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Abstract. In this paper, we give a security proof for Abreast-DM in
terms of collision resistance, preimage resistance and adaptive preimage
resistance. As old as Tandem-DM, the compression function Abreast-
DM is one of the most well-known constructions for double block length
compression functions. The bounds on the number of queries for collision
resistance and preimage resistance are given by O (2n). The adaptive
preimage resistance is guaranteed up to O (2n) queries/commitments.
Based on a novel technique using query-response cycles, our security
proof is simpler than those for MDC-2 and Tandem-DM. We also present
a wide range of Abreast-DM variants that enjoy a birthday-type secu-
rity guarantee with a simple proof.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns
a bit string of fixed length. The most common way of hashing variable length
messages is to iterate a fixed-size compression function according to the Merkle-
Damg̊ard paradigm. The underlying compression function can either be con-
structed from scratch, or be built upon off-the-shelf cryptographic primitives
such as blockciphers. Recently, the blockcipher-based construction is attract-
ing renewed interest, as many dedicated hash functions, including those most
common in practical applications, exhibit serious security weaknesses [1, 6, 16,
17, 22, 26–28]. Conveniently choosing an extensively studied blockcipher in the
blockcipher-based construction, one can easily transfer the trust in the existing
algorithm to the hash function. This approach is particularly useful in highly con-
strained environments such as RFID systems, since a single implementation of a
blockcipher can be used for both a blockcipher and a hash function. Compared
to blockciphers, the most dedicated hash functions require significant amounts
of state and the operations in their designs are not hardware friendly [3].

Compression functions based on blockciphers have been widely studied [2,
4, 9–12, 14, 18–21, 23–25]. The most common approach is to construct a 2n-to-n
bit compression function using a single call to an n-bit blockcipher. However,
such a function, called a single block length (SBL) compression function, might
be vulnerable to collision attacks due to its short output length. For example,
one could successfully mount a birthday attack on a compression function based



on AES-128 using approximately 264 queries. This observation motivated sub-
stantial research on double block length (DBL) compression functions, where the
output length is twice the block length of the underlying blockciphers.

Unfortunately, it turned out that a wide class of DBL compression functions
of rate 1 are not optimally secure in terms of collision resistance and preim-
age resistance [9, 10, 13]. The most classical DBL compression functions of rate
less than 1 include MDC-2, MDC-4, Tandem-DM and Abreast-DM [5, 14].
In 2007, 20 years after its original proposal, Steinberger first proved the col-
lision resistance of MDC-2 in the ideal cipher model [25]. The author showed
that an adversary asking less than 23n/5 queries has only a negligible chance
of finding a collision. Motivated by this work, Fleischmann et. al. proved the
security of Tandem-DM [8]. Similar to MDC-2, the security of Tandem-DM
is estimated in terms of a parameter, say, α. Optimizing the parameter, they
proved the collision resistance of Tandem-DM up to the birthday bound. Cur-
rently, Tandem-DM and the Hirose’s scheme [12] are the only rate 1/2 DBL
compression functions that are known to have a birthday-type security guaran-
tee. The underlying blockciphers of these schemes use 2n-bit keys, while MDC-2
accepts n-bit keys. For this reason, it seems to be natural that the security proof
of MDC-2 is more challenging.

Results We give a security proof for Abreast-DM in terms of collision resis-
tance, preimage resistance and adaptive preimage resistance. As old as Tandem-
DM, the compression function Abreast-DM is known to be more advantageous
than Tandem-DM in that two encryptions involved can be computed in paral-
lel. The bounds on the number of queries for collision resistance and preimage
resistance are given by O (2n). The adaptive preimage resistance is guaranteed
up to O (2n) queries/commitments.

The notion of adaptive preimage resistance is first introduced in [15]. A com-
pression function that is collision resistant and adaptive preimage resistant can
be composed with a public random function to yield a hash function that is in-
differentiable from a random oracle. In addition, the Merkle-Damg̊ard transform
preserves adaptive preimage resistance as long as the underlying compression
function is collision resistant. For this reason, we believe that adaptive preim-
age resistance would be one of the desirable properties of a secure compression
function. We note that a similar security notion, called preimage awareness, was
independently introduced in [7]. Since any compression function that is both
collision resistant and adaptive preimage resistant is preimage aware, our result
can be regarded as the proof of preimage awareness for Abreast-DM.

Based on a novel technique using query-response cycles, our security proof is
simpler than those for MDC-2 and Tandem-DM. We also present a wide range
of Abreast-DM variants that enjoy a birthday-type security guarantee with a
simple proof.



2 Preliminaries

General Notations For a positive integer n, we let In = {0, 1}n denote the
set of all bitstrings of length n. For two bitstrings A and B, A||B and A denote
the concatenation of A and B, and the bitwise complement of A, respectively.
For a set U , we write u

$← U to denote uniform random sampling from the set
U and assignment to u.

Ideal Cipher Model For positive integers n and k, let

BC(n, k) = {E : In × Ik → In : ∀K ∈ Ik, E(·,K) is a permutation on In}.

In the ideal cipher model, an (n, k)-blockcipher E is chosen from BC(n, k)
uniformly at random. It allows for two types of oracle queries E(X, K) and
E−1(Y, K) for X, Y ∈ In and K ∈ Ik. Here, X, Y and K are called a plaintext,
a ciphertext and a key, respectively. The response to an inverse query E−1(Y, K)
is X ∈ In such that E(X,K) = Y .

The Abreast-DM Compression Function For positive integers m, t and r
with m > r, let

Φ = {φ1
i : Im+i−1

n → In × Ik : i = 1, . . . , t} ∪ {φ2
i : Im+t

n → In : i = 1, . . . , r}

be a set of arbitrary functions. Then Φ defines a blockcipher-based compression
function FΦ

mtr with oracle access to an ideal cipher E ∈ BC(n, k) as follows.

FΦ
mtr : Im

n −→ Ir
n

(A1, . . . , Am) 7−→ (B1, . . . , Br),
(1)

where (B1, . . . , Br) is computed by the algorithm described in Figure 1(a). The
rate of FΦ

mtr is defined as

ρ =
m− r

t
.

Now the compression function Abreast-DM FABR is defined by

φ1
1 :(A1, A2, A3) 7−→ (A1, A2||A3),

φ1
2 :(A1, A2, A3, Y1) 7−→ (A2, A3||A1),

φ2
1 :(A1, A2, A3, Y1, Y2) 7−→ A1 ⊕ Y1,

φ2
2 :(A1, A2, A3, Y1, Y2) 7−→ A2 ⊕ Y2,

with (m, t, r) = (3, 2, 2) and k = 2n. The algorithm of FABR is separately
described in Figure 1(b).



Algorithm F Φ
mtr(A1, . . . , Am)

for i ← 1 to t do
(Xi, Ki) ← φ1

i (A1, . . . , Am, Y1 . . . , Yi−1)
Yi ← E(Xi, Ki)

for i ← 1 to r do
Bi ← φ2

i (A1, . . . , Am, Y1 . . . , Yt)

return (B1, . . . , Br)

(a) Compression function F Φ
mtr

Algorithm F ABR(A1, A2, A3)

(X1, K1) ← (A1, A2||A3)
Y1 ← E(X1, K1)
(X2, K2) ← (A2, A3||A1)
Y2 ← E(X2, K2)
B1 ← A1 ⊕ Y1

B2 ← A2 ⊕ Y2

return (B1, B2)

(b) Abreast-DM F ABR

Fig. 1. Blockcipher-based compression functions

Collision Resistance and Preimage Resistance Given a blockcipher-based
compression function F := FΦ

mtr and an information-theoretic adversary A with
oracle access to E and E−1, we execute the experiment Expcoll

A described in Fig-
ure 2(a) in order to quantify the collision resistance of F . The experiment records
the queries that the adversary A makes into a query history Q. A pair (X, K, Y )
is in the query history if A asks E(X, K) and gets back Y , or it asks E−1(Y, K)
and gets back X. For A = (A1, . . . , Am) ∈ Im

n and B = (B1, . . . , Br) ∈ Ir
n, we

write
A `Q B,

if there exist query-response pairs (Xi,Ki, Yi) ∈ Q, i = 1, . . . , t, satisfying the
following equations.

(Xi,Ki) = φ1
i (A1, . . . , Am, Y1 . . . , Yi−1), i = 1, . . . , t, (2)

Bi = φ2
i (A1, . . . , Am, Y1 . . . , Yt), i = 1, . . . , r. (3)

Informally, A `Q B means that the query history Q determines the evaluation
F : A 7→ B. Now the collision-finding advantage of A is defined to be

Advcoll
F (A) = Pr

[
Expcoll

A = 1
]
. (4)

The probability is taken over the random blockcipher E and A’s coins (if any).
For q > 0, we define Advcoll

F (q) as the maximum of Advcoll
F (A) over all adver-

saries A making at most q queries.
The preimage resistance of F is quantified similarly using the experiment

Exppre
A described in Figure 2(b). The adversary A chooses a single commitment

point B ∈ Ir
n before it begins making queries to E±1. (In a weaker version, the

point B is chosen uniformly at random.) The preimage-finding advantage of A
is defined to be

Advpre
F (A) = Pr [Exppre

A = 1] . (5)

For q > 0, Advpre
F (q) is the maximum of Advpre

F (A) over all adversaries A
making at most q queries.



Experiment Expcoll
A

E
$← BC(n, k)

AE,E−1
updates Q

if ∃ A 6= A′, B s.t. A `Q B and A′ `Q B then
output 1

else
output 0

(a) Collision resistance

Experiment Exppre
A

E
$← BC(n, k)

A chooses B ∈ Ir
n

A(B)E,E−1
updates Q

if ∃ A s.t. A `Q B then
output 1

else
output 0

(b) Preimage resistance

Fig. 2. Experiments for quantification of collision resistance and preimage resistance

Adaptive Preimage Resistance The adaptive preimage resistance of F is
quantified using the experiment Expapre

A described in Figure 3. At any point
during the experiment, the adversary A can choose a “commitment” point B ∈
Ir
n\RangeF (Q), where

RangeF (Q) = {B ∈ Ir
n : A `Q B for some A ∈ Im

n }.

Then the experiment Expapre
A records the point B into a commitment list L ⊂ Ir

n.
At the end of the experiment, A would like to succeed in finding a preimage
of some element in the commitment list. Now the adaptive preimage-finding
advantage of A is defined to be

Advapre
F (A) = Pr [Expapre

A = 1] . (6)

For q1, q2 > 0, we define Advapre
F (q1, q2) as the maximum of Advapre

F (A) over all
adversaries A that make at most q1 queries to E and E−1 and make at most q2

commitments.

Experiment Expapre
A

E
$← BC(n, k)

AE,E−1
updates Q and L (in an arbitrarily interleaved order)

if ∃ A such that A `Q B for some B ∈ L then
output 1

else
output 0

Fig. 3. Experiment for quantification of adaptive preimage resistance

From the definition, it is easy to prove that

Advpre
H (q) ≤ Advapre

H (q, 1), (7)



for any compression function H. Therefore, adaptive preimage resistance can be
regarded as a natural strengthening of preimage resistance.

3 Security of Abreast-DM

3.1 Query-response Cycle and Modified Adversary

Let F := FABR be the compression function Abreast-DM based on a block-
cipher E ∈ BC(n, 2n), and let Q1, . . . , Q6 be query-response pairs obtained by
oracle access to E and E−1. If the 6-tuple ∆ = (Q1, . . . , Q6) ∈ Q6 satisfies

Q1 = (A1, A2||A3, Y1), Q2 = (A2, A3||A1, Y2), Q3 = (A3, A1||A2, Y3),

Q4 = (A1, A2||A3, Y4), Q5 = (A2, A3||A1, Y5), Q6 = (A3, A1||A2, Y6),

for some Ai’s and Yi’s, then it is called a query-response cycle(or simply a cy-
cle). Observe that the first three blocks of the query-response pairs are moving
cyclically under the permutation

π : I3
n −→ I3

n

(A1, A2, A3) 7−→ (A2, A3, A1).

We state some useful properties of query-response cycles as follows.

Property 1. For query-response cycles ∆ and ∆′, either ∆ = ∆′ or ∆ ∩∆′ = ∅.
Property 2. For a query-response cycle ∆ = (Q1, . . . , Q6), either

– Qi’s are all distinct, or
– Q1 = Q3 = Q5 = (A1, A1, A1) and Q2 = Q4 = Q6 = (A1, A1, A1).

Property 3. If Qi is used as the first blockcipher call in an evaluation of F ,
then the second query-response pair should be Qi+1. If Qi is used as the second
blockcipher call, then the first query-response pair should be Qi−1. Moreover, Qi

and Qi+1 are always distinct. Here, the subscripts are interpreted up to modulo
6. The evaluations of F determined by Qi and Qi+1, i = 1, . . . , 6, are as follows.

(A1, A2, A3) `Q1,Q2 (A1 ⊕ Y1, A2 ⊕ Y2), (A2, A3, A1) `Q2,Q3 (A2 ⊕ Y2, A3 ⊕ Y3),

(A3, A1, A2) `Q3,Q4 (A3 ⊕ Y3, A1 ⊕ Y4), (A1, A2, A3) `Q4,Q5 (A1 ⊕ Y4, A2 ⊕ Y5),

(A2, A3, A1) `Q5,Q6 (A2 ⊕ Y5, A3 ⊕ Y6), (A3, A1, A2) `Q6,Q1 (A3 ⊕ Y6, A1 ⊕ Y1).

Given an adversary A with oracle access to E and E−1, one can transform
A into an adversary B that records its query history in terms of query-response
cycles. The modified adversary B is described in Figure 4. We can easily check
the following properties of B.

Property 4. If A makes at most q queries, then the corresponding adversary B
makes at most 6q queries, and records at most q query-response cycles.

Property 5. Advsec
F (A) ≤ Advsec

F (B) for sec ∈ {coll, pre, apre}.



Algorithm BE,E−1

Q∆ ← ∅
Run A
if A makes a fresh query E(A1, A2||A3) then

Make queries

Y1 = E(A1, A2||A3), Y2 = E(A2, A3||A1), Y3 = E(A3, A1||A2),

Y4 = E(A1, A2||A3), Y5 = E(A2, A3||A1), Y6 = E(A3, A1||A2),

Q∆ ← Q∆ ∪ {∆} (∆=the cycle defined by the above six queries)
Return Y1 to A

else if A makes a fresh query E−1(Y1, A2||A3) then
Make queries

A1 = E−1(Y1, A2||A3), Y2 = E(A2, A3||A1), Y3 = E(A3, A1||A2),

Y4 = E(A1, A2||A3), Y5 = E(A2, A3||A1), Y6 = E(A3, A1||A2),

Q∆ ← Q∆ ∪ {∆}
Return A1 to A

else
Return the response using query history Q∆

Fig. 4. Modified algorithm B. A query is called “fresh” if its response is not obtained
from the query history of B

3.2 Security Results

Given Property 5, we will analyze the security of the compression function
Abreast-DM with respect to the modified adversary B. Without loss of gen-
erality, we might assume that B makes exactly 6q queries (including redundant
queries in a same cycle), and records q query-response cycles. The query history
of B is denoted

Q∆ = {∆i : i = 1, . . . , q},

where ∆i = (Qi
1, Q

i
2, Q

i
3, Q

i
4, Q

i
5, Q

i
6) and Qi

j is the (6(i−1)+j)-th query-response
pair for 1 ≤ i ≤ q and 1 ≤ j ≤ 6.

Collision Resistance Let E denote the event that B makes a collision of F .
Then, by definition, Advcoll

F (B) = Pr [E ]. In order to estimate Pr [E ], we decom-
pose E as follows.

E =
q⋃

i=1


E i ∪

i−1⋃

j=1

E i,j


 , (8)



where

E i ⇔ two evaluations from a single cycle ∆i determines a collision, (9)

E i,j ⇔ two evaluations from ∆i and ∆j determine a collision. (10)

Then it follows that

Pr [E ] =
q∑

i=1


Pr

[E i
]
+

i−1∑

j=1

Pr
[E i,j

]

 . (11)

Lemma 1. Let N ′ = 2n − 6q and 1 ≤ j < i ≤ q for q > 0. Then,

1. Pr
[E i

] ≤ 1/N ′,
2. Pr

[E i,j
] ≤ 36/ (N ′)2.

Proof. Inequality 1: First, assume that ∆i consists of two distinct query-response
pairs. A collision within this cycle implies that Qi

1 = (A1, A1||A1, Y1), Qi
2 =

(A1, A1||A1, Y2) and (A1 ⊕ Y1, A1 ⊕ Y2) = (A1 + Y2, A1 + Y1). Since the second
query-response pair Qi

2 is obtained by a forward query and Y2 should be equal
to Y1, the probability that this case occurs is not greater than 1/N ′.

Next, assume that ∆i consists of six distinct query-response pairs. Suppose
that (Qi

1, Q
i
2) and (Qi

2, Q
i
3) makes a collision. As seen in Property 3, it should

be the case that (A1 ⊕ Y1, A2 ⊕ Y2) = (A2 ⊕ Y2, A3 ⊕ Y3). In this case, we have
Y2 = A1 ⊕ Y1 ⊕ A2 and Y3 = A2 ⊕ Y2 ⊕ A3. The probability that Y2 and Y3

satisfy these equations is not greater than (1/N ′)2. The same argument applies
to every pair of (Qi

h, Qi
h+1) and (Qi

h′ , Q
i
h′+1). Since the number of such pairs is(

6
2

)
= 15 and 15/ (N ′)2 ≤ 1/N ′ for a sufficiently large N ′, the first inequality is

proved.
Inequality 2: Cycle ∆j determines at most six evaluations of F . For a fixed

1 ≤ h′ ≤ 6, let
(A′1, A

′
2, A

′
3) `Qj

h′ ,Q
j

h′+1
(B1, B2).

The probability that

(A1, A2, A3) `Qi
1,Qi

2
(A1 ⊕ Y1, A2 ⊕ Y2) = (B1, B2)

is not greater than (1/N ′)2. The same argument applies to (Qi
h, Qi

h+1) for h =
2, . . . , 6. It completes the proof of the second inequality. ut

By Lemma 1, equality (11) and Property 5, we obtain the following theorem.

Theorem 1. Let FABR be the compression function Abreast-DM and q > 0.
Then,

Advcoll
F ABR(q) ≤ q

(2n − 6q)
+

18q2

(2n − 6q)2
.



Preimage Resistance Suppose that a modified adversary B is given an im-
age point B = (B1, B2). Let E denote the event that B makes an evaluation
F (A1, A2, A3) = (B1, B2) for some Ai’s. Then, by definition, Advpre

F (B) = Pr [E ].
Define

E i ⇔∆i determines a preimage of B. (12)

Then it follows that

Pr [E ] =
q∑

i=1

Pr
[E i

]
. (13)

Consider the case where Qi
1 = (A1, A2||A3, Y1) and Qi

2 = (A2, A3||A1, Y2) deter-
mine

F (A1, A2, A3) = (A1 ⊕ Y1, A2 ⊕ Y2) = (B1, B2).

This event occurs with probability at most (1/N ′)2 for N ′ = 2n− 6q. Since each
cycle determines at most six evaluations of F , we obtain Pr

[E i
] ≤ 6/ (N ′)2 for

1 ≤ i ≤ q, and the following theorem.

Theorem 2. Let FABR be the compression function Abreast-DM and q > 0.
Then,

Advpre
F ABR(q) ≤ 6q

(2n − 6q)2
.

Adaptive Preimage Resistance Let Bh = (Bh
1 , Bh

2 ) be the h-th commitment
that B makes. Suppose that the commitment is made right before the j-th query
of the i-th cycle ∆i for 1 ≤ i ≤ q1 and 2 ≤ j ≤ 6. For example, let j = 2. If
B1 = A1⊕Y1 for Qi

1 = (A1, A2||A3, Y1), then the second query of ∆i determines
a preimage of Bh with probability at most 1/N ′ for N ′ = 2n − 6q1. Similarly,
if B2 = A1 ⊕ Y1, then the 6-th query of ∆i determines a preimage of Bh with
probability at most 1/N ′. In general, the j-th query or the 6-th query of the
cycle can determine a preimage of Bh with probability at most 1/N ′. The other
queries determine a preimage of Bh with probability at most (1/N ′)2. A similar
argument applies to the case where the commitment is made between two distinct
cycles. Since |L| ≤ q2, we obtain the following theorem.

Theorem 3. Let FABR be the compression function Abreast-DM and q1, q2 >
0. Then,

Advapre
F ABR(q1, q2) ≤ q2

(
2

(2n − 6q1)
+

6q1

(2n − 6q1)2

)
.

4 Abreast-DM Variants

In this section, we present a wide range of Abreast-DM variants that enjoy a
birthday-type security guarantee. Let π be a permutation on I3

n(≡ In× I2
n) such



that every cycle in π is of length 2 ≤ l ≤ L for a positive integer L. Then we
define

FABR
π : I3

n −→ I2
n

(A1, A2, A3) 7−→ (E(X1,K1)⊕X1, E(X2,K2)⊕X2),
(14)

where (X1,K1) = (A1, A2||A3) and (X2,K2) = π(A1, A2, A3). By the same
argument as the previous section, we can prove the following theorem.

Theorem 4. Let FABR
π be the compression function defined in (14), and let

2n ≥ q +
(
L
2

)
. Then,

Advcoll
F ABR

π
(q) ≤ q

(2n − Lq)
+

L2q2

2(2n − Lq)2
,

Advpre
F ABR

π
(q) ≤ Lq

(2n − Lq)2
,

Advapre
F ABR

π
(q1, q2) ≤ q2

(
2

(2n − Lq1)
+

Lq1

(2n − Lq1)2

)
.

If π contains no cycle of length 2, then

Advcoll
F ABR

π
(q) ≤ L2(q + q2)

2(2n − Lq)2
.

Example 1. Let π : (A1, A2, A3) 7→ (A1⊕C,A2, A3) for a constant C ∈ In. Then
FABR

π is reduced to the Hirose’s scheme [12].

Example 2. Let π : (A1, A2, A3) 7→ (A1, A3, A2). Then every cycle in π is of
length 4. By Theorem 4, we have

Advcoll
F ABR

π
(q) ≤ 8(q + q2)

(2n − 4q)2
.

In numerical terms with n = 128, any adversary asking less than 2125.0 queries
cannot find a collision with probability greater than 1/2.

5 Conclusion

In this paper, we have analyzed the security of Abreast-DM in terms of collision
resistance, preimage resistance and adaptive preimage resistance. The bounds
on the number of queries for collision resistance and preimage resistance are
given by O (2n). The adaptive preimage resistance is guaranteed up to O (2n)
queries/commitments. We presented a wide range of Abreast-DM variants
that enjoy a birthday-type security guarantee. The variants include the Hirose’s
scheme as a special case. It would be an interesting open problem whether our
approach could apply to more complicated constructions such as MDC-2 and
MDC-4.
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