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Abstract. In this paper, we give a security proof for ABREAST-DM in
terms of collision resistance, preimage resistance and adaptive preimage
resistance. As old as TANDEM-DM, the compression function ABREAST-
DM is one of the most well-known constructions for double block length
compression functions. The bounds on the number of queries for collision
resistance and preimage resistance are given by O (2"). The adaptive
preimage resistance is guaranteed up to O (2") queries/commitments.
Based on a novel technique using query-response cycles, our security
proof is simpler than those for MDC-2 and TANDEM-DM. We also present
a wide range of ABREAST-DM variants that enjoy a birthday-type secu-
rity guarantee with a simple proof.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns
a bit string of fixed length. The most common way of hashing variable length
messages is to iterate a fixed-size compression function according to the Merkle-
Damgard paradigm. The underlying compression function can either be con-
structed from scratch, or be built upon off-the-shelf cryptographic primitives
such as blockciphers. Recently, the blockcipher-based construction is attract-
ing renewed interest, as many dedicated hash functions, including those most
common in practical applications, exhibit serious security weaknesses [1,6, 16,
17,22,26-28]. Conveniently choosing an extensively studied blockcipher in the
blockcipher-based construction, one can easily transfer the trust in the existing
algorithm to the hash function. This approach is particularly useful in highly con-
strained environments such as RFID systems, since a single implementation of a
blockcipher can be used for both a blockcipher and a hash function. Compared
to blockciphers, the most dedicated hash functions require significant amounts
of state and the operations in their designs are not hardware friendly [3].
Compression functions based on blockciphers have been widely studied [2,
4,9-12,14,18-21,23-25]. The most common approach is to construct a 2n-to-n
bit compression function using a single call to an n-bit blockcipher. However,
such a function, called a single block length (SBL) compression function, might
be vulnerable to collision attacks due to its short output length. For example,
one could successfully mount a birthday attack on a compression function based



on AES-128 using approximately 264 queries. This observation motivated sub-

stantial research on double block length (DBL) compression functions, where the
output length is twice the block length of the underlying blockciphers.

Unfortunately, it turned out that a wide class of DBL compression functions
of rate 1 are not optimally secure in terms of collision resistance and preim-
age resistance [9, 10, 13]. The most classical DBL compression functions of rate
less than 1 include MDC-2, MDC-4, TANDEM-DM and ABREAST-DM [5, 14].
In 2007, 20 years after its original proposal, Steinberger first proved the col-
lision resistance of MDC-2 in the ideal cipher model [25]. The author showed
that an adversary asking less than 23"/5 queries has only a negligible chance
of finding a collision. Motivated by this work, Fleischmann et. al. proved the
security of TANDEM-DM [8]. Similar to MDC-2, the security of TANDEM-DM
is estimated in terms of a parameter, say, a. Optimizing the parameter, they
proved the collision resistance of TANDEM-DM up to the birthday bound. Cur-
rently, TANDEM-DM and the Hirose’s scheme [12] are the only rate 1/2 DBL
compression functions that are known to have a birthday-type security guaran-
tee. The underlying blockciphers of these schemes use 2n-bit keys, while MDC-2
accepts n-bit keys. For this reason, it seems to be natural that the security proof
of MDC-2 is more challenging.

Results We give a security proof for ABREAST-DM in terms of collision resis-
tance, preimage resistance and adaptive preimage resistance. As old as TANDEM-
DM, the compression function ABREAST-DM is known to be more advantageous
than TANDEM-DM in that two encryptions involved can be computed in paral-
lel. The bounds on the number of queries for collision resistance and preimage
resistance are given by O (2"). The adaptive preimage resistance is guaranteed
up to O (2") queries/commitments.

The notion of adaptive preimage resistance is first introduced in [15]. A com-
pression function that is collision resistant and adaptive preimage resistant can
be composed with a public random function to yield a hash function that is in-
differentiable from a random oracle. In addition, the Merkle-Damgéard transform
preserves adaptive preimage resistance as long as the underlying compression
function is collision resistant. For this reason, we believe that adaptive preim-
age resistance would be one of the desirable properties of a secure compression
function. We note that a similar security notion, called preimage awareness, was
independently introduced in [7]. Since any compression function that is both
collision resistant and adaptive preimage resistant is preimage aware, our result
can be regarded as the proof of preimage awareness for ABREAST-DM.

Based on a novel technique using query-response cycles, our security proof is
simpler than those for MDC-2 and TANDEM-DM. We also present a wide range
of ABREAST-DM variants that enjoy a birthday-type security guarantee with a
simple proof.



2 Preliminaries

General Notations For a positive integer n, we let I, = {0,1}" denote the
set of all bitstrings of length n. For two bitstrings A and B, A||B and A denote
the concatenation of A and B, and the bitwise complement of A, respectively.
For a set U, we write u <~ U to denote uniform random sampling from the set
U and assignment to u.

Ideal Cipher Model For positive integers n and k, let
BC(n,k)={E: I, xIj —» I, : VK € I}, E(-,K) is a permutation on I, }.

In the ideal cipher model, an (n,k)-blockcipher E is chosen from BC(n, k)
uniformly at random. It allows for two types of oracle queries E(X, K) and
E~YY,K) for X,Y € I, and K € I;. Here, X, Y and K are called a plaintext,
a ciphertext and a key, respectively. The response to an inverse query E~*(Y, K)
is X € I, such that F(X,K) =Y.

The Abreast-DM Compression Function For positive integers m, ¢t and r
with m > r, let

D={p; : I™T S Lo xTii=1,.. ., tyU{? : I™ = I,:i=1,...,r}

be a set of arbitrary functions. Then & defines a blockcipher-based compression
function F2, with oracle access to an ideal cipher E € BC(n, k) as follows.
Foy Il — I,

(A17~-~,Am>|—>(Bl7..,,BT), (1)

where (B, ..., B;) is computed by the algorithm described in Figure 1(a). The

rate of 2, is defined as

Now the compression function ABREAST-DM FABR ig defined by

91 :(A1, Az, Az) — (As, Al As),

¢3 :(A1, Az, A3, Y1) — (Ag, A3]|Ay),
¢ (A1, A, A3, Y1, Yo) — A1 @Y7,
¢35 (A1, Az, A3, Y1, Y2) — Ay & Yo,

with (m,t,7) = (3,2,2) and k = 2n. The algorithm of FABE is separately
described in Figure 1(b).



Algorithm F?, (Ai,..., An) Algorithm FABR(A; Ay A3)

for i — 1 tot do (X1, K1) « (A1, Az||A3)
(X, Ki) — ¢t (Ar,...,Am,Y1...,Yi 1) Y — BE(X1,K))
Y; — E(X-“Kz) (X27 K2) — (A27A3HA1)
for i — 1 to r do Y2 — E(X2, K2)
B — ¢?(A1,..., An, Y1 ..., Y3) By — A0V
By — A28 Ys

return (B1,..., B,)

return (B1, B2)

(a) Compression function Fi,, (b) ABREAST-DM FABE

Fig. 1. Blockcipher-based compression functions

Collision Resistance and Preimage Resistance Given a blockcipher-based
compression function F := F?, and an information-theoretic adversary A with
oracle access to E and E~!, we execute the experiment Expi‘f” described in Fig-
ure 2(a) in order to quantify the collision resistance of F'. The experiment records
the queries that the adversary A makes into a query history Q. A pair (X, K,Y)
is in the query history if A asks F(X, K) and gets back Y, or it asks E~(Y, K)
and gets back X. For A = (4;,...,4y,) € I and B = (By,...,B,) € I, we
write

Abg B,

if there exist query-response pairs (X;, K;,Y;) € Q, i = 1,...,t, satisfying the
following equations.

(X3, K) = b1 (A, A, Yo Y50, i=1,...,t, 2)
Bi:d)zz(Ala"'vAma}/l”w}/tL 7:217"'7T' (3)

Informally, A Fo B means that the query history Q determines the evaluation
F: A~ B. Now the collision-finding advantage of A is defined to be

Advy'(A) = Pr [Expjg” - 1] . (4)

The probability is taken over the random blockcipher E and A’s coins (if any).
For ¢ > 0, we define Adv®"(¢) as the maximum of Adv®'(A) over all adver-
saries A making at most ¢ queries.

The preimage resistance of F' is quantified similarly using the experiment
Exp®® described in Figure 2(b). The adversary A chooses a single commitment
point B € I7 before it begins making queries to E*!. (In a weaker version, the
point B is chosen uniformly at random.) The preimage-finding advantage of A
is defined to be

Advy*(A) = Pr[Exp’® = 1]. (5)

pre

For ¢ > 0, Adv%°(q) is the maximum of Adv%°(A) over all adversaries A
making at most ¢ queries.



Experiment Exp<}' Experiment Exp®*
E & BC(n,k) E & BC(n,k)
AEET! updates Q A chooses B € I,
-1

if 3A+# A, Bst. Ao B and A’ o B then A(B)®F " updates Q

output 1 if 3 As.t. Ao B then
else output 1

output 0 else

output 0
(a) Collision resistance (b) Preimage resistance

Fig. 2. Experiments for quantification of collision resistance and preimage resistance

Adaptive Preimage Resistance The adaptive preimage resistance of F is
quantified using the experiment Expi’fre described in Figure 3. At any point
during the experiment, the adversary A can choose a “commitment” point B €
I'\Rangey(Q), where

Ranger(Q)={B €I, : Alg B for some A € I'}.
Then the experiment Exp’f" records the point B into a commitment list L C I};.
At the end of the experiment, 4 would like to succeed in finding a preimage
of some element in the commitment list. Now the adaptive preimage-finding
advantage of A is defined to be

Adv¥(A) = Pr[Exp®© =1]. (6)
For q1,¢2 > 0, we define Adv7®(g1, ¢2) as the maximum of Adv¥“(A) over all
adversaries A that make at most g, queries to £ and E~! and make at most go
commitments.

apre

Experiment Exp’;
E & BC(n, k)
AE’}T1 updates Q and £ (in an arbitrarily interleaved order)
if 3 A such that A g B for some B € L then

output 1
else
output 0

Fig. 3. Experiment for quantification of adaptive preimage resistance

From the definition, it is easy to prove that

Adviy(q) < Adviy™(q, 1), (7)



for any compression function H. Therefore, adaptive preimage resistance can be
regarded as a natural strengthening of preimage resistance.

3 Security of Abreast-DM

3.1 Query-response Cycle and Modified Adversary

Let F := FABE he the compression function ABREAST-DM based on a block-
cipher E € BC(n,2n), and let Q1,...,Qs be query-response pairs obtained by
oracle access to F and E~L. If the 6-tuple A = (Q1,...,Qg) € Q° satisfies

Ql = (A17A2HA37Y1)3 QQ = (A727A3||A17Y2)3 Q3 = (A73aAl||A727Y3)7
Q4 = (A717A72HA737}/21)7 Q5 = (A27A73| |A717 Y5)a Qﬁ = (A37A71||A27Y6)a
for some A;’s and Y;’s, then it is called a query-response cycle(or simply a cy-

cle). Observe that the first three blocks of the query-response pairs are moving
cyclically under the permutation

mly— I
(A1, A, A3) — (Ag, A3, Ay).
We state some useful properties of query-response cycles as follows.
Property 1. For query-response cycles A and A’, either A = A" or AN A" = 0.
Property 2. For a query-response cycle A = (Qq,...,Qs), either
— @;’s are all distinct, or

- Q1 =Q3=Q5= (A1, A1, A1) and Q2 = Q1 = Q¢ = (A1, Ay, A1).

Property 3. If Q; is used as the first blockcipher call in an evaluation of F,
then the second query-response pair should be Q;41. If Q; is used as the second
blockcipher call, then the first query-response pair should be @;_;. Moreover, Q;
and ;11 are always distinct. Here, the subscripts are interpreted up to modulo
6. The evaluations of F' determined by Q; and Q41,7 =1,...,6, are as follows.

(A1, A2, A3) b0, (A1 @Y1, Ay @ Ys), (Az, A3, A1) FQu.0, (A2 ® Y2, A3 @ Ys),
(A3, A1, A2) Foa 0, (As® Y3, A1 @Yy), (A1, Az, A3) Fqu.qs (A1 @ Yy, A @ Y5),
(Ag, A, A1) FQsqs (A2 @ Y5, A3 @ Ys), (A3, A1, Az) e, (As®Ys, AL @ Y1),
Given an adversary A with oracle access to £ and E~!, one can transform
A into an adversary B that records its query history in terms of query-response

cycles. The modified adversary B is described in Figure 4. We can easily check
the following properties of B.

Property 4. If A makes at most g queries, then the corresponding adversary B
makes at most 6g queries, and records at most ¢ query-response cycles.

Property 5. Advy(A) < Advy“(B) for sec € {coll, pre, apre}.



Algorithm BEE™"

Qa0

Run A

if A makes a fresh query E(A1, Az||As) then
Make queries

Y1 = E(A1, As||A3), Yo = E(As, As||A1), Yz = E(As, A1]|42),
n:E(T17T2||I3)7 Ys :E(A27A73||A71)7 Ys :E(A37A71HA2)7
Oa — QaU{A} (A=the cycle defined by the above six queries)
Return Y7 to A

else if A makes a fresh query E~' (Y1, Az||A3) then
Make queries
Ay =E7'(V1,As||A3), Yo = E(As, As||Ar),  Ys = E(As, Ai[Ay),
n:E(AihTQHE)v Y5:E(A27A73HA71)7 Yé:E(A&Ail”AQ)?
Oa — QaU{A}
Return A; to A

else
Return the response using query history Oa

Fig. 4. Modified algorithm B. A query is called “fresh” if its response is not obtained
from the query history of B

3.2 Security Results

Given Property 5, we will analyze the security of the compression function
ABREAST-DM with respect to the modified adversary B. Without loss of gen-
erality, we might assume that B makes exactly 6¢ queries (including redundant
queries in a same cycle), and records g query-response cycles. The query history
of B is denoted

Oa={A":i=1,...,q},

where A" = (Q%, Q%, Q%, Q%, QL, QL) and Q; is the (6(i—1)47)-th query-response
pair for 1 <i<gand 1 <j<6.

Collision Resistance Let £ denote the event that B makes a collision of F.
Then, by definition, Adv"(B) = Pr[£]. In order to estimate Pr[£], we decom-
pose & as follows.

i—1
gulje |, (8)

j=1

5:

s.
Il ( <
_



where

E" & two evaluations from a single cycle A’ determines a collision,  (9)

E" & two evaluations from A” and A7 determine a collision. (10)

Then it follows that

q

Prig] =) Pr[ei]+ipr[5w] : (11)

i=1
Lemma 1. Let N' =2" —6q and 1 < j <1 < q for ¢ > 0. Then,

1. Pr[&f] <1/N,
2. Pr[eh7] <36/ (N')>.

Proof. Inequality 1: First, assume that A? consists of two distinct query-response
pairs. A collision within this cycle implies that Qi = (Ay, A1|[A1,Y1), Qb =
(A1, A1]|A1,Ys) and (A; © Y1, A1 @ Ys) = (A; + Ya, A + Y1). Since the second
query-response pair Q% is obtained by a forward query and Y3 should be equal
to Y7, the probability that this case occurs is not greater than 1/N’.

Next, assume that A’ consists of six distinct query-response pairs. Suppose
that (Q%, Q%) and (Q%, Q%) makes a collision. As seen in Property 3, it should
be the case that (A; @ Yy, Ay ® Ys) = (Ay @ Ya, A3 @ Y3). In this case, we have
Y, = A, @Y, @ Ay and Yz = Ay @ Yy @ As. The probability that Y5 and Y3
satisfy these equations is not greater than (1/N’)?. The same argument applies
to every pair of (Q},Q},, ;) and (Q},,Q}, ). Since the number of such pairs is
(g) =15 and 15/ (N’)2 < 1/N’ for a sufficiently large N’, the first inequality is
proved.

Inequality 2: Cycle A7 determines at most six evaluations of F. For a fixed
1< h' <6, let

(Ag,Ag,Ag)F BlaBQ)'

Q{LI7QZL/+1 (
The probability that

(A1, A2, A3) Fgi i (A1 @Y1, As ©Y2) = (By, Ba)

is not greater than (1/N’)®. The same argument applies to ( 4y Qf4q) for b =
2,...,6. It completes the proof of the second inequality. ad

By Lemma 1, equality (11) and Property 5, we obtain the following theorem.

Theorem 1. Let FABR be the compression function ABREAST-DM and q > 0.
Then,

1842
Ad C0|| < q .
viter(d) < e @ —eq




Preimage Resistance Suppose that a modified adversary B is given an im-
age point B = (Bj, By). Let £ denote the event that B makes an evaluation
F(A1,As, A3) = (B1, Bs) for some A;’s. Then, by definition, Adv%°(B) = Pr[£].
Define

&' < A" determines a preimage of B. (12)

Then it follows that

Prig] =) Pr[e]. (13)

Consider the case where Q% = (A1, As||A3,Y1) and Q4 = (Ag, Az||A1, Ys) deter-
mine

F(Al,AQ,Ag) = (Al @Yl,AQ D Y2) = (B17BQ).

This event occurs with probability at most (1/N')* for N’ = 2" — 6¢. Since each
cycle determines at most six evaluations of F, we obtain Pr [£] < 6/ (N")* for
1 <4 < ¢, and the following theorem.

Theorem 2. Let FABR be the compression function ABREAST-DM and q > 0.
Then,

r 6g
Advi“iBR (Q) < W

Adaptive Preimage Resistance Let B" = (B}, B}) be the h-th commitment
that B makes. Suppose that the commitment is made right before the j-th query
of the i-th cycle A? for 1 < i < ¢; and 2 < j < 6. For example, let j = 2. If
By = A1 @Y, for Qf = (Ay, As||A3,Y7), then the second query of A? determines
a preimage of B" with probability at most 1/N’ for N’ = 2" — 6¢;. Similarly,
if By = A; @ Y1, then the 6-th query of A’ determines a preimage of B" with
probability at most 1/N’. In general, the j-th query or the 6-th query of the
cycle can determine a preimage of B” with probability at most 1/N’. The other
queries determine a preimage of B" with probability at most (1/N’ )2. A similar
argument applies to the case where the commitment is made between two distinct
cycles. Since |£| < g2, we obtain the following theorem.

Theorem 3. Let FABE be the compression function ABREAST-DM and qy,qs >
0. Then,

2 6¢1
AdvPe < .
VFABR(q17q2) =@ <(2n —6q1) + (2n — 6(11)2)

4 Abreast-DM Variants

In this section, we present a wide range of ABREAST-DM variants that enjoy a
birthday-type security guarantee. Let 7 be a permutation on I3 (= I,, x I2) such



that every cycle in 7 is of length 2 < [ < L for a positive integer L. Then we
define
FABR . I3 — J2
(A1, A2, A3) — (E(X1, K1) ® X1, E(X2, K2) © X3),

where (X1,K1) = (A1, A2||43) and (X2, K2) = w(Aj, Az, A3). By the same
argument as the previous section, we can prove the following theorem.

(14)

Theorem 4. Let FABR be the compression function defined in (14), and let
2" > q+ (é) Then,

L2q2

Ad coll < q

VF?BR(q) = (27 — Lq) + 2(2" — Lq)?’
L

Adviisn(q) < ﬁ

2 L
AdvePre < .
VF;xBR(Qh(]?) = Q2 ((2n _ qu) + (2” — qu)2>

If ™ contains no cycle of length 2, then

L(q+¢°)
Ad coll < — \z 17
VF,;:‘BR(q) = 2(2n — Lq)2

Ezample 1. Let w: (Ay, Ag, A3) — (A1 B C, Ay, A3) for a constant C € I,,. Then
FABE ig yreduced to the Hirose’s scheme [12].

Example 2. Let 7 : (A1, Ag, A3) — (A1, A3, A3). Then every cycle in 7 is of
length 4. By Theorem 4, we have

8(g +4¢°)
I
Adv‘l::?‘;(éBR(q) < w
In numerical terms with n = 128, any adversary asking less than 2'25-0 queries
cannot find a collision with probability greater than 1/2.

5 Conclusion

In this paper, we have analyzed the security of ABREAST-DM in terms of collision
resistance, preimage resistance and adaptive preimage resistance. The bounds
on the number of queries for collision resistance and preimage resistance are
given by O (2"™). The adaptive preimage resistance is guaranteed up to O (2")
queries/commitments. We presented a wide range of ABREAST-DM variants
that enjoy a birthday-type security guarantee. The variants include the Hirose’s
scheme as a special case. It would be an interesting open problem whether our
approach could apply to more complicated constructions such as MDC-2 and
MDC-4.
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