
White-Box Cryptography to Counteract SCARE

Julien Bringer1, Hervé Chabanne1,2, Jean-Luc Danger2

1 Sagem Sécurité
2 Télécom ParisTech

Abstract. White-box cryptography has been developed to protect pro-
grams against an adversary who has full access to their software imple-
mentation. It has also been suggested as a countermeasure against side
channel attacks and we examine here these techniques in this perspec-
tive, but one step further. We consider that the adversary has only access
to the cryptographic device through its side channels and his goal is to
recover the algorithm specifications. Moreover, in this work, we focus on
hardware implementations.
As a proof of concept, we here examine how to thwart Side Channel
Analysis for Reverse Engineering (SCARE) attacks by implementing a
block cipher following white-box techniques. We explain that with our
proposal no details on the running symmetric cipher is revealed. Our
proposal is illustrated by an example on Noekeon cipher and with the
study of implementation feasibility on Field-Programmable Gate Arrays
(FPGA).

Keywords. SCARE attacks, white-box cryptography, FPGA.

1 Introduction

White-box cryptography has been introduced in the domain of DRM with
the ambitious goal of protecting keys of a block cipher while letting the
whole access to the software implementing this algorithm to an adversary.
Practically, this leads ciphers to be represented by a network of look-up
tables. White-box implementations for DES and AES have been given
in [3, 4]. These protections can affect either an encryption algorithm E
(naked variant) or F o E o G where F and G are secret bijections. Today,
there had been big cryptanalytic efforts on many implementations (naked
or not) [2, 11, 13,17,19,25].

We here retain from white-box cryptography the use of look-up tables
which hides the structure of a block cipher. In this paper, we take back
this technique but in a different context. Our aim is now to protect a block
cipher implemented in hardware. Moreover, we move from a white-box
environment to a grey-box one where adversaries only get various side



channels from the running algorithm (see for instance [1]). The idea of
using white-box cryptography as a possible countermeasure against side
channel attacks is not new. However, we consider here the situation where
the adversary has not all the elements of the algorithm in his possession
and wants to recover the missing details by Side Channel Attacks Reverse
Engineering (SCARE).

SCARE has been introduced in [20] with a proprietary algorithm for
GSM phone. These results have been improved by [5]. [10] studies DES
in this context and is extended to Unknown Hardware Feistel Implemen-
tation by [21]. Use of proprietary algorithms and the protection of their
specifications can be conceived in organizations which can afford the risk
of relying on secret algorithms such as military groups or pay-tv / mobile
network operators.

We explain why white-box cryptographic implementations indeed pro-
vide an effective solution against SCARE. In particular, by constantly re-
newing the look-up tables - as in classical counter-measures against side
channels - we can reduce the side channels information on the specifica-
tions of the running block cipher to almost nothing. We also want to show
that our proposal can be implemented on today chips and we illustrate
this aspect with the cipher Noekeon [7].

The remainder of this paper is organized as follows. Section 2 explains
why, in a theoretical model, dynamic white-box cryptography actually
counteracts SCARE. Section 3 gives an overview of the Noekeon cipher.
Section 4 focuses on practical aspects of our proposal where we illustrate
our ideas by giving a complete FPGA implementation of the Noekeon
cipher in this white-box context.

2 Security Model and General Principle of our Protection

In white-box cryptography, the classical representation of the operations
and the use of the cryptographic keys within a cipher are generally turned
into a representation of look-up tables network, namely a set of look-up
tables {Tl}l∈L with some arcs between the tables (an arc corresponds to
the output of one table becoming an input of another one). Then the
look-up tables are obfuscated by encoding their input and output with
encoding bijections; for instance Tl would be replaced by fout ◦ Tl ◦ fin.
The choice of encoding functions of input and output is made according
to the existing arcs between the tables so that the entire implementation
does not change: if there is an arc from Tl to Tl′ , the output encoding of Tl



must be the inverse of the corresponding input encoding of Tl′ . Encodings
of several tables at one time are possible as well.

From a side channel perspective, this implementation technique has
yet some advantages. The implementation following a network of look-
up tables does not give a direct access to the algorithm specifications
and the main advantage is that a look-up table implementation improves
the resistance against side channel analysis as the activity of the internal
variables processed in the memory core are hardly discernible.

Remark 1. A look-up table access seems hard to distinguish by Simple
Power Analysis and the resistance against Differential Power Analysis
(DPA) is improved when the size of tables decreased. Indeed the size
of the tables has an effect onto the DPA signal-to-noise ratio; this is
illustrated for instance by [12].

2.1 Model

We detail here our security model and the corresponding assumptions.

Following the previous remark, we consider that an adversary cannot
obtain information on a look-up table neither by reading directly on it
nor by measuring some signals during its execution. That is we assume
that a look-up table does not leak information by itself.

However, we consider that the adversary can obtain information (par-
tial or not) on the input and output of a look-up table execution. We
assume that the adversary can make use of High-Order differential Side
Channel Analysis (HO-SCA; introduced in [16, 18] for High-Order DPA,
see also [14]) to obtain several such information during an execution of
the encryption algorithm.

We assume that the encryption algorithm implementation is made of
consecutive steps where each step corresponds to the parallel evaluation
of several look-up tables. We consider that the adversary can make several
measures during an execution but only one measure per step. In the
sequel, such an adversary is called an HO-SCA adversary.

We define also a generalized HO-SCA adversary as an HO-SCA ad-
versary which is enabled to make several measures at the same step.

2.2 Our Protection in a Theoretical Nutshell

In a white-box implementation, an attacker can read at any moment of
the execution the result provided by a look-up table, i.e. an encoded



output f(x) (for some encoding function f), where x corresponds to a
non-obfuscated intermediate result of the underlying cipher. In [19], the
authors explain – under some conditions on the cipher structure – how
this property can be exploited to recover the keys. In our context of grey-
box attacks, the attacker would encounter more difficulties to read an
entire result but the same situation may occur. To thwart this and at
the same time to achieve security against SCA, we introduce a dynamic
implementation by renewing the encoding bijections after each execution
of the cipher. This is somewhat a generalization of [6] which applies a
same random permutation to all the intermediate values during an AES
execution in order to achieve first-order DPA resistance.

Given an encryption algorithm E which can be implemented as a net-
work of look-up tables with the set of tables {Tl}l∈L, the implementation
at a time t is given by the tables {Tl[t] = fl,out[t] ◦ Tl ◦ fl,in[t]}l∈L.

After the implementation execution, a new set of random encoding
bijections {gl,in, gl,out} is chosen and the implemented tables are trans-
formed into gl,out◦Tl[t]◦gl,in, i.e. the implementation of the tables evolves
into {Tl[t

′] = fl,out[t
′] ◦ Tl ◦ fl,in[t′]}l∈L with fl,out[t

′] = gl,out ◦ fl,out[t] and
fl,in[t′] = fl,in[t]◦gl,in. We assume that the renewal process does not leak.
We assume moreover that every choice of input or output encodings is
made independently except if there is an arc between two tables impos-
ing the next encoding is the inverse of the previous one. More generally,
we say that two tables are correlated if the same input (resp. output)
encoding is used at the input (resp. output) of these tables because these
tables are related to a common table by an arc. In case of such correlated
encodings, we consider that implementation is arranged so that the cor-
related tables – those either with a same input encoding, or with a same
output encoding – are evaluated in parallel during the same step.

Therefore, any intermediate value is of the form fl,out[t](x) where the
fl,out[t] are different from one table to other ones as soon as they are not
related to a common next input by an arc. This last assumption holds as
the correlated tables (if any) are executed in a same step. As each fl,out

varies randomly after each execution, this leads to uniformity. This would
lead to the following resistance property against side channel analysis:

Given a fixed input message and a fixed algorithm (and key), the use
of such random encodings which are renewed after each execution implies
that an HO-SCA adversary cannot distinguish the intermediate values
from uniform ones.



If there are no correlated encodings, then the resistance holds against
a generalized HO-SCA adversary.

3 Noekeon Cipher [7]

We give here an overview of the Noekeon cipher. In the next section, we
describe a practical application of our idea to it.

Noekeon has been proposed to the NESSIE project in 2000 [7, 8,15].

Noekeon is a 128-bit block cipher over 16 rounds.

Noekeon maintains a state of four 32-bit words: a0, a1, a2, a3.

Each round is constituted by the following operations:

1. A first round constant is XORed to a0,

2. A linear transformation θ is applied to the four words a0, a1, a2, a3.
During the execution of θ, the round key is introduced by an XOR
into the state. “Consider the involutive mapping that modifies four
32-bit words by XORing a linear transformation of the XOR of the
other two words. This linear transformation consists of taking a word
X, rotating it over a byte to the left to give Y and rotating it over a
byte to the right to give Z and XORing X, Y and Z, Z ← X⊕Y ⊕Z.
θ consists of applying the described mapping, where the state words
in odd positions are modified (X = a0⊕a2, Z is XORed to a1 and a3),
followed by XORing the key to the state, followed by again applying
the described mapping, where the state words in even positions are
modified.” For k the working key and a the state, two vectors of four
32-bit words, the computation of θ(k, a) is illustrated by Table 1.

Table 1. Computation of θ(k, a)

temp← a0 ⊕ a2; temp← temp⊕ (temp >> 8)⊕ (temp << 8);
a1 ← a1 ⊕ temp;
a3 ← a3 ⊕ temp;
a0 ← a0 ⊕ k0; a1 ← a1 ⊕ k1; a2 ← a2 ⊕ k2; a3 ← a3 ⊕ k3;
temp← a1 ⊕ a3; temp← temp⊕ (temp >> 8)⊕ (temp << 8);
a0 ← a0 ⊕ temp;
a2 ← a2 ⊕ temp;

3. A second round constant is XORed to a0.



4. π1: The words a1, a2, a3 are rotated of 1, 5, and 2 bits, respectively,
to the left.

5. Γ : All bits in the same position in a0, a1, a2, a3 are grouped together
into nibbles which go through the same non-linear bijection γ (i.e. γ

is applied 32 times, once for each possible nibble).

6. π2: The words a1, a2, a3 are rotated of 1, 5 and 2 bits, respectively, to
the right.

Finally, after the last round, a final constant is XORed to a0 and θ is
applied.

Roughly speaking, each round of the cipher can be decomposed in a
non-linear step Γ and some linear ones. We have:

– 16 matrices Mj , j = 1, . . . , 16 representing the steps 1 to 3 (from first
round constant XOR to the second round constant XOR), one matrix
for each round,

– 16 applications of π1, Γ and π2,

– and a matrix M ′ for the final step (the final constant XOR and the
application of θ).

4 A White-Box Implementation of Noekeon

4.1 General Description

Our implementation follows the strategy of section 2 by the use of sev-
eral tables look-up representation with the inclusion of input and output
encoding functions to hide the key and the running values during com-
putations.

Each of the 32 applications of γ in the non-linear step Γ of each round
is implemented by a table look-up. A different 4×4 table is used for each
γ. Moreover, instead of γ, our table represents fi ◦ γ ◦ g−1

i , i = 0, . . . , 31
where the fi’s, gi’s are random bijections over nibbles. We need 16 × 32
= 512 different tables for the whole algorithm, which takes 512× 24 × 4
bits (4KBytes).

Following this, almost the whole implementation will operate on nib-
bles. We call the nibble of index i (for i ∈ {0, . . . , 31}), denoted nibi, the
nibble containing all the bits of index i of the current state a0, a1, a2, a3,
i.e. nibi = ai

0a
i
1a

i
2a

i
3 where ai

k denotes the i-th bit of ak.



Only π1, π2 are seen as operations on bits. In fact, as rotations of
different order of the words a0, a1, a2, and a3, they correspond to permu-
tations of bits between nibbles and can be simply hardwired.

Concerning the 128 × 128 binary matrices M1, . . . , M16 and M ′, we
observe from Table 1 that the output bits of a nibble do not depend on
all the input bits. By construction of θ, which is based on XORs and four
rotations of 8 bits (to the left and to the right), and for a given round key,
a nibble of the output state depends only on three nibbles of the input
state. The corresponding formulas for the update of nibi are given below
(where the additions of index are taken modulo 32):





























ai
0

ai
1

ai
2

ai
3





























←





























ai
0 ⊕ ki

0 ⊕
(

ai
1 ⊕ ki

1 ⊕ ai
3 ⊕ ki

3

)

⊕
(

ai+8

1 ⊕ ki+8

1 ⊕ ai+8

3 ⊕ ki+8

3

)

⊕
(

ai+24

1 ⊕ ki+24

1 ⊕ ai+24

3 ⊕ ki+24

3

)

ai
1 ⊕

(

ai
0 ⊕ ai

2

)

⊕
(

ai+8

0 ⊕ ai+8

2

)

⊕
(

ai+24

0 ⊕ ai+24

2

)

⊕ ki
1

ai
2 ⊕ ki

2 ⊕
(

ai
1 ⊕ ki

1 ⊕ ai
3 ⊕ ki

3

)

⊕
(

ai+8

1 ⊕ ki+8

1 ⊕ ai+8

3 ⊕ ki+8

3

)

⊕
(

ai+24

1 ⊕ ki+24

1 ⊕ ai+24

3 ⊕ ki+24

3

)

ai
3 ⊕

(

ai
0 ⊕ ai

2

)

⊕
(

ai+8

0 ⊕ ai+8

2

)

⊕
(

ai+24

0 ⊕ ai+24

2

)

⊕ ki
3





























For instance, nib0 is updated thanks to the input bits of nib0, nib8 and
nib24. This enables us to split the representation of a such matrix into 32
smaller (4 × 12) binary matrices which take less room to be represented
with look-up tables than a 128× 128 binary matrix. For i ∈ {0, . . . , 31},
the matrix used to update nibi at round j, as it would have been done
by Mj , is denoted below by U i

j (j ∈ {1, . . . , 16}) and the matrix used to

update nibi at the final step is denoted by U i
final.

The implementation of a 4×12 binary matrix U is realized as follows.
U is split into three 4×4 submatrices U [0], U [1], U [2] and the computation
of U.T (x0, . . . , x11) becomes

U.T (x0, . . . , x11) = U [0].T (x0, . . . , x3) ⊕ U [1].T (x4, . . . , x7)

⊕U [2].T (x8, . . . , x11)

where ⊕ corresponds to an XOR on vectors of GF (2)4. Each U [l] is rep-
resented as a 4× 4 look-up table, for a size of 8Bytes, and each XOR are
seen as 8 × 4 look-up tables, for a size of 128Bytes. Moreover, the same
input/decoding strategy as for γ is respected, i.e. any 4× 4 look-up table
T is encoded as f ◦T ◦ g for some random bijections f, g over nibbles and
any 8× 4 look-up table T is encoded as f ◦ T ◦ (g′, g′′) for some random



bijections f, g′, g′′ over nibbles. It leads to three 4 × 4 encoded look-up
tables and two different 8×4 encoded look-up tables (one for each XOR).
Thus, one 4× 12 binary matrix is implemented on 280Bytes.

By applying this method to all the U i
j (i ∈ {0, . . . , 31}, j ∈ {1, . . . , 16}∪

{′final′}), we obtain 32 × 17 × 5 look-up tables for an overall size of
32× 17× 280Bytes, i.e. 152 320 Bytes.

In addition to the 4×4 input/output encodings, we also insert mixing
linear bijections to further disguise the representation of these matrices
(as introduced in [4] to hide the separation of a bit strings into nibbles).
For this aim, we randomly choose an invertible 12 × 12 matrix MBi

j

for each U i
j , and instead of implementing directly the 5 look-up tables

related to U i
j , we write U i

j as the product of the two matrices U i
j .MBi

j and

(MBi
j)

−1. The implementation of U i
j .MBi

j as look-up tables is realized

as explained above for U i
j and we add the implementation of the 12× 12

matrix (MBi
j)

−1 by following the same principle, i.e. splitting into nine 4×
4 submatrices with the associated XOR and the additional input/output
encodings. For one matrix (MBi

j)
−1, it gives 3 × 3 = 9 encoded look-up

tables of size 4×4 and 3×2 = 6 encoded XOR look-up tables (840Bytes).

With these representations of the matrices M1, . . . , M16, M ′, Γ and
hardwired π1 and π2, the total number of look-up tables is 16×32+17×
32× 5 + 17× 32× 3× 5 = 11392 for an overall size of 599 kBytes.

Remark 2. In the section 4.3, another architecture with 16× 16 matrices
is also explained to optimize further the implementation and the inde-
pendence of the tables.

4.2 Choice of Encoding Functions

The above description is made with the choice of random bijections as
encoding functions. Although it is the classical strategy with static en-
codings, our aim is to renew the encoding functions after each execution
of the algorithm, which enables us to select bijective functions with a
simpler representation.

Note also that all the input/output encoding functions are not fully
independent because the output encoding function which acts on a nibble
at one step must be followed by its inverse as the input encoding functions
of the next operation on this nibble. In particular, as π1 and π2 operate
like permutation of bits between nibbles, the encoding functions have to
be taken accordingly.



For an easy compatibility of the encodings with these permutations,
we design specific functions for the input and output encoding which are
before or after the application of π1 and π2, i.e. around γ, at the output
of the U i

j .MBi
j (for j ∈ {1, . . . , 16}) and at the input of (MBi

j)
−1 (for j ∈

{2, . . . , 16}∪{′final′}). We design these encoding functions f : GF (2)4 →
GF (2)4 as an XOR with a random padding cf = (cf,0, cf,1, cf,2, cf,3) – that
is f(x) = x⊕ cf – so that the inverse can be evaluated bit by bit.

For instance, given all the output encoding functions g0
j , . . . , g

31
j of the

U0
j , . . . , U31

j at some round j, it enables us to design π1-compatible input

encoding functions f0
j , . . . , f31

j of the 32 look-up tables for γ.

An example: The first look-up table for γ operates on the first nibble
of the state. This nibble after permutation of the state by π1 comes from
the bit 0 of nib0, the bit 1 of nib31, the bit 2 of nib27 and the bit 3 of
nib30. If gi

j(x) = x⊕ (cgi
j
,0, cgi

j
,1, cgi

j
,2, cgi

j
,3), then f0

j is defined by f0
j (x) =

x⊕ (cg0
j
,0, cg31

j
,1, cg27

j
,2, cg30

j
,3).

In the next section, we consider that encodings for inputs of XOR
table are also chosen in this form. This enables us to lighten further the
architecture.

Remark 3. Note that in our grey-box context, we can relax constraints on
the encoding functions as the adversary has no direct access to the look-up
tables but only to their side channels. We here only have to periodically
renew these tables and a simple linear mask is sufficient to this purpose.
Moreover, this simplifies the renewal (cf. end of section 4.3).

4.3 Implementation Complexity in FPGAs

The Noekeon ciphering is based on nibble calculations, a nibble being a
four-bit bundle. Therefore the FPGA architectures based on 4-bit look-up
tables (LUT4) are well suited to implement the Noekeon algorithm. For
instance the π1, Γ and π2 functions can be implemented by 32 4×4 tables
for each round. A table being a set of four FPGA LUT4s, there is a need
of 32×16×4=2048 LUT4s for the whole functions (π1, Γ and π2).

Architecture of the Mj and M
′ A first implementation consists in

considering 32 parallel computations of nibbles at each round as explained
in section 4.1. Hence each Mj function, for j ∈ {1, . . . , 16}, or M ′ is
implemented by means of 32 basic blocks U i

j (i ∈ {1, . . . , 32}) having the



same architecture. Figure 1 represents the basic block which computes
one nibble from 3 input nibbles.

4x4 4x4 4x4 4x4 4x4 4x4 4x4 4x4

4x4 4x4 4x4

4x4

XOR XOR XOR

XOR

MB
−1

nibi nibj nibk nibi nibj nibk nibi nibj nibk

U.MB

nibout

Fig. 1. Nibble computation block for U i
j .

This architecture is very regular as it is composed of four identical
structures. This structure corresponds to 12×4 tables composed of three
4×4 tables whose output are XORed to form the outputs of (MBi

j)
−1 or

output of U i
j .MBi

j

Each 4×4 table and group of four three-input XOR need four LUT4s.
This gives a total of 64 LUT4s for each nibble and 17×32×64=34816

LUT4s for the whole Mj and M ′ functions.

This architecture can be optimized by considering eight parallel pro-
cessings of four nibbles. Each bundle is composed of four nibbles

(nibi, nibi+8, nibi+16, nibi+24)

and can be calculated from the same bundle at the input. Therefore the
architecture can use 16×16 tables composed of 16×4 tables based on
four 4×4 tables as illustrated by Figure 2. Another advantage of this
architecture is that all output encodings at the same level can be chosen
independently thus leading to resistance against a generalized HO-SCA
adversary (cf. section 2).



XOR

XOR

4x4 4x4 4x4 4x4 4x44x4 4x4 4x4 4x4 4x4 4x4 4x4 4x4 4x4 4x44x4

4x44x44x44x44x44x44x44x44x44x44x44x44x44x44x44x4

XOR XOR XOR

XOR XOR XOR

nibout0

MB
−1

nib16 nib24nib8nib0 nib16 nib24nib8nib0 nib16 nib24nib8nib0 nib16 nib24nib8nib0

nibc nibdnibbniba nibc nibdnibbniba nibc nibdnibbniba nibc nibdnibbniba

U.MB

niba nibb nibc nibd

nibout24nibout16nibout8

Fig. 2. four-Nibble computation block for U i
j .

This architecture is made up of two identical structures corresponding
to (MBi

j)
−1 and U i

j .MBi
j . Each 4×4 table and group of four four-input

XOR can be implemented with four LUT4s. This gives a total of 160
LUT4s for each bundle of nibbles and 17×8×160=21760 LUT4s for the
whole Mj and M ′ functions.

By including the π1, Γ and π2 functions the implementation requires
23808 LUT4s for the whole Noekeon implementation.

Feasibility in Current FPGAs Most SRAM-based FPGAS [22–24]
have cells composed of LUT4 but recent families have a more advanced
cell structure. For instance the STRATIX II, III and IV from ALTERA
take advantage of the Adaptative LUT Module which could be configured
as two independent LUT4. The VIRTEX 5 family from XILINX has six-
input look-up (LUT6) which can output two signals. Table 2 summarizes
the occupation percentage in the biggest SRAM-based FPGA devices.
Columns 4×4, 16×4 and TOTAL indicate respectively the number of
cells for the 4×4 table, the 16×4 table and the total number of cells
for the proposed Noekeon implementation. In the rightmost column the
minimum occupancy rate is indicated for the biggest devices. It remains
relatively low and proves the feasibility in most devices.

Encoding Renewal The tables have to be updated periodically in order
to change the masking functions fl,in and fl,out (cf. section 2). Ideally they
have to be changed after each ciphering. In FPGA a solution could be to



Table 2. Occupation rate

Device cell type 4×4 16×4 TOTAL min cell max cell min occ.

CYCLONE II LUT4 4 20 23808 4608 68416 34.8%
CYCLONE III LUT4 4 20 23808 5136 119088 20%

STRATIX LUT4 4 20 23808 10570 79040 30.1%
STRATIX II ALM 2 10 11904 6240 71760 16.6%
STRATIX III ALM 2 10 11904 19000 135200 8.8%
STRATIX IV ALM 2 10 11904 91200 212480 5.6%

LATTICE ECP2 LUT4 4 20 23808 6000 68000 35%
LATTICE SC/M LUT4 4 20 23808 15000 115000 20.7%

SPARTAN3 LUT4 4 20 23808 1728 74880 31.8%
VIRTEX2 PRO LUT4 4 20 23808 3168 99216 24%

VIRTEX4 LUT4 4 20 23808 13824 200448 11.9%
VIRTEX5 LUT6 2 10 11904 12480 207360 5.7%

reconfigure it either completely or partially (only for the XILINX devices)
but the time needed for reconfiguration would reduce significantly the
ciphering rate. Another solution is to take advantage of LUT4 which are
configurable in distributed memory. This feature is available in LATTICE
and XILINX devices. In this case the LUT4 can be dynamically changed
by the FPGA itself. For this, the FPGA should embed a fast True Random
Number Generator (TRNG), as e.g. the one presented in [9], to generate
new fl,in and fl,out, and calculate the inverse functions (note that the
latter operation is quite direct for encodings which consist of padding).
At each cycle, one word of all the tables except the ones of index j being
read at round j, can be written. As Noekeon has 17 rounds and all the
tables have 16 words, almost all the tables can be updated during one
ciphering.

5 Conclusion

In this paper, we show how to protect the content of a block cipher
against reverse engineering by side-channel attacks. To this end, we use
the look-up tables representation which prevail in the domain of white-box
cryptography. When these tables are periodically renewed - while keeping
the same functionality - we can reduce to few the information given to an
adversary about the underlying algorithm. We describe a proof of concept
of our ideas as well as the implementation feasibility inside a FPGA of
the block cipher Nokeon.



Some more work is still needed to tune the overall level of protection
provided by our solution to keep good encryption performances. The look-
up table renewal strategy is a key protection feature. Its implementation
will be investigated in future works by using for instance on the fly FPGA
reconfiguration. We in fact want to think in the future at our proposal in
terms of System On Chip.

References

1. The Side Channel Cryptanalysis Lounge. Website: http://www.crypto.

ruhr-uni-bochum.de/en_sclounge.html.
2. Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a White

Box AES Implementation. In Helena Handschuh and M. Anwar Hasan, editors,
Selected Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science,
pages 227–240. Springer, 2004.

3. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
White-Box DES Implementation for DRM Applications. In Security and Privacy
in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, Washington,
DC, USA, November 18, 2002, Revised Papers, volume 2696 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2002.

4. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-
Box Cryptography and an AES Implementation. In Kaisa Nyberg and Howard M.
Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in
Computer Science, pages 250–270. Springer, 2002.

5. Christophe Clavier. An Improved SCARE Cryptanalysis Against a Secret A3/A8
GSM Algorithm. In Patrick Drew McDaniel and Shyam K. Gupta, editors, ICISS,
volume 4812 of Lecture Notes in Computer Science, pages 143–155. Springer, 2007.

6. Jean-Sébastien Coron. A New DPA Countermeasure Based on Permutation Ta-
bles. In SCN, volume 5229 of Lecture Notes in Computer Science, pages 278–292.
Springer, September 2008. Amalfi, Italy.

7. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
Proposal: NOEKEON, 2000.

8. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. On
Noekeon, no!, 2001.

9. J-L Danger, S. Guilley, and P. Hoogvorst. High speed true random number gener-
ator based on open loop structures in fpgas. Elsevier Microelectronics Journal, to
be published 2009.

10. Rémy Daudigny, Hervé Ledig, Frédéric Muller, and Frédéric Valette. SCARE of
the DES. In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, ACNS,
volume 3531 of Lecture Notes in Computer Science, pages 393–406, 2005.

11. Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis of
White Box DES Implementations. In Selected Areas in Cryptography, 14th In-
ternational Workshop, SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised
Selected Papers, volume 4876 of Lecture Notes in Computer Science, pages 278–295.
Springer, 2007.

12. S. Guilley, Ph. Hoogvorst, and R. Pacalet. Differential Power Analysis Model
and some Results. In Proceedings of WCC/CARDIS, pages 127–142, Aug 2004.
Toulouse, France.



13. Matthias Jacob, Dan Boneh, and Edward W. Felten. Attacking an Obfuscated
Cipher by Injecting Faults. In Security and Privacy in Digital Rights Management,
ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18, 2002,
Revised Papers, volume 2696 of Lecture Notes in Computer Science, pages 16–31.
Springer, 2002.

14. Marc Joye, Pascal Paillier, and Berry Schoenmakers. On second-order differential
power analysis. In Josyula R. Rao and Berk Sunar, editors, CHES, volume 3659
of Lecture Notes in Computer Science, pages 293–308. Springer, 2005.

15. Lars R. Knudsen and Havard Raddum. On Noekeon, 2001.
16. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO, volume

1666 of LNCS, pages pp 388–397. Springer, 1999.
17. Hamilton E. Link and William D. Neumann. Clarifying Obfuscation: Improving

the Security of White-Box DES. In ITCC (1), pages 679–684. IEEE Computer
Society, 2005.

18. Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Resis-
tant Software. In CHES, LNCS, pages 238–251. Springer-Verlag, 2000.

19. Wil Michiels, Paul Gorissen, and Henk D.L. Hollmann. Cryptanalysis of a Generic
Class of White-Box Implementations, 2008. To appear in the proceedings of Se-
lected Areas in Cryptography 2008, 15th International Workshop, SAC 2008.

20. Roman Novak. Side-Channel Attack on Substitution Blocks. In Jianying Zhou,
Moti Yung, and Yongfei Han, editors, ACNS, volume 2846 of Lecture Notes in
Computer Science, pages 307–318. Springer, 2003.

21. Denis Réal, Vivien Dubois, Anne-Marie Guilloux, Frédéric Valette, and M’hamed
Drissi. SCARE of an Unknown Hardware Feistel Implementation. In Gilles Gri-
maud and François-Xavier Standaert, editors, CARDIS, volume 5189 of Lecture
Notes in Computer Science, pages 218–227. Springer, 2008.

22. Altera FPGA designer: http://www.altera.com/.
23. Lattice FPGA designer: http://www.latticesemi.com/.
24. Xilinx FPGA designer: http://www.xilinx.com/.
25. Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of

White-Box DES Implementations with Arbitrary External Encodings. In Selected
Areas in Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada,
August 16-17, 2007, Revised Selected Papers, volume 4876 of Lecture Notes in
Computer Science, pages 264–277. Springer, 2007.


