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1 Introduction

The cryptographic hash function is defined as a
function that computes a fixed size message di-
gest from arbitrary size messages, that has been
widely used as a fundamental primitive in many
cryptographic schemes and protocols, such as elec-
tronic signature, authentication of message, elec-
tronic commerce and bit commitment, etc. In the
past years, the cryptanalysis of hash function has
achieved tremendous progress in the construction
of collisions. In particular, Wang et al. proposed
new techniques to find efficiently collisions on the
main hash functions from the MD4 family, e.g.
MD4!!, RIPEMD!, MD5/?, SHA-0 ! and SHA-
1. Moreover the techniques can be applicable
to explore the second-preimage of MD46!, forgery
and partial key-recovery attacks on HMAC and
NMACI, Responding to advances in the crypt-
analysis of hash functions, NIST held two hash
workshops to evaluate the security of its approved
hash functions and to solicit public comments on
its cryptographic hash function policy and stan-
dard. Finally, NIST opened a public competition
to develop a new hash function called ”SHA-3",
similar to the development process of the Advanced
Encryption Standard (AES). Due to the SHA-3
competition, there are 64 new proposals for hash
functions have been submitted to the new SHA-3
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algorithm. After the first candidate conference of
SHA-3, there are 41 candidate algorithms in the
first round. Luffal” is one of them, proposed by
De Canniere et al.

In this paper, we give some cryptanalytic results
of Luffa. The pseudo-collision and pseudo-second-
preimage can be obtained easily by the message
injection function of Luffa. So this paper shows
some pseudo-collision and pseudo-second-preimage
examples for Luffa. At the same time, the pseudo-
preimage attacks are presented in this paper. For
Luffa-224/256, only 2 iteration computations are
needed to get the pseudo-preimage. We extend
the generalized birthday attack® to computer the
pseudo-preimage of Luffa-384 with 2% iteration
The time
complexity and data complexity are both 2?8 to

computations and 2% table lookups.

get the pseudo-preimage for Luffa-512.

This paper is organized as follows. In Section

2, we give brief descriptions of Luffa. Section 3
shows some pseudo-collision examples of Luffa. A
pseudo-second-preimage example is shown in Sec-
tion 4. The pseudo-preimage attacks are intro-
duced in Section 5. Finally, we summary our re-

sults in Section 6.

2 Preliminaries and Notations

In this section, we first list some notations used
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in this paper, and then give a brief description of
Luffa.

2.1 Notations

X||Y : the concatenation of two messages X and
Y.

he(X) : the high w bits of X.

l,(X) : the low w bits of X.

o: the multiplication in a ring GF(2%)%.

la] : the greatest integer less than or equal to a

(boy b1y -y b)) the transposed matrix of
(bo, b1, ..., by), where b; for 1 < i < m are column
vectors.

2.2 Description of Luffa

Luffal” | a candidate algorithm for the first round
of the SHA-3, was proposed by De Canniére et al.
The chaining of Luffa is a variant of a sponge func-
Figure 1 depicts the basic structure. The
message padding method is to append a single bit
‘1’ followed by the minimum bits of ‘0’ such that
the length of the results is a multiple of 256. Let
M = Myl - ||M,,—1 is a message with padding,
where M;(0 < ¢ < m) are 256-bit blocks. The
iteration function of Luffa is a composition of a

tion.

message injection function M and a permutation

Mi

P of w - 256 bits input. The permutation P in-
cludes w permutations Qo, @1, ..., Qu—1. Let the
input of the i—th iteration be (HS'™",... H'=D)

and M;_,, then the output of the i—th iteration is
given by

Xoll - [ Xus
HyY

MIHS™, ... HYZD M),
_ 1,

Qi(X;),5 =0,1,...
where (); is a permutation of 256 bits input,
HJ(O) =V, and V;(0 < j < w) are the initial val-
ues. A finalization is used to the chaining value
(H™ V... H™TY). The finalization consists of
iterations of an output function OF and a iteration

,w

function with a fixed message 0200 - - -0, which is
called blank iteration. The output function OF
XORs all block values and outputs the resultant
256-bit value. Let the output at the i—th iteration
be Z;, then the output function is defined by

w—1

o (m—1+i")

Z =P H, .
j=0

where ¢/ =i if m =1 and 7 = i+ 1 otherwise. The
output of Luffa-256 is Z,, the output of Luffa-512
is Zy||Z,. The outputs of Luffa-224 and Luffa-384
are the truncation of the Luffa-256 and Luffa-512
respectively.

Mi
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Figure 1 The Structure of Luffa Hash Function.

Message Injection Function MI. The message
injection functions MI can be represented by the
matrix over a ring GF(28)32. The definition poly-
nomial of the field is given by ¢(z) = 2% + z* +
2 + = + 1, corresponding to "0x11b”. The map
from an 8 words value (hg,...,h7) to an element
of the ring is defined by (So<k<shriv®)o<i<32. Let

Awx(w+1) = (ao,a1,...,aw_1,a,) respects the ma-

trix of MI, where a;(0 < @ < w) are column
vectors. Then (Xo,X1,...,Xuw-1)" = Aux(wt) ©
(Ho,Hy,...,Hy, 1, M)T. For Luffa-224/256, the digest



is 224 or 256, w = 3, and

023,022, 022, 0x1
Awxw+1) = | 022,023,022,022 |
022,022,023, 0x4

where numerics 0x1, 0x2, 0x3, 0x4 correspond to poly-
nomials 1, z, z + 1, 2% respectively.
For Luffa-384, the digest is 384, w = 4, and

0x4, 026, 026, 027, 0x1
027,0x4, 026, 026, 0x2

Ayx (w+1) =
026,027, 0x4, 026, 024

026, 026,027, 0x4, 0x8

For Luffa-512, the digest is 512, w = 5, and

0z0F, 0208, 020 A, 0z0A, 0208, 001
0208, 020F, 0208,0x0A, 020A, 0202
Awx(wr1) = | 0204,0208,020F, 0208, 020A, 02:04

0z0A, 0z0A, 0208, 020 F, 0208, 0208

0208,0x0A,0x0A, 0208, 020F, 0210

3 Pseudo-Collision Attacks on Luffa

Property 1. The rank of the matrix of the message input
function is w, for w = 3, w = 4, w = 5.

The massage injection function M1 is a many-to-
one function, the input is (w + 1) - 256 bits, but the
output is w - 256 bits. So, there are 22°¢ inputs for a
output. All the 2256 inputs with the same output for the
iteration function of Luffa, which are pseudo-collisions.
Given any (Xo, X1,..., X,_1), We can get 2256 inputs.
Considering the rank of the matrix is w, we assignment
to an elements of the input, Then we can get the re-
maining elements of the input by the inverse of the
matrix. Take w = 3 for example. Let (X, X1,X32) =
(0,0,0), Ho=(0x9b6a03ec, 0x96c25dd5, 0x9f6falee,
Oxeefcedab, Oxaacd3b44, 0x214bf8b7, 0xc204dd70,

Oxa097fadc). Then
—1

Hy 0x2,0x2,0x1 Xo+3Hyg
Ho = 0x3,0z2,0x2 X1+ 2H,
M 0x2,0x3,0x4 Xo+2H,

Table 1 shows a pseudo-collision for w = 3, i.e.,
(0,0,0) = MI(Hy, Hy, Hy, My) = MI(H}, H., H}, M}).
Table 2 shows a pseudo-collision for w = 4, i.e.,
(0,0,0,0)= MI(Hy, H1,Hs, Hs, My) = MI(H{, H{, H},
H, M(). Table 3 shows a pseudo-collision for w =
5, i.e., (0,0,0,0,0) = MI(Hy,H,, Ho, Hs, Hy, My) =
MI(H}, Hy, Hy, Hy, Hy, M{).

Hp | 0x9b6a03ec  0x96c25dd5  Ox9f6faOee Oxeefce4ab Oxaacd3b44  0x214bf8b7 0xc204dd70  0xa097fadc
H, 0x47dd7c19 0Oxc6lael29 0x195aa27f 0x8230a193 0x8f98ffaa 0x5a827d64  0x3cl4foca 0x7fd7b98a
Ho | 0x989d3f4f Oxcbeddd8a  0x49821e83  0xdb45e054  0x3cl4f9ca  Ox7fd7b98a  0x47dd7cl9  0x81c79d30
My | OxcbedddB8a  0x8c6fc309 Ox0abac198  0x7fcc26dl 0x43c34040 0x380ac593 0xc6lael29 0x195aa27f
H| Oxde6bedf0 0x219461al 0x06ebe485  0xf0733600 0x19920b9%e  Oxfbe0d985 0Oxc5e0d6lc  0x5a06f524
H{ | Oxbc86f3c8  Ox2cec6aal O0x2aealOf07  Oxf481le2f7 OxOb7e6ea6 Ox4eecfSha  0x098adff7 ~ 0x5c009082
H) 0xba80966e  0x4807113f 0x27920407 Oxde866cd3  0x098adff7 0x5c009082  0Oxbc86f3c8 0x906a9969
M | 0x4807113f 0x6f951538  0x4394feba  O0x6d8c254a  0x558a4f75  O0xe086634a Ox2cec6aal Ox2aealf07
Xo | O 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0

X2 | O 0 0 0 0 0 0 0

Table 1 A pseudo-collision for w = 3.




Hp | Oxde6bedfO 0x219461al 0x06ebed485 0xf0733600 0x19920b9e  Oxfbe0d985 0Oxc5e0d6lc  0x5a06f524
H; | 0x277f8524  0Ox0f8cbabl  Ox3eed8eba 0xf46c63d4  Oxdc72dd82 Oxale62cal Ox1b8b3bec  0xa5f97975
Hy | Oxde6bedf0  0x21946lal Ox06ebe485 O0xf0733600 0x19920b9e  Oxfbe0d985  Oxc5e0d6lc  0x5a06f524
Hs | 0x0f8chba51 0x316134eb  Oxedfe684a 0x0f613b72  0x7d94f123 Oxba6d174d Oxbe724299 0x8286fc51
My | 0xd70ch324  0x38066a3f 0xfd0Ob3d00 0x3cfdbec8 0x5a06f524 Oxde6bedf0 Oxffff8c51 0xf91468d4
H| | OxdlfbeebO0  Oxbb2e310f  0x3065e34f  0x25026f3c  Oxcce3b4d0  0x89aa250f  0x3227c8eb  0Oxff59a5f3
H{ | Ox8b4bd240 0x4fd7b083  0x47a86690 0xc67d958c  Oxfec47c3b 0x76f380fc Oxe3dc265b  0x958c7a4c
H} | OxdlfbeebO  Oxbb2e310f  O0x3065e34f  0x25026f3c  Oxcce3b4d0  0x89aa250f  0x3227c8eb  Oxff59a5f3
H} | Ox4fd7b083  0x087fd613  0x0a9e215c  0xb3f23bf7 0x8837fcc7 0x952faba7  0x76505c17  Oxlec7a80c
M{ | Oxae49bd7c  0x77cd85df  Oxb9cfc640  0x6897f41lb  Oxff59a5f3 OxdlfbeebO  Ox6ad5dfbf  Ox5ab03cfO
Xo | O 0 0 0 0 0 0 0
X1 0 0 0 0 0 0 0 0
X2 | O 0 0 0 0 0 0 0
X3 | O 0 0 0 0 0 0 0

Table 2 A pseudo-collision for w = 4.
Hy | Oxde6bedfo 0x219461al 0x06ebe485 0xf0733600 0x19920b9%e  Oxfbe0d985 0xc5e0d6lc  0x5a06f524
Hi 0x6b8a40ec  Ox14eal009e 0xd7el3207 0xc8755c3f 0x51789b82 0x9087184a  0xf67553a6 0xa514f856
H, | 0x02f4b151  0x1018d469 0xa7e04907 0x7b929485 Oxda74b824  0xc30b3299 O0x74le2ed4  Oxe66d87cf
Hs 0x418dcec8 0x3alf5a4dd 0xa3129df0 0x48ea901c  0x2aealf07 0x4807113f 0x27920407 0x6406fabd
Hy 0x558a4f75 0xb50c2c¢3f Oxcc6a09eb  0x538c2ad3  0xd7el13207 Oxa3fflcd3 0x45929b1lc  0x47662a4d
Mo | 0x80724d00 0x9d129269 0x96817dec  0x14eal009e  0x57937f07 0xbe9fc3ba 0xce733999  0x581fc556
H{ | Oxdifbeeb0  Oxbb2e310f  0x3065e34f  0x25026f3c ~ Oxcce3b4d0  0x89aa250f  0x3227c8eb  0Oxff59a5f3
H{ | Ox0b03f894  0x502eldac  0x526c3608 Ox52cfeae3  Oxafd464b4  Ox7e8c56ef  0xe9420707  0x69a9f138
H! | Oxd31aloff  Ox4f746c68  Oxbab3e8c7 O0x447794fc  0x32841400 O0x02422ba4  0x0ba0247f  O0xa6366b6f
H 0x1c8583a8  0x58f21754 0xa5e99903 0x6337d064  Oxeba3f048 0x9f125b10 0x776e5934  0x44d44817
H) | 0xb08el570 0x26dd9d50 0xb1b01053 Ox7cce7d4b  0x526c¢3608  0x59ccl277  Oxfffa7918 0x2ce060e7
M{ | Oxcdddblf3  Oxle6474e7 Oxb2cc3ed4  0x502eldac  0x9fb187fb 0x8a75d763  0x9e8f82d8  0xd0663778
Xo 0 0 0 0 0 0 0 0
X1 |0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0
X3 | O 0 0 0 0 0 0 0
Xs4 | O 0 0 0 0 0 0 0

Table 3 A pseudo-collision for w = 5.




4 Pseudo-Second-Preimage Attack on

Luffa
Given the message M = M| M;. Firstly, the
adversary computers MI(Vo,Vi,..., Vi1, My) =

through the inverse of the message injection func-

tion. Then the message M’ = M| M; with the ini-

tial value (Vy,V/,..., V.

» Yw—1

) has the same digest with
M. Table 4 shows a pseudo-second-preimage exam-
ple for the message M, = (Oxaaaaaaaa, Oxaaaaaaaa,

(X0, X1, Xw-1)- Secondly, he can get an- Oxaaaaaaaa, Oxaaaaaaaa, Oxaaaaaaaa, Oxaaaaaaaa,

other message M and initial value (Vy,V{,...,V,_,) Oxaaaaaaaa, Oxaaaaaaaa).
Vo 0x6d251e69 0x44b051e0 Ox4eaabfb4 0xdbf78465 0x6e292011 0x90152df4 0xee058139  0Oxdef610bb
i 0xc3b44b95  0xd9d2f256  0x70eee9al0 Oxde099fa3  0x5d9b0557  0x8fc944b3  OxcflccfOe 0x746cd581
Va 0xf7efc89d 0x5dba5781 0x04016ce5 0xad659c05  0x0306194f 0x666d1836 0x24aa230a 0x8b264ae7
My | Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa
%4 0x6d251e68 0x44b051e0 Ox4eaabfb4d 0xdbf78465 0x6€292011 0x90152df4 Oxee058139  Oxdef610bb
| 0xc3b44b94  0xd9d2f256  Ox70eee9ald  Oxde099fa2 0x5d9b0557  0x8fc944b3 Oxcflccfof 0x746cd581
Vy | Oxf7efc89c 0x5dba5781  0x04016ce5 0xad659c04  0x0306194e  0x666d1836 0x24aa230b  0x8b264ae6
M{ | Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaab Oxaaaaaaab Oxaaaaaaab Oxaaaaaaaa Oxaaaaaaaa
Xo | 0xe6333ble 0x96d8e9f6 0x24d83129 0Ox6aad4be3 0x4da482a5 0x0alObbb57 0x3dleb5ae2  0x71efd72c
X1 | Ox48a26ee2 OxallOeOea 0Ox1la9ch73d  Oxc5f0fa8f 0xd4bc0d49  0x15d7d210 0x1c0714d5 Oxdb751216
Xo 0x7cf9edea 0x2578453d  0xc4d998d2  0xb69cf929 0x208bbbfb 0x56d9243f 0xf7b1f8d1 0x243f8d70

Table 4 A pseudo-second preimage for the message My when w = 3

5 Pseudo-Preimage Attack on Luffa

First we give our observation in the following, which is
used to get the pseudo-preimage of Luffa.
Proposition 1. The blank iteration is a permutation.

Proof. For the blank iteration, the message is 0. The
message injection function M1 is (Xo, X1,..., Xy-1) =
MI(Hy, Hy,...,Hy,_1,0). Since the rank of the matrix
of MT is w, for w = 3,w = 4,w = 5. Thus

(Ho,...,wal)T .,aw,l)fl(Xo,...

P is a permutation, so the blank iteration is a per-

— (ao, .. Xy1)T

mutation. O

5.1 Pseudo-Preimage Attack on Luffa-256

For Luffa-256, given a digest Z,, the adversary can
computer a pseudo-preimage with the following steps.

1. Assignment to Yy, Y7 with arbitrary value. Without
loss of generality, let Yy = Y3 = 0. Then Y5 = Z,.

2. Invert the permutation P. X, = Qy'(Yp), X1 =
Qi (M), X2 = Q3 ' (Ya).

3. Invert the message injection function M 1.
-1

Hy 0x3,0x2,0x2 Xo
Hy | = | 0x2,023,0x2 X1
Hs 0x2,0x2,0x3 X5

4. The adversary computers the inverse of the per-
mutation P, Xo = Q,'(Ho), X1 = Qi'(Hy),
Xy = Q5 '(Hs). For (Xo, X1, X2), the adversary
can obtain the input (Vy, V{, V) and message M,
by the method mentioned in the Section 3. So the
digest of M, with initial value (Vj, V{, VJ) is Zo.

For Luffa-384, the digest is Z; and the high 128 bits
of Z1. Z1 = Z1o||Z1,1\|Z1 21| Z1 31| Z1,4\| Z1 5| Z1 6| Z1 7,
where Z;,; for 0 < ¢ < 8 are 32-bit words.
The adversary randomly chooses (Hy, H;, Hs), and
Hs = Hy & Hy ® Hy ® Zy, computer Z;. If the
Zi ol Z14 1 Z1 011 215 = ZrllZ100| 21 2] Z1 s, let Yo =
Hy, Yy = Hy,Ys = Hs, the adversary can computer
(Vy, V{, V5, V) and message M, which have the same



digest Zy|| Z1,0||Z1.1]| Z1,2|| Z1 3, using Step 2, 3, 4 men-
tioned above. The complexity is 227 iteration functions.
For Luffa-512, the complexity is 22°° by the similar at-
tack. In the next subsections, we introduce an algo-
rithm to improve the attack on Luffa-384/512 by the
generalized birthday attack, proposed by Wagner!®!.
The k-dimensional generalization of the birthday prob-
lem is, given k lists Ly, Ls, ..., L, independently at
random from {0,1}", to find k& elements z; € L; for
1 <i <k st o1 Pagd--- P xp = 0. Wagner's
algorithm(®! builds a binary tree starting from the input
lists L1, Lo, ..., L. The time complexity and data com-
plexity are both ¢ - 275, where t = |log, k|.

5.2 Pseudo-Preimage Attack on Luffa-384

For Luffa-384, Let (Hy, Hi, H2, H3,0) be the in-
put of the the last blank iteration function, and
(Xo, X1, X2, X3) be the output of MI. The digest is
Zo|| Zy, where Zy = Zy0[| Z1,1]| 21 2]| Z1,3 Then

h12s(Qo(Xo0) ® Q1(X1) ® Q2(X2) ® Q3(X3)) = Z1. (1)

For the message injection function M1, we can
get (Ho, Hy, Hoy, Hg)T = AZQAL(XO’ X1, Xo, Xg)T, where
Ayx4 is the first 4 column vectors of the matrix A,ys,
ie.,

0x4, 026, 026, 0x7

027,0x4,0x6,0x6
Agxa =

026, 027,0x4, 0x6

026, 026, 027, 0x4d
It's inverse matrix is

0220, 0x43, 0284, 0x11
. 0x11, 0220, 0243, 0284
A4><4 -
0284, 0211, 0220, 0243

0x43,0x84, 0211, 0220
Since Hy @ Hy ® Hy ® H3 = Zj, thus
Xo® X1 @ Xo® X3 = 7, (2)

where Zj = 023 o Zj.
Obviously, it's necessary for us to get
(Xo, X1, X2, X3) to make the Eq.(1) and Eq.(2) hold

together. However, there is only one equation in gen-
eralization birthday problem. So we extent Wagner’s
attack for the special case in the following.

1. The adversary constructs two structures
So ={Xo | Xo € {0,1}",1192(X0) = co},
Si={X1|X1€{0,1}",l192(X1) = co ® l192(Z) },

where ¢ is a 192-bit random constant.

2. The adversary computers Qo(X,) for each
Xo € Sp, and constructs a table 77 with item
(X0, h128(Qo(X0)) ® Z1). For each X; € Sy,
he computers @:1(X7). If the low 64 bits of
h12s@1(X1) equal the low 64 bits of the sec-
ond elements of some item in 7j, insert the
item (Xo, X1, hea(Xo & X1 & Z§) || (hea(Qo(Xo) &
Q1(X1))@hes(Z1)) into table Ty. There are about
264 jtems in table 7T%.

3. The adversary constructs two structures
So={Xo| X2 €{0,1}",1192(X2) = c1},
Sz ={Xs| X3 €{0,1}", l192(X3) = 1 },
where ¢; is a 192-bit random constant.

4. The adversary computers Q2(X,) for each
X, € S5, and constructs a table 73 with item
(X2, h128(Q2(X2))). For each X3 € Ss, he com-
puters Q3(X3). If the low 64 bits of hy25(Q3(X3))
equal the low 64 bits of the second elements of
some item in T3, insert the item (X2, X3, hea(Xo®
X3)||hea(Q2(X2) ® Q3(X3))) into table Ty. There
are about 24 items in table T}.

5. Compare the items of table 7, with 7. By the
birthday attack, there exist two items (One in ta-
ble T3, and one in table T}), whose last elements
are the same. Namely, Xy & X; ® Z) = X2 ® X3
and hi2g(Qo(X0)BQ1(X1))®Z1 = hi2s(Q2(X2)®
Q3(X3)). So the elements X, X5, X2, X3 make
the Eqg.(1) and Eq.(2) hold at the same time.

6. For (Xo, X1, X5, X3), (Ho,Hy,H2,Hs) can be
computed. Then we applize the similar method
shown in the subsection 5.1 to get the pseudo-
preimage with 2 iteration computations.



Complexity analysis. There are 264 Qq, Q1, Q2, Q3
computations and 24 table lookups in the above steps.
So the time complexity and data complexity are both
264 to get the pseudo-preimage for Luffa-384.

5.3 Pseudo-Preimage Attack on Luffa-512

For Luffa-512, Let (Hy, H1, H2, Hs, H4,0) be the in-
put of the the last blank iteration function, and
(Xo, X1, Xo, X3, X4) be the output of MI. Then

Qo(Xo) ® Q1(X1) ® Q2(X2) ® Q3(X3) ® Qua(Xa) = Z1.

(3)
For the message injection function M1, we can get
(Ho, Hy, Ho, H3, H))" = A5 ls(Xo, X1, X2, X3, X4)7,
where Asy5 is the first 5 column vectors of the matrix
Az, 1.€.,

0z f,0x8, 0xa, Oxa, 0x8
08,0z f, 028, 0xa, Oxa
O0za, 0x8, 0z f, 028, 0xa

O0za,0zxa,0x8, 0x f, 028

0z8, 0zxa, 0za, 028, 0x f
It's inverse matrix is

0xc7,0x8b,0x f4,0x f4,0x8b
0x8b, 0xc7,0x8b, 0x f4, 0x f4
Asts = | 0xf4,028,02c7,028b, 0z f4

0z f4,0xf4,0x8b, 0xc7, 0x8b

0x8b,0x f4,0x f4, 0x8b, 0xcT
Since Hy® Hy, ® Hy ® Hs ® Hy = Z, thus
Xo®X10Xo® X380 Xy = 2§, (4)

where Zj = 0z f o Zj.

We can solve the Eq.(3) and Eq.(4) to get
(X0, X1, X2, X3, X4), using the similar algorithm men-
tioned above.

1. The adversary constructs two structures
So ={Xo| Xo €{0,1}",1128(X0) = co},
S1={X1]X1€{0,1}",l128(X1) = co},

where ¢ is a 128-bit random constant.

2. The adversary computers Qo(X,) for each
Xo € Sp, and constructs a table 77 with item
(Xo0,Q0(Xo)). For each X; € S;, he comput-
ers Q1(X1)). If the low 128 bits of Q1(X1) equal
the low 128 bits of the second elements of some
item in Tj, insert the item (Xg, Xy, hi28(Xo &
X1)|[h128(Qo(Xo) +Q1(X7))) into table 5. There
are about 228 jtems in table 7T%.

3. The adversary constructs two structures

Sy ={ Xz | X2 € {0,1}",1128(X2) = c1 ® l128(Zp) },

Sy = { (X3, X4) | X3,X4 € {0,1}",1128(X3® Xy4) = 1},

where c; is a 128-bit random constant.

4. The adversary computers Q2(X»2) for each
X, € S5, and constructs a table T3 with
item (X2,Q2(X2)). For each (X3,X4) € S,
he computers Q3(Xs3) ® Q4(X4) ® Z1. |If its
low 128 bits equal the low 128 bits of the
second elements of some item in T3, insert
the item (Xo, X3, X4, h10s8(Xo @ X5 & X4 @
Z5)||h12s(Q2(X2) ® Q3(X3) ® Qa(X4) @ Z1)) into
table Ty. There are about 228 items in table 7.

5. Compare the items of table 7, with 7. By the
birthday attack, there exist two items (One in ta-
ble T5, and one in table T}), which have the same
last emements. Namely, Xo® X1 & Z) = Xo® X3®
Xy and Qo(Xo) ® Q1(X1)) = Q2(X2) ® Qs(X3) ®
Q4(X4)® Z;. So the elements X1, Xo, X35, X4, X5
make the Eq.(3) and Eq.(4) hold together.

6. For (Xo,X1,Xo, X35,X4), (Ho,H1,Hs, Hs, Hy)
can be computed. Then we use the similar
method shown in the subsection 5.1 to get the
pseudo-preimage with 2 iteration computations.

Complexity analysis. There are 222 Qq, Q1, Qo,
Q3 and Q4 computations and 2'2® table lookups in the
above steps. It's about 2'2® iteration computations to
get the pseudo-preimage for Luffa-512.

6 Conclusion

In this paper, we give the pseudo-collision, pseudo-
second-preimage and pseudo-preimage attacks for



Luffa. For arbitrary output of the message injec-
tion function M1, it’s easy to get inputs by the
inverse of MI. So we can get pseduo-collisions
and pseudo-second-preimages easily for Luffa us-
ing the message injection function M1 only. We
can get a pseudo-preimage for Luffa-224/256 with
2 iteration computations. We extent the general-
ized birthday attack to find the pseudo-preimage
for Luffa-384 with 25* iteration computations and
264 table lookups. It’s about 2'2® iteration com-
putations and 2!?® table lookups to find pseudo-
preimage for Luffa-512.
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