
MeshHash2

Submitter’s Name: Björn Fay
E-Mail: mail@bfay.de
Tel.: +49 6404 661672

Mobile: +49 177 6179340
Fax: +49 721 151-465799

Postal address:
Licher Pforte 27

35423 Lich
Germany

Name(s) of auxiliary submitter(s): None
Name of the algorithm inventor/developer: Björn Fay

Name of the owner of the algorithm: Björn Fay

Signature

Contents
1 Introduction and History 2

2 Algorithm specification 3
2.1 Notation . 3
2.2 Overview . 4
2.3 Details . 5

2.3.1 Parameters . 5
2.3.2 The internal state . 5
2.3.3 Preprocessing . 6
2.3.4 Normal round and SBox . 7
2.3.5 Final block round . 8
2.3.6 Final rounds . 8
2.3.7 Compute the hash value by squeezing the sponge 9
2.3.8 Usage as PRG . 9
2.3.9 The whole algorithm . 9

3 Design rationale 10

4 Special Features 12

5 Security 12
5.1 Sponge . 12
5.2 Merkle-Damgård . 13
5.3 Attacks . 13
5.4 Expected strength . 14

6 Tunable security parameter for testing 15

7 Efficiency and memory requirements 16
7.1 Memory . 16
7.2 Efficiency . 16

7.2.1 64 Bit . 16
7.2.2 32 Bit . 18
7.2.3 8 Bit . 20

1 Introduction and History
This specification describes a modification of a candidate for SHA-3, named MeshHash.
The first version had a flaw in it, it was possible to mount a second preimage attack
[Tho08]. So MeshHash has not fulfilled the requirements for SHA-3 anymore and hence
was conceded broken. Furthermore there was a bug in the reference implementation:
The macro for rotation of a word computed an undefined value if it should rotate a word

2

by 0 bit.
But since the flaw can be easily fixed, which was already implemented in a preliminary

version, it seems to be a good idea to publish MeshHash2 as a patch and see if it might be
useful for further research or even usage. The patch uses a feedback, which increases the
memory usage, but doesn’t give more security against a straight forward collision attack,
which was the reason it has been dropped from the preliminary version of MeshHash.
The following specification is the patched version of MeshHash, named MashHash2.

It is a very flexible but conservative design with primarily security in mind and only
secondarily speed. But it achieves about the same speed as the SHA-2 family and
security up to 16320 bit. It can also be used in a keyed version as PRF or PRG and
hence build a stream-cipher of it.

2 Algorithm specification
2.1 Notation
This specification uses the following terms, notations and operations:

Bit is a binary digit having a value of 0 or 1.

Byte is a group of eight bits having values from 0 to 255.

Word is a group of 64 bits or 8 bytes having values from 0 to 264 − 1.

PRF is the abbreviation of pseudo random function.

PRG is the abbreviation of pseudo random generator.

0r is a group, string or array of r bits with value 0.

h is used as an index for hexadecimal numbers. For example 1ah is the number 26.

b is used as an index for binary numbers. For example 0101b is the number 5.

mod,% is the modulo operator, which finds the remainder of division of one number by
another. For example:

8 mod 3 = 8 % 3 = 2.

⊕ is bitwise XOR of words or bytes. For example:

0fh ⊕ 55h = 00001111b ⊕ 01010101b = 01011010b = 5ah.

: is bitwise OR of words or bytes. For example:

0fh : 55h = 00001111b : 01010101b = 01011111b = 5fh.

3

? is bitwise AND of words or bytes. For example:

0fh ? 55h = 00001111b ? 01010101b = 00000101b = 05h.

RotRi(w) is a rotation of a word w to the right by i mod 64 bits. For example:

RotR76(123456789abcdefh) = def123456789abch.

w << b is a shift of a word w to the left by b bits. For example:

ffffffff00000000h << 5 = ffffffe000000000h.

w >> b is a shift of a word w to the right by b bits. For example:

ffffffff00000000h >> 5 = 07fffffff8000000h.

� is addition modulo 264, that is x� y = (x+ y) mod 264. For example:

8765432112345678h � 9876543287654321h = 1fdb975399999999h.

� is multiplication modulo 264, that is x� y = (x · y) mod 264. For example:

4000000320000001h � 7000000000000007h
= c0000015e0000007h � 7000000000000000h
= 30000015e0000007h.

| concatenates two groups, strings, or arrays of bits, bytes, or words.

Throughout this specification, the “big-endian” convention is used when expressing
words or bytes, so that the most significant byte or bit is stored in the left-most position.

2.2 Overview
The MeshHash2-Algorithm is a mixture of the Merkle-Damgård model and the sponge
model [BDPA07, BDPA08]. The algorithm has an internal state, which primarily con-
sists of some so called pipes. The number of these pipes (we call it P) depends on the
length of the hash value. The algorithm works in blocks and each block consists of P
rounds. In each round one message word is processed and the internal state is updated.
At the end of each block there is a special final round to update the internal state in-
cluding the processing of a block counter and processing a given key if applicable. Before
starting the processing the key is inserted at the beginning of the message.
After the message is processed some final rounds are processed including processing

the number of message bits and the number of hash bits. Thereafter the hash value is
computed one byte per round similar to the processing of the message (see figure 1).

4

init internal state
data_stream = key | message | pad
while data left do
{

normal round with next data word
after P rounds do final block round

}
do some final rounds
while hash value is shorter than hash length do
{

normal round with 0 as data
compute and append next byte to hash value
after P rounds do final block round

}

Figure 1: Overview in pseudocode

2.3 Details
2.3.1 Parameters

The algorithm works for messages of length up to 2256 bit. A key as array of bytes can be
given whose length in bytes must be a multiple of 8 and smaller than 215 = 32768. But
normal keys should have a length in the range up to 2048 byte (16384 bit). The output
is a hash value as array of bytes whose length in bits must be a multiple of 8 and shorter
than 215 = 32768, but should be shorter than or equal to 16320 bit, because there is no
security gain for longer hash values. In addition MeshHash2 can be used as PRG (and
create a stream-cipher) and hence a pseudo-random byte sequence of indefinite length
can be produced. In this case a key should be given as seed, a message can be given as
further input, and the number of pipes P has to be chosen according to security needs.

2.3.2 The internal state

The internal state consists of the following components:

number of pipes named P , which stores the number of pipes.

P pipes named pipe[i], for i = 0, . . . , P − 1, each containing a word.

2P feedback-words named feedback[i][j], for i = 0, 1 and j = 0, . . . , P − 1, repre-
senting the feedback of the actual block and the last block.

block round counter named block_round_counter, which counts the processed rounds
per block.

5

key length named key_length, which is the length of the key in words. If no key is
used then this value is 0.

key named key, which is an array of words key[i] for i = 0, . . . , key_length − 1
containing the key.

key counter named key_counter, which counts the uses of the key and is also an offset
in the key.

bit counter named bit_counter, which counts the message bits. It consists of 4 words
bit_counter[i] for i = 0, . . . , 3, where the value of bit_counter is ∑3

i=0 264i ·
bit_counter[i].

block counter named block_counter, which counts the number of processed blocks.
It consists of 4 words block_counter[i] for i = 0, . . . , 3, where the value of
block_counter is ∑3

i=0 264i · block_counter[i].

hash length named hashbitlen, which is the length of the hash value in bits.

The counters and length for which nothing is said about the type have to be integers
which can handle numbers between 0 and 215 − 1 and can be easily converted to words
(or are words). At the beginning the components of the internal state are set as follows:

• The number of pipes P is computed as the smallest integer greater than or equal
to hashbitlen/64 + 1. But at least 4 and at most 256.

• Every pipe and feedback-word is set to 0.

• The value of bit_counter is set to the number of bits in the given message. The
counter can also be updated while processing the message, if the message length
is not known at the beginning.

• Every other counter is set to 0.

• The given key as array of bytes is transformed to an array of words, where the
first of eight bytes is the most significant one and the last is the least significant
one (big-endian) and is stored in key.

• The given key length in bytes is divided by 8 to give the key length in words and
is stored in key_length.

2.3.3 Preprocessing

After setting the internal state and before processing the message the input data for the
rounds is prepared as

data_stream = key | message | 0r+64·P ,

6

i� 0101010101010101h

��

data

��
pipe’[i] // ⊕ // ⊕ // RotR37i // SBox // � // pipe[i]

pipe’[i+1]

GF
BCOO

. pipe[i+1]

Figure 2: Normal Round

where r is the least integer so that key_length · 64 + bit_counter + r + 64 · P is a
multiple of 64 · P . Note that neither the length of the key nor “r + 64 · P” are counted
by bit_counter.
The key can already be processed directly after the initialization (this can also be

seen as part of the initialization). The concatenation of 0r+64·P and its processing can
be done just before doing the final rounds, if the length of the message is not known at
the beginning (this can also bee seen as part of the final rounds).

2.3.4 Normal round and SBox

A normal round processes one word (of data_stream, which consists of the key, the
message, and 0r+64·P), named data, and the internal state as follows. Let pipe’[i] be
pipe[i] at the beginning of the round. Then at the end of the round it is (see also
figure 2)

pipe[i] = SBox(RotR37i(pipe’[i]⊕(i�0101010101010101h)⊕data))�pipe’[(i+1)%P]

where SBox(w) is computed according to the pseudocode:
SBox(w)
{

w = w� 9e3779b97f4a7bb9h
w = w � 5e2d58d8b3bcdef7h
w = RotR37(w)
w = w� 9e3779b97f4a7bb9h
w = w � 5e2d58d8b3bcdef7h
w = RotR37(w)
return w

}
In round j (= block_round_counter) of the block the result pipe[j] is stored in a
feedback-word, depending on block_counter (see also figure 3):

feedback[block_counter[0]? 0000000000000001h][j] = pipe[j].

After that increment the value of block_round_counter.

7

2.3.5 Final block round

After P normal rounds a final block round is done as follows.

Reset block round counter: Set block_round_counter to 0 for the next block.

Process block counter: The pipes are updated with block_counter by

pipe[i] = SBox(pipe[i]⊕ block_counter[i%4])

for i = 0, . . . , P − 1. Increase block_counter by 1.

Process key: Let k be the least multiple of P that is greater than or equal to key_length.
For i = 0, . . . , k − 1 do

pipe[i%P] = SBox(pipe[i%P]⊕ key[(i + key_counter)%key_length]).

After that set key_counter to (key_counter + 1) mod key_length and for i =
0, . . . , P − 1 do

pipe[i] = SBox(pipe[i]⊕ key_length⊕ (i� 0101010101010101h)),

where key_length is interpreted as a word.
If no key is given and key_length is 0, then this whole step is skipped.

Process feedback: Let b ∈ {0, 1} be the least significant bit of block_counter (which is
already updated for the next block), that is b = block_counter[0]?0000000000000001h.
The pipes are updated with feedback by

pipe[i] = SBox(pipe[i]⊕ feedback[b][i])
pipe[i] = SBox(pipe[i]⊕ feedback[1-b][i])

for i = 0, . . . , P − 1 (see also figure 3).

2.3.6 Final rounds

After all bits (words) of data_stream are processed some final rounds are done as follows:

• For i = 0, . . . , 3 and j = 0, . . . , P − 1 do

pipe[j] = SBox(pipe[j]⊕ bit_counter[i]⊕ (j � 0101010101010101h)).

• For i = 0, . . . , P − 1 do

pipe[i] = SBox(pipe[i]⊕ hashbitlen⊕ (i� 0101010101010101h)),

where hashbitlen is interpreted as a word.

8

Block 0 1
Round 0 1 · · · 7 8 final 0 1 · · · 7 8

pipe[0] �

��

�

��

� �
pipe[1] �

��

�

��

� �
...

pipe[7] �

��

�

��

� �
pipe[8] �

��

�

��

� �

feedback[0] � � · · · � �
BC

OO

feedback[1] � � · · · � �
BC

OO

_ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _

_ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

_ _ _

final

Figure 3: Feedback for P = 9

2.3.7 Compute the hash value by squeezing the sponge

The hash value hashval (as array of bytes) is computed byte by byte, similar to the
processing of the message. For i = 0, . . . , hashbitlen/8− 1 do:

• Process a normal round with data = 0 (as in 2.3.4).

• Let k be the greatest even integer smaller than P and compute

hashval[i] = (pipe[0]⊕ pipe[2]⊕ . . .⊕ pipe[k])? 00000000000000ffh,

where the result is interpreted as byte (there are only values between 0 and 255).

• If i mod P = P − 1 then process a final block round (as in 2.3.5).

2.3.8 Usage as PRG

If MeshHash2 is used as PRG, then hashbitlen is set to 0 and the number of pipes P
is explicitly given. The computation of the “hash value” (as in 2.3.7) has to be repeated
as many times as desired and not just hashbitlen/8 times.

2.3.9 The whole algorithm

MeshHash2 computes a hash value of hashbitlen bits for message with given_key as
follows (pseudocode):
if hashbitlen is no multiple of 8 or >= 215

then exit with error
if length of given_key in bytes is no multiple of 8 or >= 215

then exit with error
init internal state (as in 2.3.2)

9

data_stream = key | message | 0r+64·P (as in 2.3.3)
while data_stream is not completely processed do
{

data = next word in data_stream
normal_round(data) (as in 2.3.4)
if block_round_counter = P

then final_block_round (as in 2.3.5)
}
final_rounds (as in 2.3.6)
compute_hash_value (as in 2.3.7)

3 Design rationale
The first design criterion (not necessarily the most important) was to allow parallel
execution of MeshHash2. Therefore the algorithm is working in different pipes. But to
prevent multi-collision-attacks [Jou04], which would make the whole construction just a
little bit stronger than one pipe, these pipes have to be connected in some way. This is
why there is an addition of the next pipe at the end of a round. Because this inter-pipe-
communication may be slower than in-pipe-computation, the value to add is taken from
the beginning of the round (end of previous round). This should give enough time for
communication. In particular if there are 4 threads each with 2 pipes, then the value
of the next thread (previous round but first pipe in that thread) is not needed until the
second pipe in the actual thread is computed.
Each pipe has to compute different values otherwise we would not need more than

one. So in each pipe the computation is altered slightly with operations that are easy to
compute. This makes implementation in hardware easier since the greatest part of the
pipes is identical and may be reused (highly optimized) or the circuits may simply be
copied.
Each message-bit should influence each hash-bit or here every bit in each pipe. We

easily see that every data-word influence every pipe, but for the diffusion of the message-
bits a sbox (SBox) is used. Since many servers use a 64-bit operating system and more
and more 64-bit workstations are in use the choice was to use a 64-bit sbox with simple
operations that are typical for 64-bit systems but do a fair amount of diffusion. The
choice for the operations was to use a multiplication, an addition, and a rotation. The
integer for multiplication is the largest prime smaller than 264

ϕ
, where ϕ = 1+

√
5

2 is the
golden ratio. That way the multiplication is invertible modulo 264. The number for
addition is the largest prime smaller than 264

e
. The number by which the word is rotated

is the largest prime smaller than 64
ϕ
. That way rotations can be repeated 64 times before

the same word emerges and the rotation is very asymmetric. Since the highest bit would
only influence itself, this procedure is done two times so that every bit can influence 37
to 64 bits, depending on its position.
The number of pipes P was chosen to be large enough to take as many bits as the

10

hash value plus one extra pipe since the value of one pipe can be easily controlled with
the message.
To avoid extension attacks or a permutation of blocks, a counter for the message bits

is processed after the message and a block counter is processed after each block. The
size of the counter was chosen to be large enough to nearly take the number of atoms of
the universe, which makes even theoretical attacks with counter overflows meaningless.
So the final block rounds for each block are different as are the final rounds for different
message lengths. The length of a block in words is equal to the number of pipes, so that
for an “optimal round function” there would be as many pipe states as message blocks
and no one-block collision could be found (but this does probably not hold for the real
world).
The usage of the feedback is needed to prevent a second preimage attack as in [Tho08].

The feedback was chosen to be from two blocks to have an interleaving of blocks. This
way a change in a message-word changes the result in the pipe and hence the feedback,
which is used two times, at the end of the actual block and the next block. The message-
words can be easily computed to produce a certain feedback word, so it does not help
against simple search for collisions (in the pipes), but it should make “Inversion of the
round-function” very difficult, because of the three points of influence of one message-
word (two of them exactly one block apart).
Since in theory hash functions should be keyed, it should also be done in practice.

Earlier implementations have taught us that it may be weak to use the key only at the
beginning of a hash function. So it is processed after each block together with its length.
To influence the normal rounds in the first block the key is also processed before the first
block. Since the internal state has essentially 64 · P (or hashbitlen for ease) bits, the
key should not be longer than that. It would only slow down the algorithm and pretend
to give more security than the algorithm actually could give. Only if used as a PRG or
key generator it could be adequate to use more than 64 · P bits for a key.
The hash values of different length but for the same message should not have some

easy detectable relation. So the length of the hash value is processed after the message
in the final rounds. Similar things hold for the key length, but it is processed after each
block since the key is processed there.
The computing of the hash value is done byte by byte as in the sponge model so that

the algorithm is very flexible to use. For hash values the computation overhead is small
(≤ 8 blocks), but the algorithm can also produce infinite long streams of bytes, one byte
per round (P bytes per block). To use MeshHash2 as a PRG or key generator the output
should not allow to make some meaningful statement about the internal state or even
the key. That way no prediction of future values can be made. Hence each output byte
gives nearly no information about the internal state, which is changed before the next
byte is computed. This can be seen as a kind of extreme truncation or kind of hardcore
function (but notice that the “round function” is no one-way function and hence there
is no hardcore function, see [Gol03], but since the internal state is not outputted, this
should not cause any problems). Some further research may be needed to give some
more founded arguments here.

11

4 Special Features
There are three features that make MeshHash2 very flexible to use:

Key The algorithm is designed with key usage in mind. So there is no need for extra
workarounds as in HMAC. Supported key lengths are from 0 to 64 · P (a little bit
more than hashbitlen) bits (with 64-bit steps). Technically even values up to
215 − 1 = 32767 bytes are possible, but there is no or just little gain in security
above 64 · P bits for use as hash function.

Hash length The possible length of the hash value vary from 8 bits to 16320 bits (in
8-bit steps). Technically even values up to 215 − 8 = 32760 bits are possible, but
there is no or just little gain in security above 16320 bits.

PRG MeshHash2 might be used as a PRG (and for key derivation or for building a
stream-cipher), where the key length might be even larger than 64 ·P bits to gain
more entropy. The sequence of pseudo-random-bytes can be P · 2256 bytes long
before a repetition of the inner state occurs and hence a repetition of the sequence
before position P · 2256 is very unlikely.

5 Security
5.1 Sponge
MeshHash2 can be seen as sponge [BDPA07, BDPA08] with an adequate mapping p or
padding pad, which maps any input word (or block, which ever fits best) to an input
character unequal to 0. And/or the sponge model could be slightly altered. Hence the
security proof of [BDPA08] or a slightly adapted version should hold for MeshHash2. As
capacity we take the size of the internal state, but only the pipes since the others are
just counters and feedback-words, which are not very randomly transformed. We even
take only P −1 pipes, because one pipe can be easily controlled by selecting the message
suitably. That gives us a security parameter of 64 · (P −1) bits for usage as normal hash
function (with hashbitlen = 64 · (P − 1) for this security proof), which means that
you have to compute about 232·(P−1) hash values to find a collision and 264·(P−1) to find
a 2nd preimage. Further more we have that if an attacker computes at most 216·(P−1)

rounds he can distinguish MeshHash2 with a maximal probability of about 2−32·(P−1)

from a random oracle. But these numbers would only hold if the “round function”
would be totally random, which is surly not the case (especially not if used without a
key, with key the round function would be more random but still not as random as a real
random function). But on the other hand the block counter makes internal collisions
only possible in the same round, so that the capacity would be 256 bits larger or the
probability a bit smaller. So all things considered the numbers above are more or less
only estimates, but well-founded.

12

5.2 Merkle-Damgård
MeshHash2 can also be seen as a Merkle-Damgård construction, at least the processing
of a whole block. The only difference to MD is the computation of the hash value from
the pipes round by round. But at least we can use statements about MD for the internal
state.
It may be easy to find a collision of the compression function (with different internal

states as input). This is not as bad as it sounds, it just means that we can not use the
conclusion, that a collision resistant compression function leads to a collision resistant
hash function.
One security feature is a kind of NMAC construction for MeshHash2, since before

the computation of the hash value there are some special rounds and a totally different
computation of the hash value than simply outputting the internal state. Also the
computation of the hash value can be seen as a kind of extreme truncation (or chop
solution as it is called in [CDMP05]). And if we treat the block counter as part of the
message (at the end of each block), as well as the bit counter (at the end of the message,
after a block with a “different encoding”), then we have a prefix-free input for MD. All
three mentioned points would make MeshHash2 indifferentiable from a random oracle,
if the compression function would be a random oracle as is shown in [CDMP05].
The usage of a block counter can also be seen as dithering [Riv05] and gives no fix-

points. It also leads to a protection against message expansion (see [BD06])

5.3 Attacks
The following attacks have been considered:

Finding fix-points: Since there are no fix-points due to the block counter, no fix-points
can be found.

Expandable messages: The block counter and bit counter make sure that every block
is processed differently depending on its position and that messages with different
length are processed differently at the end, so there are no expandable messages.

Second preimage: Since there are no expandable messages, the attacks [KS05, ABF+08]
to find 2nd preimages faster than 2n can not be applied anymore. Also the attack
of Thomsen [Tho08] can not be applied due to the feedback.

Differential cryptanalysis: Since each bit in a data word is processed in each pipe and
different data words lead to different pipe states for each pipe after one round,
the changing of one bit (or more) in a data word leads to a change in at least one
bit per pipe, that are at least P bits but with high probability more than P bits.
And one feedback-word has at least one bit changed, which is used again after the
actual and the next block.

The following attacks are still possible:

13

Multi-Collision [Jou04]: Since there is no “wide-range-feedback”, finding a collision
(for the internal state) can still be “amplified” to a multi-collision. But since
finding collisions should be hard, this attack remains a theoretical one. It should
be mentioned that these multi-collisions are for the whole internal state and not
for each pipe as considered in the design.

Herding [KK06]: Still possible for the same reason as above.

5.4 Expected strength
After the considerations in the previous sections the expected strength of MeshHash2 is
as follows:

Hash function If MeshHash2 is used as hash function with a hash value of length n bits
where 8 ≤ n ≤ 16320 and n is a multiple of 8, then it has the following expected
strength against
• finding a preimage: 2n,
• finding a 2nd preimage: 2n,
• finding a collision: 2n2 .

This includes the truncation of longer hash values to n bits. For the four required
lengths the expected strength is (in bits):

hash length preimage 2nd preimage collision
224 224 224 112
256 256 256 128
384 384 384 192
512 512 512 256

HMAC/PRF If MeshHash2 is used as HMAC/PRF like in FIPS 198-1 the block size
and hence the key size is 64 · P bits. But since MeshHash2 has native support for
keys, this could also be used. It supports keys from 64 to 64 · P bits (in 64-bit
steps). The expected strength of this native HMAC/PRF (as for the approach in
FIPS 198-1) depends on the goal to achieve. For n-bit hash values and k-bit keys
this is:
• If finding a collision for a given key is sufficient (or a valid HMAC for another

message, which could be achieved by guessing the key) then it is the minimum
of 2n2 and 2k

• If finding a preimage or 2nd preimage for a given key is sufficient (or a valid
HMAC for another message, which could be achieved by guessing the key)
then it is the minimum of 2n and 2k

• If only finding a valid HMAC for another message is sufficient (which could
be achieved by guessing the key or the HMAC) then it is the minimum of 2n
and 2k.

Hence the key should have the same length as the hash value.

14

Randomized hashing for digital signatures If MeshHash2 is used for randomized hash-
ing it can be done as in SP 800-106, but also the native support of MeshHash2
can be used, where the random value is used as key. As also stated in SP 800-107
the expected strength for this is the minimum of 2n and 2n2 + 2k, where the length
of the hash value is n bits and a k-bit random value is used. This is because for
a valid collision you have to guess also the right random value, which changes in
every signature computation without influence of an attacker.

PRG If MeshHash2 is used as PRG the key is used as seed and additional input such as
personalization string or nonce can be given as message. The expected strength is
2k, where k is the length of the seed or the key in bits. The key can be up to 16320
bits long (technically even longer, up to 215 − 8 = 32760 bytes, with unknown
security gain, but the entropy of the sequence should still increase). That means
that you should not be able to distinguish the generated bit sequence from a real
random sequence with a workload less than 2k and the produced sequence (if long
enough) should have an entropy of k bits. The number of pipes P needed to achieve
this strength is the same as for a k-bit hash value. It may be smaller, but further
research is needed here.

Key derivation This can be seen as a special use case of PRG. But even if you could
derive a 2048-bit key out of a 512-bit seed, the derived key would only have an
entropy of 512 bits and hence should not be used as a 2048-bit key. On the other
hand you can derive numerous 2048-bit keys (as concatenated byte string) out of
a 2048-bit seed for use in different applications or different time slices, where the
system of all these applications together has a security level of 2048 bits. That
means instead of breaking one part of the system one can guess the seed and hence
break all parts. On the other hand if one part is broken due to some weakness and
the attacker is able to derive one key with less than a 2k-workload, he is not able
to derive the other keys.

6 Tunable security parameter for testing
There is one parameter where the security could be tuned. This is the number of pipes
and can be selected by use of an extra init function. In the header file of the reference
implementation there could also be changed the minimum and maximum number of
pipes as well as the number of extra pipes to be added for security reasons. There
could also be changed the number of words for the bit and block counter. That way the
algorithm could be crippled even to one pipe, which will give a very lousy hash function.

15

7 Efficiency and memory requirements
7.1 Memory
The amount of memory that MeshHash2 needs can be easily derived from the design of
the internal state (in bytes):

P pipes P · 8
2P feedback-words 2P · 8
block round counter 2
key length 2
key key_length · 8 (if unkeyed) 0
key counter 2
bit counter 4 · 8 32
block counter 4 · 8 32
hash length 2
one temporary pipe per thread 8
actual data word 8
total key + 3P · 8 + 88

Depending on the implementation another 3 counters (each of 2 bytes) and 2 words
could be needed (another 22 bytes). Without a key, but plus these extra 22 bytes, we
get the following memory usage for the required lengths of the hash value:

hash length memory
224 bits 230 bytes
256 bits 230 bytes
384 bits 278 bytes
512 bits 326 bytes

7.2 Efficiency
Since the efficiency depends on the system, we look at 64-bit, 32-bit and 8-bit systems
in different sections.

7.2.1 64 Bit

Because the trend is to use 64-bit systems MeshHash2 is designed with these systems
in mind. Probably the best way to say something about efficiency is to do some tests.
Therefore a comparison of the SHA family is done with some variants of MeshHash2.
For this tests (64 bit only) a slightly optimized version is used, where assembler code

is used for the rotation (can be switched in the source code). Without this optimization
it would take about 9 – 20% more time.
The testing system was:

16

Operating system: Ubuntu 9.04-amd64 with kernel 2.6.28-11-generic
Processor: Intel(R) Core(TM)2 Duo T5600 @ 1.83GHz
Memory: 2 GB
Compiler: gcc version 4.3.3 (Ubuntu 4.3.3-5ubuntu4)
Compiler options: -std=c99 -pedantic -O2 -march=native
Used libraries: crypto (libssl 0.9.8g-15ubuntu3)

mhash (libmhash2 0.9.9-1)

And the results for processing 100 MiB (100 · 220 byte) in 1 KiB (210 byte) blocks are
(in ms and cycles per byte):

SHA1 (crypto) 560 ms 9.8 cpb
SHA1 (mhash) 630 ms 11.0 cpb
SHA256 (mhash) 1280 ms 22.3 cpb
SHA512 (mhash) 890 ms 15.5 cpb
MeshHash2 (160 bits) 790 ms 13.8 cpb
MeshHash2 (160 bits + key) 970 ms 16.9 cpb
MeshHash2 (224 bits) 830 ms 14.5 cpb
MeshHash2 (224 bits + key) 1020 ms 17.8 cpb
MeshHash2 (256 bits) 840 ms 14.7 cpb
MeshHash2 (256 bits + key) 1010 ms 17.6 cpb
MeshHash2 (384 bits) 950 ms 16.6 cpb
MeshHash2 (384 bits + key) 1110 ms 19.4 cpb
MeshHash2 (512 bits) 1060 ms 18.5 cpb
MeshHash2 (512 bits + key) 1230 ms 21.5 cpb
MeshHash2 (1024 bits) 1580 ms 27.6 cpb
MeshHash2 (1024 bits + key) 1730 ms 30.2 cpb
MeshHash2 (2048 bits) 2600 ms 45.4 cpb
MeshHash2 (2048 bits + key) 2790 ms 48.7 cpb
plain write 110 ms 1.9 cpb

The used keys have the length of (P − 1) · 64 bits, that is the smallest multiple of 64
that is greater than or equal to the hash length. The “plain write” is the time to write
the 100 MiB in one-byte steps without processing by a hash function.
For the computation of 100000 = 105 hash values of a one-block message we get the

following times and hence clock cycles per hash value:

224 bits 270 ms 4941 clock cycles
224 bits + key 370 ms 6771 clock cycles
256 bits 300 ms 5490 clock cycles
256 bits + key 400 ms 7320 clock cycles
384 bits 470 ms 8601 clock cycles
384 bits + key 570 ms 10431 clock cycles
512 bits 650 ms 11895 clock cycles
512 bits + key 850 ms 15555 clock cycles

17

To set up the algorithm all counters, pipes, and the feedback-words have to be set
to zero. Additionally the key has to be copied and processed if given. A test with
10000000 = 107 calls of the init procedure has been done and the following times (total)
and clock cycles (per init) were needed:

224 bits 1840 ms 337 clock cycles
224 bits + key 4180 ms 765 clock cycles
256 bits 1840 ms 337 clock cycles
256 bits + key 4180 ms 765 clock cycles
384 bits 1890 ms 346 clock cycles
384 bits + key 5740 ms 1050 clock cycles
512 bits 2040 ms 373 clock cycles
512 bits + key 7710 ms 1411 clock cycles

There are no significant tradeoffs between speed and memory.

7.2.2 32 Bit

As with the 64-bit system the same tests were done on the same machine, but this time
without any assembler-optimization.
The testing system was:

Operating system: Ubuntu 9.04-i386 with kernel 2.6.28-11-generic
Processor: Intel(R) Core(TM)2 Duo T5600 @ 1.83GHz
Memory: 2 GB
Compiler: gcc version 4.3.3 (Ubuntu 4.3.3-5ubuntu4)
Compiler options: -std=c99 -pedantic -O2 -march=native
Used libraries: crypto (libssl 0.9.8g-15ubuntu3)

mhash (libmhash2 0.9.9-1)

And the results for processing 100 MiB (100 · 220 byte) in 1 KiB (210 byte) blocks are
(in ms and cycles per byte):

18

SHA1 (crypto) 480 ms 8.4 cpb
SHA1 (mhash) 940 ms 16.4 cpb
SHA256 (mhash) 1830 ms 31.9 cpb
SHA512 (mhash) 4370 ms 76.3 cpb
MeshHash2 (160 bits) 2520 ms 44.0 cpb
MeshHash2 (160 bits + key) 3140 ms 54.8 cpb
MeshHash2 (224 bits) 2860 ms 49.9 cpb
MeshHash2 (224 bits + key) 3450 ms 60.2 cpb
MeshHash2 (256 bits) 2860 ms 49.9 cpb
MeshHash2 (256 bits + key) 3450 ms 60.2 cpb
MeshHash2 (384 bits) 3500 ms 61.1 cpb
MeshHash2 (384 bits + key) 4100 ms 71.6 cpb
MeshHash2 (512 bits) 4140 ms 72.3 cpb
MeshHash2 (512 bits + key) 4740 ms 82.7 cpb
MeshHash2 (1024 bits) 6990 ms 122.0 cpb
MeshHash2 (1024 bits + key) 7590 ms 132.5 cpb
MeshHash2 (2048 bits) 12530 ms 218.7 cpb
MeshHash2 (2048 bits + key) 13130 ms 229.1 cpb
plain write 50 ms 0.9 cpb

The used keys have the length of (P − 1) · 64 bits, that is the smallest multiple of 64
that is greater than or equal to the hash length. The “plain write” is the time to write
the 100 MiB in one-byte steps without processing by a hash function.
For the computation of 100000 = 105 hash values of a one-block message we get the

following times and hence clock cycles per hash value:

224 bits 1010 ms 18483 clock cycles
224 bits + key 1330 ms 24339 clock cycles
256 bits 1090 ms 19947 clock cycles
256 bits + key 1450 ms 26535 clock cycles
384 bits 1890 ms 34587 clock cycles
384 bits + key 2210 ms 40443 clock cycles
512 bits 2720 ms 49776 clock cycles
512 bits + key 3450 ms 63135 clock cycles

To set up the algorithm all counters, pipes, and the feedback-words have to be set
to zero. Additionally the key has to be copied and processed if given. A test with
10000000 = 107 calls of the init procedure has been done and the following times (total)
and clock cycles (per init) were needed:

19

224 bits 3380 ms 619 clock cycles
224 bits + key 11100 ms 2031 clock cycles
256 bits 3380 ms 619 clock cycles
256 bits + key 11560 ms 2115 clock cycles
384 bits 3440 ms 630 clock cycles
384 bits + key 17900 ms 3276 clock cycles
512 bits 4760 ms 871 clock cycles
512 bits + key 27860 ms 5098 clock cycles

There are no significant tradeoffs between speed and memory.

7.2.3 8 Bit

As there has neither been announced a reference platform nor does the author has an
8-bit system to do some tests, the estimates for 8-bit systems are only very rough.
As a raw estimate you need for all operations without the multiplication in the sbox

8-times as many steps on an 8-bit system than on a 64-bit system. For some extra logic
we should perhaps blow up the factor to 16-times. But on the other side most of these
operations can be done in parallel, so if you can afford to implement these steps in a
parallel manner, you are not so much slower. The bottleneck is the multiplication in
the sbox. Since there are many possibilities for optimization (one factor is constant)
and the possibilities of 8-bit processors vary, there could only be a rough estimate.
Since it is sufficient to shift the factor 26 times and add it to or subtract it from a
temporary value which has to be done for a decreasing number of bytes this gives about
26 · 8 · 3/2 = 312 byte-operations. The 8 is for the 8 bytes in a word, the 3 is for the
addition or subtraction, another one for a carry bit and a shift and the 2 is for the
decreasing number of bytes. But this also could be done in parallel and there is still
much room for optimization. Perhaps if optimized and parallelized it could be done
with the same speed as the other operations, namely 8 to 16 times slower than on a 64-
bit system (with the same clock-speed). Since multiplication is an old and well known
problem there are presumably some very tricky and efficient solutions.
The overall estimation then is somewhere between 8-times and about 300-times slower

than on a 64-bit system (with the same clock-speed). For exact estimates it seems one
has to implement it on different platforms.

References
[ABF+08] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J.

Hoch, John Kelsey, Adi Shamir, and Sébastien Zimmer. Second preimage
attacks on dithered hash functions. In Smart [Sma08], pages 270–288.

[BD06] Eli Biham and Orr Dunkelman. A framework for iterative hash functions –
haifa, 2006. second NIST hash workshop.

20

[BDPA07] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.
Sponge functions, 2007. ECRYPT Hash Workshop 2007.

[BDPA08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Smart [Sma08], pages
181–197.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-damgård revisited: How to construct a hash function. In
Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 430–448. Springer, 2005.

[Gol03] Oded Goldreich. Foundations of Cryptography, volume I, Basic Tools. Cam-
bridge University Press, reprinted and corrected edition, 2003.

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to cas-
caded constructions. In Matthew K. Franklin, editor, CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 306–316. Springer, 2004.

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the nos-
tradamus attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 183–200. Springer, 2006.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2n work. In Ronald Cramer, editor, EUROCRYPT,
volume 3494 of Lecture Notes in Computer Science, pages 474–490. Springer,
2005.

[Riv05] Ronald L. Rivest. Abelian square-free dithering for iterated hash functions,
2005. ECRYPT Hash Function Workshop 2005.

[Sma08] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Istanbul, Turkey, April 13–17, 2008. Proceedings, vol-
ume 4965 of Lecture Notes in Computer Science. Springer, 2008.

[Tho08] Søren S. Thomsen. Second preimage attack on MeshHash, 2008. http:
//www.mat.dtu.dk/people/S.Thomsen/meshhash/2ndpreimage.pdf.

21

http://www.mat.dtu.dk/people/S.Thomsen/meshhash/2ndpreimage.pdf
http://www.mat.dtu.dk/people/S.Thomsen/meshhash/2ndpreimage.pdf

	Introduction and History
	Algorithm specification
	Notation
	Overview
	Details
	Parameters
	The internal state
	Preprocessing
	Normal round and SBox
	Final block round
	Final rounds
	Compute the hash value by squeezing the sponge
	Usage as PRG
	The whole algorithm

	Design rationale
	Special Features
	Security
	Sponge
	Merkle-Damgård
	Attacks
	Expected strength

	Tunable security parameter for testing
	Efficiency and memory requirements
	Memory
	Efficiency
	64 Bit
	32 Bit
	8 Bit

