., this (x, tag) does not equal any
(xi, tagi), where tagi was returned by the oracle on query xi. The adversary is successful if (x, tag)
passes the verification of the MAC scheme.

The description of MAC scheme given above does not require the sender and receiver to maintain
state. Some constructions, on the other hand, are stateful. This means that for each message, apart
from the secret key, the sender and receiver must have the same value of a variable called a nonce.
This value itself need not be secret. The requirement on a nonce is that of freshness, i.e., the scheme
should ensure that for a fixed key the nonce value is not repeated. In this work, we will not consider
stateful MAC schemes.

A block cipher is a basic cryptographic primitive. Formally, it is a map E : K×M→M, where
K is the set of keys andM is the set of messages. For every K ∈ K, EK :M→M is bijective and
hence a permutation ofM. In practical applications,M = {0, 1}n for some fixed positive integer n
and similarly, K also consists of fixed length binary strings. Well known examples are DES, AES [8].
It is usually assumed that a block cipher provides both privacy and authentication. However, a block
cipher by itself can authenticate only n-bit strings. Applications require the authentication of long
and possibly variable length strings. Authentication of a long string requires several invocations of
the block cipher. Proper methods of doing this are called modes of operations.

The security model of a block cipher is that of a pseudorandom permutation (PRP) [15]. In-
formally, this means that an adversary should not be able to distinguish the block cipher from a
uniform random permutation of {0, 1}n. This is formalized in the following manner. The adversary
A is given an oracle, which takes as input an n-bit string and also returns an n-bit string as output.
A makes several queries to the oracle and finally outputs a bit b. Suppose a key K is chosen uni-
formly at random from K and the oracle is instantiated by EK() and let p1 be the probability that
A outputs 1 in this case. Similarly, let p0 be the probability that A outputs 1 when the oracle is
instantiated using a uniform random permutation. Then the advantage of A in attacking the PRP-
property of the block cipher is given by |p1 − p0|. This advantage is parametrized by the number
of queries that A makes and the runtime of A. A stronger notion is that of strong pseudorandom
permutation (SPRP), where A is also provided the inverse oracle. In this work we will not require
SPRP.

A related notion is that of a pseudorandom function (PRF). Let F be a random (but, not
necessarily uniform random) function from a set S to a set T , where T is a finite non-empty set.
Let A be an adversary which has an oracle. The oracle takes as input an element of S and returns
as output an element of T . As before, instantiate the oracle in two ways; either with F or with a
uniform random function from S to T and let the corresponding probabilities of A outputting 1 be
p1 and p0. Then the advantage of A in attacking the PRF-property of F is defined to be |p1 − p0|.
As in the case of MAC, the PRF-advantage is also parametrized by the number of queries made
and the runtime of the adversary.

PRFs have many applications in cryptography. In this work, we will be concerned with the use
of a PRF as a MAC scheme. It is intuitively clear (and also not difficult to prove) that a PRF F
whose domain consists of arbitrary length binary strings and whose range is a short fixed length
binary string, can serve as a MAC scheme. Basically, given a message x, the tag is tag = F (x); and

2

verification is done by regenerating the tag. The PRF-property of F is a sufficient condition for it
being used as a MAC scheme. There are very efficient known constructions of PRF including one
which has been standardized by NIST [9]. In this work, we will be concerned with constructions of
PRFs which are useful for MAC applications.

Many practical modes of operations for MAC schemes using block ciphers are analysed as a
PRF. This analysis is done in two steps.

1. First analyse the scheme by replacing the block cipher with a uniform random permutation.
This provides a bound on the PRF-advantage of an adversary. The bound on the advantage is
information theoretic, i.e., it does not depend on the runtime of the adversary. In other words,
the adversary is considered computationally unbounded and is only limited by the number of
queries it can make. This forms the difficult part of the entire analysis.

2. Now, consider a block cipher instead of the uniform random permutation. Then, it is easy to
show that the advantage obtained in Step 1 degrades by an additive term which is the advantage
of the block cipher as a PRP.

Suppose that instead of a block cipher, a keyed compressing function is used to construct the
PRF [4]. A similar analysis can be used; analysis is done using a uniform random function instead
of the keyed function. In the second step, the advantage is adjusted by an additive term to reflect
the strength of the keyed function as a PRF.

In view of this, in our analyses, we will only consider the first step. In other words, we will
be analysing modes of operations which uses a uniform random permutation instead of a block
cipher. Similarly, constructions using a keyed compressing function will be analysed with a uniform
random function instead of the keyed function.

1.1 Our Contributions

A useful result for upper bounding PRF-advantage was proved by Bernstein [4] and Vaudenay [24].
Let F : S → T be a random function and U is a “large” subset of T d for some positive integer
d. For distinct x1, . . . , xd ∈ S and (y1, . . . , yd) ∈ U , Pr[F (x1) = y1, . . . , F (xd) = yd] is called
a d-interpolation probability [4]. In [24], it has been proved that if F has large “interpolation
probabilities” on a “large” subset of T d, then the advantage of F as a PRF can be upper bounded
for any adversary which makes at most d queries. The special case where the subset U equals T d

has been proved in [4]. We slightly modify this result so as to include a length function λ on S. In
applications, for x ∈ S, λ(x) would be the number of n-bit blocks into which x is formatted. This
makes it easier to apply the result to concrete settings.

Suppose F = π◦F (π)
1 , where π is a uniform random permutation; F (π)

1 invokes π a finite number
of times and the entire randomness of F1 arises from the invocations of π. Such random functions
F are typical of many well known constructions of MAC schemes. This class of functions covers the
class of DAG based construction considered in [11, 18].

We consider this in the more general setting where F = ρ ◦ F (ρ)
1 , with ρ being either a

uniform random permutation or a uniform random function. Suppose x and x′ are two inputs
to F ; U1, . . . , Um and U ′1, . . . , U

′
m′ are the inputs to the invocations of ρ during the computa-

tions of Z = F1(x) and Z ′ = F1(x′) respectively. We define three events: collision (Coll), i.e.,
Z = Z ′; self-disjoint (Self-Disjoint), i.e., ∧mi=1(Z 6= Ui); and pairwise-disjoint (Pairwise-Disjoint),
i.e., (∧mi=1(Z ′ 6= Ui) ∧ (∧m′i=1(Z 6= U ′i)). We show that if the probabilities of Coll, Self-Disjoint and
Pairwise-Disjoint are all small, the PRF-advantage of F is also small. The result is useful, since

3

it reduces the task of bounding the PRF-advantage of F to that of bounding the probabilites of
certain events for F1. Previous analysis of individual constructions have used this approach, but,
to the best of our knowledge, the result has not been proved in this generality earlier.

New Constructions. Parallel MAC schemes start with protected counter sum (PCS) [4] and
PMAC [6, 21]. PMAC [21] uses a tweakable block cipher (TBC) and the design of the TBC requires
the solution of a discrete log problem over GF (2n). The designer in [21] provides solutions for
n = 64 and n = 128; but, for n = 256 this will be difficult. Generalization of the TBC and PMAC
has been done [7]. This can avoid the discrete log computation but is then (slightly) slower since it
requires more masking operations.

The PCS scheme [4] uses a function ρ which maps ` bits to n bits, with ` > n. It is of the type

ρ(0, ρ(1, P1) + ρ(2, P2) + · · ·+ ρ(m,Pm))

where i is the (` − n)-bit binary representation of i. The inputs i to ρ “wastes” (` − n) bits per
invocation of ρ.

We describe VPMAC, which is a new parallel construction; also works with such ρ and provides
an efficiency improvement. PCS requires (1 + len(x)/n) invocations of ρ whereas VPMAC requires
(1 + len(x)/`) invocations of ρ. Consequently, VPMAC requires approximately a fraction n/` of
invocations of ρ compared to PCS.

In the case where ` = n and ρ is a uniform random permutation, we obtain a new variant of
PMAC called iPMAC. This variant does not require discrete log computation but unlike [7] uses
the same number of masking operations as in [21]. A consequence of avoiding the discrete log
computation is to obtain an easily reconfigurable family of parallel MAC algorithms. A particular
algorithm is fixed by a particular representation of the underlying finite field. Changing the field
representing polynomial(s) is done by simply changing some constants in the program. The PRF-
bound that we obtain for iPMAC is similar to that obtained in [17, 19] for PMAC.

The description of iPMAC is given using a general definition of the required masking functions.
There are known instantiations [22] of this general definition which give rise to concrete masking
functions which are faster than those used in PMAC. Such instantiations represent the underlying
field as a tower field and the masking operations are then defined as clockings of word-oriented
LFSRs. In software, these are faster than the so-called powering map used in PMAC.

The constructions and the bounds that we obtain are given in Table 1. From the table, it is
clear that VPMAC requires lesser number of invocations compared to PCS. The bound for PCS,
on the other hand, is better. This is due to the fact that in PCS, concatenating the counter values
ensures that certain collisions do not happen at all, whereas in VPMAC these collisions are only
probabilistically ruled out. Having said this, we note that the bound for VPMAC is also good enough
and comparable to the bound that have been obtained earlier for PMAC.

Comparing PMAC and iPMAC, we see that the number of invocations are same and the bounds
are similar. The advantages of iPMAC over PMAC has been discussed above.

1.2 Previous and Related Works

Bellare, Kilian and Rogaway [1] showed that for CBC-MAC working on equal length strings the
advantage of an adversary making d queries each having m n-bit blocks is bounded above by
2m2d2/2n. Maurer [16] and Vaudenay [23] gave different proofs for essentially the same bound

4

Table 1. Features of constructions analysed in this work. For PMAC and iPMAC a uniform random permutation of
{0, 1}n is to be used, whereas for PCS and VPMAC a uniform random function from {0, 1}` to {0, 1}n is to be used.
The column “bound”, provides the upper bound on the advantage of any adversary which makes at most d queries
and provides at most σ ≥ d blocks in all the queries; the column “# invoc” provides the number of invocations of
the permutation/function required to process a message x.

scheme perm? bound # invoc

PMAC [21] yes 5dσ−3.5d2

2n [19] 1 + dlen(x)/ne

PCS [4] no d(d−1)

2n+1 [4] 1 + dlen(x)/ne

iPMAC yes (3.5d+1)σ

2n−1 1 + dlen(x)/ne

VPMAC no (3d+1)σ

2n−1 1 + dlen(x)/`e

(upto a constant). Bernstein [5] also gave a different short proof. Petrank and Rackoff [20] proved
the same bound (with a different constant) on CBC for messages with the prefix property, i.e., no
message is a prefix of another.

The bound was improved by Bellare, Pietrzak and Rogaway [2] who proved a bound of md
2

2n (12+
8m3

2n) for messages with the prefix property, where m is the maximum number of n-bit blocks in
any query. The dominating term in this expression is md2/2n, which improves upon the previous
bound of m2d2/2n. In fact, the importance of the work in [2] is that it was the first paper to prove
a bound of the type md2/2n for some PRF construction.

As mentioned earlier, a parallel MAC scheme called protected counter sum was described by
Bernstein [4]. This scheme uses a compressing function as its building block and cannot be replaced
by a block cipher. Black and Rogaway [6] and later Rogaway [21] described block cipher based
methods for parallel message authentication. The scheme in [6] was called PMAC and the one
in [21] was called PMAC1; currently, the scheme in [21] itself is called PMAC. The construction
in [21] is based on an efficient construction of tweakable block cipher (TBC) family; the notion of
tweakable block ciphers was introduced in [14]. Chakraborty and Sarkar [7] generalised the TBC
construction in [21] and hence obtained several variants of PMAC.

The bound on the advantage of PMAC forgery was shown to be cσ2/2n, for some constant c,
where σ is the total number of n-bit blocks provided by the adversary in all its queries. Following
the work in [2], this bound was improved by Minematsu and Matsushima [17] to a constant times
md2/2n, where m is the maximum of the lengths of all the queried messages. Nandi and Mandal [19]
showed a bound of (5dσ − 3.5d2)/2n for PMAC.

Note. In this paper, “random” does not necessarily mean “uniform random”. When required, we
will explicitly mention the uniformity condition. In most papers, q is used to denote the number of
queries made by an adversary. We use d to denote this quantity. This may be taken to denote the
fact that we are counting only distinct queries.

2 Basic Definitions and Results

Let S be a finite non-empty set and define χd(S) to be

χd(S) = {(x1, . . . , xd) ∈ Sd : xi 6= xj , 1 ≤ i < j ≤ d}. (1)

5

In other words, χd(S) consists of all (x1, . . . , xd) such that x1, . . . , xd are distinct elements of S.
Let ρ be a function from S to T and d be a positive integer. The natural extension of ρ to a

function from Sd to T d obtained by applying ρ to each component will be denoted by Γρ,d, i.e., for
any x = (x1, . . . , xd) ∈ Sd,

Γρ,d(x) = Γρ,d(x1, . . . , xd) = (ρ(x1), . . . , ρ(xd)). (2)

Note. The number of elements in a set S will be denoted by #S and the absolute value of a real
number a will be denoted by |a|. The length of a binary string x will be denoted by len(x).

Definition 1. A set U is said to be a δ-large subset of a set S, if U is a subset of S and #U ≥
δ ×#S.

Let S be a non-empty set and λ be a function from S to non-negative integers, i.e., we associate
a non-negative integer with each element of S. In our applications, the set S will consist of binary
strings and for x ∈ S, λ(x) will denote the number of n-bit blocks (counting partial blocks) into
which x can be divided, for some fixed positive integer n. For the moment, however, we will
not be requiring this interpretation. We will simply call λ to be a length function on S. Given
x = (x1, . . . , xd) ∈ Sd, we define λ(x) =

∑d
i=1 λ(xi).

Let m ≥ d ≥ 1. The following two functions will be useful later.

p(m, d) = m(m− 1)(m− 2) · · · (m− (d− 1))
r(m, d) =

(
1− 1

m

) (
1− 2

m

)
· · ·
(
1− d−1

m

)
.

}
(3)

Proposition 1. Let m ≥ d ≥ 1. Then
1

p(m, d)
≥ 1
md

and
p(m, d)
md

= r(m, d) ≥ 1− d(d− 1)
2m

.

Proof: The bound on p(m, d) is obvious and the bound on r(m, d) follows on noting that (1 −
a/m)(1− b/m) ≥ (1− (a+ b)/m). ut

Proposition 2. For a finite nonempty set S, #χd(S) = p(#S, d) ≥
(

1− d(d− 1)
2#S

)
(#S)d. Con-

sequently, χd(S) is a
(
1− d(d−1)

2#S

)
-large subset of Sd.

We will be studying functions from a set S to a finite non-empty set T . The set itself could be
(countably) infinite, but, we will be interested in a finite number of elements of S. Our main object
of study are random functions from S to T . Let TS denote the set of all functions from S to T .
By an uniform random function ρ from S to T we will mean an element of TS chosen uniformly at
random. A more convenient way to view ρ is the following. For any x ∈ χd(S), Γρ,d(x) is uniformly
distributed over T d, i.e., in other words, the outputs of ρ on distinct inputs are independent and
uniformly distributed. If S = T , then we can talk about a permutation π of T , which is a bijection
π : T → T . By a uniform random permutation, we will mean a permutation chosen uniformly at
random from the set of all permutations of T . Again, this means that for any x ∈ χd(S), Γπ,d(x) is
uniformly distributed over χd(T). Other examples of random (but not uniform random) functions
can be obtained: let T be a finite field and S = T 2; choose a uniform random α ∈ T and define
ρ : S → T as ρ(a0, a1) = a1α + a0. Then ρ is also a random function but not a uniform random
function.

6

2.1 A Useful Inequality

The following result will be useful later.

Lemma 1. Let m1, . . . ,md be non-negative integers and σ =
∑d
i=1mi. Then

1.
∑

1≤i<j≤d
min(mi,mj) ≤

∑
1≤i<j≤d

max(mi,mj) ≤ dσ.

2.
∑

1≤i<j≤d
(mi +mj) ≤ 2dσ.

Proof: Without loss of generality suppose that m1 ≥ m2 ≥ · · · ≥ md.

∑
1≤i<j≤d

max(mi,mj) =
d∑
i=1

d∑
j=i+1

max(mi,mj)

= (d− 1)m1 + (d− 2)m2 + · · ·+md−1

≤ d
d∑
i=1

mi

= dσ.

Point (2) follows on noting that mi +mj ≤ 2 max(mi,mj). ut

2.2 Interpolation and Collision Probabilities

Let S and T be sets and F be a random function from S to T . For x ∈ χd(S) and y ∈ T d, the
probability Pr[ΓF,d(x) = y] = Pr[F (x1) = y1, . . . , F (xd) = yd] has been called a d-interpolation
probability in [4].

Definition 2. Let F : S → T be a random function and λ be a length function on S. Let U be a
subset of T d. We will say that the function F is (d, σ, δ)-interpolating on U with respect to λ if for
all x ∈ χd(S) with λ(x) ≤ σ and for all y ∈ U ,

Pr[ΓF,d(x) = y] ≥ δ/#U.

Here δ could possibly depend on d and σ.

A collision for a function F consists of two distinct elements x and x′ in the domain of F such
that F (x) = F (x′).

Definition 3. Let F be a random function with domain S.

1. Let x 6= x′ be elements of S. The event CollF (x, x′) is defined to be the event F (x) = F (x′).
When F is clear from the context, then we will omit the subscript F .

2. For x ∈ χd(S), we define the collision bound CBF (x) to be

CBF (x) =
∑

1≤i<j≤d
Pr[F (xi) = F (xj)].

An immediate consequence of this definition is the following result.

7

Lemma 2. Let F : S → T be a random function and x ∈ χd(S). Then

Pr[ΓF,d(x) ∈ χd(T)] ≥ 1− CBF (x). (4)

Proof: Let Y = (Y1, . . . , Yd) = ΓF,d(x) = (F (x1), . . . , F (xd)). Then

Pr

 ∨
1≤i<j≤d

(Yi = Yj)

 ≤ ∑
1≤i<j≤d

Pr [(Yi = Yj)] = CBF (x)

and

Pr [Y ∈ χd(T)] = Pr

 ∧
1≤i<j≤d

(Yi 6= Yj)

 = 1− Pr

 ∨
1≤i<j≤d

(Yi = Yj)

 ≥ 1− CBF (x).

ut
We define two kinds of collision resistance for F , depending on whether the collision probability

depends on the length function or not.

Definition 4. Let F be a random function with domain S and λ be a length function on S.

1. F is said to be ε-CR, if for any two distinct x, x′ ∈ S, Pr[CollF (x, x′)] ≤ ε, for some constant ε.
2. F is said to be ε-CR with respect to λ, if for any two distinct x, x′ ∈ S, Pr[CollF (x, x′)] ≤

ε×max(λ(x1), λ(x2)), for some constant ε.

The following result shows the intuitively clear fact that if collisions are unlikely for a random
function F , then it behaves like an injective function, i.e., with high probability distinct inputs are
mapped to distinct outputs.

Lemma 3. Let d and σ ≥ d be positive integers; and F : S → T be a random function and λ be a
length function on S. Let x ∈ χd(S) and σ = λ(x).

1. If F is ε-CR, then Pr[ΓF,d(x) ∈ χd(T)] ≥
(
1− d(d−1)ε

2

)
.

2. If F is ε-CR with respect to λ, then Pr[ΓF,d(x) ∈ χd(T)] ≥ (1− εdσ) .

Proof: We obtain bounds on CBF (x) and then the results follow from Lemma 2. In the first case,
it is easily seen that CBF (x) ≤ (d(d− 1)ε)/2. For the second case, we have

CBF (x) ≤
∑

1≤i<j≤d
Pr [F (xi) = F (xj)]

≤
∑

1≤i<j≤d
εmax(λ(xi), λ(xj))

≤ εdσ.

The last inequality follows from Lemma 1. ut
It may be noted that having low collision probabilities does not imply high interpolation prob-

abilities. For example, let T be a finite field and Fα be a random function mapping T 2 to T by
(a0, a1) 7→ a0 + αa1, where α is a uniform random element of T . Then it is easy to show that Fα
has low collision probabilities whereas the value of Fα on two distinct inputs uniquely determines
α and hence interpolation probabilities for d > 2 are low.

8

2.3 Linear Functions With Low Collision Probabilities

In some of the constructions to be described later, we will be making use of linear functions with
certain properties. The purpose of this section is to define these properties and mention known
functions which possesses these properties.

Definition 5. Let T = GF (2n) be the finite field having 2n elements. We say that a function
ψ : T → T is a proper masking function if it satisfies the following properties.

1. For any fixed α ∈ T ; any non-negative integer k with 0 ≤ k ≤ 2n − 2; and a uniform random
β ∈ T ; Pr[ψk(β) = α] = 1/#T .

2. For any fixed α ∈ T ; distinct integers k1, k2 with 0 ≤ k1 < k2 ≤ 2n − 2; and a uniform random
β ∈ T ; Pr[ψk1(β)⊕ ψk2(β) = α] = 1/#T .

3. For any fixed α ∈ T ; distinct integers k1, k2 with 0 ≤ k1 < k2 ≤ 2n − 2; and uniform random
(β1, β2) ∈ χ2(T), Pr[ψk1(β1)⊕ ψk2(β2) = α] = 1/(#T − 1).

There is a very general class of linear functions satisfying Definition 5.

Proposition 3. Let T = GF (2n) and ψ : T → T be a linear function whose minimal polynomial
τ(u) over GF (2) is of degree n and is primitive over GF (2). Then ψ satisfies Definition 5.

Proof: Since τ(u) is primitive over GF (2) and is of degree n, it follows that ψ is invertible and so
for every non-negative integer k, ψk is also invertible. The first point follows from this observation.

Define φi,j : T → T as φi,j(γ) = ψi(γ)⊕ψj(γ). The second point will follow if we can show that
φi,j is a bijection. For this, it is sufficient to show that φi,j is an injection. So, suppose that γ and
γ′ are distinct elements of T and let, if possible, φi,j(γ) = φi,j(γ′). Set δ = γ ⊕ γ′ and note that
since γ 6= γ′, we have δ to be non-zero. Then

0 = φi,j(γ)⊕ φi,j(γ′)
= ψi(γ)⊕ ψj(γ)⊕ ψi(γ′)⊕ ψj(γ′)
= (ψi ⊕ ψj)(δ). (5)

For any non-zero element ν of IF2n , define Mν(u) to be the minimal degree polynomial such that
(Mν(ψ))(ν) = 0. Since τ(u) is the minimal polynomial of ψ it follows that τ(ψ) = 0, i.e., τ(ψ)
maps all elements of T to 0. As a result, (τ(ψ))(ν) = 0. By the minimality of Mν(u) it follows that
Mν(u) divides τ(u). But, τ(u) is irreducible and so Mν(u) = τ(u).

Consider the minimal polynomial Mδ(u) of δ. Since δ is non-zero, by the above argument, we
have Mδ(u) = τ(u). Also, from (5), it follows that τ(u) = Mδ(u) divides ui ⊕ uj = ui(1 ⊕ uj−i)
(assuming without loss of generality that i < j). Since τ(u) is primitive, it does not divide ui and
so τ(u)|(1⊕ uj−i). It is well known that if τ(u) is a primitive polynomial of degree n, then it does
not divide 1⊕ ui for any i with 0 < i < 2n − 1 (see for example [13]). Since 0 ≤ i < j < 2n − 1, we
have 0 < j − i < 2n−1 and hence, τ(u)|(1⊕ uj−i) contradicts the primitivity property of τ(u). This
shows that φi,j is a injection.

Consider the map ζk1,k2 : T 2 → T which takes (β1, β2) to ψk1(β1) ⊕ ψk2(β2). We count the
number of pre-images of α ∈ T for ζk1,k2 . For every value of β1, β2 = ψ−k2(ψk1(β1)⊕ α) is unique.
Hence, there are #T pre-images for any α. Since (β1, β2) is uniformly distributed over χ2(T), the
result follows. ut

There are known examples of ψ which satisfy Proposition 3.

9

1. In this case, ψ : β 7→ uβ mod τ(u) and ψk : β 7→ ukβ mod τ(u).
2. Suitable word oriented linear feedback shift registers (LFSRs) can also be used. Using word

oriented LFSRs provides a faster masking strategy.

The first strategy has been used in various constructions [6, 21, 10, 9], though the required properties
have not really being brought out as clearly as given in Definition 5. The second strategy has been
suggested in [7, 22]. The security of the constructions to be described later do not depend on the
actual implementation of ψ. We will simply use the properties given by Definition 5.

2.4 Adversarial Model

We will consider computationally unbounded adversaries and consequently, without loss of gener-
ality, we consider an adversary A to be a deterministic algorithm. (This approach has been used
earlier [24, 4].) This algorithm interacts with an oracle and outputs a bit. The oracle takes as input
an element of a set S and produces as output an element of a finite non-empty set T . The adversary
A makes d queries to the oracle and then produces its output. Without loss of generality, we will
make the assumption that the adversary never repeats a query.

Since A is deterministic, the behaviour of A can be described by a sequence of functions
φ1, φ2, . . . , φd and another function φ. The function φ1() does not take any input and produces
x1 ∈ S as output. This is the first input provided by A to the oracle and gets back y1 in return;
A then computes x2 = φ2(y1) as its second input and gets back y2; in the general case, A com-
putes xi = φi(y1, . . . , yi−1) as its i-th oracle input and gets back yi. Since no query is repeated,
x = (x1, . . . , xd) ∈ χd(S).

Finally, the function φ takes as input (y1, . . . , yd) and produces as output a bit, which is taken
to be the output of A. Note that the functions φ1, . . . , φd and φ do not depend on the oracle. We
will use the notation φA1 , φ

A
2 , . . . , φ

A
d and φA when we wish to emphasize the association of the

functions to the adversary A. Denote by Pr[AF → 1] the probability that A outputs 1, when the
oracle is F . The probability is over the randomness of F since A itself is deterministic. Formally,

Pr[AF → 1] =
∑

(y1,...,yd)∈T d
Pr[(F (φA1 ()) = x1) ∧ (F (φA2 (y1)) = x2)

∧ · · · ∧ (F (φAd (y1, . . . , yd−1)) = xd) ∧ (φA(y1, . . . , yd) = 1)]
=

∑
(y1,...,yd)∈Acc(A)

Pr[(F (φA1 ()) = x1) ∧ (F (φA2 (y1)) = x2)

∧ · · · ∧ (F (φAd (y1, . . . , yd−1)) = xd)]

where

Acc(A) = {(y1, . . . , yd) : φA(y1, . . . , yd) = 1}. (6)

The set Acc(A) is the set of (y1, . . . , yd) which result in A producing 1 as output. This set does not
depend on F and is determined entirely by A.

Suppose that the oracle is instantiated twice by two random functions F and G both mapping
S to T . Then the advantage of A in distinguishing between F and G is defined to be

AdvA,(F,G) = Pr[AF → 1]− Pr[AG → 1]. (7)

If G is a uniform random function from S to T , then the advantage will be denoted by AdvA,F .

10

Let the domain of F be a non-empty set S and λ be a length function on S. For positive
integers d and σ, we define AdvF (d, σ) to be the maximum advantage of any adversary which
makes at most d distinct queries x1, . . . , xd such that

∑q
i=1 λ(xi) ≤ σ. The quantity AdvF (d, σ) is

the PRF-advantage of F . Alternatively, if AdvF (d, σ) ≤ ε, then we say that F is a (d, σ, ε)-PRF.
Vaudenay proved a useful result (Lemma 22 in [24]) which reduces the task of bounding the

advantage of an adaptive adversary to that of a probability calculation. A special version of this
result was given by Bernstein (Theorem 3.1 in [4]) with a different proof. Theorem 1 below is a
restatement of Vaudenay’s result in a form suitable for our requirement. The ideas given in the
proof below are from [24, 4]; we provide more details.

Theorem 1. Let d and σ ≥ d be positive integers; F be a random function from a set S to a
set T ; and λ be a length function on S. Suppose that U is a (1 − ε1)-large subset of T d and F is
(d, σ, 1− ε2)-interpolating on U with respect to λ. Then,

AdvF (d, σ) ≤ ε1 + ε2.

Note. Here ε2 could depend on d and σ and in our applications later, it indeed does.
Proof: For any adversary A, let V = Acc(A), where Acc(A) is as defined in (6). Then V is the
subset of T d such that if A receives any y ∈ V as reply to the oracle queries, then A outputs 0,
i.e., V = {y ∈ T d : φA(y) = 0}. As noted earlier, V is independent of the function F and depends
only on the adversary A. Then for any random function F ,∑

y∈V
Pr[ΓF,d(x) = y] +

∑
y/∈V

Pr[ΓF,d(x) = y] = 1. (8)

Also,

Pr[AF → 1] =
∑
y/∈V

Pr[ΓF,d(x) = y] and similarly, Pr[AF ∗ → 1] =
∑
y/∈V

Pr[ΓF ∗,d(x) = y]. (9)

Here F ∗ is a uniform random function from S to T . So,

AdvA = Pr[AF → 1]− Pr[AF ∗ → 1]
(9)
=
∑
y/∈V

Pr[ΓF,d(x) = y]−
∑
y/∈V

Pr[ΓF ∗,d(x) = y]

(8)
=
∑
y∈V

(Pr[ΓF ∗,d(x) = y]− Pr[ΓF,d(x) = y])

=
∑

y∈V,y∈U
(Pr[ΓF ∗,d(x) = y]− Pr[ΓF,d(x) = y])

+
∑

y∈V,y/∈U
(Pr[ΓF ∗,d(x) = y]− Pr[ΓF,d(x) = y]) . (10)

Since F is (d, σ, 1 − ε2)-interpolating on U with respect to λ, we have that for all x ∈ χd(S) with
λ(x) ≤ σ and for all y ∈ U ,

Pr[ΓF,d(x) = y] ≥ (1− ε2)/(#U) ≥ (1− ε2)/(#T)d. (11)

11

F ∗ is a random function from S to T , and hence, for all x ∈ χd(S) and for all y ∈ T d, Pr[ΓF ∗,d(x) =
y] = 1/(#T)d. Using this and (11) we have for all x ∈ χd(S) and for all y ∈ U ,

Pr[ΓF ∗,d(x) = y]− Pr[ΓF,d(x) = y] ≤ ε2 Pr[ΓF ∗,d(x) = y].

Consequently,∑
y∈V,y∈U

(Pr[ΓF ∗,d(x) = y]− Pr[ΓF,d(x) = y]) ≤ ε2
∑

y∈V,y∈U
Pr[ΓF ∗,d(x) = y] ≤ ε2. (12)

By the fact that U is a (1− ε1)-large subset of T d, (#T)d − (#U) ≤ ε1(#T)d, and so,∑
y∈V,y/∈U

(Pr[ΓF ∗,d(x) = y]− Pr[ΓF,d(x) = y]) ≤
∑

y∈V,y/∈U
Pr[ΓF ∗,d(x) = y]

=
∑

y∈V,y/∈U

1
(#T)d

≤ (#T)d − (#U)
(#T)d

≤ ε1. (13)

Substituting (12) and (13) in (10) gives the desired inequality. ut
Informally, Theorem 1 states that if F has high interpolation probability on a large subset U

of T d, then F is a PRF.

Note. In many situations, it is difficult to directly lower bound an interpolation probability of the
form Pr[F (x1) = y1, . . . , F (xd) = yd]. Instead, it turns out to be easier to lower bound Pr[E] and
Pr[F (x1) = y1, . . . , F (xd) = yd|E], where E is a suitably chosen event. Usually, E stands for the event
that there are no internal collisions. Suppose that Pr[E] ≥ 1− ε2,1 and Pr[F (x1) = y1, . . . , F (xd) =
yd|E] ≥ 1− ε2,2, then Pr[F (x1) = y1, . . . , F (xd) = yd] ≥ 1− ε2 where ε2 = ε2,1 + ε2,2.

3 Domain Extenders

Many constructions use only a block cipher and the output of F1 is obtained by invoking a block
cipher several times. Such functions can be viewed as composition of the type F = F2 ◦ F1, where
F2 is a uniform random permutation and F1 is built using F2. When considered as keyed functions,
F will have a single key which is the key for F2.

More generally, suppose that we are given a random function ρ which maps from a set U to T .
Using ρ, we wish to construct another random function F which maps from a set S to T , where
S is larger than U . In other words, we wish to extend the domain from U to S. To capture such
constructions, we have the following definition.

Definition 6. Let ρ : U → T be a random function. A function F : S → T is said to be a domain
extender for ρ if F = ρ ◦ F (ρ)

1 , where F1 : S → U and F1 satisfies the following conditions.

1. On any input, F1 invokes ρ a finite number of times.
2. The only randomness involved in computing F1 comes from the invocations of ρ.

12

When ρ is clear from the context, we will write F1 instead of F (ρ)
1 . We associate a canonical length

function λ to S. For every x in S, λ(x) denotes the total number of times ρ is invoked to compute
the final output of F .

We wish to compute Pr[ΓF,d(x) = y], where x ∈ χd(S) and y ∈ T d. F1 and ρ “interact” and
hence we need to account for such possibilities. To this end, we make the following definition.

Definition 7. Let ρ : U → T be a random function and F = ρ◦F1 be a map from S to T satisfying
Definition 6. For x, x′ ∈ S with x 6= x′, let Z = F1(x), Z ′ = F1(x′); λ(x) = m+ 1, λ(x′) = m′ + 1;
and let U1, . . . , Um and U ′1, . . . , U

′
m be the inputs to the different invocations of ρ in the computation

of F1(x) and F1(x′) respectively.

1. Define Self-Disjoint(x) to be the event
∧m
i=1(Z 6= Ui).

2. Define Pairwise-Disjoint(x, x′) to be the event
(∧m

i=1(Z ′ 6= Ui) ∧
∧m′
j=1(Z 6= U ′i)

)
.

Definition 8. Continuing with Definition 7, we say that F1 is (ε1, ε2)-disjoint with respect to λ, if
for all pairs of distinct x, x′ ∈ S,

Pr[Self-Disjoint(x)] ≤ ε1(λ(x)) and Pr[Pairwise-Disjoint(x, x′)] ≤ ε2(λ(x) + λ(x′)).

Note that the notion of disjointness is defined for F1 rather than for F .
We now prove the main result on domain extenders. In the result below, we consider ρ to be

either a uniform random function or a uniform random permutation. The more general case is when
we have lower bound on the interpolation probabilities of ρ. A result of this type can be proved as
in the result below; but, such a result is of less practical interest, since, in practice, ρ will mostly
be a block cipher which is modelled as a uniform random permutation.

Theorem 2. Let ρ : U → T be a random function and F = ρ ◦F1 be a map from S to T satisfying
Definition 6. Suppose that F1 is ε-CR with respect to the length function λ and also (ε1, ε2)-disjoint
with respect to λ. Then for positive integers d and σ ≥ d the following holds.

1. If ρ is a uniform random function, then

AdvF (d, σ) ≤ σ(dε+ ε1 + 2dε2).

2. If U = T and ρ is a uniform random permutation, then

AdvF (d, σ) ≤ σ(dε+ ε1 + 2dε2) +
dσ

#T
.

Proof: Let x = (x1, . . . , xd) ∈ χd(S) with mi + 1 = λ(xi). Then σ = d+
∑d
i=1mi. Set Zi = F1(xi)

and let Ui,1, . . . , Ui,mi be the inputs to ρ in the computation of Zi. Let Distinct(x) and Disjoint(x)
be the events

Distinct(x) =
∧

1≤i<j≤d
(Zi 6= Zj) (14)

and

Disjoint(x) =
d∧
i=1

d∧
j=1

mj∧
k=1

(Zi 6= Uj,k). (15)

13

The event Distinct(x) is the event ΓF1,d(x) ∈ χd(U). Using the fact that F1 is ε-CR with respect to
λ and Lemma 3, we have

Pr
[
Distinct(x)

]
≤ dσε. (16)

We have

Pr
[
Disjoint(x)

]
= Pr

 d∨
i=1

d∨
j=1

mj∨
k=1

(Zi = Uj,k)

= Pr

[
d∨
i=1

mi∨
k=1

(Zi = Ui,k)

]
+ Pr

 d∨
i=1

d∨
j=1,

j 6=i

mj∨
k=1

(Zi = Uj,k)

≤

d∑
i=1

Pr

[
mi∨
k=1

(Zi = Ui,k)

]
+ Pr

 d∨
i=1

d∨
j=i+1

(mj∨
k=1

(Zi = Uj,k) ∨
mi∨
k=1

(Zj = Ui,k)

)
≤

d∑
i=1

Pr
[
Self-Disjoint(xi)

]
+

d∑
i=1

d∑
j=i+1

Pr

[(mj∨
k=1

(Zi = Uj,k) ∨
mi∨
k=1

(Zj = Ui,k)

)]

≤
d∑
i=1

Pr
[
Self-Disjoint(xi)

]
+

d∑
i=1

d∑
j=i+1

Pr
[
Pairwise-Disjoint(xi, xj)

]
. (17)

Since F1 is (ε1, ε2)-disjoint with respect to λ, we have

Pr
[
Self-Disjoint(xi)

]
≤ ε1λ(xi) and Pr

[
Pairwise-Disjoint(xi, xj)

]
≤ ε2(λ(xi) + λ(xj)).

Using (17), we have

Pr
[
Disjoint(x)

]
≤

d∑
i=1

Pr
[
Self-Disjoint(xi)

]
+

d∑
i=1

d∑
j=i+1

Pr
[
Pairwise-Disjoint(xi, xj)

]

≤ ε1
d∑
i=1

λ(xi) + ε2

d∑
i=1

d∑
j=i+1

(λ(xi) + λ(xj))

≤ ε1σ + 2ε2dσ. (18)

Lemma 1 is used in the last line. Combining (16) and (18) we have

Pr[Distinct ∧ Disjoint] = 1− Pr
[
Distinct ∨ Disjoint

]
≥ 1− Pr

[
Distinct

]
− Pr

[
Disjoint

]
≥ 1− σ(dε+ ε1 + 2dε2). (19)

Let y ∈ T d. Then,

Pr[ΓF,d(x) = y] ≥ Pr[(ΓF,d(x) = y) ∧ (Distinct ∧ Disjoint)]
= Pr[ΓF,d(x) = y|(Distinct ∧ Disjoint)]× Pr[Distinct ∧ Disjoint]
≥ (1− σ(dε+ ε1 + 2dε2))× Pr[ΓF,d(x) = y|(Distinct ∧ Disjoint)]. (20)

14

The event “Distinct∧Disjoint” means that the random variables Z1, . . . , Zd have distinct values and
they are different from any previous inputs to ρ obtained during the computations of Zi = F1(xi).
In other words, the event “Distinct∧Disjoint” ensures that the set {Z1, . . . , Zd} is a set of d “new”
values in the domain of ρ.

If ρ is a uniform random function, then Γρ,d(Z1, . . . , Zd) is uniformly distributed over T d. If ρ
is a uniform random permutation, then the situation is more complicated. We consider these two
cases separately.

1. If ρ is a uniform random function, then for any y ∈ T d, Pr[ΓF,d(x) = y|(Disjoint ∧ Distinct)] =
1/(#T)d and so,

Pr[ΓF,d(x) = y] ≥ 1
#T d

× (1− σ(dε+ ε1 + 2dε2)).

This lower bounds the interpolation probabilities of F . Now, applying Theorem 1, we have

AdvF (d, σ) ≤ σ(dε+ ε1 + 2dε2).

2. Suppose that ρ is a uniform random permutation of T . Let Vi,j = ρ(Ui,j) and define V =
∪di=1{Vi,1, . . . , Vi,mi}. Fix y = (y1, . . . , yd) ∈ χd(T). Let Allowed(y) be the event ∧dk=1(yk /∈ V).
Since ρ is a uniform random permutation, for any yk, Pr[yk = Vi,j] = 1/#T . Note that σ =
d+

∑d
i=1mi.

Pr[Allowed(y)] = Pr[
d∧

k=1

(yk /∈ V)] = 1− Pr

[
d∨

k=1

(yk ∈ V)

]

≥ 1−
d∑

k=1

Pr[yk ∈ V]

= 1−
d∑

k=1

Pr[
d∨
i=1

mi∨
j=1

(yk = Vi,j)]

≥ 1−
d∑

k=1

d∑
i=1

mi∑
j=1

Pr[yk = Vi,j]

= 1− d(σ − d)
#T

.

Let us consider when ρ(Zk) can be equal to yk. Suppose that Allowed(y) does not occur, i.e.,
there is a yk which is equal to some Vi,j . Then ρ(Zk) = yk implies that Zk = Ui,j . The last event
cannot happen if Disjoint occurs. So,

Pr[ΓF,d(x) = y|(Disjoint ∧ Distinct ∧ Allowed(y))] = 0.

On the other hand, if both (Disjoint ∧ Distinct) and Allowed(y) occur, then

Pr[ΓF,d(x) = y|(Disjoint ∧ Distinct ∧ Allowed(y))] =
1

p(#T − (σ − d), d)
≥ 1

(#T)d
.

Now, for any y ∈ χd(T),

Pr[ΓF,d(x) = y|(Disjoint ∧ Distinct)] ≥ 1
(#T)d

× Pr[Allowed(y)]

≥ 1
(#T)d

(
1− d(σ − d)

#T

)
.

15

This gives

Pr[ΓF,d(x) = y] ≥ 1
(#T)d

(
1− d(σ − d)

#T

)
× (1− σ(dε+ ε1 + 2dε2))

≥ 1
(#T)d

(
1− σ(dε+ ε1 + 2dε2)− d(σ − d)

#T

)
.

Again, applying Theorem 1, we have

AdvF (d, σ) ≤ σ(dε+ ε1 + 2dε2) +
d(σ − d)

#T
+
d(d− 1)

2#T

≤ σ(dε+ ε1 + 2dε2) +
dσ

#T
.

This completes the proof of the result. ut
A simpler variant of Theorem 2 is given by the following result. The difference to Theorem 2 is

the condition on collision resistance. In this case, collision resistance does not depend on the length
function λ.

Theorem 3. Let π : T → T be a uniform random permutation and F = π ◦ F1 be a map from S
to T satisfying Definition 6. Suppose that F1 is ε-CR and it is (ε1, ε2)-disjoint with respect to λ.
Then for positive integers d and σ ≥ d

AdvF (d, σ) ≤ d(d− 1)ε
2

+ σ(ε1 + 2dε2) +
dσ

#T
.

The advantage of Theorems 2 and 3 is that they reduce the problem of upper bounding the
PRF-advantage for F to computing certain probabilities. These can be done using purely combi-
natorial/probabilistic methods. Previous works have identified similar tasks for specific functions,
e.g., CBC-MAC. To the best of our knowledge, the generality with which we have worked has not
been done earlier.

4 New Parallelizable Constructions

The basic idea of parallelizing is to apply the permutation π separately on (masked) blocks and
then XOR the outputs together and apply π on this XOR. Though simple in principle, this idea
needs to be worked out carefully. PCS [4] and PMAC [6, 21] are based on this principle. PCS uses a
compressing function, whereas PMAC uses a permutation. We describe two constructions: iPMAC
and VPMAC using a permutation and a compressing function respectively. The construction iPMAC
improves upon PMAC by removing a design stage discrete log computation requirement while
VPMAC improves upon PCS by reducing the number of invocations of the compressing function.
As mentioned earlier, a suitable compressing function which can be used in practical constructions
is surf [3] and has been suggested in [4].

In Figure 1, we define a formatting function which takes as input a binary string x of length
len(x) ≥ 0; a positive integer l; and returns as output P1, . . . , Pm for some m ≥ 1 and where each
Pi is an l-bit string. Further, the function Format(x, l) also defines an integer r with 1 ≤ r ≤ l. If
r = l, then this denotes that l divides len(x), and if 1 ≤ r < l, then this denotes that l does not
divide len(x) and that the last block Pm has been padded to length l.

16

We note that the map x 7→ Format(x, l) is not an injective map. Non-injectivity arises due to
strings of the following type: x is a string of length il (for some i ≥ 1) ending with 10j (for some
0 ≤ j ≤ l − 2) and x′ is the prefix of x of length il − j − 1. Then Format(x, l) = Format(x′, l). On
the other hand, the function⋃

i≥1

{0, 1}i \
⋃
i≥1

{0, 1}il
 Format7−→

⋃
i≥1

{0, 1}il

is an injective function. So, the only way in which x and x′ map to the same string under Format is
when l divides the length of one but not the length of the other. In our construction, we take care
of this difference by using suitable masks.

Format(x, l).
1. Write len(x) = (m− 1)l + r, where 1 ≤ r ≤ l.
2. If r < l, then set pad(x) = x||10l−r−1.
3. Else set pad(x) = x.
4. Format pad(x) into m blocks P1, . . . , Pm each of length l.
Return (P1, . . . , Pm).

Fig. 1. Padding and formatting of arbitrary length strings. This also defines the values of m and r from len(x) and l.

Fix positive integers ` and n with ` ≥ n and let U = {0, 1}` and T = {0, 1}n. Let ρ : U → T
be a uniform random function. The natural additive operation on equal length binary strings is
⊕. If x and y are unequal length binary strings, we define x⊕→y to be the binary string obtained
by XORing the shorter string into the least significant bits of the longer string. By bot(P) we will
mean the n least significant bits of P ; by top(P) we will mean the (`− n) most significant bits of
P .

Let fStr be a fixed element of U , i.e., a fixed `-bit string and R = ρ(fStr) ∈ T . Let ψ be a function
satisfying Definition 5. Given any binary string x, let (P1, . . . , Pm) be the output of Format(x, `)
given in Figure 1 which also defines the values of m and r. Define VPMAC to be a function

VPMAC : x 7→ Cm

where Ci = ρ(Di) for 1 ≤ i ≤ m and

Di =

ψi(R)⊕→Pi 1 ≤ i ≤ m− 1;
(C1 ⊕ · · · ⊕ Cm−1)⊕→Pm i = m, r = `;
(C1 ⊕ · · · ⊕ Cm−1 ⊕ ψm(R))⊕→Pm i = m, r < `.

(21)

Figure 2 shows how a 4-block message is processed using PCS and VPMAC. The message lengths,
however, are different. PCS processes 4n bits, while VPMAC processes 4` bits. In general, PCS
requires 1+dlen(x)/ne invocations of ρ to process a message x, while VPMAC requires 1+dlen(x)/`e
invocations of ρ. Thus, VPMAC requires approximately a fraction n/` of the invocations of PCS.

Define VPHASH to be the function which maps x to Dm. Then VPMAC = ρ ◦ VPHASH and
VPMAC is a domain extender for ρ in the sense of Definition 6.

17

PCS VPMAC

B
BB

B
BB

B
BB

B
BB

B
BB

�
��

�
��

�
��

�
��

�
��

ρ ρ ρ ρ ρ

? ? ? ? ?

? ? ? ? ?

1||P ′1 2||P ′2 3||P ′3 4||P ′4 0||esum

T1 T2 T3 T4 tag

B
BB

B
BB

B
BB

B
BB

�
��

�
��

�
��

�
��

ρ ρ ρ ρ

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - - �∆1 ∆2 ∆3 Λ esum

? ? ? ?

P1 P2 P3 P4

C1 C2 C3 tag

Fig. 2. Tag generation using PCS and VPMAC. In PCS, esum = T1 ⊕ T2 ⊕ T3 ⊕ T4. In VPMAC, ∆i = ψi(R); Λ = 0n

if the last block is full and Λ = ψ4(R) if the last block has been padded; and esum = C1 ⊕ C2 ⊕ C3.

Lemma 4. Let x and x′ be distinct messages which are mapped to Dm and D′m′ under VPHASH.
Then Pr[Dm = D′m′] ≤ (m+m′)/#T .

Proof: Assume without loss of generality that m ≥ m′. There are four cases depending on whether
r and r′ are less than ` or equal to `.

Case r = `, r′ = `: Since x 6= x′, let j be the first index such that either (1 ≤ j ≤ m′ and Pj 6= P ′j)
or (j = m′ + 1 and Pi = P ′i for 1 ≤ i ≤ m′).

If j = m = m′, then Pi = P ′i for 1 ≤ i ≤ m′ − 1 and so Ci = C ′i for 1 ≤ i ≤ m − 1. Then
Dm⊕D′m′ = ((C1⊕· · ·⊕Cm)⊕→Pm)⊕((C ′1⊕· · ·⊕C ′m)⊕→P ′m) = Pm⊕P ′m) and so Pr[Dm = D′m′] = 0.

If j = m = m′ + 1, then Pi = P ′i for 1 ≤ i ≤ m′ − 1 and so Ci = C ′i for 1 ≤ i ≤ m− 1. So,

Dm ⊕D′m′ = ((C1 ⊕ · · · ⊕ Cm−1)⊕→Pm)⊕ ((C ′1 ⊕ · · · ⊕ C ′m′−1)⊕→P ′m′)
= Cm−1⊕→(Pm ⊕ P ′m′)

Cm−1 is the output of the uniform random function ρ on Dm−1 = ψm−1(R)⊕→Pm−1, where R =
ρ(fStr). The probability that ψm−1(R)⊕→Pm−1 equals fStr is 1/#T . Using this a simple calculation
shows the probability that Cm−1 equals bot(Pm ⊕ P ′m′) is at most 2/#T .

So, we can assume that either (m > m′ + 1, j = m′ + 1) or (1 ≤ j ≤ m′ and m > m′).
In both cases, we have Dj = ψj(R)⊕→Pj . We claim that with high probability Dj is different
from D1, . . . , Dj−1, Dj+1, . . . , Dm−1 and D′1, . . . , D

′
m−1. To see this first note that Di = ψi(R)⊕→Pi,

1 ≤ i ≤ m− 1; and D′k = ψk(R)⊕→P ′k, 1 ≤ k ≤ m′ − 1. Let E be the event

E :

m−1∧
i=1,

i 6=j

(Dj 6= Di)

 ∧
m′−1∧

i=1

(Dj 6= D′i)

 .
Then

Pr[E] = 1− Pr[E]

≥ 1−
m−1∑
i=1,

i 6=j

Pr[Dj = Di]−
m′−1∑
i=1

Pr[Dj = D′i].

18

If j < m′, then since Pj 6= P ′j , Dj = ψj(R)⊕→Pj 6= ψj(R)⊕→P ′j = D′j . In all other cases, the
individual probabilities are 1/#T by properties of ψ given in Definition 5. So,

Pr[E] ≥
(

1− m+m′ − 3
#T

)
.

We have

Pr[Dm 6= D′m′] ≥ Pr[(Dm 6= D′m′) ∧ E]
= Pr[(Dm 6= D′m′)|E] Pr[E]

≥ Pr[(Dm 6= D′m′)|E]×
(

1− m+m′ − 3
#T

)
Consider the event ((Dm 6= D′m′)|E). Since ρ is a uniform random function from U to T , and Dj is
distinct from all other Dis and D′1, . . . , D

′
m′−1, we have that Cj is is independent of all other Cis

and C ′1, . . . , C
′
m′−1. Let

Q = (C1 ⊕ · · · ⊕ Cj−1 ⊕ Cj+1 ⊕ · · · ⊕ Cm−1)⊕ (C ′1 ⊕ · · · ⊕ C ′m′−1).

Then Cj is independent of Q.
Since r = r′ = `, we have

Dm = (C1 ⊕ · · · ⊕ Cm−1)⊕→Pm
D′m′ = (C ′1 ⊕ · · · ⊕ C ′m′−1)⊕→P ′m′ .

So, Dm ⊕ D′m′ = 0 implies that Cj ⊕ Q = bot(Pm ⊕ P ′m′). If Dj 6= fStr, then Cj is uniformly
distributed over T . Using this, we have Pr[Dm 6= D′m′ |E] ≥ 1− 2/#T .

From this we have, Pr[Dm 6= D′m′] ≥ (1 − (m + m′ − 1)/#T) and so Pr[Dm = D′m′] ≤ (m +
m′)/#T .

Case r < `, r′ < `: In this case, we have

Dm = (C1 ⊕ · · · ⊕ Cm−1 ⊕ ψm(R))⊕→Pm
D′m′ = (C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ ψm

′
(R))⊕→P ′m′ .

If m = m′, then the terms involving ψ cancel out and the analysis is exactly the same as that for
the case r = r′ = n. (If r 6= r′, then Format ensures that the last blocks are distinct, i.e., Pm 6= P ′m′ .
If Pm = P ′m′ (and so necessarily r = r′), then there is an i with 1 ≤ i ≤ m′− 1, such that Pi = P ′i .)

So suppose m > m′. Let E be the event that fStr is not equal to any of D1, . . . , Dm−1 or
D′1, . . . , D

′
m′−1. The probability of E is at least 1− (m + m′ − 2)/#T . In a manner similar to the

previous case, it can be shown Pr[Dm 6= D′m′ |E] ≥ 1 − 1/#T so that we again have, Pr[Dm 6=
D′m′] ≤ (m+m′)/#T .

Cases (r = `, r′ < `) and (r < `, r′ = `): Both the cases are similar and we consider only r = n
and r′ < n. In this case, we have

Dm = (C1 ⊕ · · · ⊕ Cm−1 ⊕ ψm(R))⊕→Pm
D′m′ = (C ′1 ⊕ · · · ⊕ C ′m′−1)⊕→P ′m′ .

19

It is possible that m = m′ and Pi = P ′i for 1 ≤ i ≤ m even though x 6= x′. This happens when
x = pad(x′) 6= x′. Then, bot(Dm ⊕ D′m′) = ψm(R) which is equal to 0 with probability 1/#T . If
m > m′ or Pi 6= P ′i for some 1 ≤ i ≤ m′, then an analysis similar to the previous case shows the
desired result. ut

Lemma 5. Let x and x′ be two distinct messages having m and m′ blocks respectively. Then

1. Pr[D′m′ = Di] ≤ 2/#T for 1 ≤ i ≤ m− 1;
2. Pr[Dm = Di] ≤ 2/#T for 1 ≤ i ≤ m− 1.

Consequently, Pr[Pairwise-Disjoint(x, x′)] ≤ (m+m′)/#T and Pr[Self-Disjoint(x)] ≤ 2m/#T .

Combining Lemmas 4, 5 and Theorem 2 with ε = ε1 = ε2 = 2/#T , we have the following result.

Theorem 4. Let d and σ ≥ d be positive integers. Then

AdvVPMAC(d, σ) ≤ (6d+ 2)σ
#T

.

4.1 iPMAC

Suppose that in the construction for VPMAC we have ` = n and ρ = π is a uniform random
permutation from T to T . Then the construction that we get works with block ciphers. In more
details, we define iPMAC to be a function

iPMAC : x 7→ Cm

where Ci = π(Di) for 1 ≤ i ≤ m and

Di =

Pi ⊕ ψi(R) 1 ≤ i ≤ m− 1;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm i = m, r = n;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ ψm(R) i = m, r < n.

(22)

Processing of a 4-block message using iPMAC is shown in Figure 3. The same figure also describes
the processing of a 4-block message using PMAC. The difference is in the interpretation of Λ.

π π π π

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - - �∆1 ∆2 ∆3 Λ esum

? ? ? ?

P1 P2 P3 P4

C1 C2 C3 tag

Fig. 3. Tag generation using iPMAC Here ∆i = ψi(R); Λ = 0n if the last block is full and Λ = ψ4(R) if the last block
has been padded; and esum = C1 ⊕ C2 ⊕ C3.

20

iPMAC. If the last block is full, then Λ = 0n and if the last block is partial (and padded), then
Λ = ψm(R). (See Section 2.3 for more details about this map.)

PMAC. If the last block is full, then Λ = umR mod τ(u) and if the last block is partial (and
padded), then Λ = (u⊕ 1)umR mod τ(u). The map m 7→ um mod τ(u) is called the powering-
up map [21]. For this scheme to be secure, the discrete log of (u ⊕ 1) to the base u has to
be “large”. The actual value depends on τ(x) and for specific values of τ(x) with n = 64 and
n = 128, the values are given in [21]. Changing τ(x) will require a re-computation of the discrete
log to ensure that it is “large”; also for n = 256, it will be difficult to compute the discrete log.

There are several advantages to using iPMAC instead of PMAC. For one thing, iPMAC entirely
avoids the discrete log computation required during the design stage. As a result, it is possible to
simply change τ(x) to another primitive polynomial and obtain a distinct algorithm. So, iPMAC
can be seen as providing an easily reconfigurable family of algorithms.

The second advantage is the possibility of faster masking operations. The description of iPMAC
does not depend on the actual choice of ψ. As a result, one can use a tower representation of
the underlying field and a word-oriented LFSR to instantiate ψ. In software, this leads to a faster
algorithm compared to the powering-up map. See [22] for more details on the comparison between
word-oriented LFSR and the powering-up map.

The security of iPMAC is obtained in a manner similar to that of VPMAC. In this case, we have
to be careful that π is a permutation rather than a function. The analysis, however, is very similar
and hence we omit the details. The final result is as follows.

Theorem 5. Let d and σ ≥ d be positive integers. Then

AdviPMAC(d, σ) ≤ (7d+ 2)σ
#T

.

5 Conclusion

We have analysed pseudorandom functions for use in symmetric key message authentication. Start-
ing from a useful result by Vaudenay [24] and Bernstein [4], we prove a general result on bounding
the advantage of a PRF built using a uniform random permutation or a uniform random function.

A new parallelizable construction VPMAC has been described and analysed using this general
result. VPMAC uses a keyed compressing function and reduces the number of invocations of the
compressing function compared to PCS [4]. The variant where the compressing function is replaced
by a block cipher is called iPMAC. This improves upon PMAC [21] by removing the requirement
of a design stage discrete log computation.

An important feature of our work is the avoidance of the heavy machinery of game playing
technique. The entire analysis is reduced to simple probability calculations which are done using
elementary techniques.

Acknowledgement

We would like to thank Mridul Nandi for pointing out Lemma 22 of [24] to us.

21

References

1. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message authentication
code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

2. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Analyses for CBC MACs. In Victor
Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 527–545. Springer, 2005.

3. Daniel J. Bernstein. SURF: Simple Unpredictable Random Functions. http://pobox.com/~djb/papers/surf.

dvi.
4. Daniel J. Bernstein. How to stretch random functions: The security of protected counter sums. J. Cryptology,

12(3):185–192, 1999.
5. Daniel J. Bernstein. A short proof of the unpredictability of the cipher block chaining, 2005. http://cr.yp.to/

papers.html#easycbc.
6. John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authentication. In

Knudsen [12], pages 384–397.
7. Debrup Chakraborty and Palash Sarkar. A general construction of tweakable block ciphers and different modes

of operations. IEEE Transactions on Information Theory, 54(5):1991–2006, 2008.
8. Joan Daemen and Vincent Rijmen. The design of Rijndael: AES – The Advanced Encryption Standard (Infor-

mation Security and Cryptography). Springer, Heidelberg, 2002.
9. M. Dworkin. Recommendation for block cipher modes of operations: the CMAC mode for authentication, May

2005. National Institute of Standards and Technology, U.S. Department of Commerce. NIST Special Publication
800-38B.

10. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas Johansson, editor, FSE, volume
2887 of Lecture Notes in Computer Science, pages 129–153. Springer, 2003.

11. Charanjit S. Jutla. PRF Domain Extension Using DAGs. In Shai Halevi and Tal Rabin, editors, TCC, volume
3876 of Lecture Notes in Computer Science, pages 561–580. Springer, 2006.

12. Lars R. Knudsen, editor. Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory
and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings,
volume 2332 of Lecture Notes in Computer Science. Springer, 2002.

13. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications, revised edition. Cambridge
University Press, 1994.

14. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

15. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Comput., 17(2):373–386, 1988.

16. Ueli M. Maurer. Indistinguishability of random systems. In Knudsen [12], pages 110–132.
17. Kazuhiko Minematsu and Toshiyasu Matsushima. New Bounds for PMAC, TMAC, and XCBC. In Alex Biryukov,

editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages 434–451. Springer, 2007.
18. Mridul Nandi. A simple and unified method of proving indistinguishability. In Rana Barua and Tanja Lange,

editors, INDOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages 317–334. Springer, 2006.
19. Mridul Nandi and Avradip Mandal. Improved Security Analysis of PMAC. Cryptology ePrint Archive, Report

2007/031, 2007. http://eprint.iacr.org/.
20. Erez Petrank and Charles Rackoff. CBC MAC for Real-Time Data Sources. J. Cryptology, 13(3):315–338, 2000.
21. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In

Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer,
2004.

22. Palash Sarkar. A general mixing strategy for the ECB-Mix-ECB mode of operation. Inf. Process. Lett.,
109(2):121–123, 2008.

23. Serge Vaudenay. Decorrelation over Infinite Domains: The Encrypted CBC-MAC Case. In Douglas R. Stinson
and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume 2012 of Lecture Notes in Computer
Science, pages 189–201. Springer, 2000.

24. Serge Vaudenay. Decorrelation: A theory for block cipher security. J. Cryptology, 16(4):249–286, 2003.

22

