
How To Find Weak Input Differences For MD5 Collision Attacks

1,2Tao Xie, 1Dengguo Feng

1State Key Lab of Information Security, Chinese Academy of Sciences, Beijing, China
2The Center for Soft-Computing and Cryptology, NUDT, Changsha,China

(hamishxie@vip.sina.com)

Abstract. Since the first feasible collision differential was given for MD5 in 2004 by Wang et al, a lot
of work has been concentrated on how to improve it, but the researches on how to select weak input
differences for MD5 collision attack are only sporadically scattered in literature. This paper focuses on a
reasonable selection of weak input differences for MD5 collision attack, tries to answer some questions
such as, what techniques can be use to satisfy bit conditions? which step in the second round can
be the latest to apply a search on free bits without violating previously satisfied conditions? what is
the optimal characterization of feasible collision differential propagation for MD5, by which we can
find more weak input differences? is there any collision differentials better than Wang et al’s by some
practical criteria? In this paper, a divide-and-conquer strategy is introduced with an optimal scheme of
grouping the 64 steps of operation into five stages of independent condition fulfillment, and a feasible
collision differential propagation is optimally characterized as a guide to select those 1-3-bit weak input
differences, with their computational costs estimated. As a result, hundreds of thousands of weak input
differences have been found, quite a number of which are superior to Wang et al’s. For example, a
new differential collision attack with only 1-MSB input difference is developed with a time complexity
of 220.96 MD5 compressions, two weak input differences are able to find a collision within 210 MD5
compressions. In particular, a 2-bit weak input difference is found to be able to construct a practical
1-block collision attack on MD5. This paper will provide a rich resource of colliding messages with
different weak input differences, therefore much greatly increase the probability of finding a second
MD5 pre-image for an arbitrarily given message.

Key words: MD5, Differential Collision Attack, Divide-and-Conquer, Weak Input Differences, Time
Complexity Estimation.

1 Introduction

Since Wang et al gave a first practical differential collision attack especially on MD5 in 2004 [1] and 2005 [2,
3], a research surge on hash cryptanalysis has appeared. The cryptanalysis on hash functions focuses mainly
on three aspects, firstly a fundamental work is to seek a complete understanding of how this approach works,
secondly a reasonable direction is to improve the original collision attack, and thirdly but not finally comes
up a question whether it can be generalized, for examples, to attack MD5’s second pre-image and pre-image,
or even HMAC and NMAC etc.
Basically, Wang et al’s differential collision attack [2, 3] is a hybrid differential cryptanalysis which takes ad-
vantages of both modular difference and XOR difference. In general, three steps are involved in a differential
collision attack. The first step is to find a feasible collision differential, which is called weak input difference
in this paper, the second step is to construct a feasible differential characteristic or path that leads to a
collision, the final step is to design a specific algorithm to find colliding message pairs efficiently. In the final
step, these colliding pairs are searched to satisfy all conditions that guarantee a differential collision along
the differential characteristic. In the past four years, most of researches focus on the last two steps, and
a great number of papers have appeared in variety of conferences or workshops. Since this is not a survey
paper, it is inappropriate to review all the work on the second and third steps. However, several notable
work on the last two steps and their applications can not be ignored. Firstly, a breakthrough in message
modification called tunneling technique is made by V. Klima [4], it can be used to provide more freedom

to fulfill conditions in the second round, and this results in an improved algorithm capable of generating a
collision within one minute on a desktop PC, exponentially accelerating collision search. Klima’s tunneling
technique is used by Marcs Steven [5] to further reduce the computational cost to 224.8 MD5 compressions,
such that a collision can be found in several seconds on a desktop PC. Secondly, a practical and nearly
meaningful pair of colliding X.509 certificates for two different distinguished name was found with the same
MD5 digest by Marcs Steven in Eurocrypt2007 [6], which was later improved to a short chosen-prefix col-
lision [24], this work make the method of producing MD5 collisions a really shattering attack on practical
protocol. Especially, Marcs Steven et al [5, 6] and C. De Cannire et al [7–9] contributed respectively to
half-automatically designing and optimizing a MD5 and SHA-1 differential characteristic, which could save
a large part of human work and have resulted in better collision attacks on MD5 and SHA-1 [9]. Thirdly, by
using an if-then-else programming structure, two different Postscript files were created with the same MD5
digest but to result in different texts when screening [10], and this attack was extended to other file formats
in [11]. Fourthly but not finally, theoretical attacks on the pre-images and second pre-images of MDx hash
functions have been made in [12–16], and similar attacks on HMAC and NMAC with several hash functions
have also been proposed in [17–19].
All the work described above especially on MD5 are based on Wang et al’s original collision and approach,
no new collision differentials have been found to be better than Wang et al’s attack [5, 20, 21]. It seems to
remain an intuitive work to find a feasible collision differential, which was widely considered to rely on one’s
experience and intuition. In 2007, a 1-MSB input difference (4+m11 = 231 for the first block) was used to
construct a new 2-block differential collision attack with a computational complexity of 242 MD5 compres-
sions, and applied later in recovering the APOP password, by firstly building a so called “IV Bridge” and
then using Boer and Bosselaer’s pseudo collision attack [13, 20]. In the same year, a second 3-bit weak input
difference was found that resulted in an initial collision searching algorithm with a computational complexity
of 236 MD5 compressions [21], and an improvement has been made later on to reduce the computational
complexity to 230 MD5 compressions. In 2008, a third 3-bit weak input difference was found and a real col-
lision obtained in [22]. Since these newly found collision differentials are all inferior to Wang et al’s original
3-bit weak input difference in term of efficiency, this makes it necessary to get to the bottom of how the weak
input differences are selected, how collision differentials are evaluated, and what input difference can be the
best collision differential in terms of practically considered criteria. A good solution to these problems will
answer questions, such as “Is Wang et al’s collision differential the best selection for MD5?”, “How fast do
we actually make collision attack on MD5?”,“Can a second pre-image be practically made given an arbitrary
message?”,“Can MD5 collision be applied for attacks on practical security protocol?” and so on.
A first analysis in [23] on the selection of weak input differences have been made, which renders many better
weak input differences to be newly found. As examples, a 1-MSB weak input difference (4+m8 = 231 only
in the first block) is able to construct a very fast 1-MSB differential collision attack [23], Wang et al’ 3-bit
weak input difference combined with a 1-bit weak input difference (4+m2 = ±28), which was proposed
firstly in [23], to construct a faster 8-bit differential collision attack with only 216 MD5 compressions [24].
Two weak input differences, one being composed of m11 = 231, another one being composed of 4+m2 = ±28

and 4+m14 = 231, can each be used to construct a collision attack even within 210 MD5 compressions, and
particularly for the first time a 2-bit weak input difference is found to be able to construct a 1-block collision
attack on MD5.
This paper mainly focuses on an optimal characterization of the feasible collision differential propagation for
MD5, tries to find as many as possible weak input differences that conform to the optimal characterization,
and to make estimations on the computational costs of obtaining a collision for each weak input difference.
In this way, better collision differentials than Wang et al’s can be found for MD5. Deep analysis on the cor-
relation between state variables by message words in the first two rounds, shows that a divide-and-conquer
strategy can be applied to optimally and consecutively separate the 64 steps of operation into five groups,
with the final group of steps starting from step a7. Using the direct and indirect message modifications
as well as the tunneling technique, conditions in each group can be fulfilled without violating previously
satisfied conditions. As a result, the final group of steps becomes the critical one to fundamentally define the
computational complexity of finding a collision. This imposes a limit on the number of conditions in the final

2

group of steps, such that the differential collision attack is more efficient than the birthday collision attack.
Together with the differential propagation properties implicit in each round, this limit further shapes the
differential characteristic for the last two rounds, prescribes an optimal characterization of feasible collision
differential propagation, and finally leaves clues on finding weak input differences.
This paper is organized as follows: In Section 2, a divide-and-conquer strategy is described with four condition
fulfilling techniques, including the direct message modification, the indirect message modification, the tun-
neling technique and the grouping scheme, the grouping scheme is an application of the divide-and-conquer
strategy in MD5 collision attack, resulting in a general procedure for collision searching. In Section 3, an
optimal characterization of feasible collision differential propagation is carried out by the birthday collision
attack’s limiting on the number of conditions in the final group of steps, together with the different signed
differential bit-incurred conditions and the differential propagation properties implicit in each round. In Sec-
tion 4, hundreds of thousands of 1–3-bit weak input differences are selected to conform with the optimal
differential propagation characterization, including 41 elementary 1-bit weak input differences, all possible
combinations of two 1-bit weak input differences and four 3-bit weak input differences, other possible combi-
nations of these weak input differences are also mentioned. In Section 5, using six weak input differences as
examples, a general method is proposed to estimate the upper bound of computational cost for each weak
input difference, and some practical criteria are proposed and explained to evaluate weak input differences,
then based on the general collision searching procedure, a typical weak input differences is chosen to develop
a new 1-MSB differential collision attack on MD5, being able to generate a collision within a second on a
common desktop PC. In Section 6, a summary is made with some conclusions drawn.

2 A Divide-and-Conquer Strategy For Collision Searching

Dedicated hash algorithms like MDx family are actually discrete functions which iterate many steps of
nonlinear operations, thus considered usually as very complex nonlinear functions. Traditionally, a divide-
and-conquer strategy is obviously a primary way to solve complex problems that will incur a currently-
unachievable computational effort if no reduction is made.

– The Divide-and-Conquer Axiom: If a problem P with computational complexity Co can be divided
into k sub-problems Pi(1 ≤ i ≤ k), and each sub-problem Pi can be solved independently with a sub-
computational complexity Ci but without destroying other sub-problems’ solutions, then the computational
complexity to solve the original problem reduces to Cd =

∑k
n=1 Ci instead of Co =

∏k
i=1 Ci.

By the basic fact that, a multiplicative computational complexity of the original problem can be trans-
formed into an additive accumulation of their sub-problem’s computational complexities, if the original
problem can be massively divided and independently conquered, we can give a theorem similar to the divide-
and-conquer axiom. Since the conditions in the first round and some steps like a5 and b5 in the second round
can be satisfied by message modifications, they are usually ignored in the calculation of computational com-
plexity. In the grouping theory, only probabilistically satisfiable conditions are considered.

– The Grouping Theorem For MDx Differential Collision Attack: Assume p conditions in a
differential characteristic be only probabilistically satisfiable by a random or brute-force search, and the
search procedure can be divided into groups of condition satisfying, namely G1, G2, . . . and Gk, and∑k

i=1 |Gi| = p. Let Gmax = max{G1, G2, . . . , Gk} be the group with the most conditions to be only
probabilistically satisfiable. If all groups of conditions are sequentially fulfilled, i.e. Gi is to be fulfilled
before Gi+1, and the conditions in G1 to Gi are not violated by satisfying the conditions of Gi+1 and
so on. Then, the computational complexity of satisfying the p conditions, will be reduced to an additive
accumulation of the sub-computational complexities for all groups instead, and the group Gmax will be
characteristic of the total computational complexity, provided that there exist enough freedom (free bits)
to be searched for each group.

3

Usually, the largest group Gmax of only probabilistically satisfiable conditions is the final one which
includes all bit conditions starting from a step in the second round. Hence, a feasible collision differential
characteristic should be constructed such that the number of conditions in the final group is currently within
the computational feasibility. Therefore, a fundamental problem emerges from behind the divide-and-conquer
theorem, that how many groups can we divide a collision differential characteristic independently, what is
the optimal separation of MD5 steps, and which step in the second round can be the latest as the beginning
step in the final group? A good answer to these questions will lay a theoretical foundation for an optimal
characterization of feasible collision differential propagation.

To achieve a feasible differential collision attack on MD5, three steps as described in Section 1 are
sequentially involved, and we wish this sequence had not misguided researchers in this field. Actually, however,
when you begin to find your feasible collision differentials, a reverse contemplation on differential collision
attack will benefit more than sequentially following Wang et al’s approach. Since a differential collision
attack is feasible only if it is more efficient than the birthday attack, and the possible number of conditions
and their arrangement along the differential characteristic are completely determined by condition satisfying
techniques, we have to make clear that, how many condition satisfying techniques exist, how and to what
extent these techniques help satisfy conditions.

For the remainder of this article we follow the notation of [23], and restate it whenever needed. For MD5
function, the 64 steps of state variables are sequentially denoted as ai, di, ci and bi, where 0 ≤ i ≤ 16 with
i = 0 defining the four initial state variables a0, d0, c0 and b0. Particularly, the state variables ai, di, ci and
bi are also used to denote the corresponding steps of updating operation. Note that the practical sequence
order (ai, di, ci and bi) of updating state variables is different from the natural order (ai, bi, ci and di). Bits
are indexed in a word starting from 0 (LSB) to 31 (MSB) unless being specially restated. The four auxiliary
bitwise functions are sequentially defined as F (x, y, z) = (x ∧ y) ∨ (x̄ ∧ z), G(x, y, z) = (x ∧ z) ∨ (y ∧ z̄),
H(x, y, z) = x⊕ y ⊕ z) and I(x, y, z) = y ⊕ (x ∨ z̄).

For the sake of comprehension and integrity, a concise introduction for MD5 algorithm is given in Ap-
pendix A.

2.1 Direct Message Modification

The step operation equation can be used to calculate a message word such that the corresponding state
variable is satisfied with its bit conditions, this is called the direct message modification. Direct message
modification is usually used in the first round and occasionally applied in the second round for condi-
tions’ satisfaction. For example, a state variable ai+1 can be randomly assigned but with all its conditions
prescribed, which can be achieved by calculating a corresponding message word with a transformed step
equation. Direct message modification was early used by Boer and Bosselaers in their pseudo collision attack
on MD5 [25], and massively applied in Wang et al’s differential attack on MD5 for direcltly satisfying all
bit conditions in the first round [2, 3]. Direct message modification has become a fundamental technique in
differential attack on MDx hash functions.

2.2 Indirect Message Modification

The message words used to satisfy a state variable in the second round will unavoidably change the corre-
sponding state variables or even break some previously satisfied conditions in the first round, this feedback
of change from the second round to the first round by a common message word frustrates a direct message
modification in the second round. An improvement was made firstly by F. Chabaud and A. Jaux in their
differential collision attack on Sha-0 [26], in which the next multiple messages were used to absorb the change
of the current state variable due to the direct message modification in the second round, such that a feedback
of change from the second round will be blocked from propagating into the second round. This technique
of one message word’s change having to be complemented by multiple next consecutive message words’
modifications, is called an indirect message modification, which is virtually a multiple message modification.
Indirect message modification can be both forward message modification and backward message modifica-
tion. For an example of indirect forward message modification, if the message word m1 is recalculated to

4

satisfy the conditions in a5, a corresponding state variable d1 in the first round must be changed. In order to
restrict the change only in d1, direct modification on next four message words must be implemented to keep
the next four state variables unchanged, respectively c1, b1, a2 and d2. For an example of indirect backward
message modification, if the message word m11 is recalculated to satisfy the conditions in c5, a corresponding
modification on b2 must be made so that b3 will keep unchanged, consequently the next three consecutive
message modifications must be implemented to maintain the state variables a3, d3 and c3.

This multiple message modification has been improved and consummated further by V. Klima [4], Marc
Stevens [5] and Tao Xie [21, 23], it becomes the basic modification technique in the differential collision attack
on MDx hash functions. As for MD5, the number of state variables that can be indirectly satisfied by multi-
message modification, is determined by the permutation of message words in the second round, the number
of free state variables and their arrangement in the differential characteristic in the first round. However, the
state variables a5 and b5 can be easily satisfied by this multi-message modification, since the first two state
variables a1 and d1 are usually free or do not have too many conditions to be satisfied. Generally speaking,
a multi-message modification can be applied to satisfy a state variable in the second round, only when the
corresponding state variable in the first round is free, or both state variables in the first two rounds can be
satisfied with the same message word and condition inconsistency does not occur.

2.3 Tunneling Technique

Tunneling technique is firstly proposed by V. Klima [4] to improve Wang et al’s differential collision attack
efficiency, it takes advantage of the selective function in the first round to add in more freedom in collision
searching than the multi-message modification, thus it is a more advanced technique for message modification
and condition fulfillment.

Assume four consecutive state variable bit ai,j , di,j , ci,j and bi,j in the first round of MD5. If we set ci,j = 0,
bi,j = 1 and make changes on di,j , then the selective function F (ci,j , di,j , ai,j) = (ci,j∧di,j)∨(c̄i,j∧ai,j) = ai,j

and F (bi,j , ci,j , di,j) = (bi,j ∧ ci,j)∨ (b̄i,j ∧ di,j) = 0, consequently the change in di,j has no effect on the next
two state variables bi and ai+1, where 1 ≤ i ≤ 4, 0 ≤ j ≤ 31. This property of the selective function is called
change absorption, and a free bit di,j with the next two bits’ specification ci,j = 0 and bi,j = 1 constitute
a tunneling bit. More precisely, the number of tunneling bits in three consecutive steps in the first round is
defined as the strength of a tunneling.

Theoretically, this tunneling technique can be applied without violating previously satisfied conditions
in all the steps from a5 to d7 except c6, in which m15 is involved, but it is more suitable to be applied in
a6, d6, b6, a7 and d7, since the state variables a5, d5, c5 and b5 can be satisfied both by the multi-message
modification and the tunneling technique, while the state variables a6, d6, b6, a7 and d7 can only be satisfied
by the tunneling technique. Unfortunately, applying the tunneling technique in any step after step d7 will
unavoidably break previously satisfied conditions. For a feasible collision differential characteristic, only b6,
a7 and d7 are practically suitable for tunneling technique, therefore d7 become the latest step to apply the
tunneling technique.

2.4 Grouping Scheme—An Application Of The Divide-and-Conquer Strategy

The above mentioned three message modifications constitute different levels of condition fulfilling techniques,
which define the basic grouping scheme together with the permutation of message words in the second round.
Theoretically, starting from step a5 to d7 , each step or several consecutive steps can be grouped themselves,
if there exist enough freedom (free bits) in the group. Practically, however, a scheme of properly grouping the
64 steps will benefit much more while too finely or coarsely grouping will ultimately abate attack efficiency,
since freedom is not always enough to satisfy conditions. A criterion on optimally grouping the MD5 steps
is, to let the message word that is involved in the beginning step of each group be as near as possible the
front of the first round or just be the steps with enough tunneling bits, so that there are enough freedom to
fulfill all bit conditions in the group, since free steps are always near the front. An optimal grouping scheme
is given as follows with respect to some considerations, such as more comprehensive and more instructive for

5

the construction of feasible collision differential characteristics.

– Group-1: The steps from a1 to b4, that is the first round, constitute the first group. These state variables
can be satisfied by the direct message modification.

– Group-2: a5, d5 and c5 constitute the second group. The conditions in d5 and c5 can be satisfied by
searching the free bits in a5, while a5 can be satisfied by the multi-message modification. If too many
conditions exist in this group, more finely grouping of steps will benefit.
• Group-2.1: a5 can individually constitute a group or a group with d5, a5 or both a5 and d5 can be

satisfied by the multi-message modification plus a random search on the free bits in a5.
• Group-2.2: d5 can individually constitute a group or a group with c5, d5 or both d5 and c5 can be

satisfied by the multi-message modification plus a random search on the free bits in d5.
• Group-2.3: c5 constitutes a group, and c5 can be satisfied by the multi-message modification.

– Group-3: b5, a6, d6 and c6 constitute the third group. The conditions in a6, d6 and c6 can be satisfied
by searching the free bits in b5, while b5 is satisfied by the multi-message modification. If too many bit
conditions exist in this group, more finely grouping of steps will benefit.
• Group-3.1: b5 and a6 constitute a group which can be satisfied by multi-message modification.
• Group-3.2: a6 and d6 constitute a group which can be satisfied by multi-message modification.
• Group-3.3: d6 and c6 constitute a group which can be satisfied by multi-message modification.

– Group-4: All steps from b6 or a7 to b16 can be put in the fourth group. All conditions in these steps
can be satisfied by the tunneling searching through three consecutive steps b1, a2, d2 and/or a3, d3, c3.
If too many bit conditions exist in b6, then it will benefit more to make b6 an independent Group 4.1
and all steps after b6 to be Group 4.2.
• Group-4.1: The step b6 individually constitutes a group, and state variable b6 can be satisfied by

the tunneling searching through three consecutive steps b1, a2, d2.
• Group-4.2: The steps from a7 to b16 together constitute the final group, all conditions in this group

can be satisfied by the tunneling searching through three consecutive steps a3, d3, c3.

– Group-5: The steps from d7 to b16 can constitute a final group, and conditions in these steps can
be satisfied by the tunneling searching through d4, c4 and b4, which is cascaded by another tunneling
searching through c1, d1 and a2 to absorb the modification in message word m6.

By the optimal grouping scheme described above, theoretically d7 will be the latest step to randomly
fulfill the conditions behind this step, but practically, the two cascaded tunneling can not be employed as the
final group searching, since the tunneling bits will be much less than the conditions in the final group, hence
the improved efficiency is limited. Therefore, a collision differential characteristic should be constructed so
that the section from a7 to b16 incur conditions as small as possible.

Figure 1 is a flowchart to explain how the conditions in all steps can be efficiently satisfied by the optimal
grouping scheme. Since a general procedure for MD5 collision searching will benefit researchers more than
a specific algorithm if it is based on the grouping scheme, a general procedure for MD5 differential collision
searching is given as follows:

– Group-1’s Satisfaction: To satisfy all steps in the first group by direct message modification.

– Group-2’s Satisfaction: To satisfy all conditions in the second group by the indirect message modi-
fication in a random or brute-force search, and keep all conditions in the first group satisfied; if not all
conditions in the second group are satisfied when the search is over, return to Group-1’s Satisfaction.

6

Fig. 1. An Optimal Grouping Scheme (MD5)

– Group-3’s Satisfaction: To satisfy all conditions in the third group by the indirect message modifica-
tion in a random or brute-force search, and keep all conditions in the first two groups satisfied; if not
all conditions in the third group are satisfied when the search is over, return to Group-2’s Satisfaction.

– Group-4.1’s Satisfaction: To satisfy all conditions in the fourth group by the tunneling searching tech-
nique in a random or brute-force search, and keep all conditions in the first three groups satisfied; if not
all conditions in the fourth group are satisfied when the search is over, return to Group-3’s Satisfaction.

– Group-4.2’s Satisfaction: To satisfy all conditions in the fifth group by the tunneling searching tech-
nique in a random or brute-force search through an early stop scheme, and keep all bit conditions in the
first four groups satisfied; if not all bit conditions in the fifth group are satisfied when the search is over,
return to Group-4.1’s Satisfaction.

An early stop scheme demands that, when a condition is found to be not satisfied in a step of operation, all
the next steps of operation are ignored and the algorithm returns to the beginning of this group’s satisfaction
and starts anew.

3 Characterization of Weak Differential Propagation

3.1 Basic Conditions Incurred By Differential Bits

For the sake of clarity, we only consider a situation where there is only one differential bit occurring at the
same bit position at three consecutive steps, as this can be generalized to other situations where there are
two or three differential bits occurring at the same bit positions at three consecutive steps if you take other
differential bits as fixed conditions, and this will reduce the number of conditions to be specified. Extra
conditions due to binary carries and bit rotations are ignored here, since they do not have any influences on
the following analysis.

– Round 1-2: A differential bit in the first two rounds will incur 4 or 5 conditions. For example,
if b7,i = +1, that is, there exists a positive flip at the ith bit of b7, then in three consecutive steps of

7

operation, b7 will be used respectively as x, y and z in the second auxiliary function G(x, y, z) = (x∧z)∨
(y∧z̄), each imposes a bit specification or correlation specification for other two bits. To be more precisely,
for the first situation where step operation a8 is implemented, it will depend on the specification on d7,i

whether the bitwise function G(+1, c7,i, d7,i) = (+1∧d7,i)∨ (c7,i∧ d̄7,i) produces a positive flip at the ith

bit, d7,i = 1 producing a positive bit flip, otherwise c7,i. For the second situation where step operation d8

is implemented, it will depend on the specification on c7,i whether the bitwise function G(a8,i,+1, c7,i) =
(a8,i∧c7,i)∨(+1∧c̄7,i) produces a positive flip at the ith bit, c7,i = 0 producing a positive bit flip, otherwise
a8,i. For the third situation where step operation c8 is implemented, it will depend on the correlation
specification between a8,i and d8,i whether the bitwise function G(d8,i, a8,i,+1) = (d8,i∧+1)∨(a8,i∧−1)
produces a flip at the ith bit, d8,i 6= a8,i producing a bit flip, otherwise no bit flip. If a positive or negative
flip is required, then a bit specification for both a8,i and d8,i is needed, which will incur two conditions.

As a result, the bit specification on four bits plus the differential bit itself constitute five conditions for
a differential non-MSB bit or four conditions for a differential MSB in the second round. Similarly, three
situations will occur when a differential bit appears in the first round.

– Round 3: In the third round, a differential non-MSB will definitely incur 4 conditions,
while a differential MSB catches no bit conditions. For example, if b9,i = ±1 and i 6= 31, that
is, there exists a flip at the ith bit of b9, then in three consecutive steps of operation, b9 will be used
respectively as x, y and z in the third auxiliary function H(x, y, z) = x⊕y⊕z, each imposes a correlation
specification on the other two bits. No matter what situation (as x, y or z) b9 is in, the other two bits
have only two correlative options that have direct effect on the results, one is that two equal bits will
produce the same flip as b9,i, another is that two unequal bits will flip the original flip at b9,i. Thus,
three correlation specification on different two bits plus the differential bit itself definitely constitute 4
conditions for a differential non-MSB bit in the third round. Since 231 = −231 mod(232), no conditions
will be incurred by a differential MSB in the third round.

– Round 4: In the fourth round, a differential non-MSB will definitely incur 5 conditions,
while a differential MSB catches only three conditions. For example, if b13,i = +1, that is,
there exists a positive flip at the ith bit of b13, then in three consecutive steps of operation, b13 will be
used respectively as x, y and z in the final auxiliary function I(x, y, z) = y ⊕ (x ∨ z̄), each imposes a bit
specification or correlation specification for the other two bits. To be more precisely, for the first situation
where step operation a14 is implemented, it will depend on the specification on d13,i whether the bitwise
function I(+1, c13,i, d13,i) = c13,i⊕(+1∨ d̄13,i) produces a flip at the ith bit, d13,i = 1 producing a bit flip,
otherwise the original flip at b13,i being absorbed. More specifically, when d13,i = 1, it will depend on the
specification on c13,i whether the bitwise function I(+1, c13,i, 1) = c13,i⊕ (+1∨ 0) produces a positive or
negative flip at the ith bit, c13,i = 0 producing a positive bit flip and vice versa. For the second situation
where step operation d14 is implemented, it will depend on the specifications on a14,i and c13,i whether
the bitwise function I(a14,i,+1, c13,i) = +1⊕ (a14,i ∨ c̄13,i) produces a positive or a negative flip at the
ith bit, only a14,i = 0 and c13,i = 1 producing a positive bit flip, otherwise a negative bit flip.

For the third situation where step operation c14 is implemented, it will depend on the specification on
d14 whether the bitwise auxiliary function I(d14,i, a14,i,+1) = a14,i ⊕ (d14,i ∨ −1) produces a flip at the
ith bit, d14 = 0 producing a bit flip, otherwise no bit flip. More specifically, when d14 = 0, it will depend
on the specification on a14,i whether the bitwise function I(0, a14,i,+1) = a14,i ⊕ (0 ∨ −1) produces a
positive or negative flip at the ith bit, a14,i = 0 producing a negative bit flip and vice versa.

Similarly, since 231 = −231 mod(232), no signed MSB flip needs to be considered, only three bit specifica-
tions are incurred by a differential MSB in the fourth round. As a result, specifications on four bits plus
the differential bit itself constitute the five conditions for a differential non-MSB bit in the final round.

8

3.2 Differential Propagation Properties

– Round 1-2: Differential propagation in the first two rounds can be easily controlled, to be di-
vergent or convergent. The selective function F (x, y, z) = (x∧y)∨(x̄∧z) and G(x, y, z) = (x∧z)∨(y∧z̄)
can be used to eliminate or reserve those unexpected differences by specifying the corresponding selective
bits. In this way, differences can be propagated as expected, sometimes to expand but most of the time
to converge. In the second round, for example, the differential propagation should be converged as early
as possible to incur as few conditions as possible. As a result, usually an inner collision or inner near
collision can be obtained, and the number of conditions incurred in the first two rounds will be minimized.

– Round 3: Differential propagation in the third round is diffusive except along MSBs. A non-
MSB difference will be drastically diffused in the third round by the XOR function H(x, y, z) = x⊕y⊕z,
while consecutive steps of MSB differences can propagate along the way if not interrupted by input
differences. Since consecutive steps of MSB differences catch no conditions, this property of differential
step propagation in the third round requires within the second round an inner collision such that a MSB-
differential propagation can be built by input differences in the third round, or an inner near collision such
that it can combine with input differences from the third round to build a MSB-differential propagation.
However, an inner near collision in the second round can also be eliminated by input differences from
the third round to build a non-differential propagation. As a result, the number of conditions will be
minimized. Since an odd number (1 or 3) of MSB differences will produce a MSB difference again by the
XOR function, and a non-MSB difference will occur in the next step if a MSB difference is generated in
the addition modulo 232 before left rotation, four consecutive steps of MSB difference or no difference
need to be generated before a MSB-differential or non-differential propagation is built. For example, if
four consecutive steps of MSB difference are to be produced independently by the input differences in
the third round, at least three 1-bit input differences need to be arranged in a proper way. To be more
precisely, when a MSB-difference is produced in the third round by a first 1-bit input difference in a step,
this MSB-difference must be eliminated with a second MSB input difference in the addition modulo 232

before the left rotation in the next step, a MSB difference is then obtained. Thanks to the co-elimination
of both MSB differences, these two steps of newly generated MSB differences can produce a new MSB
difference in the third step without input difference. However, in the fourth step, a third MSB input
difference is needed again to eliminate the MSB difference in the addition modulo 232 before the left
rotation, so that a new MSB difference can be obtained. As a result, four consecutive steps of MSB
differences are produced and a MSB differential propagation is built without more input differences. In
the same way, four consecutive steps of MSB differences can be dissolved in the next four steps by three
1-bit input differences similarly arranged as above in the third round, and a non-differential propagation
will be built instead. Nevertheless, 1-bit or 2-bit input difference can combine with some differences
derived from the second round to build a MSB-differential or non-differential propagation in the third
round.

– Round 4:Differential propagation in the final round is absorptive and can be limited within
2 bits. Thanks to the ONX function I(x, y, z) = y⊕ (x∨ z̄), a non-MSB difference can propagate within
two consecutive bits, while a MSB difference can propagate along the way to the end, and this can be
verified by checking up with the final steps in the differential characteristic of the first block given in
[21]. Since five conditions will be incurred for a bit difference in the final round, it is better to keep the
differential propagation along MSBs, and reduce the non-MSB differential steps as much as possible. In
this way, the number of conditions incurred in the final round will be minimized. Due to the property
of the ONX function, a MSB input difference can be absorbed in a MSB-differential propagation path,
and a non-MSB input difference (turning into a MSB difference by the left rotation) can produce a
MSB-differential propagation independently in the final round. If a MSB-differential propagation is to
be dissolved, a non-MSB input difference (turning into a MSB difference by the left rotation) is needed
to be followed by a MSB input difference three steps later, and this property gives a prediction that a
1-block collision attack on MD5 is feasible.

9

3.3 An Optimal Characterization of Weak Differential Propagation

Fig. 2. The Optimal Characterization of Weak Differential Propagation

Since a few of differences can be allowed in a 2-block collision attack on MD5, this make it easier to
construct a 2-block collision attack than a 1-block collision attack, where a first block is used to produce a
near collision which can be further eliminated by a second block, thus turning a near collision into a real
collision. Given an input difference, the objective to design a feasible collision differential characteristic is to
converge the differential propagation so that the number of conditions especially incurred in the final group
of steps will be within the current computational feasibility (compared to the birthday collision attack).
Therefore, an optimal characterization of weak differential propagation will benefit the selection of weak
input differences. Based on the differential propagation properties in each round, a weak input difference
should be selected to have a differential propagation path which is composed of typical four sections, denoted
in Figure 2 respectively as I, II, III and IV. Section I is a non-differential area without input difference, section
II is an inner collision or near collision area across the first two rounds, section III is a non-differential chain
followed by a MSB-differential chain starting from the first input difference in the third round if section II is
an inner collision, or simply a MSB-differential chain or non-differential chain directly derived from section
II if section II is an inner near collision. Section IV is a near collision area consisting of only a few of the
last consecutive steps, better no more than 4 steps, which are then modulo 232 added with the initial value
to produce a chain input differences for the second block. Due to the chain input differences, section I does
not exist in the second block, the chain input differences propagate all the way to the beginning of section
II and constitute a lengthened section II starting from step a1, and the section III and IV in the second
block correspond respectively to the section III and IV in the first block, except that the differences in the
last four consecutive steps are eliminated by the chain complementary input differences, i.e. turning a near
collision into a full collision. This can be illustrated in Figure 2 by an optimal characterization of the weak
differential propagation for a 2-block collision attack.

4 Selection of Weak Input Differences

Selection of weak input differences is widely regarded as a trial-and-error work that depends on one’s intuition,
experiences and good luck as well, since Wang et al gave their well-known 3-bit weak input difference. Based
on the optimal characterization of weak differential propagation in Subsection 3.3, 1–3-bit input differences

10

are seriously analyzed in this section, these weak input differences that have a feasible differential collision
path up to the optimal characterization, are listed as follows, while those more than 3-bit weak input
differences are not considered but only mentioned in this paper.

Table 1. The Weak Input Differential bits For MD5 Collision Attack

Weak Input Difference Section I Section II Section III Section IV #

m4,20, m7,31, m13,31 1–3 4–27 28–60 61–64 29

m6,8, m9,31, m15,31 1–5 6–21 22–58 59–64 30

m2,31, m9,27, m12,31 1 2–29 30–63 64–64 21

♠ m4,31, m11,15, m14,31 1–3 4–22 23–61 62–64 25

m2,8 1 2–26 27–62 63–64 22

m11,0−30 1–11 12–19 20–61 62–64 17

m5,10, m11,21 1–4 5–31 32–61–64 28

∗m5,31, m8,31 1–4 5–30 31–64 25

∗m5,10, m11,31 1–4 5–31 32–64 30

z m2,8, m14,31 1–2 3–29 30–62 63-64 15

F m5,10, m10,31 1–4 5–33 34–51–64 1-block collision

m4,31 1–3 4–34 35–64 24

∗m4,31 1–3 4–34 35–64 32

∗m5,31 1–4 5–29 30–64 21

∗m8,31 1–7 8–30 31–64 21

z m11,31 1–10 11–31 32–64 15

∗m11,31 1–10 11–31 32–64 30

∗m14,31 1–13 14–32 33–64 29

∗m4,25 1–3 4–34 35–64 29

∗m5,10 1–4 5–29 30–64 19

∗m8,25 1–7 8–30 31–64 19

m11,21 1–10 11–31 32–64 17

∗m14,16 1–13 14–32 33–64 27

4.1 1-Bit Weak Input Differences

As a single 1-bit input difference can not independently build a MSB-differential or non-differential propa-
gation within the third round, three consecutive steps of MSB-difference across the second and third rounds
are needed to produce the fourth MSB difference with a MSB input difference in the third round, which
can then lead to a MSB-differential propagation. A step of specific difference with next three steps of no
difference in the second round are needed to be combined with an 1-bit input difference in the third round,
such that a fourth step of no difference is produced and a non-differential propagation is built in the third
round. In this way, first of all, some 1-bit input differences can be located in the beginning steps of the third
round, which are in these message words involved in the first five steps of the third round, including both
the MSB differences (m5,31, m8,31, m11,31, m14,31 and m4,31), and the non-MSBs differences which can be
turned into a MSB difference by the left rotation in the final round (m5,10, m8,25, m11,21, m14,16 and m4,25),
where two bits m1,31 and m1,10 are excluded for too few of free steps available in the first round. Secondly,
all bits in the message word m11 are feasible for collision differential if a local collision can be obtained in
the four steps b8, a9, d9 and c9, since it will then result in a non-differential propagation in the third round.
Finally, since the message word m2 is involved respectively in b12 and c16, if a local collision can be obtained
in the second round, the bit m2,8 can then be used to build a MSB-differential propagation beginning from
the last step b12 in the third round to the step c16 in the final round, only two non-MSB differences will be
generated in the final two steps due to the input difference at m2,8. These 1-bit weak input differences are

11

listed in Table 1.
In Table 1, the 3-bit input difference with a symbol ♠ was found by Wang et al, the two input differences with
a symbol z are found to be the fastest in this paper, and the input difference with a symbol F may be used
to construct an 1-block collision attack on MD5. All these input differences each with an asterisk ∗ can result
in a 4-MSB near collision for the second block, thus a pseudo collision can be employed in the second block.
Section I to Section IV in Table 1 correspond to that of the optimal characterization described in Subsection
3.3, which are defined by both the beginning step and the ending step. The final item denoted with # is the
number of conditions being incurred in the final group, which is used to estimate the computational cost of
obtaining a collision for each weak input difference, and will be calculated and described again in Subsection
5.1.

4.2 2-Bit Weak Input Differences

As described in Subsection 3.2, since four consecutive steps of MSB difference or no difference can not
be produced in the third round completely by only two 1-bit input differences, a near collision across the
second and third rounds is then needed so that it can be combined with two 1-bit input differences properly
selected from the message words involved in the first five steps of the third round, as given in Subsection 4.1.
Generally, any pairing of two 1-bit input differences from m5,31, m8,31, m11,0−31, m14,31, m4,31, m5,10, m8,25,
m14,16 and m4,25, can be used to produce a feasible differential collision path, if four consecutive steps of
MSB difference or no difference can be built at the beginning steps of the third round or across the second
and third rounds. For examples, pairings like m5,10 and m11,21, m5,31 and m8,31, m5,10 and m11,31, each can
be a 2-bit weak input difference. In Table 1, these three 2-bit weak input differences are listed as examples.

Particularly, since the bit m2,8 can be independently used to build four consecutive steps of MSB difference
in the final round, any single 1-bit input difference given above can be combined with m2,8 to be a 2-bit
weak input difference if it results in a local collision at the beginning steps of the third round. However, a
bit difference both in m2,8 and m14,31 can produce a feasible differential collision path which does not need
a local collision in the third round, it is particularly listed in Table 1 as the possible fastest 2-bit collision
differential to be developed, because of its least number of conditions in the final group to be randomly
satisfied. In Table 1, it is worth pointing out that the input difference consisting of m5,10 and m10,31 is likely
to build an 1-block collision attack on MD5, since it will result in a very early collision at the step c14.

4.3 3-Bit Weak Input Differences

Since properly arranging three 1-bit input differences can themselves produce four consecutive steps of MSB
difference or no difference in the third round, no near collision is needed to be derived from the second
round. By the specific requirement of properly arranging three 1-bit input differences and the differential
propagation property in the final round, which is described in Subsection 3.2, only the corresponding bits
in these message words m2, m4, m6, m9, m11, m13 and m15, which are involved in the ending steps of the
final round, can be used to produce the beginning step of MSB difference in the third round. Due to the
permutation of input message words in the third round, m2 and m15 cannot be the beginning MSB difference,
thus, only the corresponding bits in m4, m6, m9, m11 and m13 are qualified as the first input difference,
namely, m4,20, m6,8, m9,27, m11,15 and m13,27. Therefore, we have five 3-bit weak input differences, each
consists of 3 words, each word has 1-bit difference. More specifically, m4,20, m7,31 and m13,31 constitute the
first 3-bit weak input difference, m6,8, m9,31 and m15,31 the second one, m9,27, m12,31 and m2,31 the third
one, m11,15, m14,31 and m4,31 the fourth one, m13,27, m0,31 and m6,31 the fifth one. Being required of enough
free steps in the first round, the fifth 3-bit weak input difference cannot be a good collision differential.
Actually, these four 3-bit input differences are the traditionally weak input differences. For examples, the
triplet of m11,15, m14,31 and m4,31 is firstly proposed by Wang et al in 2005 [2], the triplet of m6,8, m9,31

and m15,31 by Xie et al in 2008 [21], and the triplet of m9,27, m12,31 and m2,31 by Vabek et al in 2008 [22].
These four 3-bit weak input differences are also listed in Table 1.

12

However, there exist other triplets of 1-bit input differences which do not need to be arranged traditionally
as above. For example, any two MSBs in Subsection 4.1 can be combined with m2,8 to compose a new 3-
bit weak input difference if a non-differential propagation is built in the third round, any three MSBs in
Subsection 4.1 can constitute a new 3-bit weak input difference if a MSB-differential propagation is built
in the third round. In particular, these 3-bit weak input differences can be combined with m2,8 to further
compose 4-bit weak input differences, and some of them may be better than the original 3-bit weak input
difference in term of computational complexity.

5 Evaluation Criteria Of Weak Input Differences

5.1 Computational Cost Estimation Of Differential Collision Search

Given a weak input difference, usually the computational cost to obtain a full collision is intrinsically deter-
mined by the differential characteristic within the final group of steps beginning from b6, a7 or d7, thus an
optimal construction of differential propagation from step b6, a7 or d7 to a step involved with the first 1-bit
input difference in the third round is critical to the minimization of computational cost. In general, a collision
differential characteristic is constructed both by a backward deduction and a forward deduction, these two
deductions are to be met in the first round by a trial-and-error method. A backward deduction beginning
from the last involved input difference in the third round will produce a critical differential characteristic to
b6, a7 or d7 with minimal Hamming weight, which hence incurs minimal conditions. Since the differential
characteristic deduction (from the third round to the end of the final round) behind this critical section is
a trivial one, it can be uniquely determined to be a single section III or a section III plus a section IV as
defined in Subsection 3.3, incurring minimal bit conditions. This backward deduction of critical differential
characteristic to step b6, a7 or d7 plus the trivial forward deduction of differential characteristic to the final
step b16 will build an intrinsic differential characteristic within the final group of steps for a given weak input
difference.

In this Subsection, six different weak input differences are selected from Table 1 as examples to illus-
trate how to deduce the critical differential section. Table 2 is used to estimate the computational cost of
probabilistically satisfying all conditions in the final group of steps. These six weak input differences in-
clude respectively 4+m5 = ±210(1-bit difference), 4+m8 = 231(1-MSB difference), 4+m11 = 231(1-MSB
difference), 4+m2 = ±28 plus 4+m14 = 231(2-MSB difference), 4+m5 = 231 plus 4+m8 = 231(2-MSB
difference), and 4+m2 = 231, 4+m9 = ±227 plus 4+m12 = 231(3-bit difference). In Table 2, backward
from a step in b8, a9, d9, c9 and b9, in which a weak input difference is involved, there are two possible
deduced differential paths conforming to the optimal characterization of feasible differential propagation for
each weak input difference, one starting from a 4-MSB inner near collision, and one starting from an inner
collision. All differential paths in Table 2 are backward deduced to step d6. However, only one differential
paths for each weak input difference is feasible, since an incorrectly deduced path will result in a number
of additional non-MSB differences in the final round and hence incur a considerable number of additional
conditions. The conditions incurred in the six characteristic sections are all derived up to step b6.

In Table 2, t denotes the MD5 steps starting from 1, qt the state variables from a1 to b16, wt the message
words from m0 to m15, st the number of bits to be left rotated, 4±qt the signed differential representation
as defined in [23] with bit indexing starting from 0, # the number of conditions incurred in each step.

As described in the collision searching algorithm in [23], the conditions at a7 and d7 can be satisfied
by message modification in every try to search for the final group of conditions, thus can be ignored in
the estimation of computational complexity for the final group. According to Table 2, the three 1-bit weak
input differences 4+m5 = ±210, 4+m8 = 231 and 4+m11 = 231 can each result in a MD5 collision attack
respectively within 219, 221 and 215 MD5 compressions. The two 2-bit weak input differences, one being
composed of4+m2 = ±28 and4+m14 = 231, another one being composed of4+m5 = 231 and4+m8 = 231,
will each lead to a MD5 collision attack respectively within 215 and 224 MD5 compressions. The sixth 3-bit
weak input difference is introduced firstly in [22], which is composed of 4+m2 = 231, 4+m9 = ±227 and
4+m12 = 231, can be used to construct a collision attack within 221 MD5 compressions. In particular, since

13

Table 2. The Critical Backward Deduced Section of Differential Characteristic For Six Weak Input Differences

4+m2 = ±28 *4+m5 = 231 4+m2 = 231

*4+m5 = ±210 *4+m8 = 231 4+m11 = 231 4+m9 = ±227

t qt wt st 4+m14 = 231 *4+m8 = 231 4+m12 = 231

4±qt # 4±qt # 4±qt # 4±qt # 4±qt # 4±qt #

22 d6 m10 9 [24,28] [] [13,29,-16+17] [-8] [13,-17] [-17]

23 c6 m15 14 [-19] [3] [-8,30] [] [3,-8] []

24 b6 m4 20 [] 4 [29,30] 2 [11,-22+23] 10 [11-13,-17+18,-29] 11 [-29,31] 6 [11] 3

25 a7 m9 5 [-5] 3 [] 2 [-6,-26] 5 [22,26] 6 [26] 5 [26] 1

26 d7 m14 9 [1] 1 [] 3 [22] 6 [-17,-8] 10 [22] 4 [] 2

27 c7 m3 14 [] 2 [17] 1 [] 4 [-17,±31] 4 [17] 3 [] 1

28 b7 m8 20 [] 2 [] 0 [11,±31] 2 [] 2 [] 2 [±31]

29 a8 m13 5 [-10] 1 [] 2 [] [27,±31] 3 [±31] 1 []

30 d8 m2 9 [] [] 0 [±31] 2 [±31] [] 1 [] 1

31 c8 m7 14 [] 1 [±31] [±31] [] 2 [±31] 0 []

32 b8 m12 20 [] [±31] [] [] [±31] []

33 a9 m5 4 [] [±31] [] [±31] [±31] []

34 d9 m8 11 [] [±31] [] [±31] [±31] []

35 c9 m11 16 [] [±31] [] [±31] [±31] []

36 b9 m14 23 [] [±31] [] [±31] [±31] []

37–64 - - - - 13 - 18 - 7 - 4 - 18 - 19

a pseudo collision attack can be employed in the second block for the three weak input differences each with
an asterisk ‘*’ in Table 2, a specific differential collision path is not needed for each collision differential, thus
making it easier to develop a practical collision attack. In the same way, the computational cost for each
weak input difference in Table 1 is estimated by its number of only probabilistically satisfiable conditions in
the final group except a7 and d7. It can be found in Table 1 that, in term of computational complexity, there
are two weak input differences which have only 15 conditions to be randomly satisfied in the final groups
of their differential collision paths, one being composed of 4+m2 = ±28 and 4+m14 = 231 for two blocks,
another one being composed of 4+m11 = 231 also for two blocks, thus they become currently the fastest
two differential collision attacks for MD5. Furthermore, with four to six conditions in the final steps being
ignored by considering 24 to 26 differential propagation paths at the beginning steps for the second block,
and based on the estimation method for computational complexity described in [23], the computational
complexity for the differential collision searching algorithms, which are developed on these two weak input
differences, can both be within 210 MD5 compressions. In addition, there are a considerable number of 1-bit
weak input differences that are superior to the well-known 3-bit weak input difference (being composed of
4+m4 = 231, 4+m11 = ±215 plus 4+m14 = 231), such as 4+m2 = ±28 (222), 4+m4 = 231 (224, the
second block also needing a corresponding input difference 4+m4 = 231), 4+m5 = ±210 (219), 4+m5 = 231

(221), 4+m11 = ±20−30 (215 − 217), and 4+m8 = 231 (221), even the 3-bit input differences 4+m2 = 231,
4+m9 = ±227 plus 4+m12 = 231 (222) is also a better choice in term of computational complexity. Note the
numbers 2x in brackets are all the upper bounds for the corresponding weak input differences’ computational
complexities. Since the computational complexity for a pseudo collision attack is 219 MD5 compressions as
estimated in [23], which is a upper bound of the computational complexity for those 2-block collision attack
employing a pseudo collision, thus a 2-block collision attack for MD5 can not use a pseudo collision if it is
to be more efficient. As a result, all those weak input differences each with an asterisk ‘*’ in Table 1 have
a computational complexity larger than 219 MD5 compressions, while some of those without an asterisk ‘*’
may be developed to be more efficient.

5.2 Criteria to Evaluate Weak Input Differences

All weak input differences can be evaluated by the following seven criteria:

14

1. Whether or not the differential characteristic depends on the initial vector of hash function;
2. The number of blocks constituting a collision differential;
3. The number of free words in the message;
4. The number of bit differences in the message pair;
5. The number of conditions which must be satisfied to yield a collision;
6. The number of conditions that can only be probabilistically fulfilled in a group;
7. The averaged computational complexity of finding a collision.

Considering a real-world cryptanalytic attack, a differential characteristic which does not rely on the
initial vector will obviously be better than those must rely on it. A collision differential which has more free
words, less differential input bits and conditions will be more easily used to construct a meaningful attack. A
collision differential with less message blocks and probabilistically satisfiable conditions will be more efficient
for practical attacks. The less the sufficient conditions required to maintain a differential collision path, the
higher the density of colliding messages will be. The less the average computational complexity of finding a
collision, the more feasible an attack on a practical protocol based on a hash function will be. For the weak
input differences given in Table 1, we can make a comparison based on the above criteria. From Table 1, the
differential collision attack due to each of the four 1-bit weak input differences 4+m5 = 210, 4+m5 = 231,
4+m8 = 225 and 4+m8 = 231 exceeds, in terms of differential bits, free message words, bit conditions and
especially the computational cost. If only computational complexity considered, two weak input differences
can be developed to be the fastest differential collision attack on MD5, one is composed of 4+m2 = 28 and
4+m14 = 231, anther one is composed of 4+m11 = 231.

5.3 An Example: The Fastest 1-MSB Differential Collision Attack On MD5

By the seven evaluation criteria in Subsection 5.2, we choose the weak input difference 4+m8 = 231 to
develop a practical 1-MSB collision attack algorithm. Since a signed differential bit in the differential char-
acteristic will incur several bit conditions and the number of conditions will fundamentally determine the
feasibility of the corresponding differential collision attack, the objective of designing a collision differen-
tial characteristic is to minimize its Hamming weight. We follow the designing rules described in [21,23] to
construct a 2-block differential characteristic, where the first block characteristic (See Appendix B: Table 4
and its tunneling version Table 5) produces a 4-MSB near collision , while the second block characteristic
(See Appendix B: Table 6 and its tunneling version Table 7) leads to a full collision through Den Boer and
Bosselaer’s pseudo collision.
Besides the basic conditions in Table 4–7 that must be satisfied, by Theorems 4 and 5 in [23, 24], some

Table 3. A Collision Example With Its MD5 Digest (Underlined Bits With Difference)

M0
0x68106ac6, 0x2094ed6b, 0xa3ec34eb, 0xf4383dff, 0x157fe4d, 0xeff04e4e, 0x1119f00b, 0x22172e32,

0xc55102b0, 0x99355658, 0x97874ee2, 0x2c408161, 0xf55b1a3f, 0x31e6ad3c, 0x6ed9a43b, 0x4116f7b6

M1
0xec434329, 0xccab7e9a, 0x32b86260, 0x82c53b56, 0xad5ff512, 0xedeab6b5, 0x3e2c15ea, 0x4a564948,
0x292cf96c, 0x684ad345, 0x63cb649d, 0xc2b7e49e, 0xa7cfd089, 0x127c0548, 0xc2906aa4, 0x66e94d25

M ′
0

0x68106ac6, 0x2094ed6b, 0xa3ec34eb, 0xf4383dff, 0x157fe4d, 0xeff04e4e, 0x1119f00b, 0x22172e32,
0x455102b0, 0x99355658, 0x97874ee2, 0x2c408161, 0xf55b1a3f, 0x31e6ad3c, 0x6ed9a43b, 0x4116f7b6

M ′
1

0xec434329, 0xccab7e9a, 0x32b86260, 0x82c53b56, 0xad5ff512, 0xedeab6b5, 0x3e2c15ea, 0x4a564948,
0x292cf96c, 0x684ad345, 0x63cb649d, 0xc2b7e49e, 0xa7cfd089, 0x127c0548, 0xc2906aa4, 0x66e94d25

MD5 Digest 0xa6c8489d, 0xddce2a29, 0x7ae49ec2, 0x7464879f

15

extra conditions must also be satisfied to prevent possible occurrence of some unexpected modular differ-
ences due to the binary carries and left rotation, which may occur when

∑
a

<<<sj

i+1 is executed. Therefore,
the set of sufficient conditions includes both the basic conditions and extra conditions, and thanks to the
particular differential characteristic and the logic OR relation on each extra condition, most of the ex-
tra conditions can be satisfied with a high probability. No extra conditions are needed for the differential
characteristic of the second block, and the extra conditions for the first block are deduced from Theo-
rem 4 and Theorem 5 in [23], which are included as follows:

∑
b3,6−9 = 0,

∑
a5,31 = 0,

∑
d5,29−31 = 0,∑

c5,15−17 = 1,
∑

b5,28−31 = 1,
∑

a6,24−26 = 1,
∑

d6,17−22 = 0,
∑

c6,22−31 = 0,
∑

b6,9−11 6= 101,∑
a7,26 = 1,

∑
c7,3−17 = 0,

∑
b7,29−31 = 1,

∑
c8,17 = 0.

Except the inequality
∑

b6,9−11 6= 101, other equalities define a logic OR relation on their consecutive bits.
For example, the extra condition

∑
b3,6−9 = 0 demands one of four conditions to be satisfied, i.e.

∑
b3,6 = 0,

or
∑

b3,7 = 0, or
∑

b3,8 = 0, or
∑

b3,9 = 0, which can be satisfied with a probability of (1− 0.54) = 0.9375.
Based on the general collision searching procedure derived from the optimal grouping scheme, a specific col-
lision attack algorithm is developed for this particular 1-MSB weak input difference with a time complexity
of 220.96 MD5 compressions, which is currently the fastest 1-MSB collision attack, being able to generate a
collision averagely in 0.45 sec. on a 2.6Ghz Pentium PC. By an optimal grouping of the 64 steps of opera-
tion, the multiplicative computational complexity has been transformed into an additive accumulation. As a
result, the actual computational complexity is dramatically reduced. The collision searching algorithm has
been implemented which is available from the web site http://www.is.iscas.ac.cn/gnomon. As a result of
our computation, a collision pair is given in Table 3 with its MD5 digest. For the algorithmic details, please
refer to [23].

6 Summary and Conclusion

This paper mainly addresses the problem of how to select weak input differences that have a feasible differ-
ential collision path. Firstly, a divide-and-conquer strategy is introduced to separate the 64 steps into groups
of independent condition fulfillment, a optimal grouping scheme is proposed and a general collision searching
procedure thus obtained, transforming the original multiplicative complexity into an additive accumulation
of the computational complexities for all groups of condition satisfying. Secondly, the differential propagation
properties are analyzed for each round, and this, together with the optimal grouping scheme, results in an
optimal characterization of the weak differential propagation. Thirdly, hundreds of thousands of 1-bit to
3-bit weak input differences that have a feasible differential collision path are thus selected by the optimal
characterization. Fourthly, the upper bound of computational complexity is estimated for each weak input
difference, which reveals that there exist a great number of weak input differences better than Wang et al’s
well known 3-bit weak input difference, and two of them are currently the fastest differential collision attack
only with 210 MD5 compressions. Finally, based on the general collision searching procedure, a new example
of 1-MSB differential collision attack on MD5 is developed with a computational complexity of 220.96 MD5
compressions.
The result of this paper will provide a large resource of colliding messages with different weak input differ-
ences, indirectly make a second pre-image attack for an arbitrarily given message much easier than previously
relying on only those well-known 3-bit weak input differences. Since this paper, the selection of weak input
differences is no more a work relying on one’s intuition and experiences commonly regarded as previously,
it becomes a reasonable process of deduction, by which people can more easily find new collisions. By the
estimation on computational complexity of all weak input differences and further considering the second
block and other evaluation criteria, only three 1-bit weak input differences, i.e. 4+m8 = 225, 4+m5 = 210

and 4+m5 = 231, are comparable to 4+m8 = 231, which is currently the fastest 1-MSB collision attack [23].
Particularly, since a single block collision for MD5 has never been found so far, it remains an open problem
to confirm if the 2-bit weak input difference composed of 4+m5 = 210 and 4+m10 = 231 can be a feasible
1-block collision attack on MD5.

16

Acknowledgements

Part of this work is supported by MOST of China through the 973 program under contract 2007CB311202,
and by National Natural Science of China through the 60473011 project.

References

1. X.Y. Wang, D. G. Feng, X.J. Lai, H.B. Yu. Collisions for hash functions MD4, MD5, HAVAL-128 and
RIPEMD.Rump session of Crypto’04, E-print, 2004.

2. X.Y. Wang, Hongbo Yu. How to Break MD5 and Other Hash Functions. EUROCRYPT 2005, LNCS 3494,
pp.19-35, Springer-Verlag, 2005.

3. X.Y Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. Crypt’2005, LNCS 3621,
pp17 36.

4. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology ePrint Archive, Report
2006/105, 2006. http://eprint.iacr.org/.

5. Marc Stevens. On Collisions for MD5, Master’s Thesis, 2007. TU Eindhoven, Faculty of Mathematics and Com-
puter Science, available at http://www.win.tue.nl/hashclash/.

6. Marc Stevens, Arjen Lenstra, and Benne de Weger. Chosen-prefix collisions for MD5 and colliding X.509
certificates for different identities. EUROCRYPT 2007, LNCS4515, pp1-22.

7. C. De Cannire and C. Rechberger. Finding SHA-1 Characteristics: General Results and
Applications.ASIACRYPT 2006, LNCS4284, pp1-20.

8. C. De Canni‘ere, F. Mendel and C. Rechberger. Collisions for 70-step SHA-1: On the Full Cost of Collision Search.
Selected Areas in Cryptography - SAC 2007, LNCS4876, pp.56-73.

9. A. Joux and T. Peyrin. Hash Functions and the (Amplified) Boomerang Attack.CRYPTO 2007, LNCS 4622, pp
244-263.

10. Magnus Daum and Stefan Lucks. Hash Collisions (The Poisoned Message Attack) ”The Story of Alice and her
Boss”. Presented at the rump session of Eurocrypt ’05.

11. M. Gebhardt, G. Illies, and W. Schindler. A Note on the Practical Value of Single Hash Collisions for Special
File Formats. In Jana Dittmann, editor, Sicherheit, volume 77 of LNI, pages 333-344. GI, 2006.

12. G. Leurent.Message Freedom in MD4 and MD5 Collisions: Application to APOP. Fast Software Encryption 2007,
LNCS4593, pp 309-328.

13. Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro. Security of MD5 Challenge and Response: Extension of APOP
Password Recovery Attack. CT-RSA 2008, LNCS 4964, pp1-18.

14. E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir, and S. Zimmer. Second Preimage
Attacks on Dithered Hash Functions. EUROCRYPT 2008, LNCS 4965, pp 270-288.

15. C. D. Cannire and C. Rechberger. Preimages for Reduced SHA-0 and SHA-1. CRYPTO 2008, LNCS5157, pp179-
202.

16. Y. Sasaki, K. Aoki.Finding Preimages in Full MD5 Faster than Exhaustive Search. EUROCRYPT 2009, LNCS ,
pp. .

17. S. Contini and Y. L. Yin. Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions.
ASIACYPT2006, LNCS 4284, 2006.

18. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of HMAC and NMAC Based on
HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto De Prisco and Moti Yung, editors, SCN 2006, LNCS4116,
pp 242-256.

19. Xiaoyun Wang, Wei Wang, Hongbo Yu, Haina Zhang, Tao Zhan. Cryptanalysis on HMAC/NMAC-MD5 and
MD5-MAC, EUROCRYPT 2009. LNCS , pp. .

20. Y. Sasaki, L. Wang, N. Kunihiro, and K. Ohta. New Message Differences for Collision Attacks on MD4 and MD5.
IEICE Transactions,91-A(1):55-63, 2008.

21. Tao Xie, Dengguo Feng, Fanbao Liu. A New Collision Differential For MD5 With Its Full Differential Path.
Cryptology ePrint Archive (2008/230), http://eprint.iacr.org/.

22. Jiri Vabek, Daniel Joscak, Milan Bohacek, Jiri Tuma. A New Type of 2-Block Collisions in MD5.INDOCRYPT
2008, LNCS 5365, pp. 78-90.

23. Tao Xie, Fanbao Liu, Dengguo Feng. Could The 1-MSB Input Difference Be The Fastest Collision Attack
For MD5? LNCS 5479, the poster session of EUROCRYPT 2009. Cryptology ePrint Archive (2008/391),
http://eprint.iacr.org/.

17

24. Marc Stevens, Alex Sotirov, Jake Appelbaum, Arjen Lenstra, David Molnar, Dag Arne Osvik, Benne de Weger.
Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate. Cryptology ePrint Archive,
Report 2009/111.

25. B. den.Boer, A. Bosselaers. Collisions for the compression function of MD5.Advances in Cryptology, Eurocrypt’93
Proceedings, Springer-Verlag, 1994.

26. F. Chabaud and A. Joux. Differential Collisions in SHA-0. CRYPTO’98, LNCS1462, pp.56 71. Springer-Verlag,
1998.

Appendix A: MD5 Function

Practically, a Merkle-Damgard structure-based hash function is iterated by a compression function y = f(X),
which compresses l-bit message block X to an s-bit hash value y, where l > s. For MD5, l = 512, s = 128.
For a padded message M with multiple (t) of 512-bit blocks, the iteration process can be described as:
hi+1 = f(hi,Mi), 0 ≤ i ≤ t − 1, where M = (M0,M1, . . . , Mt−1), hi is the 128-bit chaining variable
(including four 32-bit words) which is updated during the processing of each block, h0 is the prescribed
initial value in MD5 algorithm, and the final ht is the digest that we expect to obtain. The concrete padding
rule is omitted here, since it has no influence on our attack. The whole process of the ith block can be defined
as follows:

hi+1 = f(hi,Mi) = hi + II(Mi,HH(Mi, GG(Mi, FF (Mi,Hi)))). (1)

Where the four round functions FF , GG, HH and II are involved. All round functions are similar to one
another in structure. The chaining variable hi is treated as a four-element shift register, with each element
being a 32-bit word, referred to as a0, b0, c0 and d0, respectively. Each 512-bit block Mi is divided into 16
32-bit words, denoted as Mi = (m0,m1,m2, . . . , m15), each round consists of 16 steps of operation, in each
step of operation, the register is updated with one word from Mi. The 64 steps of operation form a system
of equations:

ai+1 = bi + (ai + Φj(bi, ci, di) + wj + tj)<<<sj . (2)

Where 0 ≤ i ≤ 16, 1 ≤ j ≤ 16, ai, bi, ci and di (1 ≤ i ≤ 16) are the internal state variables, Φj(x, y, z) is an
auxiliary bitwise function which varies from round to round, wj is a word chosen from (m0,m1,m2, . . . , m15)
by a round-wise message permutation σk(i), k = 0, 1, 2, 3, i = 0, 1, 2, . . . , 15, tj and sj are constant parameters
associated with step j. Note that each step operation involves four modular additions (mod 232), an auxiliary
function Φj(x, y, z) and a left rotation of sj bits <<< sj . As the step operation of MD5 is reversible, the
compression function f(hi,Mi) uses a feed-forward operation which adds the initial value hi of the register
to their final values, so that f(hi,Mi) cannot be inverted (the Davies-Meyer construction).

For the sake of understanding how and where some extra conditions are derived from, which are used to
prevent the possible unexpected modular differences due to the joint effect of both modular addition and
left rotation, we define the part of step operation as

∑
ai+1 = ai + Φj(bi, ci, di) + wj + tj . (3)

The auxiliary functions and the round-wise permutations σk(i) for each round are given as follows:

Φj(x, y, z) = F (x, y, z) = (x ∧ y) ∨ (x̄ ∧ z), 1 ≤ j ≤ 16; (4)

Φj(x, y, z) = G(x, y, z) = (x ∧ z) ∨ (y ∧ z̄), 17 ≤ j ≤ 32; (5)

Φj(x, y, z) = H(x, y, z) = x⊕ y ⊕ z, 33 ≤ j ≤ 48; (6)

Φj(x, y, z) = I(x, y, z) = y ⊕ (x ∨ z̄), 49 ≤ j ≤ 64; (7)

wj+1 =

mj , 0 ≤ j < 16;
m1+5j mod 16, 16 ≤ j < 32;
m5+3j mod 16, 32 ≤ j < 48;
m7j mod 16, 48 ≤ j < 64.

(8)

18

Where x, y and z are 32-bit words. The auxiliary functions Φj(x, y, z) each takes three consecutive 32-bit
words from the register of chaining variables as input and produces a 32-bit word as output. The four
words in the chaining variable register are initialized as: a0=0x67452301, b0=0xefcdab89, c0=0x98badcfe,
d0=0x10325476.

Appendix B: The Differential Paths With Conditions

In Tables 4–7, ‘+’ denote a positive flip (0 → 1), ‘-’ a negative flip (1 → 0), 0(1) the conditional bit value,
‘ˆ’ denotes the bit must be equal to the up bit, ‘!’ the bit not equal to the up bit, ‘*’ the free bit, ‘t’ the
MD5 step, ‘#’ the number of conditions for each step.

Table 4. A Basic Differential Path Using
4+m8 = 231(Block1)

t Bits Qt: a0...a31 #

1-6 ******** ******** ******** ******** 0

7 ******1* ******** ******** ******** 1

8 ******1* ******** ******** ******** 1

9 ******+* ******** ******** ******** 1

10 ******+* ******** ******** ****1*** 2

11 ******+* ******0* ******** ****1^** 4

12 ******+0 0*010*00 **111**0 *1**-+0* 16

13 ***1*0+1 1^001^+0 ^^010^^1 ^0**+11^ 26

14 *111*1-+ -----+-- --+----- -+*0---+ 29

15 *01-0-1+ 00+-01+- 100-+111 01*01000 30

16 *+-*1011 10-+0101 100+1101 01*+-001 29

17 ***^-+-1 **-1**11 *1*-+101 00**11** 19

18 *^^***** *001***0 *+*0*011 +1*^-+** 16

19 ****^^^* *111***0 ***1^--- -+001*** 17

20 ******** *-*+***- *^****** 11111^** 10

21 ***0**** ******** *****^^^ +0++-*** 9

22 ***1**** *^*^***^ ******** *****00* 6

23 ***+**** ******** ******** ^*^^^11* 7

24 ******** ******** ******** *****++* 2

25 ***^**** ******** *0****** ******** 2

26 ******** ******** *1****** *****^^* 3

27 ******** ******** *+****** ******** 1

28 ******** ******** ******** ******** 0

29 ******** ******** *^****** *******0 2

30 ******** ******** ******** ******** 0

31-47 ******** ******** ******** *******- 0

48-60 ******** ******** ******** *******- 13

61 ******** ******** ******** *******- 1

62 ******** ******** ******** *******+ 1

63 ******** ******** ******** *******- 1

64 ******** ******** ******** *******+ 0

Table 5. The Modified Differential Path With Addi-
tional Absorbing Bits (Block1).

t Bits Qt: a0...a31 #

1-3 ******** ******** ******** ******** 0

4 ^^^^**** **^***** ******** ****^^^^ 9

5 t ****0000 00*00000 00000000 0000**** 23

6 t 00001111 11011111 11111111 11110000 32

7 ******1* ******** ******** ******** 1

8 *****11* **^****^ !******* ^*!^**** 9

9 *****0+* ***^**** *^*^***^ ******** 6

10 t 00000*+0 000*00*0 0*0*000* 00001*00 25

11 t 11111*+1 11101101 10101110 11111^11 31

12 ******+0 0*010*00 **111**0 *1**-+0* 16

13 ***1*0+1 1^001^+0 ^^010^^1 ^0**+11^ 26

14 *111*1-+ -----+-- --+----- -+*0---+ 29

15 *01-0-1+ 00+-01+- 100-+111 01*01000 30

16 *+-*1011 10-+0101 100+1101 01*+-001 29

17 ***^-+-1 **-1**11 *1*-+101 00**11** 19

18 *^^***** *001***0 *+*0*011 +1*^-+** 16

19 ****^^^* *111***0 ***1^--- -+001*** 17

20 ******** *-*+***- *^****** 11111^** 10

21 ***0**** ******** *****^^^ +0++-*** 9

22 ***1**** *^*^***^ ******** *****00* 6

23 ***+**** 1******* ****11** ^*^^^11* 10

24 ******** ******** ******** *****++* 2

25 ***^**** ******** *0****** ******** 2

26 ******** ******** *1****** *****^^* 3

27 ******** ******** *+****** ******** 1

28 ******** ******** ******** ******** 0

29 ******** ******** *^****** *******0 2

30 ******** ******** ******** ******** 0

31-47 ******** ******** ******** *******- 0

48-60 ******** ******** ******** *******- 13

61 ******** ******** ******** *******- 1

62 ******** ******** ******** *******+ 1

63 ******** ******** ******** *******- 1

64 ******** ******** ******** *******+ 0

19

Table 6. A Basic Differential Path Using
4+mi = 0,0 ≤ i < 16 (Block2).

t Bits Qt: a0...a31 #

-3 ******** ******** ******** *******+ 0

-2 ******** ******** ******** *******+ 0

-1 ******** ******** ******** *******+ 1

0 ******** ******** ******** *******+ 1

1-31 ******** ******** ******** *******+ 31

32-47 ******** ******** ******** *******+ 0

48-63 ******** ******** ******** *******+ 16

Table 7. The Modified Differential Path With Addi-
tional Absorbing Bits (Block2).

t Bits Qt: a0...a31 #

-3 ******** ******** ******** *******+ 0

-2 ******** ******** ******** *******+ 0

-1 ******** ******** ******** *******+ 1

0 ******** ******** ******** *******+ 1

1-7 ******** ******** ******** *******+ 7

8 ******^* ******** ******** ^****^*+ 4

9 ******** ******** ******** *******+ 1

10 t 00000000 00000000 00000000 0000000+ 32

11 t 11111111 11111111 11111111 1111111+ 32

12-31 ******** ******** ******** *******+ 20

32-47 ******** ******** ******** *******+ 0

48-63 ******** ******** ******** *******+ 16

20

