
Practical Pseudo-Cryptanalysis of Luffa

Jia Keting

Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China

In this paper, some pseudo-collision and pseudo-second-pr eimage examples are presented for the first
round of SHA-3 candidate algorithm Luffa. The pseudo-colli sion and pseudo-second-preimage can be
obtained easily by the message injection function of Luffa. Besides, the pseudo-preimage attacks are
shown in this paper. For Luffa-224/256, only 2 iteration com putations are needed to get the pseudo-
preimage. It is about 2

64 iteration computations and 2
64 table lookups to get the pseudo-preimage for

Luffa-384 using the extended generalized birthday attack. For Luffa-512, the time complexity is 2
128

iteration computations and data complexity is 2
128 table lookups.

Luffa, pseudo-collision, pseudo-second-preimage, pseudo-preimage, generalized birthday attack

1 Introduction

The cryptographic hash function is defined as a

function that computes a fixed size message di-

gest from arbitrary size messages, that has been

widely used as a fundamental primitive in many

cryptographic schemes and protocols, such as elec-

tronic signature, authentication of message, elec-

tronic commerce and bit commitment, etc. In the

past years, the cryptanalysis of hash function has

achieved tremendous progress in the construction

of collisions. In particular, Wang et al. proposed

new techniques to find efficiently collisions on the

main hash functions from the MD4 family, e.g.

MD4[1], RIPEMD[1], MD5[2], SHA-0 [3] and SHA-

1[4]. Moreover the techniques can be applicable

to explore the second-preimage of MD4[5], forgery

and partial key-recovery attacks on HMAC and

NMAC[6]. Responding to advances in the crypt-

analysis of hash functions, NIST held two hash

workshops to evaluate the security of its approved

hash functions and to solicit public comments on

its cryptographic hash function policy and stan-

dard. Finally, NIST opened a public competition

to develop a new hash function called ”SHA-3”,

similar to the development process of the Advanced

Encryption Standard (AES). Due to the SHA-3

competition, there are 64 new proposals for hash

functions have been submitted to the new SHA-3

algorithm. After the first candidate conference of

SHA-3, there are 41 candidate algorithms in the

first round. Luffa[7] is one of them, proposed by

De Cannière et al.

In this paper, we give some cryptanalytic results

of Luffa. The pseudo-collision and pseudo-second-

preimage can be obtained easily by the message

injection function of Luffa. So this paper shows

some pseudo-collision and pseudo-second-preimage

examples for Luffa. At the same time, the pseudo-

preimage attacks are presented in this paper. For

Luffa-224/256, only 2 iteration computations are

needed to get the pseudo-preimage. We extend

the generalized birthday attack[8] to computer the

pseudo-preimage of Luffa-384 with 264 iteration

computations and 264 table lookups. The time

complexity and data complexity are both 2128 to

get the pseudo-preimage for Luffa-512.

This paper is organized as follows. In Section

2, we give brief descriptions of Luffa. Section 3

shows some pseudo-collision examples of Luffa. A

pseudo-second-preimage example is shown in Sec-

tion 4. The pseudo-preimage attacks are intro-

duced in Section 5. Finally, we summary our re-

sults in Section 6.

2 Preliminaries and Notations

In this section, we first list some notations used

Corresponding author (email: ktjia@mail.sdu.edu.cn)

Supported by the National Natural Science Foundation of China (NSFC Grant No. 60525201) and 973 Project (Grant No.2007CB807902)

1



in this paper, and then give a brief description of

Luffa.

2.1 Notations

X‖Y : the concatenation of two messages X and

Y .

hw(X) : the high w bits of X.

lw(X) : the low w bits of X.

◦: the multiplication in a ring GF (28)32.

⌊a⌋ : the greatest integer less than or equal to a

(b0, b1, . . . , bm)T : the transposed matrix of

(b0, b1, . . . , bm), where bi for 1 6 i 6 m are column

vectors.

2.2 Description of Luffa

Luffa[7], a candidate algorithm for the first round

of the SHA-3, was proposed by De Cannière et al.

The chaining of Luffa is a variant of a sponge func-

tion. Figure 1 depicts the basic structure. The

message padding method is to append a single bit

‘1’ followed by the minimum bits of ‘0’ such that

the length of the results is a multiple of 256. Let

M = M0‖ · · · ‖Mm−1 is a message with padding,

where Mi(0 6 i < m) are 256-bit blocks. The

iteration function of Luffa is a composition of a

message injection function MI and a permutation

P of w · 256 bits input. The permutation P in-

cludes w permutations Q0, Q1, . . . , Qw−1. Let the

input of the i−th iteration be (H
(i−1)
0 , . . . ,H

(i−1)
w−1 )

and Mi−1, then the output of the i−th iteration is

given by

X0‖ · · · ‖Xw−1 = MI(H
(i−1)
0 , . . . ,H

(i−1)
w−1 ,M(i)),

H
(i)
j = Qj(Xj), j = 0, 1, . . . , w − 1,

where Qj is a permutation of 256 bits input,

H
(0)
j = Vj, and Vj(0 6 j < w) are the initial val-

ues. A finalization is used to the chaining value

(H
(m−1)
0 , . . . ,H

(m−1)
w−1 ). The finalization consists of

iterations of an output function OF and a iteration

function with a fixed message 0x00 · · · 0, which is

called blank iteration. The output function OF

XORs all block values and outputs the resultant

256-bit value. Let the output at the i−th iteration

be Zi, then the output function is defined by

Zi =

w−1
⊕

j=0

H
(m−1+i′)
j .

where i′ = i if m = 1 and i′ = i+1 otherwise. The

output of Luffa-256 is Z0, the output of Luffa-512

is Z0‖Z1. The outputs of Luffa-224 and Luffa-384

are the truncation of the Luffa-256 and Luffa-512

respectively.

Vw−1

V0

0M 1M m−1M

0

V1
MI

P

MI

Q

Q0

w−1

1

Q0

Qw−1

1

MI
Q Q

Q0

Qw−1

1

Z

0

MI
Q

1

Q0

Qw−1

1Q

Q0

Qw−1

1

Z

0

MI
Q

Figure 1 The Structure of Luffa Hash Function.

Message Injection Function MI. The message

injection functions MI can be represented by the

matrix over a ring GF (28)32. The definition poly-

nomial of the field is given by φ(x) = x8 + x4 +

x3 + x + 1, corresponding to ”0x11b”. The map

from an 8 words value (h0, . . . , h7) to an element

of the ring is defined by (Σ06k<8hk,lx
k)06l<32. Let

Aw×(w+1) = (a0, a1, . . . , aw−1, aw) respects the ma-

trix of MI, where ai(0 6 i 6 w) are column

vectors. Then (X0, X1, . . . , Xw−1)
T = Aw×(w+1) ◦

(H0, H1, . . . , Hw−1, M)T . For Luffa-224/256, the digest

2



is 224 or 256, w = 3, and

Aw×(w+1) =















0x3, 0x2, 0x2, 0x1

0x2, 0x3, 0x2, 0x2

0x2, 0x2, 0x3, 0x4















,

where numerics 0x1, 0x2, 0x3, 0x4 correspond to poly-

nomials 1, x, x + 1, x2 respectively.

For Luffa-384, the digest is 384, w = 4, and

Aw×(w+1) =























0x4, 0x6, 0x6, 0x7, 0x1

0x7, 0x4, 0x6, 0x6, 0x2

0x6, 0x7, 0x4, 0x6, 0x4

0x6, 0x6, 0x7, 0x4, 0x8























.

For Luffa-512, the digest is 512, w = 5, and

Aw×(w+1) =































0x0F, 0x08, 0x0A, 0x0A, 0x08, 0x01

0x08, 0x0F, 0x08, 0x0A, 0x0A, 0x02

0x0A, 0x08, 0x0F, 0x08, 0x0A, 0x04

0x0A, 0x0A, 0x08, 0x0F, 0x08, 0x08

0x08, 0x0A, 0x0A, 0x08, 0x0F, 0x10































.

3 Pseudo-Collision Attacks on Luffa

Property 1. The rank of the matrix of the message input

function is w, for w = 3, w = 4, w = 5.

The massage injection function MI is a many-to-

one function, the input is (w + 1) · 256 bits, but the

output is w · 256 bits. So, there are 2256 inputs for a

output. All the 2256 inputs with the same output for the

iteration function of Luffa, which are pseudo-collisions.

Given any (X0, X1, . . . , Xw−1), we can get 2256 inputs.

Considering the rank of the matrix is w, we assignment

to an elements of the input, Then we can get the re-

maining elements of the input by the inverse of the

matrix. Take w = 3 for example. Let (X0, X1, X2) =

(0, 0, 0), H0=(0x9b6a03ec, 0x96c25dd5, 0x9f6fa0ee,

0xeefce4a5, 0xaacd3b44, 0x214bf8b7, 0xc204dd70,

0xa097fadc). Then














H1

H2

M















=















0x2, 0x2, 0x1

0x3, 0x2, 0x2

0x2, 0x3, 0x4















−1 













X0 + 3H0

X1 + 2H0

X2 + 2H0















.

Table 1 shows a pseudo-collision for w = 3, i.e.,

(0, 0, 0) = MI(H0, H1, H2, M0) = MI(H ′

0, H
′

1, H
′

2, M
′

0).

Table 2 shows a pseudo-collision for w = 4, i.e.,

(0, 0, 0, 0) = MI(H0, H1, H2, H3, M0) = MI(H ′

0, H
′

1, H
′

2,

H ′

3, M
′

0). Table 3 shows a pseudo-collision for w =

5, i.e., (0, 0, 0, 0, 0) = MI(H0, H1, H2, H3, H4, M0) =

MI(H ′

0, H
′

1, H
′

2, H
′

3, H
′

4, M
′

0).

H0 0x9b6a03ec 0x96c25dd5 0x9f6fa0ee 0xeefce4a5 0xaacd3b44 0x214bf8b7 0xc204dd70 0xa097fadc

H1 0x47dd7c19 0xc61ae129 0x195aa27f 0x8230a193 0x8f98ffaa 0x5a827d64 0x3c14f9ca 0x7fd7b98a

H2 0x989d3f4f 0xc5eddd8a 0x49821e83 0xdb45e054 0x3c14f9ca 0x7fd7b98a 0x47dd7c19 0x81c79d30

M0 0xc5eddd8a 0x8c6fc309 0x0a5ac198 0x7fcc26d1 0x43c34040 0x380ac593 0xc61ae129 0x195aa27f

H′

0
0xde6bedf0 0x219461a1 0x06ebe485 0xf0733600 0x19920b9e 0xfbe0d985 0xc5e0d61c 0x5a06f524

H′

1
0xbc86f3c8 0x2cec6aa1 0x2aea0f07 0xf481e2f7 0x0b7e6ea6 0x4eecf5ba 0x098adff7 0x5c009082

H
′

2
0xba80966e 0x4807113f 0x27920407 0xde866cd3 0x098adff7 0x5c009082 0xbc86f3c8 0x906a9969

M
′

0
0x4807113f 0x6f951538 0x4394feba 0x6d8c254a 0x558a4f75 0xe086634a 0x2cec6aa1 0x2aea0f07

X0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0

Table 1 A pseudo-collision for w = 3.

3



H0 0xde6bedf0 0x219461a1 0x06ebe485 0xf0733600 0x19920b9e 0xfbe0d985 0xc5e0d61c 0x5a06f524

H1 0x277f8524 0x0f8cba51 0x3eed8eba 0xf46c63d4 0xdc72dd82 0xa1e62ca1 0x1b8b3bec 0xa5f97975

H2 0xde6bedf0 0x219461a1 0x06ebe485 0xf0733600 0x19920b9e 0xfbe0d985 0xc5e0d61c 0x5a06f524

H3 0x0f8cba51 0x316134eb 0xedfe684a 0x0f613b72 0x7d94f123 0xba6d174d 0xbe724299 0x8286fc51

M0 0xd70cb324 0x38066a3f 0xfd0b3d00 0x3cf4bec8 0x5a06f524 0xde6bedf0 0xffff8c51 0xf91468d4

H
′

0
0xd1fbeeb0 0xbb2e310f 0x3065e34f 0x25026f3c 0xcce3b4d0 0x89aa250f 0x3227c8eb 0xff59a5f3

H′

1
0x8b4bd240 0x4fd7b083 0x47a86690 0xc67d958c 0xfec47c3b 0x76f380fc 0xe3dc265b 0x958c7a4c

H′

2
0xd1fbeeb0 0xbb2e310f 0x3065e34f 0x25026f3c 0xcce3b4d0 0x89aa250f 0x3227c8eb 0xff59a5f3

H
′

3
0x4fd7b083 0x087fd613 0x0a9e215c 0xb3f23bf7 0x8837fcc7 0x952fa6a7 0x76505c17 0x1ec7a80c

M
′

0
0xae49bd7c 0x77cd85df 0xb9cfc640 0x6897f41b 0xff59a5f3 0xd1fbeeb0 0x6ad5dfbf 0x5ab03cf0

X0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0

X3 0 0 0 0 0 0 0 0

Table 2 A pseudo-collision for w = 4.

H0 0xde6bedf0 0x219461a1 0x06ebe485 0xf0733600 0x19920b9e 0xfbe0d985 0xc5e0d61c 0x5a06f524

H1 0x6b8a40ec 0x14ea009e 0xd7e13207 0xc8755c3f 0x51789b82 0x9087184a 0xf67553a6 0xa514f856

H2 0x02f4b151 0x1018d469 0xa7e04907 0x7b929485 0xda74b824 0xc30b3299 0x741e2ed4 0xe66d87cf

H3 0x418dcec8 0x3a1f5a4d 0xa3129df0 0x48ea901c 0x2aea0f07 0x4807113f 0x27920407 0x6406fabd

H4 0x558a4f75 0xb50c2c3f 0xcc6a09eb 0x538c2ad3 0xd7e13207 0xa3ff1cd3 0x45929b1c 0x47662a4d

M0 0x80724d00 0x9d129269 0x96817dec 0x14ea009e 0x57937f07 0xbe9fc3ba 0xce733999 0x581fc556

H
′

0
0xd1fbeeb0 0xbb2e310f 0x3065e34f 0x25026f3c 0xcce3b4d0 0x89aa250f 0x3227c8eb 0xff59a5f3

H
′

1
0x0b03f894 0x502e1dac 0x526c3608 0x52cfeae3 0xafd464b4 0x7e8c56ef 0xe9420707 0x69a9f138

H′

2
0xd31a19ff 0x4f746c68 0xbab3e8c7 0x447794fc 0x32841400 0x02422ba4 0x0ba0247f 0xa6366b6f

H′

3
0x1c8583a8 0x58f21754 0xa5e99903 0x6337d064 0xeba3f048 0x9f125b10 0x776e5934 0x44d44817

H
′

4
0xb08e1570 0x26dd9d50 0xb1b01053 0x7cce7d4b 0x526c3608 0x59cc1277 0xfffa7918 0x2ce060e7

M
′

0
0xcdddb1f3 0x1e6474e7 0xb2cc3ed4 0x502e1dac 0x9fb187fb 0x8a75d763 0x9e8f82d8 0xd0663778

X0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0

X3 0 0 0 0 0 0 0 0

X4 0 0 0 0 0 0 0 0

Table 3 A pseudo-collision for w = 5.

4



4 Pseudo-Second-Preimage Attack on
Luffa

Given the message M = M0‖M1. Firstly, the

adversary computers MI(V0, V1, . . . , Vw−1, M0) =

(X0, X1, . . . , Xw−1). Secondly, he can get an-

other message M ′

0 and initial value (V ′

0 , V ′

1 , . . . , V ′

w−1)

through the inverse of the message injection func-

tion. Then the message M ′ = M ′

0‖M1 with the ini-

tial value (V ′

0 , V ′

1 , . . . , V ′

w−1) has the same digest with

M . Table 4 shows a pseudo-second-preimage exam-

ple for the message M0 = (0xaaaaaaaa, 0xaaaaaaaa,

0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa,

0xaaaaaaaa, 0xaaaaaaaa).

V0 0x6d251e69 0x44b051e0 0x4eaa6fb4 0xdbf78465 0x6e292011 0x90152df4 0xee058139 0xdef610bb

V1 0xc3b44b95 0xd9d2f256 0x70eee9a0 0xde099fa3 0x5d9b0557 0x8fc944b3 0xcf1ccf0e 0x746cd581

V2 0xf7efc89d 0x5dba5781 0x04016ce5 0xad659c05 0x0306194f 0x666d1836 0x24aa230a 0x8b264ae7

M0 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa

V
′

0
0x6d251e68 0x44b051e0 0x4eaa6fb4 0xdbf78465 0x6e292011 0x90152df4 0xee058139 0xdef610bb

V ′

1
0xc3b44b94 0xd9d2f256 0x70eee9a0 0xde099fa2 0x5d9b0557 0x8fc944b3 0xcf1ccf0f 0x746cd581

V ′

2
0xf7efc89c 0x5dba5781 0x04016ce5 0xad659c04 0x0306194e 0x666d1836 0x24aa230b 0x8b264ae6

M
′

0
0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaab 0xaaaaaaab 0xaaaaaaab 0xaaaaaaaa 0xaaaaaaaa

X0 0xe6333b1e 0x96d8e9f6 0x24d83129 0x6aa44be3 0x4da482a5 0x0a0bbb57 0x3d1e5ae2 0x71efd72c

X1 0x48a26ee2 0xa110e0ea 0x1a9cb73d 0xc5f0fa8f 0xd4bc0d49 0x15d7d210 0x1c0714d5 0xdb751216

X2 0x7cf9edea 0x2578453d 0xc4d998d2 0xb69cf929 0x208bbbfb 0x56d9243f 0xf7b1f8d1 0x243f8d70

Table 4 A pseudo-second preimage for the message M0 when w = 3

5 Pseudo-Preimage Attack on Luffa

First we give our observation in the following, which is

used to get the pseudo-preimage of Luffa.

Proposition 1. The blank iteration is a permutation.

Proof. For the blank iteration, the message is 0. The

message injection function MI is (X0, X1, . . . , Xw−1) =

MI(H0, H1, . . . , Hw−1, 0). Since the rank of the matrix

of MI is w, for w = 3, w = 4, w = 5. Thus

(H0, . . . , Hw−1)
T = (a0, . . . , aw−1)

−1(X0, . . . , Xw−1)
T .

P is a permutation, so the blank iteration is a per-

mutation.

5.1 Pseudo-Preimage Attack on Luffa-256

For Luffa-256, given a digest Z0, the adversary can

computer a pseudo-preimage with the following steps.

1. Assignment to Y0, Y1 with arbitrary value. Without

loss of generality, let Y0 = Y1 = 0. Then Y3 = Z0.

2. Invert the permutation P . X0 = Q−1
0 (Y0), X1 =

Q−1
1 (Y1), X2 = Q−1

2 (Y2).

3. Invert the message injection function MI.














H0

H1

H2















=















0x3, 0x2, 0x2

0x2, 0x3, 0x2

0x2, 0x2, 0x3















−1 













X0

X1

X2















.

4. The adversary computers the inverse of the per-

mutation P , X0 = Q−1
0 (H0), X1 = Q−1

1 (H1),

X2 = Q−1
2 (H2). For (X0, X1, X2), the adversary

can obtain the input (V ′

0 , V ′

1 , V ′

2) and message M0

by the method mentioned in the Section 3. So the

digest of M0 with initial value (V ′

0 , V ′

1 , V ′

2) is Z0.

For Luffa-384, the digest is Z0 and the high 128 bits

of Z1. Z1 = Z1,0‖Z1,1‖Z1,2‖Z1,3‖Z1,4‖Z1,5‖Z1,6‖Z1,7,

where Z1,i for 0 6 i < 8 are 32-bit words.

The adversary randomly chooses (H0, H1, H2), and

H3 = H0 ⊕ H1 ⊕ H2 ⊕ Z0, computer Z ′

1. If the

Z ′

1,0‖Z
′

1,1‖Z
′

1,2‖Z
′

1,3 = Z1,0‖Z1,1‖Z1,2‖Z1,3, let Y0 =

H0, Y1 = H1, Y2 = H2, the adversary can computer

(V ′

0 , V ′

1 , V ′

2 , V ′

3) and message M0, which have the same

5



digest Z0‖Z1,0‖Z1,1‖Z1,2‖Z1,3, using Step 2, 3, 4 men-

tioned above. The complexity is 2127 iteration functions.

For Luffa-512, the complexity is 2255 by the similar at-

tack. In the next subsections, we introduce an algo-

rithm to improve the attack on Luffa-384/512 by the

generalized birthday attack, proposed by Wagner[8].

The k-dimensional generalization of the birthday prob-

lem is, given k lists L1, L2, . . ., Lk independently at

random from {0, 1}n, to find k elements xi ∈ Li for

1 6 i 6 k, s.t. x1 ⊕ x2 ⊕ · · · ⊕ xk = 0. Wagner’s

algorithm[8] builds a binary tree starting from the input

lists L1, L2, . . ., Lk. The time complexity and data com-

plexity are both t · 2
n

1+t , where t = ⌊log2 k⌋.

5.2 Pseudo-Preimage Attack on Luffa-384

For Luffa-384, Let (H0, H1, H2, H3, 0) be the in-

put of the the last blank iteration function, and

(X0, X1, X2, X3) be the output of MI. The digest is

Z0‖Z̄1, where Z̄1 = Z1,0‖Z1,1‖Z1,2‖Z1,3 Then

h128(Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)) = Z̄1. (1)

For the message injection function MI, we can

get (H0, H1, H2, H3)
T = A−1

4×4(X0, X1, X2, X3)
T , where

A4×4 is the first 4 column vectors of the matrix A4×5,

i.e.,

A4×4 =























0x4, 0x6, 0x6, 0x7

0x7, 0x4, 0x6, 0x6

0x6, 0x7, 0x4, 0x6

0x6, 0x6, 0x7, 0x4























.

It’s inverse matrix is

A−1
4×4 =























0x20, 0x43, 0x84, 0x11

0x11, 0x20, 0x43, 0x84

0x84, 0x11, 0x20, 0x43

0x43, 0x84, 0x11, 0x20























.

Since H0 ⊕ H1 ⊕ H2 ⊕ H3 = Z0, thus

X0 ⊕ X1 ⊕ X2 ⊕ X3 = Z ′

0, (2)

where Z ′

0 = 0x3 ◦ Z0.

Obviously, it’s necessary for us to get

(X0, X1, X2, X3) to make the Eq.(1) and Eq.(2) hold

together. However, there is only one equation in gen-

eralization birthday problem. So we extent Wagner’s

attack for the special case in the following.

1. The adversary constructs two structures

S0 = {X0 | X0 ∈ {0, 1}n, l192(X0) = c0},

S1 = {X1 | X1 ∈ {0, 1}n, l192(X1) = c0 ⊕ l192(Z
′

0)},

where c0 is a 192-bit random constant.

2. The adversary computers Q0(X0) for each

X0 ∈ S0, and constructs a table T1 with item

(X0, h128(Q0(X0)) ⊕ Z̄1). For each X1 ∈ S1,

he computers Q1(X1). If the low 64 bits of

h128Q1(X1) equal the low 64 bits of the sec-

ond elements of some item in T1, insert the

item (X0, X1, h64(X0 ⊕ X1 ⊕ Z ′

0)‖(h64(Q0(X0) ⊕

Q1(X1))⊕h64(Z̄1)) into table T2. There are about

264 items in table T2.

3. The adversary constructs two structures

S2 = {X2 | X2 ∈ {0, 1}n, l192(X2) = c1},

S3 = {X3 | X3 ∈ {0, 1}n, l192(X3) = c1},

where c1 is a 192-bit random constant.

4. The adversary computers Q2(X2) for each

X2 ∈ S2, and constructs a table T3 with item

(X2, h128(Q2(X2))). For each X3 ∈ S3, he com-

puters Q3(X3). If the low 64 bits of h128(Q3(X3))

equal the low 64 bits of the second elements of

some item in T3, insert the item (X2, X3, h64(X2⊕

X3)‖h64(Q2(X2) ⊕ Q3(X3))) into table T4. There

are about 264 items in table T4.

5. Compare the items of table T2 with T4. By the

birthday attack, there exist two items (One in ta-

ble T2, and one in table T4), whose last elements

are the same. Namely, X0 ⊕ X1 ⊕ Z ′

0 = X2 ⊕ X3

and h128(Q0(X0)⊕Q1(X1))⊕Z̄1 = h128(Q2(X2)⊕

Q3(X3)). So the elements X0, X1, X2, X3 make

the Eq.(1) and Eq.(2) hold at the same time.

6. For (X0, X1, X2, X3), (H0, H1, H2, H3) can be

computed. Then we applize the similar method

shown in the subsection 5.1 to get the pseudo-

preimage with 2 iteration computations.

6



Complexity analysis. There are 264 Q0, Q1, Q2, Q3

computations and 264 table lookups in the above steps.

So the time complexity and data complexity are both

264 to get the pseudo-preimage for Luffa-384.

5.3 Pseudo-Preimage Attack on Luffa-512

For Luffa-512, Let (H0, H1, H2, H3, H4, 0) be the in-

put of the the last blank iteration function, and

(X0, X1, X2, X3, X4) be the output of MI. Then

Q0(X0) ⊕ Q1(X1) ⊕ Q2(X2) ⊕ Q3(X3) ⊕ Q4(X4) = Z1.

(3)

For the message injection function MI, we can get

(H0, H1, H2, H3, H4)
T = A−1

5×5(X0, X1, X2, X3, X4)
T ,

where A5×5 is the first 5 column vectors of the matrix

A5×6, i.e.,

A5×5 =































0xf, 0x8, 0xa, 0xa, 0x8

0x8, 0xf, 0x8, 0xa, 0xa

0xa, 0x8, 0xf, 0x8, 0xa

0xa, 0xa, 0x8, 0xf, 0x8

0x8, 0xa, 0xa, 0x8, 0xf































.

It’s inverse matrix is

A−1
5×5 =































0xc7, 0x8b, 0xf4, 0xf4, 0x8b

0x8b, 0xc7, 0x8b, 0xf4, 0xf4

0xf4, 0x8b, 0xc7, 0x8b, 0xf4

0xf4, 0xf4, 0x8b, 0xc7, 0x8b

0x8b, 0xf4, 0xf4, 0x8b, 0xc7































.

Since H0 ⊕ H1 ⊕ H2 ⊕ H3 ⊕ H4 = Z0, thus

X0 ⊕ X1 ⊕ X2 ⊕ X3 ⊕ X4 = Z ′

0, (4)

where Z ′

0 = 0xf ◦ Z0.

We can solve the Eq.(3) and Eq.(4) to get

(X0, X1, X2, X3, X4), using the similar algorithm men-

tioned above.

1. The adversary constructs two structures

S0 = {X0 | X0 ∈ {0, 1}n, l128(X0) = c0},

S1 = {X1 | X1 ∈ {0, 1}n, l128(X1) = c0},

where c0 is a 128-bit random constant.

2. The adversary computers Q0(X0) for each

X0 ∈ S0, and constructs a table T1 with item

(X0, Q0(X0)). For each X1 ∈ S1, he comput-

ers Q1(X1)). If the low 128 bits of Q1(X1) equal

the low 128 bits of the second elements of some

item in T1, insert the item (X0, X1, h128(X0 ⊕

X1)‖h128(Q0(X0)+Q1(X1))) into table T2. There

are about 2128 items in table T2.

3. The adversary constructs two structures

S2 = {X2 | X2 ∈ {0, 1}n, l128(X2) = c1 ⊕ l128(Z
′

0)},

S3 = { (X3, X4) | X3, X4 ∈ {0, 1}n, l128(X3 ⊕ X4) = c1},

where c1 is a 128-bit random constant.

4. The adversary computers Q2(X2) for each

X2 ∈ S2, and constructs a table T3 with

item (X2, Q2(X2)). For each (X3, X4) ∈ S3,

he computers Q3(X3) ⊕ Q4(X4) ⊕ Z1. If its

low 128 bits equal the low 128 bits of the

second elements of some item in T3, insert

the item (X2, X3, X4, h128(X2 ⊕ X3 ⊕ X4 ⊕

Z ′

0)‖h128(Q2(X2) ⊕ Q3(X3) ⊕ Q4(X4) ⊕ Z1)) into

table T4. There are about 2128 items in table T4.

5. Compare the items of table T2 with T4. By the

birthday attack, there exist two items (One in ta-

ble T2, and one in table T4), which have the same

last emements. Namely, X0⊕X1⊕Z ′

0 = X2⊕X3⊕

X4 and Q0(X0)⊕Q1(X1)) = Q2(X2)⊕Q3(X3)⊕

Q4(X4)⊕Z1. So the elements X1, X2, X3, X4, X5

make the Eq.(3) and Eq.(4) hold together.

6. For (X0, X1, X2, X3, X4), (H0, H1, H2, H3, H4)

can be computed. Then we use the similar

method shown in the subsection 5.1 to get the

pseudo-preimage with 2 iteration computations.

Complexity analysis. There are 2128 Q0, Q1, Q2,

Q3 and Q4 computations and 2128 table lookups in the

above steps. It’s about 2128 iteration computations to

get the pseudo-preimage for Luffa-512.

6 Conclusion

In this paper, we give the pseudo-collision, pseudo-

second-preimage and pseudo-preimage attacks for

7



Luffa. For arbitrary output of the message injec-

tion function MI, it’s easy to get inputs by the

inverse of MI. So we can get pseduo-collisions

and pseudo-second-preimages easily for Luffa us-

ing the message injection function MI only. We

can get a pseudo-preimage for Luffa-224/256 with

2 iteration computations. We extent the general-

ized birthday attack to find the pseudo-preimage

for Luffa-384 with 264 iteration computations and

264 table lookups. It’s about 2128 iteration com-

putations and 2128 table lookups to find pseudo-

preimage for Luffa-512.
Acknowledgements. We would like to thank

Wang, Desmedt and Han. Their personal discus-
sion about the ROS2 problem, which is the general-
ization of ROS problem, motivates us to improved
the pseudo-preimage attack on Luffa-384/512.

1 Wang X Y, Lai X J, Feng D G et al. Cryptanalysis of the hash

functions MD4 and RIPEMD. In: Cramer R, ed. Eurocrypt

2005, LNCS, Vol 3494. Berlin: Springer-Verlag, 2005. 1–18

2 Wang X Y, Yu H B, How to break MD5 and other hash func-

tions. In: Cramer R, ed. Eurocrypt 2005, LNCS, Vol 3494.

Berlin: Springer-Verlag, 2005. 19–35

3 Wang X Y, Yu H B, Yin Y L. Efficient collision search attacks

on SHA-0. In: Shoup V, ed. CRYPT 2005, LNCS, Vol 3621.

Berlin: Springer-Verlag, 2005. 1–16

4 Wang X Y, Yin Y L, Yu H B. Finding collisions in the full

SHA-1. In: Shoup V, ed. CRYPT 2005, LNCS, Vol 3621.

Berlin: Springer-Verlag, 2005. 17–36

5 Yu H B, Wang G L, Zhang G Y, et al. The second-preimage

attack on MD4. In: Desmedt Y, Wang H X, Mu Y, et al., eds.

CANS 2005, LNCS, Vol 3810, Berlin: Springer-Verlag, 2005.

1–12

6 Contini S, Yin Y L. Forgery and partial key-recovery attacks

on HMAC and NMAC using hash collisions. In: Lai X J,

Chen K F, eds. ASIACRYPT 2006. LNCS, Vol 4284. Berlin:

Springer-Verlag, 2006. 37–53

7 Cannière C D, Sato H, Watanabe D. Hash func-

tion Luffa. http://csrc.nist.gov/groups/ST/hash/sha-

3/Round1/documents/Luffa.zip. 2008

8 Wagner D. A generalized birthday problem. In: Yung M,

ed. CRYPTO 2002, LNCS, Vol 2442. Berlin: Springer-Verlag,

2002. 288–304

8


