
PET SNAKE: A Special Purpose Architecture
to Implement an Algebraic Attack in Hardware

Willi Geiselmann1, Kenneth Matheis2, and Rainer Steinwandt2

1Institut für Kryptographie und Sicherheit, Fakultät für Informatik,
Universität Karlsruhe (TH), Am Fasanengarten 5, 76128 Karlsruhe, Germany,

geiselma@ira.uka.de
2Department of Mathematical Sciences, Florida Atlantic University,

777 Glades Road, Boca Raton, FL 33431, {rsteinwa, kmatheis}@fau.edu

Abstract. In [24] Raddum and Semaev propose a technique to solve sys-
tems of polynomial equations over F2 as occurring in algebraic attacks on
block ciphers. This approach is known as MRHS, and we present a special
purpose architecture to implement MRHS in a dedicated hardware de-
vice. Our preliminary performance analysis of this Parallel Elimination
Technique Supporting Nice Algebraic Key Elimination shows that the
use of ASICs seems to enable significant performance gains over a soft-
ware implementation of MRHS. The main parts of the proposed archi-
tecture are scalable, the limiting factor being mainly the available band-
width for interchip communication. Our focus is on a design choice that
can be implemented within the limits of available fab technology. The
proposed design can be expected to offer a running time improvement in
the order of several magnitudes over a software implementation.

We do not make any claims about the practical feasibility of an attack
against AES-128 with our design, as we do not see the necessary theoret-
ical tools to be available: deriving reliable running time estimates for an
algebraic attack with MRHS when being applied to a full-round version
of AES-128 is still an open problem.

Keywords: block cipher, algebraic attack, cryptanalytic hardware, MRHS

1 Introduction

Algebraic attacks have become an important cryptanalytic tool, and the
security of major cryptographic algorithms relies on the infeasibility of
solving certain systems of polynomial equations. Popular approaches for
dealing with such systems of equations are based on the use of Gröbner
basis techniques and SAT-solvers—prominent examples including Buch-
mann et al.’s discussion of AES-128 [9] and Courtois et al.’s discussion
of KeeLoq [11]. Adding to the toolbox of algebraic cryptanalysis, in [24]
Raddum and Semaev propose a technique known as MRHS (Multiple
Right Hand Sides) to handle polynomial systems of equations over F2.

This algorithm is particulary well-suited for describing systems of equa-
tions for an algebraic key recovery attack against common block ciphers
such as AES or DES.

A full running time analysis of MRHS is to the best of our knowledge
not available, but the observed performance in software seems quite favor-
able, and in comparison to algebraic attacks involving the computation of
a Gröbner basis, the required amount of memory seems easier to predict.
Given arbitrarily large amounts of memory, MRHS should in principle be
able to solve large systems of equations, but this is obviously not prac-
tical. Consequently, the hardware architecture we propose builds on an
adaption of MRHS where the amount of memory is fixed. The specific
design choices made are motivated by the limits of currently available
fab technology, and the scalability of major components should facilitate
the construction of small prototypes with technology that is available at
moderate cost.

Our contribution. We propose an ASIC design for implementing MRHS,
which according to our analysis enables significant performance gains
compared to an MRHS implementation in software. Owing to the mod-
ular design and scalability, we think the proposed architecture to be of
considerable interest when trying to mount algebraic attacks on relevant
block ciphers. Building on a 45 nm manufacturing process, already a mod-
erately sized network of chips of standard size seems capable of coping
with rather non-trivial systems of equations. Our architecture is certainly
far from optimal, and we hope that the promising results obtained so
far stimulate further research along this line. Certain components of the
architecture, specifically those for row reduction and multiplication of
matrices over F2, might be of independent interest.

Related work. A first (unpublished) proposal for using dedicated hardware
to implement MRHS has been developed by Semaev in 2007, and, after
modifications, recently been published in [26, 27]. The architecture de-
scribed below has been developed independently and uses a very different
approach. The use of special hardware for attacking a specific symmetric
cipher has been proposed in [4]. In addition, numerous special purpose
architectures for cryptanalytic purposes have been devised and discussed
in the research literature—some prominent examples being TWINKLE
[28, 19], TWIRL [29] and their successors [14, 17] for factoring integers,
or Deep Crack [13] and COPACOBANA [18] for attacking DES. As linear
algebra over F2 plays an essential role in MRHS, it comes to no surprise
that our design benefits from available work related to the Number Field

Sieve: For the row reduction over F2 we modify the linear algebra design
SMITH of Bogdanov et al. [6, 7] to enable a more efficient handling of
sparse matrices as occurring in the context of MRHS. (Note that SMITH
has enjoyed previous success in [4].) The resulting JONES (Justifiable
Optimization Neatly Enhancing SMITH) device might be of indepen-
dent interest for other applications involving sparse matrices over F2.

The overall data flow in our architecture is remotely reminiscent of the
systolic linear algebra design in [15], a main difference being the emphasis
on a two-dimensional data flow. Two-dimensional data flows are well-
known from special purpose designs for the Number Field Sieve, like [3,
20, 16], but the organization of the data flow in the new design is quite
different and explains the choice of the acronym PET SNAKE for our
architecture.

Structure of the paper. We start with a brief discussion of MRHS where
we detail the variant of the algorithm underlying our proposal. Section 3
gives a description of the overall architecture we use. The overall architec-
ture uses several identical copies of a main processing unit whose various
components are explained in Section 4. Further details on the individ-
ual components are given in the appendix. Finally, Sections 5–7 analyze
the expected performance of the complete device, comparing it with a
software implementation of MRHS.

2 Preliminaries: Multiple Right Hand Sides (MRHS)

For a detailed discussion of MRHS, we refer to Raddum and Semaev’s
work [24]. Here we restrict to an informal review of those aspects of the
MRHS technique which are needed to explain the proposed hardware
architecture. In particular, we do not discuss how to set up an MRHS
system of linear equations to mount an algebraic attack on a block cipher
like AES-128 [21] and refer to [24, Section 6] for more details on this (cf.
also [22] and [25, Chapter 5]). In our software experiments we worked
with a reduced round version of PRESENT [5]. The derivation of the
pertinent MRHS system is fairly standard—we do not claim any relevant
originality for this, and omit the somewhat tedious details.

2.1 Basic Terminology

For our purposes, all matrices and vectors are assumed to have entries
from F2, and it is helpful to fix some terminology:

Let x := (x1, . . . , xy)
t be a column vector consisting of y Boolean

variables, A a k× y matrix of rank k, and b1, b2, . . . , bs column vectors of
length k. An equation

Ax = b1, b2, . . . , bs (1)

is called an MRHS system of linear equations with right hand sides b1,
b2, . . . , bs. A solution to (1) is a vector in Fy2 satisfying one of the particular
linear equation systems Ax = bi. The set of all solutions to (1) is the union
of solutions to the individual linear systems Ax = bi (i = 1, . . . , s). In an
effort to manipulate the data contained in the above column vectors bi, we
write them side-by-side to form a matrix L and rewrite Equation (1) as
Ax = [L]. The brackets around L emphasize that we are not working with
a regular equation of matrices, and instead of the term MRHS system of
linear equations the term symbol is often used.

Given a system of symbols

S1 : A1x = [L1]
...

Sn : Anx = [Ln]

, (2)

by a solution to such a system we mean a vector in Fy2 satisfying all of the
underlying nMRHS systems of linear equations (where x = (x1, . . . , xy)

t).
The goal of the algorithm discussed next, and consequently of the PET
SNAKE design below, is to find all solutions of (2).

2.2 Solving a System of Symbols

There are three main steps, to which we refer as agreeing, gluing, and
equation extraction. The proposed PET SNAKE architecture exploits sim-
ilarities between these algorithmic building blocks for reusing hardware
components—therewith reducing the area complexity of the design.

Agreeing of symbols The basic approach is to remove some of the
columns b in a right hand side Li, if no one solution of Aix = b can be a
solution to the System (2). The mechanism by which this is achieved is
pairwise agreeing of symbols. Namely, let Si : Aix = [Li] and Sj : Ajx =
[Lj] be two symbols. Then Si and Sj agree if for every b ∈ Li, there exists
a b′ ∈ Lj such that the linear system(

Ai
Aj

)
x =

(
b
b′

)
(3)

is consistent, and, vice versa, for each b′ ∈ Lj there exists a b ∈ Li such
that (3) is consistent.

When Si and Sj do not agree, one removes those columns b from Li for
which the linear system Aix = b is inconsistent with Ajx = [Lj]. Dually,
those columns b′ from Lj are removed, for which Ajx = b′ is inconsistent
with Aix = [Li]. Different strategies can be used for this approach, and
for the design of PET SNAKE we follow the technique in Figure 1 (see
[24, Section 3]) and realize it with a specialized hardware architecture.

1. Produce a nonsingular transform matrix U = Uij of size t × t such that
the product UA is a matrix with zeroes in its last r = rij rows and of
rank t− r. If r = 0, the symbols agree.

2. If r > 0, then compute the matrices UTij and UTji. Let Prij denote the
set of of UTij-column projections to the last r coordinates. If Prij = Prji,
the symbols agree.

3. If Prij 6= Prji, first remove all columns from Li whose UTij-associated
column is such that its last-r-coordinate projection is not found in Prji.
Name the resulting matrix L′i. Then similarly remove columns from Lj and
name the resulting matrix L′j . The symbols Aix = [L′i] and Ajx = [L′j]
agree.

Fig. 1. Agreeing two symbols Aix = [Li] and Ajx = [Lj], where Lη ∈ Fkη×sη2 . Here
A :=

(
Ai
Aj

)
is the vertical concatenation of Ai and Aj , i. e., A has t := ki + kj rows.

Similarly Tij :=
(
Li
0

)
and Tji :=

(
0
Lj

)
have t rows each.

It is important to note that if two symbols Sh and Si agree, but Si
and Sj disagree, columns may be deleted in one or both of Li and Lj .
After this happens, it is possible for Sh to disagree with either of the
modified symbols, and so Sh will have to be re-agreed with them. During
that agreement, columns from Lh may have to be deleted, and so on. In
this manner, a chain reaction of column deletions may occur. Hence, in
order to ensure that a system of symbols gets to a pairwise-agreed state,
in PET SNAKE we perform the Agreeing1 Algorithm in Figure 2 (see [24,
Section 3.1]).

While the symbols in a System (2) do not pairwise agree,

1. find Si and Sj which do not agree
2. agree Si and Sj with the agreeing procedure in Figure 1.

Fig. 2. Agreeing1 Algorithm.

Gluing of symbols After a system of symbols is in a pairwise-agreed
state, we may choose to glue some symbols. The gluing of two symbols

Si : Aix = [Li] and Sj : Ajx = [Lj] is a new symbol Bx = [L] whose
set of solutions is the set of common solutions to Aix = [Li] and Ajx =
[Lj]. Once this new symbol is formed, it is inserted into the system and
the two symbols Si and Sj which formed it are no longer necessary and
hence removed from the system. Obtaining the matrix B is easy: with
the notation in Figure 1, B is just the submatrix of UA in its last t − r
nonzero rows. The matrix L has t−r rows and the columns are formed by
adding one column from UTij to one column from UTji. More specifically,
we add a column from UTij and one from UTji, if they have the same
projection to the last r coordinates. Reducing the sum to its first t − r
coordinates yields a column of L, and forming all such matching pairs
yields the complete matrix L. Gluing two matrices Li, Lj of width si and
sj may result in an L with as many as si · sj columns. Consequently, we
may not be able to afford to actually compute certain glues, and instead
restrict to gluing only pairs of symbols where the number of columns in
the resulting symbol does not exceed a certain threshold.

Once several pairs of symbols have been glued, the resulting system
will usually not be in a pairwise-agreed state, so the Agreeing1 Algorithm
in Figure 2 can be run again, initiating another round of agreeing and
gluing. The eventual goal of successive agreements and gluings is to obtain
a system of symbols consisting only of a single symbol.

Equation Extraction From a given Symbol S : Ax = [L], where L ∈
Fk×s2 , we can try to extract URHS (Unique Right Hand Side) equations:
choosing an appropriate nonsingular transformation matrix V of size k×k,
the product V L is upper triangular with zeroes in its last r rows. Denoting
by Pr the matrix formed by the V A-column projections to the last r
coordinates, we obtain the r linear equations Pr · x = 0. Next to these
homogeneous equations, it may be possible to extract a nonhomogeneous
linear equation: from the upper triangular matrix V L we can read off if
the all-one-vector (1, . . . , 1) is in the span of the rows of L. If this is the
case, we obtain the nonhomogeneous linear equation (zA)x = 1, where z
is a row vector of length k such that zL = (1, . . . , 1). The resulting r or
r+ 1 URHS equations can be combined into a gather symbol which then
can be added to the system of symbols under consideration.

Guessing Variables Owing to the chosen threshold, it may happen that
a system is in a pairwise-agreed state, no URHS equation can be computed
and no pair of symbols can be glued anymore. In such a situation, one
is forced to guess a value of a variable. Before a guess is committed, the

system of symbols—to which we will refer as state—is stored. Then the
guess is performed by constructing a new symbol whose A part is one row
of all zeroes except for a single 1 in the position of the guessed variable,
and whose L part is a single value, either 0 or 1, depending on the value
of the guess. Such a symbol is inserted into the system, and then pairwise
agreeing, computation of URHS equations, and gluing continue as normal.
If after some steps the state, again, does not allow any URHS equation
to be extracted or pair of symbols to be glued, the state is again saved
and another guess is committed.

Of course it is possible that in this process a guess for a variable is
incorrect. This discovery manifests in the following manner: during the
agreement of two symbols, all right hand sides of at least one of the
symbols get removed. When this happens, the state must be rolled back
to a previous state, and a different guess must be made. The practice of
guessing variables, then, follows something akin to a depth-first search.

2.3 Implementation Choices

Fundamental design parameters for the PET SNAKE architecture have
been chosen in such a way that it is possible to host a complete system
of symbols as needed for a key recovery attack on a modern block cipher
like AES-128. For AES-128 specifically, the pertinent system of symbols
involves 1,600 variables, and the initial system requires only 320 symbols.
(As comparison, for PRESENT, which has 31 rounds, the initial system
consists of more than 500 symbols, and also the number of variables is
higher than for AES-128). In general, handling systems with no more than
212 symbols still seems within the reach of PET SNAKE, and up to 2047
variables can be handled. For gluing symbols, we chose our threshold to be
220 right hand sides. This seems a nice balance between the upper limits
of software implementations and the upper limits of current hardware
storage abilities. In light of the multiplicative nature of the growth of
right hand sides during gluing, giving one or two more powers of 2 to the
threshold does not seem to readily contribute to a significantly reduced
running time.

In the described form, PET SNAKE has a storage capacity of 4.792
TB (not including the ‘active’ DRAMs in the traffic control chips), or
enough to store 18,000 full-size symbols. This number was chosen based
on the following observations: the symbol count for AES-128 will drop to
180 before threshold takes over, and it is possible we may have to guess
up to 100 key variables before we find the key; hence up to 100 states
may need to be stored along the way. Very rarely will a state actually

be comprised of nothing but full-size (that is, 257 MB) symbols, so it
will almost always be possible to store more than 100 states; 400 or more
states are not unlikely.

3 Overall Architecture

A complete PET SNAKE architecture consists of a several interconnected
boards with each board hosting several Main Processing Units (MPUs).
Each MPU is comprised of a small group of chips wired in a particular
way, and there are p×p such MPUs placed in a grid across the individual
boards, where p = 2λ is a power of 2. Subsequently we use λ = 5, yielding
a total of 25 ·25 = 1024 MPUs, but the proposed architecture scales within
reasonable limits; depending on the resources available, other parameter
values, like p2 = 28 might be an interesting option.

Each MPU can communicate with its north, south, east, and west
neighbor MPUs (with no wraparound). For directing the action of the
p2 MPUs, a single Master Control Processor (MCP) is used. The MCP
will make most of the decisions regarding which symbols to send where,
which symbols to glue, and when to guess a variable.1 The MCP, which
sits in a north corner, has agents which sit at the north end of the board,
one per column. Each agent has a southbound bus that connects to each
MPU in that column via ‘hops’ between MPUs, so each off-chip part
of the bus is short. Each agent communicates to the MCP horizontally
via ‘hops’ between agents. Figure 3 gives a schematic view of the overall
architecture.

3.1 Initialization

The initial system of n symbols is derived from a particular known (plain-
text, ciphertext)-pair, and a solution to the system of symbols yields a
secret key for the attacked symmetric cipher that is consistent with the
particular (plaintext, ciphertext)-pair. The symbols are loaded onto the
p2 MPUs as evenly as possible. Let g be the number of symbols stored
in each MPU—should the symbol count not be evenly divisible by the
number of MPUs, we imagine empty symbols to fill in the gaps. Now
imagine labelling each symbol in each MPU with a number in {1, . . . , g}.
We call all symbols labelled with the same number a snake. Hence we
have g snakes. If at this point g = 1, we halve the number of MPUs to

1 By replacing the MCP, the overall algorithm can be changed, e. g., to accomodate
a different MRHS variant.

MPU

MCPAgent
56

MPU

10
2456

1024

56

Agent
56

Agent
56 … Agent

56

MPU
1024

56

MPU
1024

56

… MPU

1024

56

… MPU

56

… MPU

56

MPU

10
2456

1024
MPU

10
2456

1024

MPU

10
2456

1024
MPU

10
2456

1024
MPU

10
2456

1024

10
2456

10
2456

10
2456 56

… … … …
… MPUMPU

1024
MPU

1024
MPU

1024

10
24

10
24

10
24

Fig. 3. Overall architecture of PET SNAKE.

use, redistribute the symbols to this half, and try again; we continue this
process until g = 2. The collection of MPUs now occupied with symbols
is called the active area for this computation. Any inactive MPUs will
be taken advantage of with parallelism, discussed later. The MCP deter-
mines a Hamiltonian cycle through all MPUs, i. e., a path through all the
MPUs such that one can move from one MPU to one of its neighbors in
a closed circuit, without visiting the same MPU twice. The MCP will do
the same for smaller groups of MPUs: p× p

2 , p2×
p
2 , p2×

p
4 , etc.—all the way

down to 2 × 1. This data can be hardwired into the MCP, and we may
assume that the MCP knows a path for each possible size active area.

3.2 Processing of Symbols

During a computation, it may happen that the symbol count n drops
below the number of MPUs used to process them. If this happens, we
move the symbols so that only half of the MPUs will be occupied with
symbols. (This guarantees g = 2.) The active area is then halved. Any
inactive MPUs will be taken advantage of with parallelism. Hence, at all
points in the process, if g is not a power of 2, it will proceed as if g were
the next highest power of 2 for board divisibility purposes. The overall
algorithm run by PET SNAKE is summarized in Figure 4.

1. Enter the agreement phase:
– Each symb. is agreed to each other symb. until all symbols are pairwise-agreed.
– If, in the agreement phase, we get a symbol whose L-matrix got all its columns

deleted, then the system is inconsistent, so go to (6).
2. Enter the equation propagation phase:

– Equations are generated from each symbol, and then are row reduced, and
then are row reduced against the current eq. set, forming the new eq. set.

– If an inconsistency is found, go to (6).
– If the new equation set is of maximum rank, we terminate successfully since a

key has been found.
– If there is no new information in the new equation set, go to (5).

3. Make the new gather symbol from the new equation set and agree it to all symbols
in the system.
– If we get a symbol whose L-matrix got all its columns deleted, then the system

is inconsistent, so go to (6).
4. Glue the gather symbol to all symbols in the system, and go back to (1).
5. Enter the glue phase:

– If no two symbols can be glued such that the result’s L matrix has no more
than 220 columns, save the state (that is, all the symbols and the equation set)
in the MPUs and then go to (7).

– If necessary, move symbols so that any given pair of symbols to be glued appear
in the same MPU. Different MPUs can be used for different pairs.

– Pairwise glue the symbols whose resultant’s L matrix has no more than 220

columns. Delete the symbols which contributed to each glue.
– If necessary, move symbols among the MPUs so that they have the same

number of symbols. If there are less symbols than MPUs, move the symbols
so that they only occupy half the MPUs. This halves the active area.

– If one symbol remains, terminate successfully as keys have been found. Oth-
erwise, go to (1).

6. If a guess of a variable has not yet been made, terminate with failure as the original
system has no solutions. Otherwise, roll back the symbols to a good state.

7. Make a new guess of the variables:
– The head MPU loads the equation set into its row reducer and introduces a

row corresponding to the guess.
– If the new guess is inconsistent with the current equation set, roll back the

equation set and go to (7). Otherwise, go to (3).

Fig. 4. Overall algorithm run by PET SNAKE.

Before going into details of the overall algorithm, we want to reiterate
that, to the best of our knowledge, the existing theoretical analysis of
MRHS does not allow a precise prediction of how often the individual
steps in Figure 4 are to be performed. This problem is not specific to
PET SNAKE and arises for software implementations as well. For the
subsequent analysis this means that we focus on judging PET SNAKE’s
performance relative to a software implementation.

Absolute running times obviously depend on the particular block ci-
pher/system of symbols, but even for a specific block cipher like AES-128

we do not see how to extrapolate reliable running time estimates for the
full-round version from experimental results with reduced round versions.

3.3 PET SNAKE’s Agreement Phase

The majority of activity on the board will be during the agreement phase.
This is broken down into k stages, where k = dlogg ne.

First Stage. In the first stage, the entire active area is used. All but
one snake (i. e., snakes 1 through g − 1) stay put on the MPUs. On each
MPU, the symbol in the motile snake (i. e., snake g) is agreed to ev-
ery other symbol on that MPU. When the last such agreement is taking
place, the MPU sends the motile snake’s updated symbol (that is, with
deletions incorporated) to the next MPU in the active area’s path. Since
this is happening simultaneously for all MPUs in the active area, each
MPU gets the next symbol in the motile snake. This continues q times,
where q is the number of MPUs in the active area. If a deletion has oc-
curred somewhere in this process, the MCP records the affected symbol’s
number, but otherwise continues normally.

Now, snake g will be fixed, and snake g − 1 will move. The only
difference here is that symbols from snake g−1 will not need to be agreed
with those from snake g since that agreement has already been performed.
After q times, snakes g and g− 1 will be fixed, but snake g− 2 will move.
And so on. If a deletion has occurred for any of the g snakes, the MCP
moves the affected symbols into larger-numbered snakes (e. g., g, g − 1)
and moves unaffected symbols into smaller-numbered snakes. Often this
is just a renumbering inside an MPU, so no movement happens in these
cases. Then the first stage is repeated again, noting that if all the symbols
in a lower-numbered snake have no deletions in the previous run, it is not
required to become motile. If a deletion occurs, the MCP repeats the
process of moving affected symbols and starting the stage again.

Second Stage. At this point, all snakes are agreed to all other snakes,
but the symbols within each snake still need to be addressed. The active
area is split up into g stage areas, each with q/g MPUs. For each 1 ≤ j ≤
g, symbols from snake j move to stage area j. After this move is complete,
we relabel each symbol in each MPU so that different snakes are formed,
but the snakes only move in their given stage area. Hence, each snake is
1/g the size it used to be. Now, the same process is performed as in the
first stage, but with smaller snakes and smaller paths.

If a deletion has been recorded in this stage, the stage is allowed to
complete, but not recur nor go into the next stage. Then the affected
symbols (from all stage areas) are grouped together into one (or possi-
bly more) q-sized snakes with large snake numbers, they are moved into
appropriate positions, and the first stage is entered again.

Subsequent Stages. If the second stage records no deletions, we con-
tinue this process of dividing the snakes and the stage areas by g until
the stage area is one MPU. (Deletions found in any subsequent stage are
handled the same way as described in the second stage.) At the last stage,
the g symbols comprise g snakes of size 1 each, and so they are simply
agreed to each other inside that MPU.

Time Estimate. The initial load’s symbols will most likely have A parts
whose 1s are in different positions, so any particular pair of symbols will
likely be already agreed, so no deletions will occur. After the first glue, it
is still likely no deletions will occur. After the second glue, however, things
get less predictable, but by this point the symbol count will drop by a
factor of 4. (In the case of AES-128, the threshold will take hold before
the second glue, so we can only expect the symbol count to halve before
guesses must be performed.) After these initial turns, deletion prediction
becomes much less obvious, and it is certainly possible to go through
many agreement phases before considering a glue. Handling deletions is
needed in both software and hardware implementations, and it seems fair
to consider PET SNAKE’s efficiency in handling deletions as being at
least comparable to that of a software implementation (see Section 6.2
and Appendix A). To get a handle on a time estimate for PET SNAKE’s
agreement phase we consider only the case that no deletions will occur.

We note that per stage there are g(g−1)/2 agreements per MPU, and
this happens q times in the first stage, q/g in the second, and so forth,
up to 1 in the last. Since g = n/q, adding up the costs we have

k−1∑
i=0

g(g − 1)

2
· q
gi

=
g(g − 1)

2
·n
g
·

(
1− 1

gk

1− 1
g

)
=

(g − 1)n

2
·

(
n−1
n
g−1
g

)
=
g(n− 1)

2

total agreements. Since we try to arrange things so that g is 2 as often as
possible, this translates into n− 1 agreements in these cases.

What is not included so far is the time of moving symbols between
stages. Let the active area have dimensions q1 × q2 = q where q1 ≤
q2, and suppose g is 2. After the first stage, a symbol moves along the

longer dimension, but halfway so that it can find its new position. Another
symbol from that position must get to where the first started, so they both
must use those directions. This will introduce a factor two slowdown in all
movement calculations. Hence, after the first stage it takes 2 ·

(q2
2

)
moves

to get the symbols into their new positions, and the stage area then has
dimensions q1 × q2

2 . We alternate which dimension we travel on in each
stage, so the next stage cost is 2

(q1
2

)
. Then 2 ·

(q2
4

)
, then 2 ·

(q1
4

)
, and so

on. Presuming k is even, this gives a time estimate of

(q1 + q2) ·

k
2
−1∑
i=0

1

2i
= (q1 + q2) ·

(
1−

(
1
2

)k/2
1− 1

2

)
= 2 · (q1 + q2) ·

2k/2 − 1

2k/2

< 2 · (q1 + q2)

total moves for the whole agreement phase.

The situation for g = 4 is not as easy, since symbols have to move to
different quadrants of the active area q1× q2. We observe that it must be
the case that q1 = q2, since the only time we might have g > 2 is in the
beginning, when we have the full board at our disposal.

Hence, we perform a sort of rotation, where each quadrant of sym-
bols (one symbol per MPU per move) moves to the next clockwise (or
counterclockwise) quadrant simultaneously. This is possible since all four
directional buses of each MPU can be used simultaneously, and no direc-
tional bus needs to be used more than once at a time. After the first stage,
in the first rotation the symbols whose target locations are in the diago-
nal quadrant move q1

2 in one direction. In the second rotation, these same
symbols move q1

2 in the appropriate perpendicular direction to get to their
target location. In the third rotation, symbols whose target quadrant are
clockwise of them will move q1

2 in that direction. The fourth rotation is
similar to the third, but for counterclockwise-bound symbols. Thus, we
have 4 ·

(q1
2

)
= 2 · q1 moves for this stage. Subsequent stages are similar

but the distance is half of the previous distance. Thus we have

k−1∑
i=0

2 ·
(q1

2i

)
= 2 · q1 · 2 ·

(
2k − 1

2k

)
< 4q1

total moves for the whole agreement phase.

3.4 PET SNAKE’s Equation Propagation Phase

During agreement, it is recorded whether a symbol had columns deleted.
PET SNAKE will extract equations from such symbols using each MPU
simultaneously and gather them all (together with the current equation
set) into a gather symbol, which is then agreed and glued to every symbol.
The propagation phase consists of either one or two extraction stages
(depending on if g is 2 or 4, respectively) followed by the resolution stage,
followed by the propagation stage.

Extraction Stages. In the first extraction stage, equations from all
symbols in snake 1 are extracted simultaneously and stored in each MPU.
Then equations from all symbols in snake 2 are extracted simultaneously.
All equations that have been extracted are then mass row reduced down
to at most 2047 equations. To illustrate this process, first, imagine a label
number from 0 through q−1 for each MPU in the path. (Label 0 is given
to the head MPU, which sits in the upper left corner of its active area.
Label 1 is given to the next MPU in the Hamiltonian cycle. And so on.
For ease of discussion, we also define the notation x ≡m y to mean that
m divides x− y, or alternately, x is congruent to y modulo m.)

Mass row reduction is then accomplished by the following process:
each MPU row reduces the equations from its symbols in snakes 1 and
2. Then the MPUs with labels ≡2 1 send their results to the MPU with
label 1 less. Now those MPUs with labels ≡2 0 have up to 4094 equations,
and each row reduces its set. This results in no more than 2047 equations.
Then the MPUs with labels ≡4 2 send their resulting equations to the
MPU with label 2 less. Another row reduction takes place. Then the
MPUs with labels ≡8 4 send their resulting equations to the MPU with
label 4 less. And so on, until equations get to the head MPU and are row
reduced. These results are then stored.

If there is a second extraction stage, equations from symbols in snakes
3 and 4 are extracted and mass row reduced to at most 2047 more equa-
tions (which will also lie in the head MPU); these are then row reduced
with the previous group of equations. The result is a group of at most
2047 equations called the gather equations.

Resolution Stage. The head MPU will then retrieve from storage the
current equation set—which corresponds to the symbol S0 in [25, Sec-
tion 3]. (In the beginning, the equation set consists of no equations.) Then
this is row reduced with the gather equations and the result is checked

for consistency. If an inconsistency is found, this is signaled to the MCP;
the MCP will then deem the current guess incorrect and move on to a
new guess. If no inconsistency is found, the result is checked for maximal
rank (i. e. number of nontrivial rows equal to n). If it has maximal rank,
the MCP is alerted that a solution has been found. Otherwise, the result
is stored as the new equation set. This is checked to see if there is a new
equation that was not in the old equation set via a row count. If there
is no new information, the glue phase begins; else, the propagation stage
begins.

Propagation Stage. The head MPU creates the gather symbol and
sends it to its east neighbor, and after that is done, it sends it to its
south neighbor. The east neighbor will store it and then send it to its
east neighbor, and then its south neighbor. And so on for all MPUs in
the top row of the active area. An MPU that received the symbol from its
north neighbor merely stores it and sends it to its south neighbor. Once
all MPUs receive the gather symbol, it is agreed to every symbol in the
MPU, with the results of the agreements propagated to the next MPU
in the Hamiltonian cycle. As with normal agreement, if every column
of a symbol’s L part gets deleted, the MPU signals the MCP that an
inconsistency is found. Otherwise, after all agreements are complete, each
MPU glues the gather symbol to each symbol it has.

Time Estimate. Since there are g symbols in an MPU and each MPU
extracts simultaneously, we pay the time cost of an extraction g times.
There are g

2 mass row reductions, each comprising log2 q+1 row reductions
and 1+2+4+· · ·+ q

2 = q−1 moves of at most 2047 equations. (Moving one
such equation set is much faster than moving a symbol, since an equation
is expressed in 2048 bits.) In the case of two extraction stages, we row
reduce an additional time. Propagating the gather symbol takes q1 + q2
moves, and finally since each MPU agrees, and then glues, simultaneously,
we pay the agreement time of two symbols g times and the glue time g
times.

3.5 PET SNAKE’s Glue Phase

Since the MCP knows which pairs of symbols will glue to produce a
symbol with 220 or less columns, it merely directs moves to get these
pairs into MPUs, and then the MPUs glue them in parallel. The number of
moves needed is not completely predictable, but we observe the following:

in the early stages of the algorithm, a given symbol can be glued to almost
every other symbol, so in particular each MPU won’t have to move any
symbols at all before gluing. In the later stages of the algorithm, very
few glues are called for (often only one or two), so symbols can be moved
directly to where they need to go. Since the active area is q1 × q2 MPUs,
this constitutes at most q1 + q2 − 2 moves.

Whatever the case, we can always elect to move symbols in the follow-
ing manner: for each pair of symbols to be glued, label one member as a
first component and the other as a second component. Symbols that are
not to be glued remain unlabelled. If g = 2 and there are two first com-
ponents in an MPU, relabel one as a second component and relabel its
mate as a first. Do this again if the new labelling causes another double.
And so on. Note this process cannot result in an infinite loop. Perform a
similar process for MPUs with two second components. If g = 4 and there
are three or more first components (or three or more second components)
in an MPU, perform a similar relabelling process.

Now, we move symbols along the snake in a two-stroke process. In the
first stroke, we move an out-of-place second component (or failing that,
an unlabelled symbol) from MPU 0 to MPU 1, from MPU 2 to MPU
3, and so forth. In the second stroke, we move an out-of-place second
component (or failing that, an unlabelled symbol) from MPU 1 to MPU
2, from MPU 3 to MPU 4, and so forth. Observe that an MPU keeps
a second component if it also has the associated first component. This
results in q − 1 moves if g = 2, or 2(q − 1) moves if g = 4.

The glue time, is in general higher than an agreement time. With
g = 2, we only pay the glue time once, since each MPU will be gluing all
gluable pairs in parallel with none waiting to be glued. With g = 4, we
pay the glue time at most twice; in general, the glue time is paid at most
g/2 times.

3.6 Parallelism

Once the active area becomes half the original board (or less), and a guess
is required, the MCP considers performing a parallel computation on the
inactive area. The MCP will make a guess for a key variable in one area,
and make the opposite guess for the same key variable in the other. Then
both areas will be considered active areas, but their computations will be
completely separated.

4 Main Processing Unit

The MPU is a collection of seven chips comprising five functional units,
each with its own responsibilities and behavior. We discuss each functional
unit in turn: the traffic controller, the row reducer, the multiplier, the hash
table, and the adder. Each functional unit is connected to a 2048-bit-wide
bus called the MPU bus.

4.1 MPU Data Flow

We describe the sequence of events that will occur inside each MPU when
it is agreeing, when it is extracting equations and when it is gluing. The
particular details of each component are discussed in that component’s
section below. Figure 5 gives an overview of how most of the components
are interconnected. (The traffic controller sits on the north end of the
MPU bus, directing traffic between it and other traffic controllers of other
MPUs.)

The high level order of operations during an agreement between two
symbols Si and Sj is as given in Figure 6, and the—somewhat similar—
procedure for gluing two symbols Si and Sj is described in Figure 7.
Finally, Figures 9 and 8 list the high level order of operations for extract-
ing equations from a symbol and for a mass row reduction respectively.
Subsequently we discuss the individual components of an MPU, but for
the sake of readability postpone low-level details and area estimates to
the appendix.

4.2 Traffic Controller

The traffic controller is a collection of four chips responsible for receiving
symbol data from neighbor MPUs, storing it, and pushing it across the
MPU bus if need be. After the results of various computations from other
functional units are complete, the traffic controller will store or forward
to a neighbor MPU those results, depending on what is currently being
done. This is the only functional unit that is connected to other MPUs
and the MCP, as well as the MPU bus. Details on the architecture of the
traffic controller and how it operates are given in Appendix A.

4.3 Row Reducer

The row reducer is comprised of a chip named A/U, which is connected to
the MPU bus. Each part of its name will refer to a separate processing

M
P

U
 b

us

M
U

X
M

U
X

SE
L

SE
L

A top row OUT1 signals

A top row S/R inputs

U top row OUT1 signals

blacklists (from HT)

s-part (from Us)

counter sum

indices (to ADDER)

Ur

Us

L

results of addition

s-part from L_ j (to add)

s-part from L_ i (to store)

indices (from HT)

A / UA / U

M / HTM / HT

ADDERADDER

2048

2048

2048

Fig. 5. MPU Busing Diagram (High Level).

1. Ai is sent across the MPU bus and the row reducer picks it up.
2. Aj is sent across the MPU bus and the row reducer picks it up.
3. The row reducer calculates both B and U .
4. The row reducer determines if r is 0. If r = 0, terminate with agreement

signal. Otherwise,
5. The row reducer sends the left cols(Li) part of U across the MPU bus to

the multiplier.
6. For each column c of Li:

– c is sent across the MPU bus and the multiplier picks it up.
– The multiplier sends its r-part to the hash table.
– The hash table stores an indicator that that r-part has been created.

7. The row reducer sends the right cols(Lj) part of U across the MPU bus
to the multiplier.

8. For each column d of Lj :
– d is sent across the MPU bus and the multiplier picks it up.
– The multiplier sends its r-part to the hash table.
– If the r-part had been formed by Li, the hash table stores an indicator

for this.
– If not, the hash table reports the column index of d across the MPU

bus to be deleted.
9. For each entry in the hash table’s buffer DRAM, if the entry is not found

in the table itself, the column index is reported across the MPU bus to be
deleted.

10. If no deletions have been recorded, the hash table sends the value of its
glue counter across the MPU bus to the traffic controller.

Fig. 6. High level order of operations during an agreement.

area inside this chip. The row reducer has four responsibilities: compute
a row-reduced version of A (i. e., the vertical concatenation of Ai and Aj
when they are received), compute the matrix U such that UA yields the
row-reduced matrix that will appear in the A part, compute the matrix V
such that V L is row reduced, and determine which rows of V A correspond
to URHS equations. During a glue, the data stored in the A part will be
sent back across the MPU bus. (This corresponds to B in the MRHS
gluing algorithm.) During agreeing and gluing, the data stored in the U

part will be sent across the MPU bus to the multiplier. During equation
extraction, the data stored in both parts will be sent to the multiplier.
Details on the architecture of A and U and how it operates are given in
Appendix B. The JONES element used in A and U builds on ideas from
SMITH [6, 7] and may be of independent interest.

1. Ai is sent across the MPU bus and the row reducer picks it up.
2. Aj is sent across the MPU bus and the row reducer picks it up.
3. The row reducer calculates both B and U , determines if r is 0, and sends

B across the MPU bus to be stored.
4. The row reducer sends the left cols(Li) part of U across the MPU bus to

the multiplier.
5. For each column c of Li:

– c is sent across the MPU bus and the multiplier picks it up.
– The multiplier sends its s-part to the adder for storage.
– If r 6= 0, the multiplier sends its r-part to the hash table, and the hash

table stores the Li column index that gave rise to the r-part.
6. The hash table re-examines its DRAM buffer, possibly sending pairs of

data across the MPU bus to the adder.
7. The row reducer sends the right cols(Lj) part of U across the MPU bus

to the multiplier.
8. For each column d of Lj :

– d is sent across the MPU bus and the multiplier picks it up.
– The multiplier sends its s-part s to the adder for adding.
– If r 6= 0, the multiplier sends its r-part to the hash table.
– If r 6= 0, the hash table sends all indices from Li that match the r-part

across the MPU bus to the adder. For each such index i,
• The s-part at index i is looked up in the adder.
• The s-part is retrieved, added to s, and sent across the MPU bus.

– If r = 0, the adder runs through all its contents. For each such index
i,
• The s-part at index i is looked up in the adder.
• The s-part is retrieved, added to s, and sent across the MPU bus.

Fig. 7. High level order of operations during gluing.

4.4 Multiplier

The multiplier occupies one part of a chip named M/HT. If the MPU is
agreeing two symbols, the multiplier receives data from A/U and stores
it in a processing area called Ur. If the MPU is gluing two symbols,
the multiplier will also receive additional data from A/U and store it in
a separate processing area called Us. It then receives the L-part of a
symbol one column at a time, and multiplies it with the contents in Ur

and (if gluing) Us. Once this multiplication is complete for the received
L-column, the multiplier will send the result from Ur (called an r-part)
to the hashtable. If gluing, it will also send the result from Us (called an
s-part) to the adder across the MPU bus. If extracting equations, it will
receive data from traffic control or A/U, store it in Us, receive more data
from A/U, and send results back to A/U. Details on the architecture and
working of the multiplier are discussed in Appendix C. Similarly like the
row reducer, this architecture might be of independent interest.

For each MPU in the Hamiltonian cycle:
1. Equations are extracted from symbol 1 and reside in the row reducer’s A

part.
2. The row reducer sends each row of its A part across the MPU bus. The

adder picks them up and stores them in its SRAM.
3. Equations are extracted from symbol 2 and reside in the row reducer’s A

part.
4. The adder sends the previous equations in its SRAM across the MPU bus

and the row reducer’s A part picks them up (rotating its currently-stored
equations).

5. The row reducer reduces its contents.
6. If there is a second extraction stage:

– The resulting equations (call them E) are sent from the row reducer’s
A part across the MPU bus. The adder picks them up and stores them
in its SRAM.

– Extraction is performed on the symbols in snakes 3 and 4 and row
reduced, similarly as was done in steps 1–5.

– The adder retrieves E from its SRAM and sends these rows across
the MPU bus. The row reducer’s A part picks them up (rotating its
currently-stored equations).

– The row reducer reduces its contents.
End For.

Define W = {0, 1, 2, 3, . . .}. Set i← 2. While i ≤ q :
1. Each MPU with label in {i/2 + ki | k ∈ W} sends its equations to the

MPU with label i/2 less.
2. Each receiving MPU sends this data across its MPU bus to its row reducer,

rotating the current contents downward.
3. The combined contents are row reduced.
4. i← i× 2.

End While.

Fig. 8. High level order of operations during a mass row reduction.

4.5 Hash Table

The hash table is used in both PET SNAKE’s agreeing and PET SNAKE’s
gluing phase, and it is designed to process one write query per clock
cycle—similarly, for look-ups, one look-up query per clock cycle can be
coped with. Elements to be stored or looked up in the hash table are
r-parts with a (zero padded) size of rmax = 135 bit, and the hash table is
designed to store up to 220 such r-parts. Details on the architecture and
the inner working of the hash table are discussed in Appendix D.

Remark 1. Having no more than 220 columns, identifying each column
with a 135 bit hash value seems a safe choice: taking the hash values for

1. The row reducer is reset. (Note that this produces the identity matrix in U.)
2. Starting with the first group of 211 columns of L, for each such group of L:

– The A part of the row reducer is reset but the U part is preserved.
– The group of 211 columns of L is sent across the MPU bus and Us of the

multiplier picks it up.
– For each row of the row reducer’s current U:
• The row reducer sends the left 211 bits of the next row of its current

U across the MPU bus and the multiplier’s L bus picks it up.
• The multiplier sends the resulting row across the MPU bus and the

row reducer picks it up.
– The row reducer reduces its contents, making modifications to the current

U.
> At this point, U contains the matrix we are interested in. Now we multiply it

to all of L:
3. The A part of the row reducer is reset but the U part is preserved.
4. Starting with the first group of 211 columns of L, for each such group of L:

– The group of 211 columns of L is sent across the MPU bus and Us of the
multiplier picks it up.

– For each row of the row reducer’s U:
• The row reducer sends the left 211 bits of the next row of U across

the MPU bus and the multiplier’s L bus picks it up.
• The multiplier sends the resulting row across the MPU bus and the

row reducer’s A part picks it up.
– The row reducer performs zero and one detection on its current A part.

> At this point, the row reducer’s A part knows which rows will correspond to
equations. We just need to multiply U to the symbol’s A part:

5. The row reducer’s A part is reset, preserving its detection flip-flops, and the U

part is preserved.
6. The rows of the symbol’s A part are sent across the MPU bus and Us of the

multiplier picks them up.
7. The multiplier sends the columns of A across the MPU bus to be picked up

by the row reducer.
> At this point, the A part of the row reducer holds AT .
8. The row reducer sends the columns of A across the MPU bus and Us of the

multiplier picks them up.
9. The A part of the row reducer is reset but the U part is preserved.

10. For each row of the row reducer’s U:
– The row reducer sends the left 211 bits of the next row of U across the

MPU bus and the multiplier’s L bus picks it up.
– The multiplier sends the resulting row across the MPU bus and the row

reducer’s A part picks it up.
11. The row reducer rotates through its A part, setting the 2048th bit of each row

according to its detection flip-flops.

Fig. 9. High level order of operations of extracting equations from a symbol.

being uniformly distributed, the probability that no collision occurs is

≥
∏220−1
i=0 (1− i

2135
) ≥ 1− 2−90.

4.6 Adder

The adder is comprised of its own chip, which is largely a memory storage
device. The adder is only used during gluing and equation extraction.
During a glue, while the columns of Li are being processed, M/HT will
send out s-parts across the MPU bus. These will be picked up by the
adder and stored in a collection of 256 DRAMs. Later, for each column in
Lj that is being processed, the adder first acquires an s-part and stores
it in a separate row of flip-flops called the adding register. Then the hash
table will send across the MPU bus either a series of indices in Li that
match to that particular Lj column (i. e., whose Prij columns are the
same), or a popularity number of the resulting r-part. In the first case,
the adder will look up the indices in its DRAM collection. In the second
case, it will use the popularity number to find indices in its own table,
and look those up in its DRAM collection. The resulting s-parts are then
added to the adding register, and the sum is sent back across the MPU
bus. During equation extraction, the adder will store groups of equations
temporarily to be row reduced later. More details on the architecture and
the internal working of the adder are given in Appendix E.

5 Performance Analysis I: Total Chip Area and Cost

With the area estimates in Appendix A–E, the size of the five functional
units per MPU can be summarized as shown in Table 1.

Component Traffic Controller Row Reducer Multiplier Hash Table Adder

Area in cm2 4× 3.9 3.8 0.43 0.41 1.1
Table 1. Size of individual MPU components.

Thus, the total chip area of the (seven) chips comprising one MPU
computes to

4 · 3.9︸ ︷︷ ︸
4 chips

+ 3.8︸︷︷︸
1 chip

+ 0.43 + 0.41︸ ︷︷ ︸
1 chip

+ 1.1︸︷︷︸
1 chip

= 21.34 < 22 cm2.

For a PET SNAKE architecture with p2 = 25 × 25 MPUs, this results
into a total chip area of about 2.25 m2. To enable the necessary wiring,
cooling etc. for actually placing the chips (along with the MCP and its
agents) some more space will be required. Obviously this is a non-trivial

size requirement, but it is important to note that none of the involved
chips is larger than 3.9 cm2, and the resulting device is designed to host
a system of symbols as needed to attack a modern block cipher like AES-
128. As far as cooling goes, the most critical part of our design appears to
be the row reducer, specifically the A/U chip. We estimate this chip to have
about 2/3 of the number of transistors of an Intel R© Xeon R© X7460, the
latter being clocked at more than 2.5 times the rate of what we anticipate
for PET SNAKE [10]. Further, high switching activity of A/U is expected
to occur only over short time periods, followed by a longer time where
most of the chip is inactive. Overall, we do not expect cooling to pose a
major obstacle.

One MPU uses some 22 cm2 of silicon. If we assume a 30 cm wafer to
cost $5000, the pure silicon for one MPU calculates to about $160. If we
apply a factor 4 for the full design, including the board and some safety
margin, one MPU is about the price of one PC. Therefore we compare the
performance of one MPU with one PC. The next section gives a simplified
model to analyze the running time in a software implementation on a PC,
and in Section 6.5 we present measurements when working with 4 rounds
of PRESENT.

6 Performance Analysis II: PET SNAKE versus Software

To measure the time cost of an MPU versus software, the MPU’s time is
measured in clock cycles. For PET SNAKE we assume a 1 GHz clocking
rate: with each component of our architecture having a gate depth of four
or less, we believe such a clocking rate not to be implausible. Software’s
time is given in number of processor steps. Factors which relate to the
software moving data in and out of memory, cache, and so forth can be
captured via a constant α (i. e., each step takes α clocks on average), so
a step count serves as a sort of best case scenario for software.

Suppose we are agreeing two symbols Si and Sj . Let Ai have dimen-
sions wi × y, Aj have dimensions wj × y, Li have dimensions wi × ci,
and Lj have dimensions wj × cj . Note that y then is the number of vari-
ables in the cryptosystem. Let β be the number of bits of a value that
the processor can perform arithmetic on at once; in modern machines,
β ∈ {32, 64}.

6.1 Linear Algebra

Let A be the vertical join of Ai and Aj . Then A has size (wi + wj) × y.
We suppose that each row will rarely have more than one 1 in A; this is

usually true in the middle and later stages of a run. Let γ be the chance
a second 1 exists in a column of A provided a 1 exists already in that
column. Note that γ will change from symbol to symbol, but 0 ≤ γ ≤ 1.

Hardware. JONES has two advantages over software: if a zero column
exists, we dispense with it in one step, and if an add is to be performed,
this also takes one step. Further, the modifications to U are done in
parallel to A.

Let h be the number of columns of A that have more than one 1. Then
we have that γ = h

wi+wj−h , and so h = γ
1+γ (wi + wj). Thus, the number

of columns of A that have exactly one 1 are wi−h+wj −h, which yields
1−γ
1+γ (wi + wj). Label this value t. Adding h and t gives the total number
of populated columns of A. So, if we let z be the number of columns of
A which are all zero, then y − z = h+ t = 1

1+γ (wi + wj).

Now, since the matrices Ai and Aj are already row-reduced prior to
this process, we have some reasonable expectations on where to find a 1
if it exists in a column at all; that is, if it is not near the main diagonal
of Ai, it is near the main diagonal of Aj . It could happen that h = 0 and
we are extremely unlucky with 1 placement, in which case JONES will
take y + 1

2(wi + wj)
2 clocks.

This will almost never happen, however. If there are two ones in the
leftmost column of A, one of them will be near or at the top. If there is
only one 1, it will either be at or near the top, or it will be roughly halfway
down. If there are none, we just shiftover without further examining the
column. So, for the h columns, we won’t have to shift the rows of A up,
and for about 1

2 t columns, we still won’t. For the other 1
2 t columns, we

can expect to perform shiftups equal to about half of the unlocked rows.

After an add, another locked row is created, so the number of unlocked
rows is lessened. Further, we can expect at least two such adds to be per-
formed between times we have to shiftup half of the unlocked rows. Hence,
the first time we encounter such a column we shiftup 1

2(wi+wj) rows, but
the next time we encounter such a column we will shiftup 1

2(wi+wj−2) =
1
2(wi+wj)−1 rows. Hence, we have a truncated triangular sum of shiftups
to count. Since the number of unlocked rows starts at wi + wj , we ex-

pect a total shiftup count of 1
2(12(wi+wj))

2− 1
2

[
1
2(wi + wj)− 1

2 t
]2

, which

yields 1
8

(
1− 4γ2

(γ+1)2

)
(wi + wj) shiftups. Hence, our total clock count is

y + 1
8

(
1− 4γ2

(γ+1)2

)
(wi + wj) = y + 1

8
(1−γ)(1+3γ)

(1+γ)2
(wi + wj).

Software. Different choices for the algorithm can be made, and here we
consider a situation where Gauß elimination is used to perform the row
reduction. For the matrix sizes at hand, this seems a plausible option.
Then software must examine wi+wj elements in the first column. It first
must find a 1, and if successful, it scans the rest of the column looking
to add a row. If it finds such a row (i. e., with a 1 in this column), it
performs an add of the two rows which takes y/β steps.

It then proceeds to the next column, examining the bottommost wi+
wj − 1 elements, and addition of rows costs (y − 1)/β steps. And so on.
We note that any additions that are performed in A are also performed
in the U that is being built, and U has dimensions (wi +wj)× (wi +wj),
though we do not explicitly count them.

If y ≥ wi + wj , then in total there are 1
2(wi + wj)

2 locations to
visit, with a truncated triangular sum of addition steps in A equal to
γ
β

[
1
2y

2 − 1
2(y − (wi + wj))

2
]

= γ
β (wi+wj)(y− 1

2(wi+wj)). In these cases
we expect γ to be closer to 0 than to 1, and so hardware offers at least a
factor 4 improvement in clocks over steps.

If y ≤ wi+wj , then we have a truncated triangular sum of locations to
visit equal to 1

2(wi+wj)
2− 1

2(wi+wj−y)2 = y(wi+wj− 1
2y). The addition

steps total γ
β
1
2y

2. In these cases we expect γ to be closer to 1 than to 0,

and we expect few, if any, zero columns. Hence we use y = 1
1+γ (wi +wj),

and putting just the locations expression over the clocks expression, we
have a factor improvement equal to

1
1+γ (wi + wj)

(
(wi + wj)− 1

2
1

1+γ (wi + wj)
)

1
1+γ (wi + wj) + 1

8
(1−γ)(1+3γ)

(1+γ)2
(wi + wj)2

=

1+2γ
2+2γ (wi + wj)

1
8
(1−γ)(1+3γ)

1+γ (wi + wj) + 1

As γ increases towards 1, this expression will tend towards a factor
3
4(wi + wj) improvement (i. e. JONES takes linear time). This does not
come as a surprise, for when γ gets closer to 1, there is less and less need
to perform shiftups to find 1s.

6.2 Matrix Multiplication and Recording Deletions

Hardware. Once Ur and Us are loaded, their multiplications to Li occur
in parallel; similarly for Lj . Because of the pipeline structure of the mul-
tiplier, all the columns of UTij (similarly, UTji) are computed at a rate of
one clock per column, plus a few clocks of latency in the beginning. The
hash table then picks up the resulting r-parts and processes them at a
rate of one clock per r-part, and it is also structured in a pipeline fashion.

Hence, processing Li takes ci clocks, plus a few clocks of latency. Then,
processing Lj also takes cj clocks, plus a few clocks of latency. Since the
MPU bus must be used to report a deletion, it will take one clock per
deletion, up to a maximum of cj clocks to report all of Lj ’s deletions.
Finally, Li is processed again from the hash table’s DRAM buffer, and
those entries are looked up (for deletions) at the same rate. Since the
hash table can report a deletion at the same time as looking up the next
value, we count ci clocks to report any deletions for Li.

Since the traffic controller can record a deletion in a pipeline fashion
and send a column at the same time, no additional overhead is counted for
this. Finally, because of the ‘just in time’ nature of symbol transmission,
it takes no additional time for a deletion to actually take hold in a symbol.

Thus, two symbols will have their deletions processed in 2ci + 2cj
clocks, plus some small latency. (At the very end of an agreement phase,
an additional ci clocks will also be spent for one symbol. This is a one-time
latency cost.)

Software. Using a Method of Four Russians (cf. [1]) approach in software
is certainly helpful in constructing Prij . The T-storage matrix is set up
on each pass. Arranging the data the same way the hardware handles it,
this T matrix has 2k rows of r entries each, where k is the storage constant
(typically k = 8, but can be increased), and r = rows(A) − rank(A). It
is built in 2k rβ steps. Then, for (the given k bits of) each Li column, the
appropriate entry in the T matrix is read off and stored (taking r

β steps),
waiting to be added later. This continues for the entire pass. Hence, a
pass takes 2k rβ + ci

r
β steps. Afterwards, a new T matrix will need to be

built. Since there are wi
k passes, all passes total comprise wi

k (2k + ci)
r
β

steps.

After all passes are complete, the subresults are added together to
produce the final result of the multiplication. We can use log wi

k additions
of matrices, each addition taking ci

r
β steps. This gives a total step count

of
wi
k

(2k + ci)
r

β
+ ci

r

β
log

wi
k

=
r

β

(wi
k

2k + ci(
wi
k

+ log
wi
k

)
)

to construct Prij . A similar expression will result when constructing Prji.

One could try to optimize by increasing k to 16 or so, but k = 32 is
troublesome as the 2k term starts to dominate.

The situation gets worse for software; it still has to search through
the data to find matching r-parts. Sorting Prij will take at least ci log ci
steps and as many as r

β ci log ci, should many r-parts become popular.

Similar expressions result when sorting Prji. Finally, a bilinear search
taking r

β (ci + cj) more steps must be performed to find matching r-parts.
Once the mismatches are found, columns have to be deleted from Li and
Lj ; this takes r

β (ci+cj) steps. Hence, total sorting and searching for both
matrices takes r

β (ci(2 + log ci) + cj(2 + log cj)) steps.
In total, we have

r

β

(
wi + wj

k
2k + ci(

wi
k

+ 2 + log ci
wi
k

) + cj(
wj
k

+ 2 + log cj
wj
k

)

)
steps to agree the symbols Si and Sj .

The MPU has a very clear and obvious advantage. Aside from the
additional terms the software induces in its step count, it is important to
stress that the hardware does not rely on the values of r, wi, or wj at all.
Hence, large r (whose maximum value is 211) will dramatically slow down
the software, but the hardware will be unaffected. Since r will steadily
increase over the entire run, hardware’s advantage will grow over time.

6.3 Gluing

Both hardware and software must pay the linear algebra times and the
multiplication times as described earlier. From there the situation changes
slightly. At this point we know that we may only construct a symbol
whose L-part has no more than 220 columns, so we label the number of
such columns d.

Hardware. During the matrix multiplication of Li, r-parts are being
stored in the hash table at the same time, so we do not count this cost
again. However, s-parts are being sent to the adder at the same time, so
the adder’s DRAM collection is filled for free.

Afterwards, the hash table will go through a preprocessing of its ci
entries. It may happen that these values hit the SRAM of the adder
entirely too quickly, at which point we must pay upwards of an 8-clock
penalty per such index. In the worst case this takes 8ci clocks in total,
but is expected to average to more like 2ci over the course of an entire
run.

Then, Lj is processed. We get an s-part in one clock (after some
latency), and at the same time, its r-part is examined for matches in the
hash table. If the hash table has the matching indices, it simply sends
them, one per clock. If the adder has them, the adder uses its SRAM to
produce them to the s-lookup chain. Since the SRAM produces values

128 bits at a time (that is, 6 indices per 8 clocks), the penalty of multiple
fast read requests is mitigated.

Hence, we have worst case behavior of 8ci + 8
6d and best case behavior

of ci + d clocks to finish all additions.

Software. It is plain that the software will suffer tremendously if it has
to re-match r-parts to find corresponding s-parts to add, so we give it a
fighting chance by allowing it to store the matching indices during agree-
ment. (This gets expensive in memory with a state of several hundred
symbols, but can nonetheless be theorized.)

Then it merely performs lookups of its storage data. Since there are d
pairs of s-parts to be added, software takes r

βd steps to finish all additions.
Again, as r steadily increases over a run, software becomes vastly inferior
to hardware, which does not rely on the value of r.

6.4 Equation Extraction

We begin by analyzing the time taken by extracting equations from a
particular symbol with A of dimensions w× y and L of dimensions w× c.
We suppose A has the same bias of data as described in Section 6.1, but
L is not guaranteed to have any bias of data. We calculate supposing that
L’s 0s and 1s are uniformly distributed.

Hardware. We follow Figure 9. In step 1, the row reducer is reset, taking
4096 clocks to bring U back to the identity matrix. Then we have dc/211e
groups of columns of L to process to find U such that UL is row reduced.
For each of these groups, we first send the 211 columns to Us, taking 211

clocks, followed by sending the top 211 rows of the row reducer’s U part,
each producing a row that the A part must store. Each row takes two
clocks (one to read, one to write, as data must go back and forth across
the MPU bus). So, to get a temporary result of a multiplication in A, we
require 212 clocks. To rotate U back into position, we require another 211

clocks.

Then A gets row reduced, modifying the current U. Because L’s bits are
uniformly distributed, UL’s bits will be also, and JONES will behave at
least as well as SMITH under these conditions. Since it has been reported
that SMITH will take 2k time for such a k×k matrix [7], JONES will take
at most 213 cycles to row reduce A. In total, step 2 takes dc/211e(211 +
212 + 211 + 213) clocks, which is at most c/211 × 8(211) = 8c clocks.

Step 3 takes at most 212 clocks, since we just need to reset A. In step
4, we again have dc/211e groups of columns of L to process. For each
group, we first send it to Us taking 211 clocks. Then the multiplication
happens once more, taking 212 clocks, with the temporary result in A.
Then zero and one detection commence, requiring A to cyclically shift
upwards completely, taking 212 clocks. In the first 211 of these, the ZD
column is populated, and the OD row gets set to the sum of all rows in
A. Then in the second 211 clocks, the OD row cyclically shifts left, setting
the OD flag. Hence, step 4 takes dc/211e(211 +212 +212), which is at most
5c clocks.

Step 5 is similar to step 3, taking 212 clocks. Step 6 takes w clocks to
populate Us. Step 7 takes at most 212 clocks (one to multiply, one to send)
to send the columns of A back to A. Step 8 takes 211 clocks to repopulate
Us. Step 9 is similar to step 5, taking 212 clocks. Step 10 will require 212

clocks (one to send, one to receive the multiplication, for each row in U).
Step 11 will require 212 clocks to set the 2048th element according to its
detection flip-flops, followed by another 212 clocks to put the (potentially)
nonhomogeneous equation at the top.

Hence, to extract the equations from a symbol, PET SNAKE uses at
most 212 +211 +8c+212 +5c+212 +w+212 +211 +212 +212 +212 +212 =
18(211) + 13c+ w ≤ 13, 670, 400 clocks.

Software. We once again consider Gauß elimination for the row reduc-
tion. In almost all cases w � c, and since each entry of L is equally likely
to have a 0 or a 1, we note it will take one or two steps to find a pivot row
for row i. However, once a pivot row is found, it will have to be added
to about half the remaining rows, and each such addition will take c−i

β
steps. Hence, the step count is

w∑
i=1

w − i
2

c− i
β

=
w

4β

[
cw − 1

3
w2 − c+

1

3

]
which is easily dominated by the cw2

4β term. As the run continues, w

approaches y, and c almost always remains at 220. Taking an average
value of w to be 210 and β = 32, this term becomes 233.

Once L is row reduced, we must take the corresponding U (of size
w×w) and multiply it to A. The cost for this is negligible, though, using
the Method of Four Russians again. Each T matrix costs 2k yβ to set up,

reading off the correct row costs y
β steps, so each pass takes y

β (2k + w)

steps. There are w
k passes, giving a step count of wykβ (2k+w) to construct all

w
k matrices to be added. We can structure things to take log w

k additions,
each addition costing wy

β steps, for a total of

wy

β

(
1

k
(2k + w) + log

w

k

)
steps for the entire multiplication. However, using the same values as

above (with y = 211 and k = 8), this reduces to approximately 223 steps.

We see that the cost in software is about a factor of 1000 in steps over
clocks for the equation extraction in the common case.

Assigning the final 0/1 column to construct the equations is trivial
in both settings. Software provides no benefit over hardware when bring-
ing all the equations together to be row reduced, so we do not perform
an analysis of this. Finally, reducing with the current equation set to
determine consistency is also trivial in both settings.

6.5 Software Measurement

It should be noted that, in the above derivations, the linear algebra is al-
most always dominated by matrix multiplication and recording deletions,
both in hardware and in software.

In order to get a handle on performance metrics, four rounds of
PRESENT were cryptanalyzed in software (k = 8, y = 308) using MRHS
with the above options, and this entire session’s timing values were re-
corded. The platform was an Intel E2180 processor, β = 32, on a single
core of 2 GHz, with 2 GByte of RAM. Out of the nearly 10,000 agreements
that took place, the vast majority took less than two seconds. We removed
these from consideration since fractions of seconds were not measured.
Many calculations were made on the remaining 350 or so agreements us-
ing the above step count formulas, some results of which are illustrated
in Table 2. We see no problem using just these ∼350 values since in a full
cryptosystem operated on by PET SNAKE, there will commonly be high
wi, wj , r, ci, and cj values, and these data points are more reflective of
this scenario. It should be noted that we calculated steps using γ = 0.5;
varying γ in either direction does not adversely affect our overall results.

An average of the ∼350 time improvement factors gives an average
improvement of 2,281 for four rounds of PRESENT. As noted above, as
r gets larger, we suspect PET SNAKE will only improve from there.

To get a better feeling for just how much more favorable PET SNAKE
will be, we see that an average of the ∼350 α data points gives α = 66.068,
where α is the metric of steps per processor clock. Some things are not

w
1

c
1

w
2

c
2

r
tim

e
(s)

to
ta

l
step

s
p

en
tiu

m
clo

ck
s

α
P

E
T

S
N

A
K

E
clo

ck
s

P
E

T
S
N

A
K

E
tim

e
(s)

im
p
rov

em
en

t

2
0
8

3
2
7
6
8

2
3
6

5
2
4
1
4
4

1
9
2

4
1
8
5
3
7
2
6
8
6
.4

8
0
0
0
0
0
0
0
0
0

4
3
.1

5
6
3
0
3
9
5

1
1
2
7
8
2
2

0
.0

0
1
1
2
7
8
2
2

3
5
4
6
.6

5
8
9
5
9

2
1
1

9
8
3
0
4

2
3
6

1
9
6
7
9
6

1
9
2

2
9
4
2
1
4
4
8
9
.2

8
4
0
0
0
0
0
0
0
0
0

4
2
.4

5
6
3
1
4
6
3

6
0
4
3
8
3
.6

2
5

0
.0

0
0
6
0
4
3
8
4

3
3
0
9
.1

5
6
4
9
8

2
1
1

9
8
3
0
4

2
3
6

5
2
4
1
4
4

1
9
2

4
2
0
5
6
8
8
5
1
0
.1

8
0
0
0
0
0
0
0
0
0

3
8
.8

9
3
7
6
2
2
1

1
2
5
9
0
7
9
.6

2
5

0
.0

0
1
2
5
9
0
8

3
1
7
6
.9

2
3
7
7
9

2
2
9

1
2
1
8
5
6

2
3
6

1
9
6
7
9
6

1
9
2

2
1
0
3
1
0
0
9
2
3
.9

4
0
0
0
0
0
0
0
0
0

3
8
.7

9
6
9
3
6
5
4

6
5
2
6
2
7
.6

2
5

0
.0

0
0
6
5
2
6
2
8

3
0
6
4
.5

3
4
6
9
5

2
1
3

1
4
3
3
6

2
3
7

1
9
6
7
9
6

1
9
0

2
6
8
6
1
4
8
7
5
.4

4
4
0
0
0
0
0
0
0
0
0

5
8
.2

9
6
3
9
6
7
3

4
3
6
6
3
4
.5

0
.0

0
0
4
3
6
6
3
5

4
5
8
0
.4

9
0
0
9

2
0
7

3
2
7
6
8

2
2
9

2
4
8
8
3
2

1
9
0

3
8
9
8
4
7
6
4
5
.6

1
6
0
0
0
0
0
0
0
0
0

6
6
.7

7
9
7
1
3
1
4

5
7
6
7
0
9
.1

1
1
1

0
.0

0
0
5
7
6
7
0
9

5
2
0
1
.9

2
9
2
6
1

2
0
7

3
2
7
6
8

2
2
9

2
4
8
8
3
2

1
9
0

2
8
9
8
4
7
6
4
5
.6

1
4
0
0
0
0
0
0
0
0
0

4
4
.5

1
9
8
0
8
7
6

5
7
6
7
0
9
.1

1
1
1

0
.0

0
0
5
7
6
7
0
9

3
4
6
7
.9

5
2
8
4

2
1
2

1
6
3
8
4

2
2
9

2
4
8
8
3
2

1
8
9

2
8
5
1
6
6
9
3
0
.0

2
4
0
0
0
0
0
0
0
0
0

4
6
.9

6
6
5
8
6
6
7

5
4
4
2
4
5
.6

2
5

0
.0

0
0
5
4
4
2
4
6

3
6
7
4
.8

1
1
3
5

2
1
7

1
6
3
8
4

2
2
9

2
4
8
8
3
2

1
8
9

2
8
5
2
7
3
4
6
7
.7

7
4
0
0
0
0
0
0
0
0
0

4
6
.9

0
7
9
0
8
2
2

5
4
4
5
5
3
.6

1
1
1

0
.0

0
0
5
4
4
5
5
4

3
6
7
2
.7

3
2
9
6
7

2
1
2

1
6
3
8
4

2
2
9

4
9
7
6
6
4

1
8
9

3
1
6
8
4
5
0
1
9
4
.4

6
0
0
0
0
0
0
0
0
0

3
5
.6

1
8
8
3
6
8
9

1
0
4
1
9
0
9
.6

2
5

0
.0

0
1
0
4
1
9
1

2
8
7
9
.3

2
8
4
2
5

2
1
2

1
6
3
8
4

2
2
9

7
8
6
4
3
2

1
8
9

5
2
6
6
4
8
2
2
7
9
.2

1
0
0
0
0
0
0
0
0
0
0

3
7
.5

2
5
9
4
7
4
3

1
6
1
9
4
4
5
.6

2
5

0
.0

0
1
6
1
9
4
4
6

3
0
8
7
.4

7
6
3
0
8

2
1
3

2
8
6
7
2

2
3
6

5
2
4
1
4
4

1
8
9

3
1
8
4
3
5
1
7
3
4
.1

6
0
0
0
0
0
0
0
0
0

3
2
.5

4
6
4
7
9
8
6

1
1
1
9
9
4
0
.0

6
9

0
.0

0
1
1
1
9
9
4

2
6
7
8
.7

1
4
7
6
5

2
1
3

5
7
3
4
4

2
2
9

4
9
7
6
6
4

1
8
9

6
1
8
0
8
0
8
5
8
9
.4

1
2
0
0
0
0
0
0
0
0
0

6
6
.3

6
8
5
2
8
4
1

1
1
2
3
8
9
0
.9

4
4

0
.0

0
1
1
2
3
8
9
1

5
3
3
8
.5

9
6
2
6
7

2
1
3

5
7
3
4
4

2
2
9

4
9
7
6
6
4

1
8
9

3
1
8
0
8
0
8
5
8
9
.4

6
0
0
0
0
0
0
0
0
0

3
3
.1

8
4
2
6
4
2

1
1
2
3
8
9
0
.9

4
4

0
.0

0
1
1
2
3
8
9
1

2
6
6
9
.2

9
8
1
3
3

2
1
0

9
8
3
0
4

2
2
9

2
4
8
8
3
2

1
8
9

2
1
1
0
1
6
3
4
6
9
.2

4
0
0
0
0
0
0
0
0
0

3
6
.3

0
9
6
7
7
1
3

7
0
7
9
6
3
.4

0
2
8

0
.0

0
0
7
0
7
9
6
3

2
8
2
5
.0

0
4
7
8
4

2
1
0

9
8
3
0
4

2
2
9

4
9
7
6
6
4

1
8
9

3
1
9
3
4
4
6
7
3
3
.7

6
0
0
0
0
0
0
0
0
0

3
1
.0

1
6
2
9
0
0
5

1
2
0
5
6
2
7
.4

0
3

0
.0

0
1
2
0
5
6
2
7

2
4
8
8
.3

3
0
9
6
6

2
1
2

1
2
2
8
8

2
2
9

2
4
8
8
3
2

1
8
7

2
8
3
9
6
2
7
0
6
.0

2
4
0
0
0
0
0
0
0
0
0

4
7
.6

4
0
1
9
8
7
2

5
3
6
0
5
3
.6

2
5

0
.0

0
0
5
3
6
0
5
4

3
7
3
0
.9

7
0
0
1
3

2
1
2

1
2
2
8
8

2
2
9

4
9
7
6
6
4

1
8
7

3
1
6
7
2
4
5
9
7
0
.4

6
0
0
0
0
0
0
0
0
0

3
5
.8

7
5
3
0
3
8

1
0
3
3
7
1
7
.6

2
5

0
.0

0
1
0
3
3
7
1
8

2
9
0
2
.1

4
6
5
1
2

2
1
2

1
2
2
8
8

2
2
9

7
8
6
4
3
2

1
8
7

5
2
6
5
2
7
8
0
5
5
.2

1
0
0
0
0
0
0
0
0
0
0

3
7
.6

9
6
2
9
5
6
5

1
6
1
1
2
5
3
.6

2
5

0
.0

0
1
6
1
1
2
5
4

3
1
0
3
.1

7
3
7
7
9

2
1
3

5
7
3
4
4

2
2
9

4
9
7
6
6
4

1
8
5

3
1
8
0
8
0
8
5
8
9
.4

6
0
0
0
0
0
0
0
0
0

3
3
.1

8
4
2
6
4
2

1
1
2
3
8
9
0
.9

4
4

0
.0

0
1
1
2
3
8
9
1

2
6
6
9
.2

9
8
1
3
3

2
1
3

5
7
3
4
4

2
2
9

7
8
6
4
3
2

1
8
5

5
2
7
8
8
4
0
6
7
4
.1

1
0
0
0
0
0
0
0
0
0
0

3
5
.8

6
2
7
7
3
7
2

1
7
0
1
4
2
6
.9

4
4

0
.0

0
1
7
0
1
4
2
7

2
9
3
8
.7

0
9
7
7
9

2
1
3

1
6
3
8
4

2
3
6

5
2
4
1
4
4

1
8
4

3
1
8
0
6
9
1
9
7
0
.9

6
0
0
0
0
0
0
0
0
0

3
3
.2

0
5
6
8
1
3
1

1
0
9
5
3
6
4
.0

6
9

0
.0

0
1
0
9
5
3
6
4

2
7
3
8
.8

1
5
4
1
6

1
3
4

1
0
4
8
5
7
6

1
4
7

1
3
1
0
7
2

1
0
2

5
2
0
2
9
4
9
0
7
9
.1

1
0
0
0
0
0
0
0
0
0
0

4
9
.2

7
3
4
4
3
5
9

2
3
6
5
0
8
7
.4

0
3

0
.0

0
2
3
6
5
0
8
7

2
1
1
4
.0

8
6
7
7
5

1
2
5

4
0
9
6

1
4
1

4
5
0
8
1
6

1
0
1

2
7
8
0
8
1
9
6
0
.5

6
4
0
0
0
0
0
0
0
0
0

5
1
.2

2
8
2
2
1
8
7

9
1
5
0
4
5
.6

1
1
1

0
.0

0
0
9
1
5
0
4
6

2
1
8
5
.6

8
3
3
9
7

1
2
5

4
0
9
6

1
3
7

1
0
4
8
5
7
6

1
0
1

4
1
8
5
8
8
9
0
1
1
.7

8
0
0
0
0
0
0
0
0
0

4
3
.0

3
6
4
3
3
0
1

2
1
1
0
4
1
8
.9

4
4

0
.0

0
2
1
1
0
4
1
9

1
8
9
5
.3

5
8
2
7

1
2
2

8
1
9
2

1
3
7

1
0
4
8
5
7
6

1
0
1

4
1
8
6
4
7
8
0
5
2

8
0
0
0
0
0
0
0
0
0

4
2
.9

0
0
4
9
1
0
5

2
1
1
8
5
0
2
.4

0
3

0
.0

0
2
1
1
8
5
0
2

1
8
8
8
.1

2
6
2
5
1

1
2
9

1
6
3
8
4

1
3
7

5
2
4
2
8
8

1
0
1

2
9
3
0
3
6
4
0
3
.8

7
4
0
0
0
0
0
0
0
0
0

4
2
.9

9
3
9
2
3
1
7

1
0
8
6
5
6
5
.6

1
1

0
.0

0
1
0
8
6
5
6
6

1
8
4
0
.6

6
1
9
7
2

1
2
9

6
5
5
3
6

1
4
0

4
5
0
8
1
6

1
0
1

3
8
7
7
7
3
2
7
6
.8

2
6
0
0
0
0
0
0
0
0
0

6
8
.3

5
7
9
3
5
5
5

1
0
3
8
0
3
7
.0

6
9

0
.0

0
1
0
3
8
0
3
7

2
8
9
0
.0

7
0
1
9
9

1
2
9

6
5
5
3
6

1
3
7

1
0
4
8
5
7
6

1
0
1

6
1
9
5
5
8
0
5
8
2
.3

1
2
0
0
0
0
0
0
0
0
0

6
1
.3

5
5
7
8
4
1
9

2
2
3
3
4
4
5
.6

1
1

0
.0

0
2
2
3
3
4
4
6

2
6
8
6
.4

3
2
1
0
7

1
3
5

1
0
4
8
5
7
6

1
5
2

1
3
1
0
7
2

1
0
1

5
2
0
2
9
5
0
7
8
5
.3

1
0
0
0
0
0
0
0
0
0
0

4
9
.2

7
3
0
2
9
3
4

2
3
6
5
3
2
4
.0

6
9

0
.0

0
2
3
6
5
3
2
4

2
1
1
3
.8

7
5
2
4
6

1
3
4

1
0
4
8
5
7
6

1
3
9

1
0
4
8
5
7
6

1
0
1

7
3
6
6
0
5
7
8
4
6
.9

1
4
0
0
0
0
0
0
0
0
0

3
8
.2

4
5
3
2
1
3
8

4
1
9
9
7
8
7
.6

2
5

0
.0

0
4
1
9
9
7
8
8

1
6
6
6
.7

5
0
9
4
7

T
a
b
le

2
.

S
o
m

e
m

ea
su

red
va

lu
es

o
f

so
ftw

a
re

p
erfo

rm
a
n
ce

(k
=

8
,
β

=
3
2
,
γ

=
0
.5

,
y

=
3
0
8
).

included in the step count, such as loop counter variables incrementing,
allocation space instructions, and low-level memory management.

Once we have a good handle on the α that a given processor exhibits,
we can predict software behavior for larger systems. For example, if PET
SNAKE runs an MRHS attack on AES-128 or more rounds of PRESENT,
it won’t be uncommon for y > 1500, wi > 1024, and r > 1024. Modeling
such systems in software directly is problematic owing to the lack of
sufficient on-board memory at the time of this writing, but we can predict
step counts for software under these conditions. Table 3 gives the relevant
predictions fixing α = 66.068. In the later stages of a given attack of a
full cipher of something like AES-128,we’ll see symbol sizes listed in this
table. The relative improvement of PET SNAKE is now even clearer,
touching a six-digit improvement.

Finally, it is worth noting that other software methods may be used to
multiply large matrices; it is certainly possible that some of them may be
more efficient than the Method of Four Russians, and so the improvement
factor may be reduced. However, PET SNAKE’s time is still unaffected by
these large symbols, processing each pair in less than half of a hundredth
of a second. We feel that such absolute speed is too compelling to be
dismissed.

7 Performance Analysis III: Parallelization

Guessing Variables. PET SNAKE will, in its depth-first search of keys,
eventually guess enough keys so that either the system is found to be
inconsistent or the key is correct. This number of keys we refer to as δ.
So that it may make appropriate use of parallelism, PET SNAKE will
eventually guess enough keys discovering δ, and then make note of its
available storage. Then the MCP will be able to determine how high in
the guess tree it can fork a new guess into another area of the board,
while having the ability to store the states required for a sub-branch of
this new guess as well as for the original branch. The idea here is that
PET SNAKE will use all of its MPUs to finish off a branch of a guess
tree as quickly as possible. If more MPUs become available, more guesses
can potentially be forked.

Should the MCP determine that storage will run out, it will delete
some states higher in the guess tree. Any such state which needs to be re-
covered later can always be recalculated based on the next-highest state in
the guess tree, and the remaining key guess symbols to affect the deleted
state’s guess. It is true that these (possibly several) guesses will need to

w
1

c
1

w
2

c
2

r
tim

e
(s)

to
ta

l
step

s
p

en
tiu

m
clk

s
P

S
clo

ck
s

P
S

tim
e

(s)
im

p
rov

em
en

t

1
0
0
0

1
0
4
8
5
7
6

1
0
0
0

1
0
4
8
5
7
6

5
0
0

1
7
0
.7

6
4
4
3
1
9

5
1
6
9
2
8
9
6
8
9

3
.4

1
5
2
9·1

0
1
1

4
4
7
4
0
8
1
.7

7
8

0
.0

0
4
4
7
4
0
8
2

3
8
1
6
7
.4

8
1
1
5

7
5
0

1
0
4
8
5
7
6

7
5
0

1
0
4
8
5
7
6

3
0
0

8
4
.9

5
7
2
2
9
1
1

2
5
7
1
7
7
9
8
6
9

1
.6

9
9
1
4·1

0
1
1

4
3
5
2
0
5
4

0
.0

0
4
3
5
2
0
5
4

1
9
5
2
1
.1

7
9
9
1

5
0
0

1
0
4
8
5
7
6

1
0
0
0

1
0
4
8
5
7
6

2
0
0

5
9
.4

4
1
2
9
9
1
1

1
7
9
9
3
7
5
2
6
3

1
.1

8
8
8
3·1

0
1
1

4
3
5
2
3
0
4

0
.0

0
4
1
9
4
3
0
4

1
4
1
7
1
.9

1
0
0
7

5
0
0

1
0
4
8
5
7
6

1
0
0
0

1
0
4
8
5
7
6

4
0
0

1
1
0
.3

5
8
4
6
5
8

3
3
4
0
7
1
2
5
4
2

2
.2

0
7
1
7·1

0
1
1

4
3
5
2
3
0
4

0
.0

0
4
1
9
4
3
0
4

2
6
3
1
1
.5

0
8
6
1

5
0
0

1
0
4
8
5
7
6

1
0
0
0

1
0
4
8
5
7
6

6
0
0

1
6
1
.2

7
5
6
3
2
5

4
8
8
2
0
4
9
8
2
1

3
.2

2
5
5
1·1

0
1
1

4
3
5
2
3
0
4

0
.0

0
4
1
9
4
3
0
4

3
8
4
5
1
.1

0
7
1
5

5
0
0

1
0
4
8
5
7
6

1
0
0
0

1
0
4
8
5
7
6

8
0
0

2
1
2
.1

9
2
7
9
9
2

6
4
2
3
3
8
7
1
0
0

4
.2

4
3
8
6·1

0
1
1

4
3
5
2
3
0
4

0
.0

0
4
1
9
4
3
0
4

5
0
5
9
0
.7

0
5
6
9

1
5
0
0

1
0
4
8
5
7
6

1
5
0
0

1
0
4
8
5
7
6

1
0
0
0

4
8
2
.5

3
2
0
5
7
6

1
4
6
0
6
9
5
2
7
5
8

9
.6

5
0
6
4·1

0
1
1

4
8
2
1
3
0
4

0
.0

0
4
1
9
4
3
0
4

1
1
5
0
4
4
.6

0
7
5

T
a
b
le

3
.

S
o
m

e
p
ro

jected
va

lu
es

o
f

so
ftw

a
re

p
erfo

rm
a
n
ce

(k
=

8
,
β

=
3
2
,
γ

=
0
.5

,
y

=
3
0
8
,
α

=
6
6
.0

6
8
).

be re-performed in one series of agrees and glues, increasing the overall
running time, but PET SNAKE at least has recovery options should stor-
age requirements vary wildly across parallel branches of the guess tree.
For this reason, PET SNAKE will never delete the highest state in the
guess tree, that is, the state which was arrived at before any guesses were
committed.

Using Multiple PCs. To cope with a cipher like AES-128, the only
plausible option seems to use a cluster of PCs, but here the communi-
cation cost between these PCs will add another significant factor to the
overall running time of the algorithm. Connecting networked PCs in the
same way as PET SNAKE connects its MPUs will introduce additional
time spent: suppose that a grid of PCs is connected so each can talk to its
neighbor in each cardinal direction using gigabit Ethernet, and suppose
that this network actually communicates perfectly (i. e., 1 gigabit/sec).
PET SNAKE’s connections are 1024 wires clocked at 1 GHz, so it can
transmit 1000 gigabit/sec between MPUs. This makes the PC network
1000 times as slow. With the observation that a PC agrees �1000 times
slower than an MPU, the PCs could also implement a ‘just in time’ de-
livery method to reduce agreement communication times. However, when
symbols need to be moved between agreement stages or to prepare for
a glue, we see that the movement time for a PC is a little over 2.15 sec
per symbol per hop (over 4.5 minutes per agreement phase, assuming no
deletions), whereas for PET SNAKE it is 0.00215 sec per symbol per hop.
Hence, a faster network between PCs will need to be established, which
in turn adds to the cost of such a solution.

Finally, for multiple PCs to provide the same storage as PET SNAKE,
a single PC has to store 4680 MB, not including active memory of at least
325 MB. This is slightly larger than 4 GB per PC, and so more expensive
motherboards that can provide larger memory will need to be acquired.
(Slower storage solutions like hard drives can be used instead, but given
their notorious relative slowness, the times for loading and storing would
start to dominate an overall time estimate, and this would make finding
a key infeasible.)

8 Conclusion

In this paper we propose a dedicated hardware design to implement an
algebraic attack, based on MRHS, against block ciphers. We think that
our analysis gives ample evidence that PET SNAKE is an architecture of

significant cryptanalytic interest. The overall running time of MRHS is
dominated by the time spent to agree symbols, and basing on our experi-
ments with four rounds of PRESENT, a speed-up by a factor of� 2000 of
PET SNAKE over our (reasonably optimized) software implementation
is plausible. Actually, when looking at full round versions of AES-128, we
expect symbols to be involved in the computation, where the performance
advantage of PET SNAKE becomes more drastic. As documented in Sec-
tion 6.5, here expected improvement factors in agreeing timings might
well be in the range of 5 digit factors. Thus, even more conservative PET
SNAKE clocking rates than 1 GHz still can be expected to realize several
magnitudes of improvement over software.

Lacking the theory for a reliable running time estimate of an MRHS-
based algebraic attack, we cannot give a reliable estimate on the absolute
running time of our design when being applied to a modern block cipher
like AES-128. Notwithstanding this, the above discussion gives ample ev-
idence that the practical feasibility of (MRHS-based) algebraic attacks
can be improved significantly through the use of a dedicated hardware
design: substantial performance improvements over software implemen-
tations can be achieved, and owing to the scalability of PET SNAKE,
exploring small prototypes seems a plausible next step in research along
this line. Some of the building blocks of PET SNAKE, like the JONES
design for the linear algebra part, might be of independent interest.

References

1. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economic con-
struction of the transitive closure of a directed graph. Sov. Math. Dokl., 11:1209–
1210, 1975. Original in Russian in Dokl. Akad. Nauk SSSR 194 (1970), 477–488.

2. Gregory V. Bard. Algorithms for solving linear and polynomial systems of equa-
tions over finite fields with applications to cryptanalysis. PhD thesis, University
of Maryland at College Park, Applied Mathematics and Scientific Computation,
2007.

3. Daniel J. Bernstein. Circuits for Integer Factorization: a Proposal. At the time
of writing available electronically at http://cr.yp.to/papers/nfscircuit.pdf,
2001.

4. Andrey Bogdanov, Thomas Eisenbarth, and Andy Rupp. A Hardware-Assisted
Realtime Attack on A5/2 Without Precomputations. In Pascal Paillier and In-
grid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems; CHES
2007 Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 394–
412. Springer, 2007.

5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J.B. Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES 2007,, volume 4727 of Lecture Notes in Computer Sci-

ence, pages 450–466. Springer, Cryptographic Hardware and Embedded Systems
– CHES 2007.

6. Andrey Bogdanov, Marius C. Mertens, Christof Paar, Jan Pelzl, and Andy Rupp.
A Parallel Hardware Architecture for fast Gaussian Elimination over GF(2). In
IEEE Symposium on Field-Programmable Custom Computing Machines — FCCM
2006, Napa, CA, USA, 2006.

7. Andrey Bogdanov, Marius C. Mertens, Christof Paar, Jan Pelzl, and
Andy Rupp. SMITH - A Parallel Hardware Architecture for fast Gaus-
sian Elimination over GF(2). In 2nd Workshop on Special-purpose Hard-
ware for Attacking Cryptographic Systems – SHARCS 2006, 2006. Avail-
able at http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/

publications/conferences/sharcs2006_matrix.pdf.
8. Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra

System I: The User Language. Journal of Symbolic Computation, 24:235–265,
1997.

9. Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A Zero-
Dimensional Gröbner Basis for AES-128. In Matthew J.B. Robshaw, editor, Fast
Software Encryption, 13th International Workshop, FSE 2006, volume 4047 of
Lecture Notes in Computer Science, pages 78–88. Springer, 2006.

10. Intel Corporation. Intel R© Xeon R© Processor X7460 (16M Cache, 2.66 GHz, 1066
MHz FSB). Available at http://ark.intel.com/Product.aspx?id=36947.

11. Nicolas T. Courtois, Gregory V. Bard, and David Wagner. Algebraic and Slide
Attacks on KeeLoq. In Kaisa Nyberg, editor, Fast Software Encryption, 15th
International Workshop, FSE 2008, volume 5086 of Lecture Notes in Computer
Science, pages 97–115. Springer, 2008.

12. International Technology Roadmap for Semiconductors. Overall Technol-
ogy Roadmap Characters. (Key Roadmap Drivers). Available at http:

//www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009Tables_

FINAL_ORTC_v14.xls, 2009.
13. Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,

Wiretap Politics & Chip Design. OReilly & Associates, July 1998.
14. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, and

Colin Stahlke. SHARK: A Realizable Special Hardware Sieving Device for Factor-
ing 1024-Bit Integers. In Josyula R. Rao and Berk Sunar, editors, Cryptographic
Hardware and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 119–130. Springer, 2005.

15. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, and Eran Tromer. Scalable
Hardware for Sparse Systems of Linear Equations, with Applications to Integer
Factorization. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware
and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2005.

16. Willi Geiselmann and Rainer Steinwandt. Yet Another Sieving Device. In Tatsuaki
Okamoto, editor, Topics in Cryptology — CT-RSA 2004, volume 2964 of Lecture
Notes in Computer Science, pages 278–291. Springer, 2004.

17. Willi Geiselmann and Rainer Steinwandt. Non-wafer-Scale Sieving Hardware for
the NFS: Another Attempt to Cope with 1024-bit. In Moni Naor, editor, Advances
in Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Compute
Science, pages 466–481. Springer, 2007.

18. Tim Güneysu, Timo Kasper, Martin Novotný, Christof Paar, and Andy
Rupp. Cryptanalysis with COPACOBANA. IEEE Transactions on Computers,
75(11):1498–1513, November 2008.

19. Arjen K. Lenstra and Adi Shamir. Analysis and Optimization of the TWINKLE
Factoring Device. In Bart Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 35–52.
Springer, 2000.

20. Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer. Analysis of
Bernstein’s Factorization Circuit. In Yuliang Zheng, editor, Advances in Cryptology
— ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
1–26. Springer, 2002.

21. National Institute of Standards and Technology. Federal Information Process-
ing Standards Publication 197. Specification for the ADVANCED ENCRYPTION
STANDARD (AES), November 2001.

22. H̊avard Raddum. MRHS Equation Systems. In Ali Miri Carlisle Adams and
Michael Wiener, editors, Selected Areas in Cryptography – SAC 2007, volume 4876
of Lecture Notes in Computer Science, pages 232–245. Springer-Verlag, 2007.

23. H̊avard Raddum and Igor Semaev. Solving MRHS linear equations. Cryptology
ePrint Archive, Report 2007/285, 2007. Available at http://eprint.iacr.org/

2007/285.
24. H̊avard Raddum and Igor Semaev. Solving Multiple Right Hand Sides linear equa-

tions. Designs, Codes and Cryptography, 49:147–160, 2008. Preprint available in
[23].

25. Ad C.C. Schoonen. Multiple right-hand side equations. Master’s thesis, Eind-
hoven University of Technology, Department of Mathematics and Computer Sci-
ence, May 2008. Available at http://alexandria.tue.nl/extra1/afstversl/

wsk-i/schoonen2008.pdf.
26. Igor Semaev. Sparse Boolean equations and circuit lattices. Presentation at Inter-

national Workshop on Coding and Cryptography WCC 09, Ullensvang (Norway),
May 2009.

27. Igor Semaev. Sparse Boolean equations and circuit lattices. Cryptology ePrint
Archive, Report 2009/252, 2009. Available at http://eprint.iacr.org/2009/252.

28. Adi Shamir. Factoring Large Numbers with the TWINKLE Device. In Çetin K.
Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Systems.
First International Workshop, CHES’99, volume 1717 of Lecture Notes in Com-
puter Science, pages 2–12. Springer, 1999.

29. Adi Shamir and Eran Tromer. Factoring Large Numbers with the TWIRL Device.
In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 1–26. Springer, 2003.

30. Eran Tromer. Hardware-Based Cryptanalysis. PhD thesis, Weizmann Insti-
tute of Science, May 2007. Available at http://people.csail.mit.edu/tromer/

phd-dissertation/.
31. Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. A

Systems Perspective. Addison-Wesley Publishing Company, 1st edition, 1985.

A Traffic Controller

Architecture. Each of the four chips has 256 pins in each cardinal di-
rection, plus 512 pins for the MPU bus. This means that, together, buses
between MPUs are 1024 wide, but the MPU bus is 2048 wide. Hence,
each of the four chips is responsible for a quarter of each symbol the

MPU stores. In addition, there are 56 pins in and 56 pins out to pass
data across the MCP bus. It is through this bus that the MCP will direct
the actions of the symbols and the MPU.

Each chip has twelve DRAM areas. Six are considered the ‘active’
DRAMs: one for receiving a new symbol in the motile snake, one for
sending a symbol in the motile snake, three for storing the currently-
fixed g − 1 symbols, and one for storing the gather symbol and equation
set. The first five DRAMs are 65 MByte each, enough to store a quarter
of a full symbol; the sixth is 1 MByte. The other six are the ‘passive’
DRAMs used to store a state before a guess is committed. They are
connected to their corresponding ‘active’ DRAMs. The first five of these
are 234 MByte (enough for 18 quarters of symbols when combined) and
the sixth is 18 MByte. In addition, for each of the five large active DRAMs
there is a 1024 × 1024 flip-flop grid with two decoders used to record
deletions. Finally, there is some control logic to handle MCP commands.

Just in Time Process. These chips operate on a ‘just in time’ basis
during the agreement phase, specifically during last agreement that must
be performed before the snake must move. Label the two symbols that
must be agreed S and T , where T is part of the motile snake, and suppose
they are of roughly equal size. The MPU will process T second, that is,
T provides the Aj and Lj in the MPU data flow description.

Just after the last deletion for Lj (if any) is sent from the hash table,
the traffic controller begins to transmit Aj and Lj (taking care not to
send the columns marked for deletion) to the next MPU in the path.
During this time, it is receiving the A and L matrices from the next
symbol in this snake; label them Ay and Ly. Also during this time, the
MPU is also processing the columns from Li the second time, getting
deletions for that symbol. These three actions are done in parallel since
they are using different buses and different active DRAMs. By the time
Li has gotten all its marks for deletion, at a minimum only half of the
data for the incoming/outgoing symbols will be received/sent, since the
transmission buses are only 1024 wide in either direction. Since A parts
get transmitted before L parts, Ay will be received.

Now, the traffic controller will continue receiving/sending symbol data
while it sends the A part of a fixed snake (call it Ax; if g = 2, x = i)
to the row reducer to begin agreement with the incoming symbol. Once
done, Ay will be sent to the row reducer (and transmissions of symbols
will temporarily be halted). Then the row reducer will do its processing
(at which point transmissions of symbols will resume), followed by Lx

being sent to the multiplier. By the time Lx is done being processed (the
first time), Ly will be completely received, and so Ly is now sent to the
multiplier for processing.

In situations where the symbols have mismatching sizes, there must
naturally be halts in processing until the data is received. Time calcula-
tions are performed supposing all symbols are full maximal size, so actual
performance can be better than these calculations.

Deletion Handling. Each active DRAM has attached to it a flip-flop
grid to register deletions. When a column index to be deleted is received
on the MPU bus, this grid will handle it, leaving the DRAM to continue
sending columns. The handling works as follows: each flip-flop’s value is
determined by a different AND gate. The most significant 10 bits of the
received index are decoded into 1024 horizontal lines out. Each such line
attaches to a row of 1024 of these AND gates. The least significant 10
bits of the index are also decoded into 1024 vertical lines out. Each such
line attaches to a column of 1024 of these AND gates. Hence, each index
corresponds to exactly one flip-flop, and the received index’s flip-flop will
be set to 1.

When it is time to transmit the L part of a symbol, the flip-flop grid
shifts its values in the top row (cyclically) over so that there is a 0 or 1
corresponding to the column to be sent. If the upper-right flip-flop has
1, the column is not sent; else, it is. After the send (or no-send), the row
shifts again. After 1024 shifts, the whole grid performs a cyclical shift up.

Note that the two grids for motile snake symbols are reset before the
new symbol is agreed, but the grids for stationary snakes are not. Hence,
their grids will cumulatively store deletion marks until it is time for them
to move for the next agreement stage. In addition their values will be
used in determining if a column will be sent to the multiplier when it is
called for in future agreements in the current stage. (This doesn’t impact
timing concerns, but it does make the hash table’s life easier.) After a full
agreement phase has been completed, all symbols are moved one MPU
so that deletions are incorporated into DRAM. Of course, if in the last
agreement stage a deletion has occurred, the whole agreement phase starts
over.

Equation Extraction. During an equation propagation phase, the sixth
DRAM is used to store incoming equations during mass row reductions.
It also stores and receives the current equation set, which takes no more

than 1
2 MByte. It also receives the gather symbol (also no more than

1
2 MByte) and sends it on.

Area Calculation. Each chip has (((65 + 234) × 5) + 19) MByte of
DRAM, yielding 1514 MByte, or 3.18 cm2. In addition there are 5× 220

flip-flops, for 0.22 cm2 (since we manufacture these chips using the 45 nm
DRAM process). Each decoder can be realized with two 3-8 decoders
(outs inverted), one 4-16 active low decoder (outs inverted), and 1024
3-input NOR gates (with latches at the inputs so as to form a two-stage
pipeline) for a total of < 0.001 cm2 for all decoders. The control logic
will not grow above 0.45 cm2, and a complete chip of the traffic controller
thus fits onto 3.9 cm2.

B Row Reducer

Architecture of A. The A part’s main workhorse is 4096×2048 JONES
elements connected in roughly the same way that SMITH elements usu-
ally are. Readers familiar with SMITH in [6] will undoubtedly recognize
the similarities; indeed, JONES is meant as an improvement to SMITH
to handle sparse matrices. This improvement is helpful because in the
early and middle stages of processing, many symbols’ A-parts are sparse,
and the vertical concatenation of such things will still be sparse. The
connections between JONES elements are essentially those of SMITH,
taking care to send the OUT3 signal to the leftward element’s IN3 input,
wrapping cyclically around.

We see from Figure 10 that a JONES element is similar to a SMITH el-
ement, but there are three additional lines added: IN3, OUT3, and live col.
A row of 2048 flip-flops called the LC row will be set so that a given flip-
flop holds 1 only when there is a 1 in that column of the JONES matrix,
and 0 otherwise. (U does not require these flip-flops; live col will be set
in a different manner in them.) The leading LC flip-flop, along with some
control logic, will be attached to every element’s live col signal. If there
is a 1 in the leading column, live col will be 1 for the entire array, and
JONES processes its data exactly as SMITH does. However, if there is
not a 1 in the leading column, live col is 0, and we cyclically shift the
entire matrix leftward.

To bring about this change in behavior, the circuitry for SMITH was
modified. The logical changes can be seen in Figure 11. The gate depths
for each path leading to the flip-flop are shorter than those in SMITH, so
JONES can withstand faster clocking rates.

clk
set

resetlock_lower_row

row_add

liv
e_

co
l

lock_row

IN3

co
l_

ad
d

OUT3

IN2

IN
1

O
U

T1

OUT2

ad
d

Legend

Matrix data path

From another elt

From other FF

Other

Element

Fig. 10. JONES Element (High Level).

Turning our attention to some helper control circuits, we remark that
A’s LC row will be initialized after both Ai and Aj are done being loaded
into the elements in the following way: the LC row will be initialized
to all zeroes, but OR gates will hang on them and the input lines (one
per flip-flop). As Ai and Aj are loading, the LC row flip-flop for that
column will constantly be updated with the cumulative OR of the current
column value and the current flip-flop value. Hence, when the data load
is complete and before processing begins, the LC row will be populated
as described earlier. The LC row will also be wired to cyclically left shift
so that, during JONES processing, such a cyclic left shift will occur upon
any add or left-shift in the JONES elements.

A also uses a column of 4097 flip-flops called the LR column, which
will feed the lock row and lock lower row inputs. When a new matrix is
to be row-reduced, this column is initialized to all zeroes, with a 1 in the
bottom position. A given flip-flop will feed its value to all lock lower row

inputs in its row, and it will feed its value to all lock row inputs in the row

liv
e_

co
l

lock_row

lock_lower_row

IN3

IN1

ad
d

IN
2

OUT2

row_add

OUT1

OUT3

col_add

cl
k

D Q

S
R

1 M
 U
0 X

1 M
 U
0 X

0 M
 U
1 X

0 M
 U
1 X

0 M
 U
1 X

Fig. 11. JONES Element (Low Level).

below it. As the elements perform their processing, when they detect that
an add must be performed, the LR column will shift upwards, inserting
a 1 in the bottommost position.

To facilitate equation extraction, A also uses a column of 2048 flip-
flops called the ZD column connected so that the contents move cyclically
upwards, a row of 2047 flip-flops called the OD row connected so that the
contents move cyclically leftwards, and a flip-flop called the OD flag. The
left 2047 JONES units of the top row of A, together with the top flip-flop
of ZD, feed a tree of OR gates (with interstitial latches) called the ZD tree.
This terminates in a single flip-flop which is the cumulative OR of these
2048 bits. (For a more detailed discussion of such a tree, see Appendix C,
which discusses the multiplier.)

Also, each of the left 2047 JONES units of the top row of A will feed
an XOR, whose other input is a corresponding element of the OD row.
The output is fed back into the OD row. Finally, a row of 2048 flip-flops
called the GS row is connected so the contents shift leftwards. Its last
flip-flop is fed by the top row of A’s 2048th element.

Architecture of U. The U part’s main workhorse is 4096×4096 JONES
elements, connected in roughly the same way that the A part’s are. The
data lines IN1, IN2, IN3, and their OUT counterparts (collectively referred
to as the matrix data lines) will be connected in the usual way so that the
matrix data will follow a closed path at all times, but the other lines will
be connected differently. Since the data in A determines which operations
to perform on the matrix, we must direct the U elements to perform
the same operations A does. To this end, every add input in U will be
connected to A’s upper left OUT1 signal. Every row add input in U will
be connected to A’s leftmost OUT1 signal in the corresponding row. Every
live col signal in U will be connected to the LC row’s leading flip-flop
(the same one A uses). Every lock row and lock lower row input in U

will be connected to the LR column in the same way A’s are.

Before row-reducing a matrix, U’s JONES elements will be initialized
to the identity matrix. This can be accomplished by using a row of 4096
flip-flops (called the identity row), initialized with all zeroes except for
a 1 in the leading column. During a clock cycle, the identity row stuffs
its values in the JONES top row elements, and then on the next clock,
the identity row cyclically shifts to the right as the JONES elements shift
upward.

Process. When Ai comes across the MPU bus, A will stuff its JONES
top row elements with these values while cumulative-ORing them with
the LC row (which was initialized to all zeroes). Simultaneously, U will
begin stuffing itself with the identity matrix. This continues when Aj
comes across the MPU bus. When this is complete, row reduction can
begin.

Since we have introduced a new operation (the left-shift), in Figure 12
we detail the processing algorithm, which is realized with the JONES
matrix as well as some additional control logic attached to the non-matrix-
data inputs. We write two quantities, locks and overs, which represent
the number of adds and left-shifts, respectively, that have occurred in A.
(The same counts will apply to U.) One may realize their sum with actual
counters, or with a long row of flip-flops with all zeroes save for one 1.
We also have a counter z for zeroes found in the current leading column
of the A matrix.

After completion of the while loop in Figure 12, A is finished, and
the resulting r all-zero rows (if any) will appear on the top. U is not
finished, however, so we must rotate it into proper position as shown in
Figure 13. At this point, U is in proper position, and the r rows on top,

while (locks+ overs < cols(A))
if (live col = 1)

set z to 0
while (z < rows(A)− locks and 0 is in upper left element of A)

shiftup (both A and U)
end while
if (1 is in upper left element of A)

add (both A and U)
else

shiftover (both A and U)
end if

else
shiftover (both A and U)

end if
end while

Fig. 12. Processing algorithm.

while ((locks+ overs) mod cols(U) 6= 0)
shiftover (U)

end while

Fig. 13. Rotating U into proper position.

when multiplied with the original values in A, will produce zero rows.

Remark 2. Even though live col may be 1, the 1s that were in this
column beforehand may have been eliminated by a previous add, and so
a 1 left in this column would belong to the row responsible for eliminating
the others; such a 1 would be in a locked row, where it will do us no good.
Hence, z is still necessary.

Life may be made substantially easier by using a tree of ORs (along
with a column of ANDs and inverters attached to the LR column and
the leading column’s OUT1 signals) attached to the leading column’s OUT1
signals to compute an accurate, real-time value for live cols, but since
there are 4096 rows, such a tree would require a column of interstitial
flip-flops in the middle, which would impose a factor two slowdown in the
linear algebra. With such a choice, z would no longer be necessary, and
the first while loop above can be simplified. Further, the LC row would
not be needed.

We now turn our attention to sending U’s data to the multiplier. De-
termining that the top row of A is a zero row is fairly easy: a tree of ORs

branching from the 2048 JONES top row elements of A (with the required
interstitial flip-flops in the middle to alleviate gate depth concerns) can
be used. This means that data can only be sent every other clock cycle.
In the event that there are no zero rows to begin with, a signal is sent
decreeing that the two symbols this MPU is processing are agreed, and
no further work needs to be done. Otherwise, row data (detailed below)
is sent across the MPU bus to the multiplier until A no longer has a zero
row on top. Then (if gluing) row data will be sent to the multiplier again,
but the multiplier will put this data in a different place.

We determine which data needs to be sent at which time by observing
the following. The MRHS algorithm calls for the multiplications U

(
Li
0

)
=

UTij and U
(
0
Lj

)
= UTji, which produces matrices whose columns’ bottom

r values we must later compare. Because of the positions of the zero
blocks, we only need the left rows(Li) columns of U to produce Prij ,
and the right rows(Lj) columns of U to produce Prji. If we rotated the
rows U cyclically downward r times, we would have the current contents
of U. Since the top r rows in U contain the data we are immediately
interested in, for r iterations we send the first rows(Li) entries in the
top row across the MPU bus and shift U and A up. If we are gluing,
for rows(Li) + rows(Lj) − r iterations, we again send the first rows(Li)
entries in the top row across the MPU bus and shift U up. (Otherwise
we just perform the shiftups without sending this data.) We remark that,
since A has only 2048 columns, the maximum rank of A is 2048, and so
rows(Li) + rows(Lj)− r must be less than or equal to 2048.

While the multiplier and hashtable are working to compute parts of
UTij , U and A will perform the necessary shiftups to get them back to
their original positions, and then U will perform rows(Li) shiftovers so
that it is in position to send the data needed to compute parts of UTji.
Data will be sent in a similar way once it is time to begin computing
UTji.

Extraction Stage Process. Row reductions during an extraction pro-
cess are done similarly as during agreeing or gluing. At the beginning of
the extraction process, the ZD column and the OD row are reset to 0,
and the OD flag is set to 1. At the end of each iteration in step 4 of the
extraction process (see Figure 9), the A part will be loaded with a chunk
(that is, a group of 211 columns) of UL, and the zero and one detection
processes commence: the resulting bit in the end flip-flop of the ZD tree is
moved into the corresponding position of the ZD column as this column
(and the rows of A) are shifted cyclically upward once. This is repeated

for every row in A. Note that four clocks of latency will be required in the
beginning, as this process is pipelined. Once this is done, the ZD column
will contain a 0 for every row of UL which (so far) has been all zero, and
a 1 otherwise.

As the data from each row of A moves upwards for zero detection, it is
cumulatively XORed in the OD row. Once all rows have been examined,
the OD row is cyclically shifted left. The leftmost element of the OD row
is connected to an AND gate with the OD flag, and the result of the AND
is fed back into the OD flag. After all left shifts are complete, the OD
flag denotes whether the result of (so far) adding the rows of UL will be
an all-1 row. The OD row is then reset to 0.

Once all chunks of UL are processed, the OD flag will dictate if a
nonhomogeneous equation exists, and the ZD column will dictate which
rows, if any, correspond to homogeneous equations. Once the extraction
process finishes step 10 (see Figure 9), A will contain the matrix UA.
The rows of A (and the ZD column) are rotated cyclically upwards once
more: if the topmost entry in the ZD column is 1 and the OD flag is 1,
the OD row will cumulatively XOR itself with that row. If not, OD is
unchanged (from the all zero row). However, if the topmost ZD entry is
1 and the OD flag is 0, this row will not reappear at the bottom of A;
instead, an all zero row will appear. If the topmost ZD entry is 0, the row
will reappear at the bottom of A. Finally, the contents of OD are rotated
into the bottom of A, where the 2048th element is set to the OD flag, and
the contents of A are rotated up again an additional 4095 times. Thus,
the nonhomogeneous equation will be in the top row of A (if it exists; else
it is an all zero row), followed by any homogeneous equations. Then the
ZD column is reset to all zeroes.

To convert the current equation set to the gather symbol, first the
contents of A are rotated upwards once again, with the first 2047 elements
being put onto the MPU bus and captured by the sixth active DRAM.
The 2048th bit sent is 0 in this process. As each row rotates, the rightmost
element of the GS row is populated with the top row of A’s 2048th element,
and the contents of GS move leftward. After the first 2048 rotations, the
rows have already been sent to the DRAM, and so the contents of the GS
row are now sent to the sixth active DRAM, effectively forming the one
column of the L-part of the gather symbol.

Resolution Stage Process. During the resolution stage, after S0 and
the gather equations have been row reduced, the ZD column is once again
populated as the rows of A are rotated cyclically upwards. During this

cyclic rotation, the top row is checked for equality with a row of 2047
zeroes and 1 one at the end. This is accomplished with an AND tree with
interstitial latches, done in a pipeline fashion. Sitting at the end of this
tree is a flip-flop which cumulatively ORs itself as each row is rotated
through. If this flip-flop is a 1 at the end of the rotation, the MPU signals
the MCP that an inconsistency has been found. If no inconsistency is
found, the ZD column is counted to check for maximal rank. If maximal
rank has been achieved, the MCP is signaled. Otherwise the contents of
A are sent across the MPU bus and stored in the sixth active DRAM of
the traffic controller.

Area Calculation. Figure 11 is provided so that the logic is easy to
follow. Five multiplexers, an XOR gate, and a flip-flop yield 48 transistors
per element. Since A has 212×211 elements, we use Table 5 and the 45 nm
logic process to obtain an area of roughly 1.2 cm2 for the elements. Since
we only have a few more groups of 2048 flip-flops, XORs, ORs with some
associated logic, the area of A does not expand much from this value. The
area of U, however, is roughly twice of that of A, say 2.4 cm2, since it
has twice the number of JONES elements that A does. Hence, A and U

together really fit on a chip.

C Multiplier

Architecture. Ur and Us are two grids of flip-flops with some nontrivial
logic attached. To make the process of comparing Prij and Prji as fast
as possible, we do not compute these full matrices. Instead, we compute
the first rmax = 135 rows of these matrices and ignore the rest. Hence,
Ur is comprised of a grid of 2048 × rmax flip-flops. Us however must be
2048× 2048 flip-flops. They have otherwise identical architectures.

Figure 14 illustrates the following description. Each flip-flop has an
AND gate hanging off of it. All the AND gates in a given row will take
their second input from that row’s corresponding wire in the L bus. Then,
each column of AND gates sprouts an XOR tree off of the AND outputs;
this is to add these bits. (Successive pairs of AND outputs in a column are
XORed together. Successive pairs of these XOR outputs in the column
are again XORed. And so on until we get down to one XOR.)

Remark 3. To make transistor counts smaller, we observe that in reality,
we could use NANDs instead of ANDs since their results are all XORed
together, and XOR produces the same result if both inputs are inverted.

Q

Interstitial
latch rows

DQ

DQ

DQ

DQ DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

...
...

...
...

...
...

...
...

...

...
...

Q

Q

Q

...

...

...

DQ

...

...

Q

......

...

...

...

DQ...

...
...

...
...

...
...

...
...

...

...

... ...

...

...

...

...

Final row of flip-flops
(to HT)

Q

...

...
...

...
...

...
...

...
...

...

...

...

L bus

U
r
 / U

s
 bus

Fig. 14. Ur and Us (Low Level).

Since there are 2048 rows in Ur (and Us), the signal from a flip-flop would
have to travel through 12 gates. This gate depth can induce a slower
clocking rate, so we insert interstitial latches after the signals have trav-
eled through 4 gates. This means that 256 such latches are inserted after
4 gates, and another 16 are inserted after another 4 gates, per column.
Then the signal can travel through the remaining parts of the XOR tree
(4 more gates) until it gets to the final row of flip-flops. This arrangement
forms a small pipeline. The data from this final row will be sent to the
hash table. Since the hash table can process this row every clock cycle,
we sent Li and Lj columns through on each clock, and the interstitial
latches merely induce a two-clock latency.

To facilitate equation extraction, it will be necessary to calculate the
transpose of the A part of a symbol, which is done in step 7 (see Figure 9).
To accomplish this, an identity row of 2048 flip-flops (similar to that found
in the U part of A/U) is placed so that it can feed data to the L bus; a
multiplexer will allow the MCP to choose whether the L bus is populated
with this identity row.

Process. When (the left cols(Li) components of) one of the top r rows
of U gets sent from A/U across the MPU bus, it is picked up and stored
vertically in the rightmost Ur flip-flop column. Then all the Ur flip-flops
get shifted leftward. This continues for each of the r rows, up through
rmax rows. If more than rmax rows are sent, they are ignored by M/HT. If
gluing, then rows(Li) + rows(Lj)− r more rows of data are sent by A/U,
and the multiplier picks these up and stores them vertically (in a similar
fashion) in Us.

Then, the columns of Li will be sent. For each such column, the multi-
plier will pick it up and put in on the L bus, where it will be multiplied to
the contents of both Ur (and Us, simultaneously, if gluing). This method
of multiplication mimics the Method of Four Russians technique (illus-
trated in [2]), only without the T -storage component. The result on the
final flip-flops of Ur is a column of Prij , which then gets sent to the hash
table. If gluing, the result on the final flip-flops of Us is a column of UTij
without its last r components; this gets sent to the adder across the MPU
bus for storage. Note that, because of this use of the MPU bus, gluing
will take at least twice as long as agreeing (possibly longer due to the
hashtable).

After the columns of Li are processed, A/U will send (the right cols(Lj)
components of) the top r rows of U , which is followed by, if gluing,
rows(Li) + rows(Lj) − r more rows of data. Ur and Us will be flushed
and reloaded with this data in the same way as before.

Then the columns of Lj will be sent, and they will be multiplied to the
contents of Ur (and if gluing, Us) in the same way as before. The contents
of the final flip-flops of Ur will once again be sent to the hash table, and
the contents of the final flip-flops of Us will once again be sent across the
MPU bus to the adder (though the adder will use them differently this
time).

The multiplier is thoroughly used in an extraction stage, but only
the flip-flops in Us are used. Different steps of the process (see Figure 9)
will involve Us receiving data from either traffic control (columns from a
symbol’s L part, or rows of a symbol’s A part) or from the row reducer.

Then, data will appear on the L bus, either from the left 211 bits of
the top column of the row reducer’s U part (after which the U part is
rotated cyclically upwards), or from the identity row. In either case, the
multiplier will calculate a row of some multiplication matrix and send
that back across the MPU bus to the row reducer’s A part. Then, more
data will appear on the L bus, and another row is sent back. This is
repeated until the row reducer’s U part, or the identity row, is exhausted.

Area Calculation. We count 2049 flip-flops per column, plus 272 inter-
stitial latches, plus 2047 XORs, plus 2048 NANDs. Conservatively count-
ing 10 transistors per XOR gate (which may happen in dense tree ar-
rangements), this gives us 2049 · 12 + 272 · 6 + 2047 · 10 + 2048 · 4 = 54 882
transistors per column. Since there are 2048+rmax = 2183 such columns,
we use the 45 nm DRAM process to get an area of 0.43 cm2 for Ur and
Us combined, including the amplification of the data on the long buses.
(Since the multiplier shares a chip with the memory intensive hash table,
we elect to use the DRAM process for M/HT.)

D Hash Table

Architecture. The hash table internally splits into two identical sepa-
rate subtables HT0 and HT1. Each HTµ (µ = 0, 1) contains nDRAM = 256
DRAM blocks DBν (ν = 0, . . . , nDRAM − 1), and is designed to process
one (write or look-up) query per clock cycle. Elements to be stored or
looked up in the hash table have a size of rmax = 135 bit, and each
of the two subtables HTµ has to store up to nentries = 220 entries of
rmax + log2(nentries) = 135 + 20 bit each. To ensure a reliable collision
resolution, each DRAM block will offer space for 4 ·nentries/nDRAM = 214

table entries.

The hash table is used in both PET SNAKE’s agreeing and PET
SNAKE’s gluing phase. Subsequently, we describe the operations of the
hash table for agreeing a pair of symbols. For the gluing phase, the usage
of the hash table differs slightly, and we elaborate on this at the end of
this section.

Storing a value in a DRAM block DBν . A small input logic uses a
demultiplexer to select, based on the least significant log2(nDRAM) = 8 bit
of an incoming r-part r, one particular DRAM block DBν where the value
r is to be stored. As the number of the DRAM implicitly encodes 8 bits

of r already, only 135 − 8 = 127 bits actually have to be stored in a
table entry. Along with each table entry we store a log2(nentries) = 20 bit
multiplicity that is to count how often this value has been stored in the
hash table. The 5 remaining bits to fill up 19 byte are used as flags, e. g.,
one flag indicates that the entry is not empty, the other bits are used for
gluing.

most signif. rmax − log2(nDRAM) (= 127) bit of r flags (5 bit) multipl. (20 bit)

Fig. 15. Hash table entry for a value r.

With a size of 19 byte, hash table entries respect byte boundaries, and
the address in the DRAM block where to store an incoming r-part r can
be obtained by reading off bits no. 8–21 from r. When storing an r-part
the multiplicity counter is increased. When the not empty flag is set, two
cases can occur:

– The r-part in this table entry is identical to the value to be stored: in
this case the multiplicity counter is increased.

– The r-part in this table entry differs from the value to be stored: in
this case subsequent table entries are searched until a free spot or a
table entry with identical r-part is found.

The basic idea of distributing each subtable HTµ across several DRAM
blocks is to ensure that a single DRAM has about nDRAM = 256 clock
cycles, before a new element to be stored arrives. So simple linear probing
should suffice to resolve collisions. To handle irregularities in the distri-
bution of incoming r-parts, we provide safety mechanisms for storing and
looking-up elements. These mechanisms are detailed below in a separate
subsection.

Looking up values in a DRAM block DBν . Once the first subtable
HT0 has been filled with the entries corresponding to a matrix Li, read
queries with r-parts corresponding to a second matrix Lj are received by
the hash table. In addition to doing the look-up of these r-parts in HT0 as
described next, all these incoming r-parts are also forwarded to the second
subtable HT1 as a write query: the latter will be filled with these r-parts
in exactly the same way as HT0 has been filled with the r-parts belonging
to Li. This ensures that once the complete list of look-up queries for the

second matrix Lj have been processed, the hash table is ready to answer
read queries for table HT1. As the values to be looked-up in HT1 are
exactly the values that have been written in HT0, when filling HT0 we
also store all incoming r-parts in the order they are arriving in a buffer
DRAM of size nentries · rmax bit.

Remark 4. The buffer DRAM is realized as a collection of 16 DRAM
blocks that are accessed cyclically, therewith accounting for the slower
access time of DRAMs.

To check if a queried r-part is stored in a particular DRAM block of a
subtable, first the memory address is computed by reading off bits no. 8–
21 from the incoming r-part, just as when storing r-parts. Starting at
the address obtained in this way, hash table entries are read sequentially
until either a read entry is marked as unused—meaning that the queried
element is not in the table—or the queried element is found as a table
entry. To perform the necessary comparisons for our parameters, we can
use a 128-bit comparer which checks in two clock cycles if a stored r-part
coincides with the queried r-part. In case a queried value is found in the
table, the stored multiplicity is added to a 20 bit glue size counter. If the
latter counter overflows, this will be reported (see below).

Dealing with a non-uniform input distribution. One could con-
sider a set-up where incoming r-parts are preprocessed to smoothen the
bit distribution, e. g., by multiplication with a fixed random matrix. Judg-
ing from our software experiments, this does not seem to be necessary, and
for simplicity we do without such a preprocessing. Nevertheless, judging
from our software experiments, it can in particular happen that identical
r-parts are sent to the hash table in rapid succession. This could be prob-
lematic as then a single DRAM block DBν might be overwhelmed with
a large number of write queries arriving in a (too) short time frame.

Caching repeated write queries. To cope with the problem just mentioned,
we place a comparer pipeline of length nduplicates = 32 before the above-
mentioned demultiplexer which directs incoming r-parts to a particular
DBν . Every pipeline stage can store one new rmax-bit entry, one old
rmax-bit entry that has already been forwarded to the demultiplexer,
an 8-bit multiplicity counter and hosts two rmax-bit comparison units,
either of which can compare the stored value with an incoming rmax-
bit entry within two clock cycles. These comparison units are realized as
a pipeline of length two and thus can handle a new input every clock

cycle. When writing entries into the hash table, and an incoming r-part
coincides with the old value currently stored in the pipeline stage, this
means that the incoming r-part has been sent to the hash table during
the last nduplicates queries already. In this case the internal multiplicity
counter of the pipeline stage is increased by one, but the r-part is not
forwarded to a DRAM block (yet). By setting a simple discard flag, we
can ensure that such an r-part is discarded at the end of the pipeline
instead of being forwarded to a DBν . The new entries are forwarded
to the next pipeline stage, and the old values (including the counters)
are shifted into the opposite direction if one value is handed over to the
demultiplexer. If an entry with a stored counter value does not equal zero,
the respective entry is handed over to the buffer into the demultiplexer
and will be forwarded to the appropriate DBν , along with the appropriate
counter value.

When looking up entries in the hash table, the above-mentioned dis-
card signal is ignored and all incoming r-queries are forwarded to the in-
dividual DRAM blocks DBν , which will locally handle repeated r-queries
as discussed next.

Local buffering. To cope with repeated read queries, in front of each
DRAM block we have another short pipeline of ncache = 4 registers, each
of which is capable of holding an rmax − log2(nDRAM) = 127-bit value
and a 20-bit multiplicity counter: after each read query actually executed
by the DRAM, the respective r-part and its multiplicity is stored in one
of the pipeline stages. The ncache = 4 registers are overwritten cyclically,
after each read query executed by the DRAM. If an incoming read query is
found in one of the ncache = 4 pipeline stages, this means that the answer
to the read query is known already and no actual access to the DRAM
block is needed. This protects the hash table from being overwhelmed
with repeated read queries with identical r-parts. Finally, for the case
that different read or write queries reach an individual DRAM block DBν
in short succession, between the cache registers just mentioned and the
actual DRAM block we place nbuffer = 10 registers, each of which can
hold an rmax − log2(nDRAM) = 127-bit entry, a log2(nentries) = 20 bit
counter representing the corresponding column index and an 8-bit counter
indicating the number of times this element has been queried in a write-
query already while still being held in a pipeline stage. If all nbuffer entries
in a DRAM run full, a throttle signal is set, indicating that the hash table
cannot process further queries at the moment.

Reporting results. When writing entries into one of the subtables, by
default no return value from the hash table needs to be sent, except there
is a danger of buffer overrun and the throttle signal is used to prevent the
transmission of further write queries.

In the lookup phase no output is produced if a queried r-part is found
in the list. The glue size counter is increased only. Once this counter
overflows, a warning signal “glue exceeds threshold” is sent. If a queried
r-part is not found, then the corresponding column index, which is a
log2(nentries) = 20 bit value, is returned. To keep track of the column
indices, a local log2(rmax)-bit counter is used that is increased by one
whenever a read query is submitted to the hash table.

Gluing phase. The first step in the gluing phase is identical with the
agreeing phase—namely, the r-parts of Li are stored in the buffer DRAM
and sent to HT0.

In the next step, the r-parts of Li will be sent to HT0 again, including
the column index, and this time as a look-up query. Of course, each r-part
will be found and we store the corresponding 20 bit column index next
to the r-part, provided the stored multiplicity for r is not greater than
σpopular = 255. If the r-part is hit for the first time in the second run, the
place for the multiplicity counter (in Figure 15 the value on the right)
is used to store the column index, and a flag is set to indicate that this
value no longer represents a multiplicity. If the multiplicity has already
been overwritten, the next free space in the hash table is used to store
the column index. In case the next entry is not free, the 4 bit flags are
used to indicate how many entries to skip. At this next address, there is
space for 7 more numbers, and a new forward pointer, if necessary.

In the rare cases, that the multiplicity counter of an r-part is greater
than σpopular = 255, this technique would fill up the DRAM. In this case,
the multiplicity is reported through the output control of the chip to
the adder when this r-part r is looked up for the first time. Now, at the
adder chip, memory for multiplicity many counters can be allocated. To
simplify the communication, a popularity number is assigned to this r
by the output control. This number is stored in the DRAM at the place
where multiplicity has been, and from now on, this popularity number is
used to identify this particular r. The column index is reported directly
to the control unit of the adder when such an r is hit.

Finally, in the third step, the r-parts of Lj , including the column
index, will be sent to HT0 for being looked up. The column index and the

list of the column indices of Li that are stored in HT0 (or the popularity
number) will be reported to the control unit of the adder.

Area Calculation. Part of the incoming data is stored in the buffer
DRAM; this can hold up to 220 values with 136 bit. To cope with non-
uniform distributions, the inputs are first stored and checked for dupli-
cates in a pipeline with 32 stages. Each stage stores one 156-bit value and
one 143-bit values in latches and holds two comparers for 135-bit values
(NANDs followed by a tree of XORs). The comparers have a row of 9
latches after stage 4 of the XOR-tree to keep the critical path short. The
distribution to the 256 DBν requires a tree of 255 demultiplexers (1 to 2
bit) of width 156 and depth 8. Each DBν has 10 buffers of width 148 bit
to hold the incoming data, realized as latches. Three registers with 148
flip-flops each to store the last and the running requests and three 128-
bit compare units and a 20 bit adder. Besides some control logic, there
remains the DRAM to store 4× 212 × 152 bit in each DBν .

The buffer DRAM fits in 4 mm2. The pipeline for checking for dupli-
cates and the demultiplexing can be realized with some 430 000 transis-
tors, 200 000 for the pipeline, 190 000 for the demultiplexing and 40 000
for additional logic. This is an area of approx 0.15 mm2. Each of the
256 DRAM blocks in a subtable HTµ requires some 26 000 transistors for
buffers (17 500), comparers (6 500) and logic (2000). This corresponds to
an area of 0.009 mm2 for the transistors of each subtable, the DRAM of
one block requires 0.063 mm2. The complete hash table thus fits on an
area of 41 mm2.

E Adder

Architecture. The DRAM collection is comprised of 256 DRAMs, each
1 MByte in size. Five 2060-bit buffers are placed at the inputs of each
DRAM so as to protect it from multiple fast read/write operations, and
five 2048-bit buffers are placed at the outputs so their results can be
collected for adding. In front of this arrangement is a small station where
a 20-bit value is multiplied to a 20× 20 random, fixed, invertible matrix
M so as to randomize the input (which in turn randomizes which DRAM
will be selected by the input). In all, this comprises the s-lookup chain.

Popular r-parts Preprocess. In the glue phase, a matrix Li is first
processed by the hash table and its DRAM buffer is filled with pairs of

r-parts and indices. Then it processes its DRAM buffer to assign the num-
bers of the queries to the r values, and to find popular r-parts; these are
those r-parts which occur more than 255 times in Prij . Since there can
be at most 4096 of them, such a popular r-part is assigned a popularity
number (label it pid) from 0 through 4095. When this popularity num-
ber is assigned, the multiplicity is known and the appropriate amount of
memory is allocated. To keep track of the memory for the popular r-parts,
a list of starting point and current write position is needed for each of the
up to 4096 popular numbers. The memory for the counters has to be big
enough to store up to 220 numbers with 20 bit. This memory is realized
as an SRAM with 4 MByte. During the processing of the DRAM buffer,
if it encounters a popular r-part, it sends both the popularity number pid
and the associated index across the MPU bus to the adder. The index is
stored at the appropriate memory address, and the current write position
for the popularity number is increased. This continues for the duration of
the DRAM buffer processing.

DRAM Collection Preprocess. At the same time, the preprocessing
of popular r-parts takes place, the adder will also receive the s-part for the
current Li column. The adder will use the column number register and
divert that and the s-part to the DRAM collection. The column number
will be multiplied to M . The least significant 8 bits of this result are
used to select which DRAM to store the s-part in, and the other 12 bits
are used to determine its address. Then the s-part is stored. Because of
the buffering and randomization, this will in general not slow down the
preprocessing, but should an input buffer be filled, a throttle line will
signal the traffic controller to stop sending columns in Li until the writes
are processed.

Process. Now columns of Lj are processed. The adder will receive the s-
part of the current column of Lj , and it will store it in the adding register.
The hash table will send either a collection of indices of where to find the
associated s-part of Li, or a popularity number pid. In the first case, the
indices are simply marched along the s-lookup chain, multiplied, diverted
to the DRAM collection, and the corresponding s-parts will be output.
Each is then added to the value in the adding register, and the result is
sent to traffic control for storage. In the second case, the adder takes pid
and determines the memory address where the numbers start and end.
These values are output.

As the s-lookup chain receives indices, it multiplies them toM , obtains
results, and uses them in the same way as before to obtain s-parts from
the DRAM. These are added to the value in the adding register, and the
results are sent to traffic control for storage.

Extraction Stage Process. After equations are generated in the row
reducer’s A part from the symbol in snake 1, they are sent across the MPU
bus one row at a time, and the adder picks them up. The s-lookup chain
is bypassed; the adder will store them directly in its SRAM. Then, after
the equations from the symbol in snake 2 appear in the row reducer’s A

part, the adder will send the equations it stored from its SRAM, across
the MPU bus, to the row reducer’s A part so that those two groups of
equations can be row reduced.

If there is a second extraction stage, the row reducer will send the
result of its row reduction across the MPU bus, and the adder will store
this group of equations (call it E) in its SRAM (deleting the previous
group). Then the equations from the symbol in snake 3 are generated
(similarly to how those in the symbol in snake 1 were) and stored in the
adder’s SRAM. Call this group F . Then the equations from the symbol
in snake 4 are generated. These will sit in the row reducer’s A part. Then
the adder sends F back across the MPU bus to the row reducer’s A part,
and its contents are row reduced. Then, finally, E is sent from the adder’s
SRAM across the MPU bus to the row reducer’s A part, and its contents
are row reduced one final time. Now, a group of equations is at most
2048 × 2048 bits, yielding 1

2 MByte, so the two groups E and F will sit
comfortably in the 4 MBytes of the SRAM.

Area Calculation. The DRAM collection consumes 0.54 cm2. The
buffers surrounding it contain 256 × (5 · 2060 + 5 · 2048) = 5 258 240
flip-flops consuming 0.22 cm2. The SRAM to hold the popular r values
consumes some 0.12 cm2—here we assume that 1T-SRAM can be used
and estimate the area equivalent of 1 bit to be 1 transistor. The remain-
ing control logic including the access to the SRAM, updating memory
addresses, and the adder (3 × 2048 flip-flops and 2048 XORs) will not
consume more than 0.20 cm2. Together, this yields an upper bound of
1.1 cm2 for the adder.

F Gate Counts and Surface Area for an ASIC
Implementation

To translate the size of a functional unit from its gate count to its tran-
sistor count, Table 4 is used. To calculate the surface area consumed by

unit AND OR NOT XOR NAND NOR D flip-flop Latch 2-to-1 MUX

trans. 6 6 2 6 4 4 12a 6 6b

a cf. [31, Figure 5.44 (a)]
b cf. [31, Figure 5.38 plus 2 transistors to invert the select signal]

Table 4. Transistor counts of logic gates and components.

each component, we use the numbers in Table 5, which are obtained by
scaling the 90 nm numbers in [30, Table 3.1] down to 45 nm by a factor
of 4 resp. the 130 nm numbers there down to 45 nm by a factor 8 (cf.
also [20, Table 2]). Taking into account more recent data from the Inter-
national Technology Roadmap for Semiconductors [12], more aggressive
area estimates seem feasible, but we decided to stick to the (conserva-
tive) scaling, which should also simplify the task of relating our results
to existing special purpose designs for cryptanalysis.

45 nm logic process 45 nm DRAM process

transistor 0.2975µm2 0.35µm2

DRAM bit 0.0875µm2 0.025µm2

Table 5. Average surface area of hardware components.

