Practical Pseudo-Cryptanalysis of Luffa

Abstract

Jia Keting

Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China In this paper, some pseudo-collision and pseudo-second-preimage examples are presented for the first round of SHA-3 candidate algorithm Luffa. The pseudo-collision and pseudo-second-preimage can be obtained easily by the message injection function of Luffa. Besides, the pseudo-preimage attacks are shown in this paper. For Luffa-224/256, only 2 iteration computations are needed to get the pseudopreimage. It is about 2^{64} iteration computations and 2^{64} table lookups to get the pseudo-preimage for Luffa-384 using the extended generalized birthday attack. For Luffa-512, the time complexity is 2^{128} iteration computations and data complexity is 2^{128} table lookups.

Luffa, pseudo-collision, pseudo-second-preimage, pseudo-preimage, generalized birthday attack

1 Introduction

The cryptographic hash function is defined as a function that computes a fixed size message digest from arbitrary size messages, that has been widely used as a fundamental primitive in many cryptographic schemes and protocols, such as electronic signature, authentication of message, electronic commerce and bit commitment, etc. In the past years, the cryptanalysis of hash function has achieved tremendous progress in the construction of collisions. In particular, Wang et al. proposed new techniques to find efficiently collisions on the main hash functions from the MD4 family, e.g. MD4 ${ }^{[1]}$, RIPEMD ${ }^{[1]}$, MD5 ${ }^{[2]}$, SHA-0 ${ }^{[3]}$ and SHA$1^{[4]}$. Moreover the techniques can be applicable to explore the second-preimage of $\mathrm{MD} 4^{[5]}$, forgery and partial key-recovery attacks on HMAC and NMAC ${ }^{[6]}$. Responding to advances in the cryptanalysis of hash functions, NIST held two hash workshops to evaluate the security of its approved hash functions and to solicit public comments on its cryptographic hash function policy and standard. Finally, NIST opened a public competition to develop a new hash function called "SHA-3", similar to the development process of the Advanced Encryption Standard (AES). Due to the SHA-3 competition, there are 64 new proposals for hash functions have been submitted to the new SHA-3
algorithm. After the first candidate conference of SHA-3, there are 41 candidate algorithms in the first round. Luffa ${ }^{[7]}$ is one of them, proposed by De Cannière et al.
In this paper, we give some cryptanalytic results of Luffa. The pseudo-collision and pseudo-secondpreimage can be obtained easily by the message injection function of Luffa. So this paper shows some pseudo-collision and pseudo-second-preimage examples for Luffa. At the same time, the pseudopreimage attacks are presented in this paper. For Luffa-224/256, only 2 iteration computations are needed to get the pseudo-preimage. We extend the generalized birthday attack ${ }^{[8]}$ to computer the pseudo-preimage of Luffa-384 with 2^{64} iteration computations and 2^{64} table lookups. The time complexity and data complexity are both 2^{128} to get the pseudo-preimage for Luffa-512.
This paper is organized as follows. In Section 2, we give brief descriptions of Luffa. Section 3 shows some pseudo-collision examples of Luffa. A pseudo-second-preimage example is shown in Section 4. The pseudo-preimage attacks are introduced in Section 5. Finally, we summary our results in Section 6.

2 Preliminaries and Notations

In this section, we first list some notations used
in this paper, and then give a brief description of Luffa.

2.1 Notations

$X \| Y$: the concatenation of two messages X and Y.
$h_{w}(X)$: the high w bits of X.
$l_{w}(X)$: the low w bits of X.
०: the multiplication in a ring $G F\left(2^{8}\right)^{32}$.
$\lfloor a\rfloor$: the greatest integer less than or equal to a $\left(b_{0}, b_{1}, \ldots, b_{m}\right)^{T}$: the transposed matrix of $\left(b_{0}, b_{1}, \ldots, b_{m}\right)$, where b_{i} for $1 \leqslant i \leqslant m$ are column vectors.

2.2 Description of Luffa

Luffa ${ }^{[7]}$, a candidate algorithm for the first round of the SHA-3, was proposed by De Cannière et al. The chaining of Luffa is a variant of a sponge function. Figure 1 depicts the basic structure. The message padding method is to append a single bit ' 1 ' followed by the minimum bits of ' 0 ' such that the length of the results is a multiple of 256 . Let $M=M_{0}\|\cdots\| M_{m-1}$ is a message with padding, where $M_{i}(0 \leqslant i<m)$ are 256 -bit blocks. The iteration function of Luffa is a composition of a message injection function $M I$ and a permutation
P of $w \cdot 256$ bits input. The permutation P includes w permutations $Q_{0}, Q_{1}, \ldots, Q_{w-1}$. Let the input of the i-th iteration be $\left(H_{0}^{(i-1)}, \ldots, H_{w-1}^{(i-1)}\right)$ and M_{i-1}, then the output of the $i-$ th iteration is given by

$$
\begin{aligned}
X_{0}\|\cdots\| X_{w-1} & =M I\left(H_{0}^{(i-1)}, \ldots, H_{w-1}^{(i-1)}, M(i)\right) \\
H_{j}^{(i)} & =Q_{j}\left(X_{j}\right), j=0,1, \ldots, w-1
\end{aligned}
$$

where Q_{j} is a permutation of 256 bits input, $H_{j}^{(0)}=V_{j}$, and $V_{j}(0 \leqslant j<w)$ are the initial values. A finalization is used to the chaining value $\left(H_{0}^{(m-1)}, \ldots, H_{w-1}^{(m-1)}\right)$. The finalization consists of iterations of an output function $O F$ and a iteration function with a fixed message $0 x 00 \cdots 0$, which is called blank iteration. The output function $O F$ XORs all block values and outputs the resultant 256 -bit value. Let the output at the $i-$ th iteration be Z_{i}, then the output function is defined by

$$
Z_{i}=\bigoplus_{j=0}^{w-1} H_{j}^{\left(m-1+i^{\prime}\right)}
$$

where $i^{\prime}=i$ if $m=1$ and $i^{\prime}=i+1$ otherwise. The output of Luffa-256 is Z_{0}, the output of Luffa-512 is $Z_{0} \| Z_{1}$. The outputs of Luffa-224 and Luffa-384 are the truncation of the Luffa-256 and Luffa-512 respectively.

Figure 1 The Structure of Luffa Hash Function.

Message Injection Function MI. The message injection functions $M I$ can be represented by the matrix over a ring $\operatorname{GF}\left(2^{8}\right)^{32}$. The definition polynomial of the field is given by $\phi(x)=x^{8}+x^{4}+$ $x^{3}+x+1$, corresponding to " $0 \times 11 \mathrm{~b}$ ". The map from an 8 words value $\left(h_{0}, \ldots, h_{7}\right)$ to an element of the ring is defined by $\left(\Sigma_{0 \leqslant k<8} h_{k, l} x^{k}\right)_{0 \leqslant l<32}$. Let $A_{w \times(w+1)}=\left(a_{0}, a_{1}, \ldots, a_{w-1}, a_{w}\right)$ respects the ma-
trix of $M I$, where $a_{i}(0 \leqslant i \leqslant w)$ are column vectors. Then $\left(X_{0}, X_{1}, \ldots, X_{w-1}\right)^{T}=A_{w \times(w+1)} \circ$ $\left(H_{0}, H_{1}, \ldots, H_{w-1}, M\right)^{T}$. For Luffa-224/256, the digest
is 224 or $256, w=3$, and

$$
A_{w \times(w+1)}=\left(\begin{array}{c}
0 x 3,0 x 2,0 x 2,0 x 1 \\
0 x 2,0 x 3,0 x 2,0 x 2 \\
0 x 2,0 x 2,0 x 3,0 x 4
\end{array}\right)
$$

where numerics $0 \times 1,0 \times 2,0 \times 3,0 \times 4$ correspond to polynomials $1, x, x+1, x^{2}$ respectively.

For Luffa-384, the digest is $384, w=4$, and

$$
A_{w \times(w+1)}=\left(\begin{array}{c}
0 x 4,0 x 6,0 x 6,0 x 7,0 x 1 \\
0 x 7,0 x 4,0 x 6,0 x 6,0 x 2 \\
0 x 6,0 x 7,0 x 4,0 x 6,0 x 4 \\
0 x 6,0 x 6,0 x 7,0 x 4,0 x 8
\end{array}\right)
$$

For Luffa-512, the digest is $512, w=5$, and

$$
A_{w \times(w+1)}=\left(\begin{array}{c}
0 x 0 F, 0 x 08,0 x 0 A, 0 x 0 A, 0 x 08,0 x 01 \\
0 x 08,0 x 0 F, 0 x 08,0 x 0 A, 0 x 0 A, 0 x 02 \\
0 x 0 A, 0 x 08,0 x 0 F, 0 x 08,0 x 0 A, 0 x 04 \\
0 x 0 A, 0 x 0 A, 0 x 08,0 x 0 F, 0 x 08,0 x 08 \\
0 x 08,0 x 0 A, 0 x 0 A, 0 x 08,0 x 0 F, 0 x 10
\end{array}\right) .
$$

Property 1. The rank of the matrix of the message input function is w, for $w=3, w=4, w=5$.

The massage injection function $M I$ is a many-toone function, the input is $(w+1) \cdot 256$ bits, but the output is $w \cdot 256$ bits. So, there are 2^{256} inputs for a output. All the 2^{256} inputs with the same output for the iteration function of Luffa, which are pseudo-collisions. Given any $\left(X_{0}, X_{1}, \ldots, X_{w-1}\right)$, we can get 2^{256} inputs. Considering the rank of the matrix is w, we assignment to an elements of the input, Then we can get the remaining elements of the input by the inverse of the matrix. Take $w=3$ for example. Let $\left(X_{0}, X_{1}, X_{2}\right)=$ $(0,0,0), H_{0}=(0 x 9 b 6 a 03 e c, 0 x 96 c 25 d d 5,0 x 9 f 6 f a 0 e e$, 0xeefce4a5, 0xaacd3b44, 0x214bf8b7, 0xc204dd70, 0xa097fadc). Then

$$
\left(\begin{array}{l}
H_{1} \\
H_{2} \\
M
\end{array}\right)=\left(\begin{array}{c}
0 x 2,0 x 2,0 x 1 \\
0 x 3,0 x 2,0 x 2 \\
0 x 2,0 x 3,0 x 4
\end{array}\right)^{-1}\left(\begin{array}{c}
X_{0}+3 H_{0} \\
X_{1}+2 H_{0} \\
X_{2}+2 H_{0}
\end{array}\right)
$$

Table 1 shows a pseudo-collision for $w=3$, i.e., $(0,0,0)=M I\left(H_{0}, H_{1}, H_{2}, M_{0}\right)=M I\left(H_{0}^{\prime}, H_{1}^{\prime}, H_{2}^{\prime}, M_{0}^{\prime}\right)$. Table 2 shows a pseudo-collision for $w=4$, i.e., $(0,0,0,0)=M I\left(H_{0}, H_{1}, H_{2}, H_{3}, M_{0}\right)=M I\left(H_{0}^{\prime}, H_{1}^{\prime}, H_{2}^{\prime}\right.$, $\left.H_{3}^{\prime}, M_{0}^{\prime}\right)$. Table 3 shows a pseudo-collision for $w=$ 5 , i.e., $(0,0,0,0,0)=M I\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, M_{0}\right)=$ $M I\left(H_{0}^{\prime}, H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}, M_{0}^{\prime}\right)$.

3 Pseudo-Collision Attacks on Luffa

H_{0}	0x9b6a03ec	0x96c25dd5	0x9f6fa0ee	0xeefce4a5	0xaacd3b44	0x214bf8b7	0xc204dd70	0xa097fadc
H_{1}	0x47dd7c19	0xc61ae129	0x195aa27f	0x8230a193	0x8f98ffaa	0x5a827d64	$0 \times 3 \mathrm{c} 14 \mathrm{f9}$ ca	0x7fd7b98a
H_{2}	0x989d3f4f	0xc5eddd8a	0x49821e83	0xdb45e054	$0 \times 3 \mathrm{c} 14 \mathrm{f} 9 \mathrm{ca}$	0x7fd7b98a	0x47dd7c19	0x81c79d30
M_{0}	0xc5eddd8a	0x8c6fc309	0x0a5ac198	$0 \times 7 \mathrm{fcc} 26 \mathrm{~d} 1$	$0 \times 43 c 34040$	0x380ac593	0xc61ae129	0x195aa27f
H_{0}^{\prime}	0xde6bedf0	$0 \times 219461 \mathrm{a} 1$	0x06ebe485	0xf0733600	0x19920b9e	0xfbe0d985	0xc5e0d61c	$0 \times 5 a 06 f 524$
H_{1}^{\prime}	0xbc86f3c8	0x2cec6aa1	0x2aea0f07	0xf481e2f7	0x0b7e6ea6	0x4eecf5ba	0x098adff7	0x5c009082
H_{2}^{\prime}	0xba80966e	0x4807113f	0x27920407	0xde866cd3	0x098adff7	0x5c009082	0xbc86f3c8	0x906a9969
M_{0}^{\prime}	0x4807113f	0x6f951538	0x4394feba	$0 \times 6 d 8 c 254 a$	$0 \times 558 \mathrm{a} 4 \mathrm{f} 75$	0xe086634a	$0 \times 2 \mathrm{cec} 6 \mathrm{aa} 1$	0x2aea0f07
X_{0}	0	0	0	0	0	0	0	0
X_{1}	0	0	0	0	0	0	0	0
X_{2}	0	0	0	0	0	0	0	0

Table 1 A pseudo-collision for $w=3$.

H_{0}	0xde6bedf0	0x219461a1	0x06ebe485	0xf0733600	0x19920b9e	0xfbe0d985	0xc5e0d61c	0x5a06f524
H_{1}	0x277f8524	0x0f8cba51	0x3eed8eba	0xf46c63d4	0xdc72dd82	$0 \times \mathrm{a} 1 \mathrm{e} 2 \mathrm{ca1}$	$0 \times 1 \mathrm{~b} 8 \mathrm{~b} 3 \mathrm{bec}$	0xa5f97975
H_{2}	0xde6bedf0	$0 \times 219461 \mathrm{a} 1$	0x06ebe485	0xf0733600	0x19920b9e	0xfbe0d985	0xc5e0d61c	0x5a06f524
H_{3}	0x0f8cba51	0x316134eb	0xedfe684a	0x0f613b72	0x7d94f123	0xba6d174d	0xbe724299	$0 \times 8286 \mathrm{fc} 51$
M_{0}	0xd70cb324	0x38066a3f	0xfd0b3d00	$0 \times 3 \mathrm{cf4bec} 8$	0x5a06f524	0xde6bedf0	0xffff8c51	0xf91468d4
H_{0}^{\prime}	0xd1fbeeb0	0xbb2e310f	0x3065e34f	0x25026f3c	$0 x c c e 3 b 4 d 0$	0x89aa250f	0x3227c8eb	0xff59a5f3
H_{1}^{\prime}	0x8b4bd240	0x4fd7b083	$0 \times 47 \mathrm{a} 86690$	0xc67d958c	0xfec47c3b	0x76f380fc	0xe3dc265b	0x958c7a4c
H_{2}^{\prime}	0xd1fbeeb0	0xbb2e310f	0x3065e34f	0x25026f3c	$0 x c c e 3 b 4 d 0$	0x89aa250f	0x3227c8eb	0xff59a5f3
H_{3}^{\prime}	0x4fd7b083	0x087fd613	$0 \times 0 a 9 e 215 c$	0xb3f23bf7	$0 \times 8837 \mathrm{fcc} 7$	0x952fa6a7	0x76505c17	0x1ec7a80c
M_{0}^{\prime}	0xae49bd7c	0x77cd85df	0xb9cfc640	0x6897f41b	0xff59a5f3	0xd1fbeeb0	0x6ad5dfbf	0x5ab03cf0
X_{0}	0	0	0	0	0	0	0	0
X_{1}	0	0	0	0	0	0	0	0
X_{2}	0	0	0	0	0	0	0	0
X_{3}	0	0	0	0	0	0	0	0

Table 2 A pseudo-collision for $w=4$.

H_{0}	0xde6bedf0	0x219461a1	0x06ebe485	0xf0733600	0x19920b9e	0xfbe0d985	0xc5e0d61c	0x5a06f524
H_{1}	0x6b8a40ec	0x14ea009e	0xd7e13207	0xc8755c3f	0x51789b82	0x9087184a	0xf67553a6	0xa514f856
H_{2}	0x02f4b151	0x1018d469	0xa7e04907	0x7b929485	0xda74b824	0xc30b3299	0x741e2ed4	0xe66d87cf
H_{3}	0x418dcec8	$0 \times 3 a 1 f 5 a 4 d$	0xa3129df0	0x48ea901c	0x2aea0f07	$0 \times 4807113 f$	0×27920407	0x6406fabd
H_{4}	0x558a4f75	0xb50c2c3f	0xcc6a09eb	0x538c2ad3	0xd7e13207	0xa3ff1cd3	0x45929b1c	0x47662a4d
M_{0}	0x80724d00	0x9d129269	0x96817dec	0x14ea009e	0x57937f07	0xbe9fc3ba	0xce733999	0x581fc556
H_{0}^{\prime}	0xd1fbeeb0	0xbb2e310f	0x3065e34f	0x25026f3c	$0 x c c e 3 b 4 d 0$	0x89aa250f	0x3227c8eb	0xff59a5f3
H_{1}^{\prime}	0x0b03f894	0x502e1dac	$0 \times 526 \mathrm{c} 3608$	0x52cfeae3	0xafd464b4	0x7e8c56ef	0xe9420707	0x69a9f138
H_{2}^{\prime}	0xd31a19ff	0x4f746c68	0xbab3e8c7	0x447794fc	0×32841400	0x02422ba4	0x0ba0247f	0xa6366b6f
H_{3}^{\prime}	0x1c8583a8	0x58f21754	0xa5e99903	0x6337d064	0xeba3f048	0x9f125b10	0x776e5934	0x44d44817
H_{4}^{\prime}	0xb08e1570	0x26dd9d50	0xb1b01053	0x7cce7d4b	$0 \times 526 \mathrm{c} 3608$	$0 \times 59 \mathrm{cc} 1277$	0xfffa7918	0x2ce060e7
M_{0}^{\prime}	0xcdddb1f3	0x1e6474e7	0xb2cc3ed4	0x502e1dac	0x9fb187fb	$0 \times 8 \mathrm{a} 75 \mathrm{~d} 763$	0x9e8f82d8	0xd0663778
X_{0}	0	0	0	0	0	0	0	0
X_{1}	0	0	0	0	0	0	0	0
X_{2}	0	0	0	0	0	0	0	0
X_{3}	0	0	0	0	0	0	0	0
X_{4}	0	0	0	0	0	0	0	0

Table 3 A pseudo-collision for $w=5$.

4 Pseudo-Second-Preimage Attack on Luffa

Given the message $M=M_{0} \| M_{1}$. Firstly, the adversary computers $\operatorname{MI}\left(V_{0}, V_{1}, \ldots, V_{w-1}, M_{0}\right)=$ $\left(X_{0}, X_{1}, \ldots, X_{w-1}\right)$. Secondly, he can get another message M_{0}^{\prime} and initial value $\left(V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{w-1}^{\prime}\right)$
through the inverse of the message injection function. Then the message $M^{\prime}=M_{0}^{\prime} \| M_{1}$ with the initial value $\left(V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{w-1}^{\prime}\right)$ has the same digest with M. Table 4 shows a pseudo-second-preimage example for the message $M_{0}=$ (0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa).

V_{0}	0x6d251e69	0x44b051e0	0x4eaa6fb4	0xdbf78465	0x6e292011	0x90152df4	0xee058139	0xdef610bb
V_{1}	0xc3b44b95	0xd9d2f256	0x70eee9a0	0xde099fa3	0x5d9b0557	0x8fc944b3	0xcf1ccf0e	0x746cd581
V_{2}	0xf7efc89d	0x5dba5781	0x04016ce5	0xad659c05	0x0306194f	0x666d1836	0x24aa230a	0x8b264ae7
M_{0}	0xaaaaaaaa	0xaaaaaaaa	0xaaaaaaaa	0xaaaaaaaa	0xaaaaaaaa	0xaaaaaaaaa	0xaaaaaaaa	0xaaaaaaaa
V_{0}^{\prime}	0x6d251e68	0x44b051e0	0x4eaa6fb4	0xdbf78465	0x6e292011	0x90152df4	0xee058139	0xdef610bb
V_{1}^{\prime}	0xc3b44b94	0xd9d2f256	0x70eee9a0	0xde099fa2	0x5d9b0557	0x8fc944b3	0xcf1ccf0f	0x746cd581
V_{2}^{\prime}	0xf7efc89c	0x5dba5781	0x04016ce5	0xad659c04	0x0306194e	0x666d1836	0x24aa230b	0x8b264ae6
M_{0}^{\prime}	0xaaaaaaaa	0xaaaaaaaa	0xaaaaaaaa	0xaaaaaaab	0xaaaaaaab	0xaaaaaaaab	0xaaaaaaaa	0xaaaaaaaa
X_{0}	0xe6333b1e	0x96d8e9f6	0x24d83129	0x6aa44be3	0x4da482a5	0x0a0bbb57	0x3d1e5ae2	0x71efd72c
X_{1}	0x48a26ee2	0xa110e0ea	0x1a9cb73d	0xc5f0fa8f	0xd4bc0d49	0x15d7d210	0x1c0714d5	0xdb751216
X_{2}	0x7cf9edea	0x2578453d	0xc4d998d2	0xb69cf929	0x208bbbfb	0x56d9243f	0xf7b1f8d1	0x243f8d70

Table 4 A pseudo-second preimage for the message M_{0} when $w=3$

5 Pseudo-Preimage Attack on Luffa

First we give our observation in the following, which is used to get the pseudo-preimage of Luffa.
Proposition 1. The blank iteration is a permutation.
Proof. For the blank iteration, the message is 0 . The message injection function $M I$ is $\left(X_{0}, X_{1}, \ldots, X_{w-1}\right)=$ $M I\left(H_{0}, H_{1}, \ldots, H_{w-1}, 0\right)$. Since the rank of the matrix of $M I$ is w, for $w=3, w=4, w=5$. Thus
$\left(H_{0}, \ldots, H_{w-1}\right)^{T}=\left(a_{0}, \ldots, a_{w-1}\right)^{-1}\left(X_{0}, \ldots, X_{w-1}\right)^{T}$.
P is a permutation, so the blank iteration is a permutation.

5.1 Pseudo-Preimage Attack on Luffa-256

For Luffa-256, given a digest Z_{0}, the adversary can computer a pseudo-preimage with the following steps.

1. Assignment to Y_{0}, Y_{1} with arbitrary value. Without loss of generality, let $Y_{0}=Y_{1}=0$. Then $Y_{3}=Z_{0}$.
2. Invert the permutation P. $X_{0}=Q_{0}^{-1}\left(Y_{0}\right), X_{1}=$ $Q_{1}^{-1}\left(Y_{1}\right), X_{2}=Q_{2}^{-1}\left(Y_{2}\right)$.
3. Invert the message injection function $M I$.

$$
\left(\begin{array}{l}
H_{0} \\
H_{1} \\
H_{2}
\end{array}\right)=\left(\begin{array}{c}
0 x 3,0 x 2,0 x 2 \\
0 x 2,0 x 3,0 x 2 \\
0 x 2,0 x 2,0 x 3
\end{array}\right)^{-1}\left(\begin{array}{c}
X_{0} \\
X_{1} \\
X_{2}
\end{array}\right)
$$

4. The adversary computers the inverse of the permutation $P, X_{0}=Q_{0}^{-1}\left(H_{0}\right), X_{1}=Q_{1}^{-1}\left(H_{1}\right)$, $X_{2}=Q_{2}^{-1}\left(H_{2}\right)$. For $\left(X_{0}, X_{1}, X_{2}\right)$, the adversary can obtain the input $\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ and message M_{0} by the method mentioned in the Section 3. So the digest of M_{0} with initial value $\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is Z_{0}.

For Luffa-384, the digest is Z_{0} and the high 128 bits of Z_{1}. $Z_{1}=Z_{1,0}\left\|Z_{1,1}\right\| Z_{1,2}\left\|Z_{1,3}\right\| Z_{1,4}\left\|Z_{1,5}\right\| Z_{1,6} \| Z_{1,7}$, where $Z_{1, i}$ for $0 \leqslant i<8$ are 32 -bit words. The adversary randomly chooses $\left(H_{0}, H_{1}, H_{2}\right)$, and $H_{3}=H_{0} \oplus H_{1} \oplus H_{2} \oplus Z_{0}$, computer Z_{1}^{\prime}. If the $Z_{1,0}^{\prime}\left\|Z_{1,1}^{\prime}\right\| Z_{1,2}^{\prime}\left\|Z_{1,3}^{\prime}=Z_{1,0}\right\| Z_{1,1}\left\|Z_{1,2}\right\| Z_{1,3}$, let $Y_{0}=$ $H_{0}, Y_{1}=H_{1}, Y_{2}=H_{2}$, the adversary can computer ($V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$) and message M_{0}, which have the same
digest $Z_{0}\left\|Z_{1,0}\right\| Z_{1,1}\left\|Z_{1,2}\right\| Z_{1,3}$, using Step 2, 3, 4 mentioned above. The complexity is 2^{127} iteration functions. For Luffa-512, the complexity is 2^{255} by the similar attack. In the next subsections, we introduce an algorithm to improve the attack on Luffa-384/512 by the generalized birthday attack, proposed by Wagner ${ }^{[8]}$. The k-dimensional generalization of the birthday problem is, given k lists $L_{1}, L_{2}, \ldots, L_{k}$ independently at random from $\{0,1\}^{n}$, to find k elements $x_{i} \in L_{i}$ for $1 \leqslant i \leqslant k$, s.t. $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k}=0$. Wagner's algorithm ${ }^{[8]}$ builds a binary tree starting from the input lists $L_{1}, L_{2}, \ldots, L_{k}$. The time complexity and data complexity are both $t \cdot 2^{\frac{n}{1+t}}$, where $t=\left\lfloor\log _{2} k\right\rfloor$.

5.2 Pseudo-Preimage Attack on Luffa-384

For Luffa-384, Let ($H_{0}, H_{1}, H_{2}, H_{3}, 0$) be the input of the the last blank iteration function, and ($X_{0}, X_{1}, X_{2}, X_{3}$) be the output of MI. The digest is $Z_{0} \| \bar{Z}_{1}$, where $\bar{Z}_{1}=Z_{1,0}\left\|Z_{1,1}\right\| Z_{1,2} \| Z_{1,3}$ Then

$$
\begin{equation*}
h_{128}\left(Q_{0}\left(X_{0}\right) \oplus Q_{1}\left(X_{1}\right) \oplus Q_{2}\left(X_{2}\right) \oplus Q_{3}\left(X_{3}\right)\right)=\bar{Z}_{1} . \tag{1}
\end{equation*}
$$

For the message injection function $M I$, we can get $\left(H_{0}, H_{1}, H_{2}, H_{3}\right)^{T}=A_{4 \times 4}^{-1}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)^{T}$, where $A_{4 \times 4}$ is the first 4 column vectors of the matrix $A_{4 \times 5}$, i.e.,

$$
A_{4 \times 4}=\left(\begin{array}{c}
0 x 4,0 x 6,0 x 6,0 x 7 \\
0 x 7,0 x 4,0 x 6,0 x 6 \\
0 x 6,0 x 7,0 x 4,0 x 6 \\
0 x 6,0 x 6,0 x 7,0 x 4
\end{array}\right) .
$$

It's inverse matrix is

$$
A_{4 \times 4}^{-1}=\left(\begin{array}{c}
0 x 20,0 x 43,0 x 84,0 x 11 \\
0 x 11,0 x 20,0 x 43,0 x 84 \\
0 x 84,0 x 11,0 x 20,0 x 43 \\
0 x 43,0 x 84,0 x 11,0 x 20
\end{array}\right) .
$$

Since $H_{0} \oplus H_{1} \oplus H_{2} \oplus H_{3}=Z_{0}$, thus

$$
\begin{equation*}
X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}=Z_{0}^{\prime}, \tag{2}
\end{equation*}
$$

where $Z_{0}^{\prime}=0 x 3 \circ Z_{0}$.
Obviously, it's necessary for us to get ($X_{0}, X_{1}, X_{2}, X_{3}$) to make the Eq.(1) and Eq.(2) hold
together. However, there is only one equation in generalization birthday problem. So we extent Wagner's attack for the special case in the following.

1. The adversary constructs two structures
$S_{0}=\left\{X_{0} \mid X_{0} \in\{0,1\}^{n}, l_{192}\left(X_{0}\right)=c_{0}\right\}$,
$S_{1}=\left\{X_{1} \mid X_{1} \in\{0,1\}^{n}, l_{192}\left(X_{1}\right)=c_{0} \oplus l_{192}\left(Z_{0}^{\prime}\right)\right\}$,
where c_{0} is a 192-bit random constant.
2. The adversary computers $Q_{0}\left(X_{0}\right)$ for each $X_{0} \in S_{0}$, and constructs a table T_{1} with item $\left(X_{0}, h_{128}\left(Q_{0}\left(X_{0}\right)\right) \oplus \bar{Z}_{1}\right)$. For each $X_{1} \in S_{1}$, he computers $Q_{1}\left(X_{1}\right)$. If the low 64 bits of $h_{128} Q_{1}\left(X_{1}\right)$ equal the low 64 bits of the second elements of some item in T_{1}, insert the item $\left(X_{0}, X_{1}, h_{64}\left(X_{0} \oplus X_{1} \oplus Z_{0}^{\prime}\right) \|\left(h_{64}\left(Q_{0}\left(X_{0}\right) \oplus\right.\right.\right.$ $\left.\left.Q_{1}\left(X_{1}\right)\right) \oplus h_{64}\left(\bar{Z}_{1}\right)\right)$ into table T_{2}. There are about 2^{64} items in table T_{2}.
3. The adversary constructs two structures
$S_{2}=\left\{X_{2} \mid X_{2} \in\{0,1\}^{n}, l_{192}\left(X_{2}\right)=c_{1}\right\}$,
$S_{3}=\left\{X_{3} \mid X_{3} \in\{0,1\}^{n}, l_{192}\left(X_{3}\right)=c_{1}\right\}$,
where c_{1} is a 192-bit random constant.
4. The adversary computers $Q_{2}\left(X_{2}\right)$ for each $X_{2} \in S_{2}$, and constructs a table T_{3} with item $\left(X_{2}, h_{128}\left(Q_{2}\left(X_{2}\right)\right)\right)$. For each $X_{3} \in S_{3}$, he computers $Q_{3}\left(X_{3}\right)$. If the low 64 bits of $h_{128}\left(Q_{3}\left(X_{3}\right)\right)$ equal the low 64 bits of the second elements of some item in T_{3}, insert the item ($X_{2}, X_{3}, h_{64}\left(X_{2} \oplus\right.$ $\left.\left.X_{3}\right) \| h_{64}\left(Q_{2}\left(X_{2}\right) \oplus Q_{3}\left(X_{3}\right)\right)\right)$ into table T_{4}. There are about 2^{64} items in table T_{4}.
5. Compare the items of table T_{2} with T_{4}. By the birthday attack, there exist two items (One in table T_{2}, and one in table T_{4}), whose last elements are the same. Namely, $X_{0} \oplus X_{1} \oplus Z_{0}^{\prime}=X_{2} \oplus X_{3}$ and $h_{128}\left(Q_{0}\left(X_{0}\right) \oplus Q_{1}\left(X_{1}\right)\right) \oplus \bar{Z}_{1}=h_{128}\left(Q_{2}\left(X_{2}\right) \oplus\right.$ $Q_{3}\left(X_{3}\right)$). So the elements $X_{0}, X_{1}, X_{2}, X_{3}$ make the Eq.(1) and Eq.(2) hold at the same time.
6. For $\left(X_{0}, X_{1}, X_{2}, X_{3}\right),\left(H_{0}, H_{1}, H_{2}, H_{3}\right)$ can be computed. Then we applize the similar method shown in the subsection 5.1 to get the pseudopreimage with 2 iteration computations.

Complexity analysis. There are $2^{64} Q_{0}, Q_{1}, Q_{2}, Q_{3}$ computations and 2^{64} table lookups in the above steps. So the time complexity and data complexity are both 2^{64} to get the pseudo-preimage for Luffa-384.

5.3 Pseudo-Preimage Attack on Luffa-512

For Luffa-512, Let $\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, 0\right)$ be the input of the the last blank iteration function, and ($X_{0}, X_{1}, X_{2}, X_{3}, X_{4}$) be the output of $M I$. Then
$Q_{0}\left(X_{0}\right) \oplus Q_{1}\left(X_{1}\right) \oplus Q_{2}\left(X_{2}\right) \oplus Q_{3}\left(X_{3}\right) \oplus Q_{4}\left(X_{4}\right)=Z_{1}$.

For the message injection function $M I$, we can get $\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}\right)^{T}=A_{5 \times 5}^{-1}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)^{T}$, where $A_{5 \times 5}$ is the first 5 column vectors of the matrix $A_{5 \times 6}$, i.e.,

$$
A_{5 \times 5}=\left(\begin{array}{c}
0 x f, 0 x 8,0 x a, 0 x a, 0 x 8 \\
0 x 8,0 x f, 0 x 8,0 x a, 0 x a \\
0 x a, 0 x 8,0 x f, 0 x 8,0 x a \\
0 x a, 0 x a, 0 x 8,0 x f, 0 x 8 \\
0 x 8,0 x a, 0 x a, 0 x 8,0 x f
\end{array}\right)
$$

It's inverse matrix is

$$
A_{5 \times 5}^{-1}=\left(\begin{array}{c}
0 x c 7,0 x 8 b, 0 x f 4,0 x f 4,0 x 8 b \\
0 x 8 b, 0 x c 7,0 x 8 b, 0 x f 4,0 x f 4 \\
0 x f 4,0 x 8 b, 0 x c 7,0 x 8 b, 0 x f 4 \\
0 x f 4,0 x f 4,0 x 8 b, 0 x c 7,0 x 8 b \\
0 x 8 b, 0 x f 4,0 x f 4,0 x 8 b, 0 x c 7
\end{array}\right)
$$

Since $H_{0} \oplus H_{1} \oplus H_{2} \oplus H_{3} \oplus H_{4}=Z_{0}$, thus

$$
\begin{equation*}
X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{4}=Z_{0}^{\prime} \tag{4}
\end{equation*}
$$

where $Z_{0}^{\prime}=0 x f \circ Z_{0}$.
We can solve the Eq.(3) and Eq.(4) to get ($X_{0}, X_{1}, X_{2}, X_{3}, X_{4}$), using the similar algorithm mentioned above.

1. The adversary constructs two structures

$$
\begin{aligned}
S_{0} & =\left\{X_{0} \mid X_{0} \in\{0,1\}^{n}, l_{128}\left(X_{0}\right)=c_{0}\right\} \\
S_{1} & =\left\{X_{1} \mid X_{1} \in\{0,1\}^{n}, l_{128}\left(X_{1}\right)=c_{0}\right\}
\end{aligned}
$$

where c_{0} is a 128-bit random constant.
2. The adversary computers $Q_{0}\left(X_{0}\right)$ for each $X_{0} \in S_{0}$, and constructs a table T_{1} with item $\left(X_{0}, Q_{0}\left(X_{0}\right)\right)$. For each $X_{1} \in S_{1}$, he computers $Q_{1}\left(X_{1}\right)$). If the low 128 bits of $Q_{1}\left(X_{1}\right)$ equal the low 128 bits of the second elements of some item in T_{1}, insert the item $\left(X_{0}, X_{1}, h_{128}\left(X_{0} \oplus\right.\right.$ $\left.\left.X_{1}\right) \| h_{128}\left(Q_{0}\left(X_{0}\right)+Q_{1}\left(X_{1}\right)\right)\right)$ into table T_{2}. There are about 2^{128} items in table T_{2}.
3. The adversary constructs two structures

$$
\begin{aligned}
S_{2} & =\left\{X_{2} \mid X_{2} \in\{0,1\}^{n}, l_{128}\left(X_{2}\right)=c_{1} \oplus l_{128}\left(Z_{0}^{\prime}\right)\right\} \\
S_{3} & =\left\{\left(X_{3}, X_{4}\right) \mid X_{3}, X_{4} \in\{0,1\}^{n}, l_{128}\left(X_{3} \oplus X_{4}\right)=c_{1}\right\}
\end{aligned}
$$

where c_{1} is a 128-bit random constant.
4. The adversary computers $Q_{2}\left(X_{2}\right)$ for each $X_{2} \in S_{2}$, and constructs a table T_{3} with item $\left(X_{2}, Q_{2}\left(X_{2}\right)\right)$. For each $\left(X_{3}, X_{4}\right) \in S_{3}$, he computers $Q_{3}\left(X_{3}\right) \oplus Q_{4}\left(X_{4}\right) \oplus Z_{1}$. If its low 128 bits equal the low 128 bits of the second elements of some item in T_{3}, insert the item $\left(X_{2}, X_{3}, X_{4}, h_{128}\left(X_{2} \oplus X_{3} \oplus X_{4} \oplus\right.\right.$ $\left.\left.Z_{0}^{\prime}\right) \| h_{128}\left(Q_{2}\left(X_{2}\right) \oplus Q_{3}\left(X_{3}\right) \oplus Q_{4}\left(X_{4}\right) \oplus Z_{1}\right)\right)$ into table T_{4}. There are about 2^{128} items in table T_{4}.
5. Compare the items of table T_{2} with T_{4}. By the birthday attack, there exist two items (One in table T_{2}, and one in table T_{4}), which have the same last emements. Namely, $X_{0} \oplus X_{1} \oplus Z_{0}^{\prime}=X_{2} \oplus X_{3} \oplus$ X_{4} and $\left.Q_{0}\left(X_{0}\right) \oplus Q_{1}\left(X_{1}\right)\right)=Q_{2}\left(X_{2}\right) \oplus Q_{3}\left(X_{3}\right) \oplus$ $Q_{4}\left(X_{4}\right) \oplus Z_{1}$. So the elements $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ make the Eq.(3) and Eq.(4) hold together.
6. For $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right),\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}\right)$ can be computed. Then we use the similar method shown in the subsection 5.1 to get the pseudo-preimage with 2 iteration computations.

Complexity analysis. There are $2^{128} Q_{0}, Q_{1}, Q_{2}$, Q_{3} and Q_{4} computations and 2^{128} table lookups in the above steps. It's about 2^{128} iteration computations to get the pseudo-preimage for Luffa-512.

6 Conclusion

In this paper, we give the pseudo-collision, pseudo-second-preimage and pseudo-preimage attacks for

Luffa. For arbitrary output of the message injection function $M I$, it's easy to get inputs by the inverse of $M I$. So we can get pseduo-collisions and pseudo-second-preimages easily for Luffa using the message injection function $M I$ only. We can get a pseudo-preimage for Luffa-224/256 with 2 iteration computations. We extent the generalized birthday attack to find the pseudo-preimage for Luffa-384 with 2^{64} iteration computations and 2^{64} table lookups. It's about 2^{128} iteration computations and 2^{128} table lookups to find pseudopreimage for Luffa-512.

Acknowledgements. We would like to thank Wang, Desmedt and Han. Their personal discussion about the ROS2 problem, which is the generalization of ROS problem, motivates us to improved the pseudo-preimage attack on Luffa-384/512.

1 Wang X Y, Lai X J, Feng D G et al. Cryptanalysis of the hash functions MD4 and RIPEMD. In: Cramer R, ed. Eurocrypt 2005, LNCS, Vol 3494. Berlin: Springer-Verlag, 2005. 1-18

2 Wang X Y, Yu H B, How to break MD5 and other hash functions. In: Cramer R, ed. Eurocrypt 2005, LNCS, Vol 3494. Berlin: Springer-Verlag, 2005. 19-35
3 Wang X Y, Yu H B, Yin Y L. Efficient collision search attacks on SHA-0. In: Shoup V, ed. CRYPT 2005, LNCS, Vol 3621. Berlin: Springer-Verlag, 2005. 1-16
4 Wang X Y, Yin Y L, Yu H B. Finding collisions in the full SHA-1. In: Shoup V, ed. CRYPT 2005, LNCS, Vol 3621. Berlin: Springer-Verlag, 2005. 17-36
5 Yu H B, Wang G L, Zhang G Y, et al. The second-preimage attack on MD4. In: Desmedt Y, Wang H X, Mu Y, et al., eds. CANS 2005, LNCS, Vol 3810, Berlin: Springer-Verlag, 2005. 1-12
6 Contini S, Yin Y L. Forgery and partial key-recovery attacks on HMAC and NMAC using hash collisions. In: Lai X J, Chen K F, eds. ASIACRYPT 2006. LNCS, Vol 4284. Berlin: Springer-Verlag, 2006. 37-53
7 Cannière C D, Sato H, Watanabe D. Hash function Luffa. http://csrc.nist.gov/groups/ST/hash/sha3/Round1/documents/Luffa.zip. 2008
8 Wagner D. A generalized birthday problem. In: Yung M, ed. CRYPTO 2002, LNCS, Vol 2442. Berlin: Springer-Verlag, 2002. 288-304

