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Abstract

We introduce a new attack model for collusion secure codes, and analyze the collusion resistance of two
version of the Tardos code in this model, both for binary and non-binary alphabets. The model allows
to consider signal processing and averaging attacks via a set of symbol detection error rates. The false
positive rate is represented as a single number; the false negative rate is a function of the false positive
rate and of the number of symbols mixed by the colluders.

We study two versions of the q-ary Tardos code in which the accusation method has been modified so
as to allow for the detection of multiple symbols in the same content segment. The collusion resilience
of both variants turns out to be comparable. For realistic attacker strengths the increase in code length is
modest, demonstrating that the modified Tardos code is effective in the new model.

1 Introduction
Fingerprinting provides a means for tracing the origin and distribution of digital data. Before distribution
of digital content, it is modified by applying an imperceptible fingerprint, which plays the role of a per-
sonalized serial number. The fingerprint is usually embedded through a watermarking algorithm. Once
an unauthorized copy of the content is found, the identity of at least one guilty user, who participated in
the creation of the unauthorized copy, can be identified. The latter can be done using a tracing algorithm,
which outputs a list of allegedly guilty users who collaborated to generate the unauthorized copy. This is
also known as ‘traitor tracing’ or ‘forensic watermarking’.

Reliable tracing of traitors requires security against attacks that are aiming to remove any personal
information from a copy. Collusion attacks, where a group of pirates collude to compare there copies, are
a particular threat. As any differences between the copies have to arise from the fingerprint and not the
contents, such comparison gives information which can be used to remove the fingerprint.

Coding theory has produced a number of collusion-secure codes (e.g. [2, 10]). As these are only codes,
they must be combined with some kind of embedding scheme (or modulation), such as a watermarking
system. This can be viewed as a two-layer model [5, 8], where the coding layer encodes user identities to
protect against collusion attacks, and the underlying watermarking layer hides the message in the digital
contents.

Until now, the development of watermarking schemes and fingerprinting codes has been performed
mostly independent of each other; the interface between the fingerprinting code and the watermarking
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system has been specified in terms of the marking assumption and an attack model which specifies the
type of symbol manipulation that the attackers are able to perform. According to the marking assumption,
colluders are able to perform modifications only in those content segments where the colluders do not all
receive identical information. (These segments are called detectable positions.) The attack model describes
the power of the colluders. The commonly used restricted digit model only allows colluders to ‘mix and
match’ their copies of the content, i.e. the unauthorized copy is only composed of symbols that the attackers
have available. The unreadable digit model allows for slightly stronger attacks: Besides mixing the content
segments, the attackers can also erase the embedded fingerprint at detectable positions. Under the arbitrary
digit model the attackers can put arbitrary symbols in detectable positions, while the general digit model
additionally allows erasures at detectable positions.

However, all these attack models fail to completely capture the properties of the watermarking layer.
The mismatch is especially pronounced in the case of spread spectrum watermarks. First, the marking
assumption does not always hold, since signal processing attacks are occasionally able to remove a wa-
termark symbol in undetectable positions. Furthermore, signal processing attacks result in symbol errors
that seem to match the general digit model at a first glance, but actually the general digit model allows for
unrealistically strong attacks. Signal processing can induce the following symbol detection errors:

• If the colluders possess many differently watermarked copies of a segment, they have a good chance
of erasing the watermark in that segment.

• Depending on the detector threshold, ‘false positive’ symbol detections can be induced by adding
noise.

These detection errors occur with a certain (low) probability. However, the general digit model allows
the attackers a 100% success rate. (As a consequence, efficient code constructions for this model are not
known.)

In view of this discrepancy between the potency of actual attacks on the one hand and the general digit
model on the other hand, we introduce a new attack model which we call the combined digit model. We
demonstrate that our model is realistic, and consistent with the use of spread-spectrum watermarking in
the watermarking layer. It allows for symbol errors with certain (parametrisable) probabilities, resulting
from common attacks in the watermarking layer. We show that an efficient fingerprinting code can be
constructed in our attack model, namely a variant of the arbitrary-symbol Tardos code [11]. We analyze
the performance of this fingerprinting code.

1.1 Related Work
Several fingerprinting codes were proposed in the past in order to solve the problem of collusion attacks
against forensic tracking watermarks. Most notable are the codes proposed by Boneh and Shaw [2] and Tar-
dos [10]. The latter one is a fully randomized binary code that achieves a code length ofm = 100c20dln 1

ε1
e,

which is asympotically optimal. (Here c0 denotes the number of colluders that can be resisted, and ε1 is the
maximum allowed probability of accusing a fixed innocent user.) Furon et al. [3] presented an alternative
security proof of the Tardos scheme.

Blayer and Tassa [1], Škorić et al. [12] and Nuida et al. [6] showed how to significantly reduce the
constant ‘100’ in the length bound. The paper [11] also provided a construction for non-binary alphabets
and showed how to reduce the code length even further by introducing a symbol-symmetric accusation
strategy. All these results were derived under the common assumption of the Restricted Digit Model. As
noted in [11] the nonbinary Tardos code can also be analyzed in the Unreadable Digit Model, where the
colluders may erase fingerprint symbols with 100% success rate in detectable positions. In this case, the
required code length is considerably longer, which makes the scheme less practical. It must be noted,
however, that the attackers in the Unreadable Digit Model are unrealistically powerful.

Another attack model has been defined by Guth and Pfitzmann in [4], which allows for some attacks
against embedded watermarks such as ‘mix and match’ of the fingerprint symbols that the colluders re-
ceived. Thus this attacker model is less strong than the one we use; codes for their model, based on the
Boneh-Shaw code, can be found in [4, 8].
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Xie et al. [13] independently introduced two alternative accusation methods for the Tardos code, as well
as an attacker model which allows attackers to perform signal processing attacks on the content (which
amounts to occasionally falsely detected fingerprint symbols) as well as mixing of several watermark sym-
bols in one position. Their analysis is purely experimental, and shows that the two accusation methods
both perform well, almost identically.

Even though spread-spectrum watermarking is known to provide a certain level of collusion-security in
itself, without the need for an additional coding or fingerprinting layer, such solutions scale very poorly in
the number of users [8]. Existing results have been limited to simulations up to about 5000 users.

1.2 Contribution and outline
In this paper we introduce an attack model which we call the Combined Digit Model. The content owner’s
WM detector can detect multiple symbols in a content segment. In each segment the attackers may use
multiple symbols to create their pirated version (provided that they have observed them, in accordance
with the marking condition). Depending on how many symbols they used, there is a probability for each of
the symbols that it will not be detected. In addition, the colluders may do a processing attack. We represent
this as a small probability that a symbol gets detected which was not used in the attack. Simulation results
confirm that such an attack model is realistic.

We use two accusation methods which are an extension of the symbol-symmetric accusation method in
[11], adapted to the detection of multiple symbols per segment; both methods were concurrently proposed
in [13]. We analyze the two accusation methods in a different way than [13]. We focus on a different
performance parameter, one that is linked to the minimum code length required to resist c0 colluders.
Furthermore, our study is more analytic. The performance parameter is based on the expectation value of
the coalition’s accusation sum and on the variance of an innocent user’s accusation. These quantities are
computed almost completely analytically, with one numerical step at the end. An important benefit of this
approach is that it is possible to identify analytically a ‘worst case’ pirate strategy that forces the content
owner to use a long code.

The outline of the paper is as follows. In Section 2 we introduce the Combined Digit Model and provide
evidence from simulations that the model adequately captures the essential properties of coalition attacks.
In Section 3 we describe the extension of the symmetric q-ary fingerprinting method of [11]. In Section 4
we study the performance of the two accusation methods.

2 The attack model

2.1 Notation
Let Σ be the alphabet of the fingerprinting code, n be the number of users to be accommodated in the system
and m the number of symbols in the fingerprint (the number of segments in the content). Furthermore,
we denote with ε1 the probability that one specific innocent user gets falsely accused and with ε2 the
probability that the accusation fails to accuse any guilty user. The distributed codewords can be arranged
as an n × m matrix X, where the j-th row corresponds to the fingerprint given to the j-th user. Let
C be a set of colluding users. We denote by c the number of colluders and by XC the c × m matrix
of codewords distributed to the colluders. The colluders use a (possibly nondeterministic) strategy ρ to
create an unauthorized copy of the content from their personalized copies. The unauthorized copy carries
a fingerprint y which depends on both the strategy and the received codewords, i.e. y = ρ(XC).

Note that while Xji ∈ Σ, the attacked fingerprint yi cannot be expressed as a symbol in Σ.

2.2 The Combined Digit Model
The proposed Combined Digit Model is based on the following observations:

• Current watermarking schemes offer a considerable level of robustness; however, it is still possible
to erase watermarks with a small probability, e.g. due to the addition of noise to the content. Thus,
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the code must be able to deal with erasures even in undetectable positions.1

• Watermark detectors have a small probability of ‘false positives’ on the watermarking level, i.e., an
attacker may modify content (e.g. by adding noise) such that a watermark is present even though
a mark was never actively embedded. Even though the probability of this event is rather small, the
occurrence of false positives should be part of the model. It was noted in [9] that even an averaging
attack by colluders who all have a ‘0’ can result in detection of a ‘1’.

• For big coalitions, the colluders have a large number of differently watermarked content segments
available. The more symbols they have in a detectable position, the easier it is for them to erase the
watermark in the colluded copy. On the other hand, if they use averaging with an insufficient number
of different symbols, then they run the risk that multiple symbols get detected.

Traditional fingerprinting codes cannot cope with this extended attack model. We thus introduce the Com-
bined Digit Model as follows. During watermark embedding, a fingerprint (a row of X) is embedded in
the content. For this purpose, the content is divided into m segments; in each segment one symbol is em-
bedded. The colluders output an object carrying a fingerprint y = (y1, . . . , ym). During the accusation
process, a watermark detector is available that returns a score for each symbol α ∈ Σ (e.g. a normalized
correlation value). We will write Wiα ∈ {0, 1} for the watermark detector response on segment i when the
presence of the watermark encoding symbol α ∈ Σ is tested.

The Combined Digit Model is parametrized through a number of different probabilities, representing
the power of the colluders:

• We denote with r the probability of the event Wiα = 1, given that the colluders did not use the
symbol α to create yi. (Either they did not have it or they chose not to use it.) We assume that this
probability depends neither on i nor on α.

• Let Ωi denote the set of symbols present in the i’th column of XC , and ωi = |Ωi|. Let Ψi denote the
set of symbols that the colluders use to create yi, and ψi = |Ψi|. (Necessarily Ψi ⊆ Ωi, Ψi 6= ∅.)
We define uψ to be the probability of the event Wiα = 1 for α ∈ Ψi. Again, we assume that uψ is
independent of i and α.

The numbers r and uψ depend on the amount of noise that can be introduced by the attackers. The attack
model implies that whenever the attackers make use of ψ different symbols in a segment, the detector will
trigger on these symbols with probability uψ , while the detector will only be triggered with probability
r on the other symbols. For ψ = 1, the detection probability is close to 1. We take uψ as a decreasing
function of ψ. The choice of ψ is part of the colluder strategy ρ. (And ψi cannot exceed ωi.)

In the limiting case r = 0, u1 = 1, uψ = 0 (for ψ ≥ 2) the Combined Digit Model reduces to the
Unreadable Digit Model.2 When multiple symbols are used by the colluders, uψ is zero and no symbol is
detected by the watermark detector. This is equivalent to erasure. Note that the colluders have free choice
(in a detectable position) to put a single symbol or an erasure. Under some circumstances an erasure is
actually worse for the coalition than a clearly identifiable single symbol [11].

1It was already noted in [10] that the binary Tardos code can easily deal with such noise. The code only has to be made slightly
longer.

2Reminder: In the Unreadable Digit Model the allowed attacks in a detectable position i are (a) choose any of the symbols in Ωi,
and (b) erasure.
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Table 1: Notation used throughout the paper.
Symbol Meaning

n number of users
m number of segments
Xji watermark symbol of user j in segment i
Σ the alphabet
q the numbers of symbols in the alphabet. (q = |Σ|)
Fqκ prob. density for p(i) in the 1st step of generating X
κ shape parameter for Fqκ
p

(i)
α Prob[Xji = α] in the 2nd step of generating X
C the set of colluders
c the number of colluders. (c = |C|)

XC the part of X seen by the colluders

b
(i)
α number of occurrences of symbol α in i’th column of XC

yi attacked watermark in segment i
ρ the colluder strategy. y = ρ(XC)
Ωi the set of symbols in column i of XC

ωi number of distinct symbols in column i of XC ; ωi = |Ωi|
Ψi the set of symbols used by the colluders to create yi
ψi number of distinct symbols used to create yi. (ψi = |Ψi|)
Wiα detector response for symbol α in segment i
r Prob[Wiα = 1] for α /∈ Ψi

uψ Prob[Wiα = 1] for α ∈ Ψi, with |Ψi| = ψ

Φi {α ∈ Σ : Wiα = 1}
ϕi |Φi|
Aj accusation of user j; accusation method A
Bj accusation of user j; accusation method B
AC coalition accusation

∑
j∈C Aj

BC coalition accusation
∑
j∈C Bj

Ni
∑
α∈Φi

b
(i)
α

Pi
∑
α∈Φi

p
(i)
α

〈x〉 1 if the boolean x is TRUE, 0 if x is FALSE
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2.3 Empirical justification of the attack model
We briefly present simulation results that corroborate the assumptions we made in formulating the Com-
bined Digit Model. The simulations are based on the model of Zhao et al. [14], using Gaussian spread-
spectrum watermarking with a non-blind detector. The detector uses the Z statistic as recommended in
[14]. Each of the q-ary symbols in the outer (Tardos) code is represented by a random Gaussian signal of
length n = 100, mean µ = 0, and variance σ2 = 1/9. The employed attack was averaging with added
uniform noise, identified as the best known attack in [7]. Following [14], distortion was measured by MSE-
JND (Mean Squared Error Just-Noticeable-Difference), and the attack was calibrated to give an average
normalised MSE-JND of 0.01 per sample. The resulting error rates from simulations with 1000 tests are
shown in Figures 1 and 2.
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Figure 1: False positive detection rate r as a function of the detection threshold, plotted for ψ = 1, . . . , 7.

Fig. 1 shows the false positive rate r as a function of the detection threshold, plotted for several values
of ψ. Note that all the plots coincide, demonstrating that r does not depend on ψ, exactly as we assumed
in our model. It allows us to express the true positive rate uψ as a function of r instead of as a function of
the detection threshold. This is shown in Fig. 2. As expected, this curve shows a trade-off between false
positive and false negative, and uψ is a decreasing function of ψ. We will use the curves in Fig. 2 to provide
realistic numbers uψ for Section 4. Table 2 lists these numbers.

Table 2: uψ tabulated as a function of r and ψ.
ψ

2 3 4 5 6
r 0.01 0.83 0.37 0.22 0.12 0.08

0.05 0.94 0.65 0.42 0.29 0.20
0.10 0.96 0.75 0.55 0.42 0.31
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Figure 2: True positive rate uψ as a function of false positive rate r. Shown are the plots for ψ = 1, · · · , 7
(from top to bottom).

3 Symmetric Tardos fingerprinting code in the combined digit model
For the construction we use a variant of the ‘symmetric’ Tardos code proposed in [11]. The code generation
and embedding steps remain unchanged; only the accusation process is modified to deal with the combined
digit model.

3.1 Code generation and embedding
For completeness, we give a brief summary of the code generation and embedding steps, which are a
generalization of Tardos’s binary code [10]; for more details we refer to [11].

The distributor produces an n ×m matrix X of q-ary symbols; the rows of the matrix correspond to
the fingerprints for the individual users. The matrix is filled in a two-step procedure: The distributor first
generates m independent random vectors p(i) = (p(i)

0 , · · · , p(i)
q−1) for 1 ≤ i ≤ m, where the components

satisfy3 p
(i)
α ∈ [0, 1] and

∑
α∈Σ p

(i)
α = 1. We use the notation p̄ = {p(i)}mi=1. The random variables follow

a special case of the Dirichlet distribution, p(i) ∼ Fqκ,

Fqκ(p) = N−1
qκ

∏
α∈Σ

p−1+κ
α with κ > 0. (1)

HereNqκ = [Γ(κ)]q/Γ(κq) is a normalising constant ensuring that
∫
J(q)

dqp Fqκ(p) = 1. The expression∫
J(q)

dqp stands for
∫ 1

0
dp0 · · ·

∫ 1

0
dpq−1δ(1−

∑q−1
β=0 pβ), where δ(·) is the Dirac delta function. The delta

function ensures that the integration is done only over p such that
∑
β pβ = 1. The parameter κ determines

the shape of Fqκ. For the binary alphabet one sets κ = 1/2, reproducing Tardos’ distribution function [10].
In the second step, the distributor generates the columns of X independently. In the i-th column, the

vector p(i) determines the probabilities of generating each specific symbol in the alphabet: Prob[Xji =
α] = p

(i)
α .

Before the content is released to user j, it is watermarked with the j-th row of the matrix X.
3For symplicity we have set the ‘cutoff parameter’ (see [11]) to zero. This is allowed for nonbinary alphabets.
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3.2 Accusation
The distributor extracts the attacked fingerprint y from the unauthorized copy. For each user j, the distrib-
utor computes the ‘accusation sum’ from X, p̄ and y. He decides that the user j is guilty the accusation
sum exceeds a threshold Z, where Z is referred to as the ‘accusation threshold’. The list of accused users
is denoted as σ(p̄,X, y).

We discuss two possible ways of computing the accusation sum. They both make use of the following
weight functions, which were introduced in [10],

g(1, p) =
√

1− p
p

; g(0, p) = −
√

p

1− p (2)

We will often use the notation g1(p) = g(1, p) and g0(p) = g(0, p). The weight functions have the special
property that

pg1(p) + (1− p)g0(p) = 0 ; p[g1(p)]2 + (1− p)[g0(p)]2 = 1. (3)

Accusation sum, method A. The watermark detector is applied to y, for every location 1 ≤ i ≤ m for
every watermark symbol α ∈ Σ to obtain the values Wiα. The accusation sum Aj is computed as

Aj =
m∑
i=1

∑
α∈Σ

Wiαg(〈Xji == α〉, p(i)
α ), (4)

where 〈x〉 returns the value 1 if the Boolean formula x evaluates to TRUE and 0 otherwise. Thus, for each
user, m sets of Tardos accusations are summed, scaled by the value Wiα. The collective accusation sum of
the coalition is defined as

AC =
∑
j∈C
Aj =

m∑
i=1

∑
α∈Σ

Wiα

{
b(i)α g1(p(i)

α ) + [c− b(i)α ]g0(p(i)
α )
}
. (5)

Here b(i)α stands for the number of colluders who receive symbol α in segment i.

Accusation sum, method B. We denote with

Φi = {α ∈ Σ : Wiα = 1} (6)

the set of symbols that are detected at content segment i. The cardinality of this set is ϕi = |Φi|. We further
introduce the notation

Pi =
∑
α∈Φi

p(i)
α ; Ni =

∑
α∈Φi

b(i)α . (7)

The accusation sum Bj is computed as

Bj =
m∑
i=1

g(〈Xji ∈ Φi〉, Pi). (8)

Thus, instead of accusing for each symbol separately as in method A, the symbols are grouped into two
sets (detected/undetected in yi), and a user’s accusation is based on the presence of his symbol Xji in one
of these sets. The collective accusation sum of the coalition is defined as

BC =
∑
j∈C
Bj =

m∑
i=1

{
Nig1(Pi) + [c−Ni]g0(Pi)

}
. (9)

Lemma 1 In the limit of the Unreadable Digit Model (r = 0, u1 = 1, uψ = 0 for ψ ≥ 2), accusation
methods A and B are equivalent.

Proof: When the coalition embeds more than one symbol into segment i (i.e. ψi ≥ 2), uψ = 0 causes
Wiα = 0 for all α. Consequently Ni = 0 and Pi = 0. Eq. (4) then vanishes since Wiα = 0; Eq. (8)
vanishes since g0(0) = 0. When the pirates embed only a single symbol yi ∈ Σ, then Wiα = δαy; Both
Aj and Bj reduce to

∑
i g(Xji == yi, p

(i)
yi ). �
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4 Analysis

4.1 Symmetry of the attacks
We make two assumptions about the attack strategy ρ. These are the same assumptions as in [11].

1. Member symmetry: All members of the coalition are equivalent. The colluders base their decisions
only on the number of symbols they receive, and not on the identity of the members who receive
them.

2. Column symmetry: The strategy for outputting yi does not explicitly depend on the value i, i.e. the
same strategy is used for all yi. However, we do allow yi to depend on the full XC .

The first assumption is motivated by the row symmetry of the code generation and accusation procedures.
The second assumption is motivated by the column symmetry of these procedures.

4.2 Performance indicator
The main collusion resistance performance indicator of a fingerprinting code is the coalition size c0 that
can be defeated by a code of a fixed length m, for fixed false positive and false negative error probabilities,
for a fixed number of users n. The larger c0, the better the code.

This can be re-expressed as the code length m required to defeat a coalition of fixed size c0, for fixed
false positive and false negative error probabilities, for a fixed number of users n. The smaller m is, the
better the code.

Tardos’ binary fingerprinting code [10] achieves

m = Gc20dln ε−1
1 e, (10)

with G = 100, and ε1 the maximum tolerable probability that a fixed innocent user j gets accused (false
positive). The false negative (FN) error probability is defined as the probability that none of the colluders
get accused. The maximum tolerable FN probability is denoted as ε2. Tardos set ε2 = ε

c0/4
1 .

Tardos proved [10] that m ∝ c20 is asymptotically optimal for any alphabet size. Several works have
shown that the parameter G in (10) can be significantly reduced [12, 6, 11, 1] from its original value of 100
by a combination of modifications in the code construction and the proof technique. In particular, in the
q-ary code of [11], with ε2 chosen independently of ε1 with ε2 � ε1, it was shown that the form (10)
asymptotically4 applies for large coalitions, with

G = 2
σ̃2

inn

µ̃2
, (11)

where σ̃inn and µ̃ are statistical parameters of the accusation: mσ̃inn stands for the standard deviation of an
innocent user’s accusation sum; mµ̃ stands for the expectation value of the coalition’s collective accusation
sum. The result (11) holds if an innocent user has zero accusation on average. The symmetric binary
scheme of [11] has σ̃inn = 1 and µ̃ = 2/π, yielding G = π2/2 ≈ 4.9. Further improvement in the
restricted digit model is achieved by going to larger alphabets (q > 2).

In the coming sections we will use the expression (11) as the main performance indicator of a finger-
printing scheme5.

4.3 Definition of expectation values
The expectation value taken over all stochastic degrees of freedom will be denoted as E. This includes both
stochastic steps of the creation of X, possible randomisation of the colluder strategy ρ (stochastic choice
of Ψi) and the random behaviour of the inserted noise. We use the notation Ep for the expectation value
over the p̄ degrees of freedom, EX for the X degrees of freedom (at fixed p̄), EΨ for the pirate strategy

4The parameter ε2 appears in terms of relative order c
−1/2
0 [ln ε2/ ln ε1]1/2. These vanish in the regime c0 � 1, ε2 � ε1.

5Under the condition that the expectation value of an innocent user’s accusation is zero.
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(at fixed XC) and EW for the noise (at fixed Ψ). The full E can be expressed as Ep ◦ EX ◦ EΨ ◦ EW .
This order reflects the chronological order in which the stochastic events take place. However, other ways
of computing E are possible. In particular, in a number of cases it is convenient to first compute the
expectation value over Xj (the j’th row of X, with user j innocent), denoted as EXj . The EXj averaging
commutes with the XC degrees of freedom and hence with EΨ and EW .

The Ep consists of m independent integrals, one for each segment i. Omitting the segment index, we
have for each segment:

Ep[· · ·] = N−1
qκ

∫
J(q)

dqp Fqκ(p)(· · ·). (12)

Likewise, the EXC consists of m independent summations over the counting variables b(i)α , one sum per
segment. The probability distribution is a multinomial. Omitting the segment index, we have for each
segment:

EXC [· · ·] =
∑
~b

(
c
~b

) ∏
α∈Σ

pbαα (· · ·) (13)

Here it is implicit that~b satisfies
∑
α∈Σ bα = c.

4.4 Performance of accusation method A
We first show that we are allowed to use performance indicator (11).

Lemma 2 In accusation method A, the expectation value of an innocent user’s accusation is zero.

Proof: We compute the expectation value of (4) over Xj , the j’th row of X. We make use of the fact that
y (and therefore Wiα) is independent of Xj when j is innocent.

EXj [Aj ] =
m∑
i=1

∑
α∈Σ

Wiα

[
p(i)
α g1(p(i)

α ) + (1− p(i)
α )g0(p(i)

α )
]
. (14)

It follows from the first equation in (3) that the result is zero. �
Before considering arbitrary alphabet size, we first state our result for the binary case.

Theorem 1 In the case of a binary alphabet (q = 2, κ = 1/2), and assuming r < 1
2 , u1 >

1
2 , the quantity

σ̃2
inn := m−1E[A2

j ] (for innocent j) is upper bounded by σ̃2
inn ≤ [σ̃A

max]2, with

[σ̃A
max]2 ≤ (1− r)u1 + r(1− u1) ≤ 1. (15)

Furthermore, independent of the colluder strategy, the expectation value of the collective accusation sum
is given by

µ̃A =
2
π

(u1 − r). (16)

The performance indicator for method A is upper bounded as

GA ≤ π2

2
· (1− r)u1 + r(1− u1)

(u1 − r)2
. (17)

Proof: The bound on σ̃2
inn is proven in Appendix A. The computation of µ̃ is shown in Appendix B. �

Next we consider non-binary alphabets. We derive a bound on the variance of innocent users’ accusation.

Theorem 2 The quantity σ̃2
inn := m−1E[A2

j ] (for innocent j) is bounded by σ̃2
inn ≤ [σ̃A

max]2, with

[σ̃A
max]2 := qr +

Γ(κq)
[Γ(κ)]qΓ(c+ κq)

∑
~b

(
c
~b

)[∏
α∈Σ

Γ(κ+ bα)

]
max

ψ∈{1,...,ω}
ψ(uψ − r). (18)

10



A proof is given in Appendix A. Note that the theorem does not depend on the colluder strategy.

Corollary 1 In the limiting case of the unreadable digit model (r = 0, u1 = 1, uψ = 0 for ψ ≥ 2)
Theorem 2 reduces to [σ̃A

max]2 = 1.

Corollary 1 is also proven in Appendix A. The expression (18) looks relatively simple, but direct evaluation
of the~b-summation would involve O(cq−1) terms. For numerical evaluation it is more efficient to split the
sum up into a sum over ω and sums over the remaining degrees of freedom. After some painful algebra
this yields the following result.

Corollary 2 The bound in Theorem 2 can be rewritten as

[σ̃A
max]2 = qr +

c! Γ(κq)
Γ(c+ κq)

min(q,c)∑
ω=1

1
[Γ(κ)]ω

(
q

ω

)
Scκ(ω) max

ψ∈{1,...,ω}
ψ(uψ − r), (19)

with

Scκ(ω) :=
1

1 + ω(c− ω)

ω(c−ω)∑
λ=0

eiλ
2π(c−ω)

1+ω(c−ω)

[
c−ω∑
v=0

e−iλv
2π

1+ω(c−ω)
Γ(κ+ 1 + v)

(1 + v)!

]ω
. (20)

The proof is given in Appendix A. While this looks far less transparent than (18), all the summations in
(19,20) together require adding onlyO(c2) terms as compared toO(cq−1). For large coalitions (and q ≥ 4)
this can be a significant difference.

Corollary 3 The variance of an innocent user’s accusation satisfies σ̃2
inn ≤ q.

Proof: From expression (31) in Appendix A we see that σ̃2
inn is smaller than the expectation value of∑

α∈ΣWiα for some arbitrary column index i. As Wiα ∈ {0, 1} and |Σ| = q, it follows that σ̃2
inn cannot

exceed q. �

Theorem 3 In accusation method A, it holds for any colluder strategy that µ̃ ≥ µ̃A
min, with

µ̃A
min :=

Γ(κq)
[Γ(κ)]q

c c!
Γ(c+ κq)

∑
~b

[
∏
γ∈Σ

Γ(κ+ bγ)
Γ(1 + bγ)

] min
Ψ⊆Ω
Ψ6=∅

uψ ∑
α∈Ψ

V (bα) + r
∑

α∈Σ\Ψ

V (bα)

 , (21)

where we have defined

V (bα) :=
Γ(bα − 1

2 + κ)
Γ(bα + κ)

Γ(c− bα − 1
2 + κ[q − 1])

Γ(c− bα + κ[q − 1])

{
1
2 − κ−

bα
c

(1− κq)
}
. (22)

A proof is given in Appendix B. Note that the function V (bα) is exactly the same expression appearing in
the Restricted Digit Model treatment in [11]. Setting r = 0, ψ = 1, u1 = 1 in (21) precisely reproduces
the Restricted Digit Model result.

Corollary 4 In the limit of large c, the quantity µ̃A
min converges to a finite number.

A proof is given in Appendix E.

Theorem 4 The performance parameter G for accusation method A is upper bounded by

GA ≤ 2
(σ̃A

max)2

(µ̃A
min)2

. (23)

with σ̃A
max and µ̃A

min as defined in Theorems 2 and 3.

11



Proof: follows directly from the definition (11) of G and Theorems 2 and 3. �
Unfortunately, this bound is not as sharp as it could be, for two reasons: (i) In the computation of

σ̃A
max we upper-bounded the negative term in (31) by zero, which sacrifices some sharpness. (ii) More

importantly, a really sharp bound on the performance parameter would be obtained by a maximization over
the colluder strategy: GA ≤ maxρ{2(σ̃A)2/(µ̃A)2}. However, this is a very difficult optimization to carry
out, as it amounts to optimally choosing a set Ψ as a function of ~b, while the expression (σ̃A)2/(µ̃A)2

depends on Ψ in a very complicated way. We leave this as a subject for future work.
In Fig. 3, GA is plotted for various parameter settings. We see the following trends. For each q, the

performance parameter GA has a minimum as a function of κ, just as in the Restricted Digit Model [11],
with almost exactly the same values for the optimal κ. Furthermore, GA increases as a function of r.
This is as expected, since the performance should get worse when the attackers become more powerful.
A comparison between methods A and B is given in Section 4.6. The results are also compared to the
Restricted Digit Model case.
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Figure 3: The bound 2(σ̃A
max)2/(µ̃A

min)2 on the performance parameter G for accusation method A, as a
function of κ, for r = 0.01, r = 0.05, r = 0.1. In all the graphs we set c = 20, and uψ is set according to
Table 2.

4.5 Performance of accusation method B
Lemma 3 In accusation method B, the expectation value of an innocent user’s accusation is zero.

12



Proof: For innocent j, we have Prob[Xji ∈ Φi] = Pi. Thus the expectation value of Bj over Xj is given
by

EXj [Bj ] =
m∑
i=1

{
Pig1(Pi) + [1− Pi]g0(Pi)

}
. (24)

It follows from the first equation in (3) that the result is zero. �

Theorem 5 The quantity (σ̃B
inn)2 := m−1E[B2

j ] (for an innocent user j) is equal to 1.

Proof: We express B2
j as a double sum and note that all the off-diagonal terms disappear (due to column

independence) when the expectation EXj is taken. Finally the second equation in (3) is used.

1
m

EXj [B2
j ] =

1
m

m∑
i,k=1

EXj
[
g([Xji ∈ Φi], Pi) g([Xjk ∈ Φk], Pk)

]

=
1
m

m∑
i=1

EXj
[
g2([Xji ∈ Φi], Pi)

]
+

1
m

∑
i,k: i 6=k

0

=
1
m

m∑
i=1

{
Pig

2
1(Pi) + (1− Pi)g2

0(Pi)
}

= 1.

�

Theorem 6 In accusation method B, for the binary alphabet, it holds for any colluder strategy that

µ̃B =
2
π

(u1 − r). (25)

The performance parameter is given by

GB =
π2

2
· 1

(u1 − r)2
. (26)

The proof is given in Appendix C.

Theorem 7 In accusation method B, it holds for any colluder strategy that µ̃ ≥ µ̃B
min, with

µ̃B
min := (1− r)q c! Γ(κq)

Γ(c+ κq)

min(c,q)∑
ω=1

1
[Γ(κ)]ω

(
q

ω

) ∑
~v∈{0,...,c−ω}ωP

k vk=c−ω

[
ω∏
a=1

Γ(κ+ 1 + va)
Γ(2 + va)

]

min
λ∈{0,1}ω

|λ|6=0

∑
ζ∈{0,1}ω

(u|λ|
r

)λ·ζ (1− u|λ|
1− r

)λ·(λ−ζ) q−ω∑
x=0

(
q − ω
x

)
[
r

1− r ]ϕ

{ c
2
− cκϕ−N +Nκq

} Γ(− 1
2 +N + κϕ)

Γ(N + κϕ)
Γ(− 1

2 + c−N + κ[q − ϕ])
Γ(c−N + κ[q − ϕ])

(27)

where ϕ = x + |ζ| and N = |ζ| + ζ · v. The | | notation stands for the Hamming weight, and the · is the
inner product.

A proof is given in Appendix C. Unfortunately expression (27) is not very transparent. The main reason is
that taking the expectation value EW is rather involved, as we have to keep track of both used and unused
symbols in Ω, which have different detection probabilities.

Corollary 5 In the limit of large c the quantity µ̃B
min converges to a finite number.

The proof is given in Appendix F.
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Figure 4: The bound 2/(µ̃B
min)2 on the performance parameter G for accusation method B, as a function

of κ, for r = 0.01, r = 0.05, r = 0.1. In all the graphs we set c = 20, and uψ is set according to Table 2.

Theorem 8 For accusation method B, the performance parameter G is upper bounded by

GB ≤ 2/(µ̃B
min)2, (28)

with µ̃B
min as defined in Theorem 7.

Proof: follows directly from the definition (11) of G, Theorem 5 and Theorem 7. �
In contrast to method A, this bound is sharp. Furthermore it directly points at a ‘worst case’ pirate

strategy that forces the content owner to use a low code rate. This is precisely the strategy that minimizes
µ̃ by choosing (for each combination {ω, ~v} separately, i.e. for each~b) the string λ (which is equivalent to
the set Ψ) such that the expression after minλ in (27) is minimized. Clearly this is not a trivial strategy.

In Fig. 4, GB is plotted for various parameter settings. We see the same trends as in method A. For
each q, the performance parameter GB has a minimum as a function of κ, just as in the Restricted Digit
Model [11], with almost exactly the same values for the optimal κ. Furthermore,GB increases as a function
of r, as expected. A comparison between methods A and B is given in Section 4.6. The results are also
compared to the Restricted Digit Model case.

4.6 Comparison
The numerical results are summarized in Table 3. For each of the curves in Figs. 3 and 4 we have taken the
minimum, and listed the optimal κ and G value in the table. We have also included the results from [11]
for the Restricted Digit Model. It is clear that methods A and B do not differ dramatically. (That was also
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Table 3: The performance parameterG for accusation methods A and B in the Combined Digit Model, and
for the Restricted Digit Model. The listed κ is the optimal value for given q, for fixed c = 20.

Method A Method B Restricted
q r κ GA κ GB Digit Model

3 0.01 0.34 4.2 0.34 5.6 κ=0.34
0.05 0.34 5.4 0.34 7.3 G=2.6
0.1 0.34 6.6 0.34 7.8

4 0.01 0.27 3.3 0.26 3.1 κ=0.26
0.05 0.27 4.2 0.26 4.0 G=1.9
0.1 0.27 5.5 0.26 4.5

5 0.01 0.23 2.8 0.21 2.5 κ=0.23
0.05 0.23 3.7 0.21 3.0 G=1.6
0.1 0.22 4.8 0.20 3.3

6 0.01 0.20 2.5 0.17 2.1 κ=0.19
0.05 0.20 3.5 0.17 2.5 G=1.4
0.1 0.20 4.5 0.17 2.8

the case in [13], where the code was studied for a different attack model, and with a different performance
indicator.) Method A is better at q = 3, and method B is better6 at q ≥ 4.

What is most striking is that even a strong attack (r = 0.1) does not seriously reduce the effectiveness
of the code. Compared to the Restricted Digit Model, the code length has to be increased by less than a
factor 2.5. We conclude that accusation methods A and B are quite effective for dealing with the increased
attack strength in the Combined Digit Model.

5 Summary
We have introduced a new attack model for coalition attacks on watermarks, the Combined Digit Model.
The model comprises averaging attacks and signal processing attacks in a way that is more realistic than
the Unreadable Digit Model. The detector may detect multiple symbols in the same content segment.
The probability of false positive detection is represented as a single parameter r. The false negative error
probabilities are represented as a vector uψ , where ψ is the number of symbols mixed together by the
colluders. The r and uψ parameters all depend on the detection threshold. However, since r is almost
uniquely determined by the detection threshold, independent of ψ, it is possible to think of the vector uψ
as being a function of r.

We have examined two modifications of the accusation sum in the symbol-symmetric Tardos scheme.
Method A sums up g0/1 accusations for each detected symbol separately. Method B groups all detected
symbols together and then applies the accusation function g0/1. We have evaluated the performance of
both schemes in terms of the performance parameter G := 2σ̃2

inn/µ̃
2 which is based on the Gaussian

approximation as introduced in [12]. For the binary alphabet the results are very simple, and it turns out
that method A is slightly better.

For nonbinary alphabets we have obtained analytic expressions for G. These unfortunately do not look
very insightful, but they do enable efficient numerical evaluation. It turns out that methods A and B have
similar performance. Method B is better at q ≥ 4. The q-ary Tardos code with either of the modified
accusation methods is effective against powerful attacks in the Combined Digit Model.

6Reminder: The numbers for method A are perhaps pessimistic, as mentioned in Section 4.4.
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A Evaluation of σ̃inn for method A
We start by bounding the expression EXj [A2

j ] for an innocent user j. Note that Wiα and Xji (j /∈ C) are
independent.

EXj [A2
j ] =

m∑
i,k=1

∑
α,β∈Σ

WiαWkβ EXj
[
g(〈Xji = α〉, p(i)

α )g(〈Xjk = β〉, p(k)
β )
]

=
m∑
i=1

∑
α,β∈Σ

WiαWiβ EXj
[
g(〈Xji = α〉, p(i)

α )g(〈Xji = β〉, p(i)
β )
]

(29)
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Here we have used the fact that all off-diagonal terms (k 6= i) vanish due to the first property in (3). Next
we split the double sum

∑
αβ into terms with β = α and terms with β 6= α.

EXj [A2
j ] =

m∑
i=1

∑
α∈Σ

W 2
iα +

m∑
i=1

∑
α,β∈Σ
α6=β

WiαWiβ

[
p(i)
α g1(p(i)

α )g0(p(i)
β ) + p

(i)
β g0(p(i)

α )g1(p(i)
β )

+ (1− p(i)
α − p(i)

β )g0(p(i)
α )g0(p(i)

β )
]

(30)

Again using the first property in (3) we simplify this to

EXj [A2
j ] =

m∑
i=1

∑
α∈Σ

W 2
iα −

m∑
i=1

∑
α,β∈Σ
α 6=β

WiαWiβg0(p(i)
α )g0(p(i)

β ). (31)

Binary alphabet
In the case of a binary alphabet, (31) reduces to

EXj [A2
j ] =

m∑
i=1

(Wi1 −Wi0)2. (32)

Note that (Wi1 −Wi0)2 ∈ {0, 1}. When ψ = 1 we have EW [(Wi1 −Wi0)2] = (1 − r)u1 + r(1 − u1),
whereas for ψ = 2 we have EW [(Wi1 −Wi0)2] = 2u2(1 − u2). This allows us to write the following
strategy-independent bound,

EW [(Wi1 −Wi0)2] ≤ max
{

2u2(1− u2), (1− r)u1 + r(1− u1)
}
. (33)

Assuming that r < 1/2 and u1 > 1/2, the second expression in the ‘max’ is always larger than the first.
The result (33) is a constant, so the expectation values EΨ, EX and Ep are trivial. This immediately leads
to the result given in Theorem 1.

Non-binary alphabet
We bound7 (31) as EXj [A2

j ] ≤
∑m
i=1

∑
α∈ΣWiα. Assuming column symmetry of the attack (see Sec-

tion 4.1), we get σ̃inn ≤ EpEXCEyEW
∑
α∈ΣWiα.

Next, applying EW to Wiα gives EW [Wiα] = uψi if α ∈ Ψi and r if α /∈ Ψi. Thus,∑
α∈Σ

EW [Wiα] = (q − ψi)r + ψiuψi . (34)

Note that this expression depends on the set Ψi only through the integer ψi ≤ ωi. Next we apply EΨ. We
bound the result as

EΨEW
∑
α∈Σ

Wiα ≤ qr + max
ψi∈{1,...,ωi}

ψi(uψi − r). (35)

We briefly remark on the limiting case (r = 0, u1 = 1, uψ = 0 for ψ ≥ 2) corresponding to the unreadable
digit model. In this limit the α 6= β terms in (31) vanish. Furthermore (35) is trivially upper bounded by 1,
yielding [σ̃A

inn]2 ≤ 1.
We return to the Combined Digit Model. Note that (35) depends only on ωi. It is independent of the

colluder strategy and independent of all other columns 6= i. Hence, in applying EXC and Ep we only have
to deal with column i. From here on we drop the column index i.

σ̃2
inn ≤ 1

m
EpEXCEΨEW

m∑
i=1

∑
α∈Σ

Wiα

≤ qr +
∑
~b

(
c
~b

)(
Ep
∏
α∈Σ

pbαα

)
max

ψ∈{1,...,ω}
ψ(uψ − r) (36)

7When ω is small, the colluders’ safest choice is to embed a single symbol. In that case the product WiαWiβ is zero with high
probability. On the other hand, when ω is large, then the colluders do a powerful averaging attack yielding a small EW [Wiα]. In
that case the product EW [WiαWiβ ] is much smaller than EW [Wiα]. Furthermore, the product g0(pα)g0(pβ) cannot exceed 1, as
pα ≤ 1− pβ and pβ ≤ 1− pα. Hence we expect our bound to be reasonably sharp.
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Note that ω is a function of~b. We use the following well known property of Dirichlet integrals,∫ 1

0

dqp δ(1−
∑
α∈Σ

pα)
∏
α∈Σ

p−1+xα
α =

∏
α∈Σ Γ(xα)

Γ(
∑
α∈Σ xα)

(37)

to obtain ∫
J(q)

dqp Fqκ(p)
∏
α∈Σ

pbαα =
Γ(κq)
[Γ(κ)]q

∏
α∈Σ Γ(κ+ bα)
Γ(c+ κq)

. (38)

Substitution of (38) into (36) gives (18). That completes the proof of Theorem 2. For Corollary 2 we have
to further evaluate the sum

∑
~b. We make use of the fact that the summand is fully symbol-symmetric, i.e.

it is invariant under any permutation of the alphabet. This allows us to split
∑
~b into a sum over ω (with

combinatorial multiplicity
(
q
ω

)
) times a sum over the leftover counting variables v1, · · · , vω which keep

track of how the leftover c− ω colluders are divided over the ω symbols in Ω. We have vk = bαk − 1 with
αk ∈ Ω, and

∑ω
k=1 vk = c− ω.

∑
~b

(
c
~b

)
→

min(q,c)∑
ω=1

(
q

ω

)∑
~v

c!∏ω
k=1(1 + vk)!

(39)

In this representation, the expression (18) becomes

σ̃2
inn ≤ qr +

c! Γ(κq)
Γ(c+ κq)

min(c,q)∑
ω=1

[Γ(κ)]−ω
(
q

ω

)
Scκ(ω) max

ψ∈{1,...,ω}
ψ(uψ − r), (40)

Scκ(ω) :=
∑

~v:
Pω
s=1 vs=c−ω

ω∏
k=1

Γ(κ+ 1 + vk)
(1 + vk)!

. (41)

We further evaluate Scκ(ω) by rewriting the constrained ~v-sum as an unconstrained sum with a Kronecker
delta in the summand.

Scκ(ω) =
c−ω∑
v1=0

· · ·
c−ω∑
vω=0

δc−ω,
P
k vk

Γ(κ+ 1 + v1)
(1 + v1)!

· · · Γ(κ+ 1 + vω)
(1 + vω)!

. (42)

Finally we use a sum representation of the Kronecker delta,

δab =
1
M

M−1∑
λ=0

eiλ(a−b) 2π
M , (43)

with M = ω(c − ω) + 1, to obtain a factorisation of the sums
∑
vk

. The expression for Scκ(ω) in (20)
follows. �

B Evaluation of µ̃ for method A
We define

Qα(~b(i)) := Ep̄\p(i)E
XC\X(i)

C

EΨEW [Wiα]. (44)

Following steps that are completely analogous to the analysis in [11], we arrive at

µ̃ =
Γ(κq)
[Γ(κ)]q

c c!
Γ(c+ κq)

∑
~b

[
q−1∏
γ=0

Γ(κ+ bγ)
Γ(1 + bγ)

]
∑
α∈Σ

Qα(~b)V (bα), (45)
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with V (bα) as defined in (22). Here we have dropped the column index i because of the column symmetry.
For given~b and non-empty Ψ ⊆ Ω we can write

∑
α∈Σ

V (bα)EW [Wiα] = uψ
∑
α∈Ψ

V (bα) + r
∑

α∈Σ\Ψ

V (bα) ≥ min
Λ⊆Ω
Λ6=∅

u|Λ|∑
α∈Λ

V (bα) + r
∑

α∈Σ\Λ

V (bα)

 .

(46)
The last expression is independent of the colluder strategy. Hence, application of the expectation values
Ep̄\p(i)E

XC\X(i)
C

EΨ leaves the expression unchanged. Substitution into (45) yields the result given in
Theorem 3.

Binary alphabet
When the alphabet is binary we have q = 2 and κ = 1/2. (This value of κ reproduces Tardos’ distribution
function for p, namely f(p) ∝ [p(1 − p)]−1/2.) Taking the limit κ → 1/2 in (22) is almost trivial.
The factor {· · ·} = ( 1

2 − κ)(1 − 2bα/c), which goes to 0, makes V (bα) vanish, except for one subtlety.
When bα = 0 or bα = c, one of the Gamma functions in the numerator goes to Γ(0) = ∞. Using
limκ→1/2(κ− 1/2)Γ(κ− 1/2) = 1 we get

V (c) = −V (0) =
Γ(c)

Γ(1/2)Γ(c+ 1/2)
, (47)

and V (bα) = 0 for bα ∈ {1, · · · , c− 1}. Hence there are only two surviving terms in the~b-sum in (45): all
ones and all zeroes. In the former case Ψ = {1}, α ∈ Ψ implies bα = c, and α /∈ Ψ implies bα = 0. In the
latter case, Ψ = {0}, α ∈ Ψ implies bα = 0, and α /∈ Ψ implies bα = c. Substituting (47) into (45) in this
way yields µ̃ = 2

π (u1 − r).

C Evaluation of µ̃ for method B
We start from the collective accusation sum (9) and take the expectation value, making use of column
symmetry.

µ̃ = EpEXEΨEW [Nig1(Pi) + (c−Ni)g0(Pi)]. (48)

Here the column index i is arbitrary, and we will omit it when this does not cause ambiguity.

Binary alphabet
For q = 2 computing the expectation values is very simple. We note that the expression Ng1(P ) + [c −
N ]g0(P ) vanishes for (W0,W1) = (1, 1) and (W0,W1) = (0, 0). In the former case because N = c,
P = 1, yielding c−N = 0 and g1(P ) = 0; In the latter case because N = 0, P = 0, yielding g0(P ) = 0.
This leaves only the combinations (W0,W1) = (0, 1) and (W0,W1) = (1, 0) to evaluate. We note that
the (0, 1) case gives Ng1(P ) + [c − N ]g0(P ) = xg1(p1) + [c − x]g0(p1), while the (1, 0) case gives
Ng1(P ) + [c−N ]g0(P ) = −[xg1(p1) + [c− x]g0(p1)]. Here x denotes the number of ones received by
the coalition. It follows that

EW [Ng1(P ) + [c−N ]g0(P )] =
{xg1(p1) + [c− x]g0(p1)} (Pr[W0 = 0,W1 = 1]− Pr[W0 = 1,W1 = 0]

)
. (49)

The expectation value EX can be written as EX [· · ·] =
∑c
x=0

(
c
x

)
px1(1−p1)c−x(· · ·). It was shown in [10]

that
Ep[{xg1(p1) + [c− x]g0(p1)}px1(1− p1)c−x] =

1
π

(δx,c − δx,0). (50)

(Here Tardos’ cutoff parameter t has been set to zero.) Only the terms x = 0 and x = c in EX survive. For
x = c, it follows from the marking condition that Ψ = {1}. Similarly, for x = 0 it follows that Ψ = {0}.
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Hence (48) evaluates to

µ̃ =
1
π

(
Pr[W0 = 0,W1 = 1|Ψ = {1}]− Pr[W0 = 1,W1 = 0|Ψ = {1}])

− 1
π

(
Pr[W0 = 0,W1 = 1|Ψ = {0}]− Pr[W0 = 1,W1 = 0|Ψ = {0}]) . (51)

The probabilities in (51) are given by Pr[W0 = 1,W1 = 0|Ψ = {0}] = Pr[W0 = 0,W1 = 1|Ψ = {1}] =
(1− r)u1 and Pr[W0 = 1,W1 = 0|Ψ = {1}] = Pr[W0 = 0,W1 = 1|Ψ = {0}] = r(1− u1), resulting in
µ̃ = 2

π (u1 − r).

Non-binary alphabet
The case q ≥ 3 is not nearly as simple as the binary case. Again we start from (48). Since Ni and Pi
depend only on the colluders’ degrees of freedom in X , EX is equivalent to EXC . Substituting (13) and
(12) into (48), we can write

µ̃ =
∑
~b(i)

(
c
~b(i)

)
Ep̄\p(i)E

XC\X(i)
C

EΨEWNiEp(i) [g1(Pi)
∏
α∈Σ

[p(i)
α ]b

(i)
α ] + (c−Ni)Ep(i) [g0(Pi)

∏
β∈Σ

[p(i)
β ]b

(i)
β ]

 . (52)

Both Ep integrals can be evaluated exactly. The method is shown in Appendix D. The result is

Ep[g1(P )
∏
α∈Σ

pbαα ] = N−1
qκ

Γ(− 1
2 + κϕ+N)Γ( 1

2 + κ(q − ϕ) + c−N)
Γ(c+ κq)

×
∏
α∈Σ Γ(κ+ bα)

Γ(N + κϕ)Γ(c−N + κ[q − ϕ])
, (53)

Ep[g0(P )
∏
α∈Σ

pbαα ] = −N−1
qκ

Γ( 1
2 + κϕ+N)Γ(− 1

2 + κ(q − ϕ) + c−N)
Γ(c+ κq)

×
∏
α∈Σ Γ(κ+ bα)

Γ(N + κϕ)Γ(c−N + κ[q − ϕ])
. (54)

Here we have omitted the segment index i on Pi, Ni, ϕi, b
(i)
α , and p(i)

α . We bound µ̃ using

EΨ[· · ·] ≥ min
Ψ⊆Ω: Ψ 6=∅

(· · ·). (55)

This gets rid of any strategy dependence. Consequently, the operations Ep̄\p(i) and E
XC\X(i)

C

have no effect

on the bound. Next we reorganize the sum
∑
~b as in (39). In this way we obtain a bound µ̃ ≥ µ̃Bmin, with

µ̃Bmin =
Γ(κq) c!

Γ(c+ κq)

min(c,q)∑
ω=1

1
[Γ(κ)]ω

(
q

ω

)∑
~v

[
ω∏
k=1

Γ(κ+ 1 + vk)
Γ(2 + vk)

] min
Ψ⊆{1,...,ω}

Ψ6=∅

EW

{ c
2
− cκϕ−N +Nκq

} Γ(− 1
2 + κϕ+N)Γ(− 1

2 + κ[q − ϕ] + c−N)
Γ(N + κϕ)Γ(c−N + κ[q − ϕ])

. (56)

Finally we write the expectation EW as a double sum: one over symbols in Ω and another over symbols
/∈ Ω. We represent Ψ as a string λ ∈ {0, 1}ω , with λb = 1 if αb ∈ Ψ. We represent W as a combination
of an integer x ∈ {0, . . . , q − ω} and a string ζ ∈ {0, 1}ω . The x counts the number of detected symbols
that the colluders did not have at their disposal. ζb = 1 indicates that the b’th symbol in Ω is detected.
Combined with the detection probability, this gives

EW [· · ·] =
q−ω∑
x=0

(
q − ω
x

) ∑
ζ∈{0,1}ω

uζ·λ|λ| (1− u|λ|)|λ|−ζ·λrx+|ζ|−ζ·λ(1− r)q−|λ|−x−|ζ|+ζ·λ(· · ·), (57)
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where the notation |λ| stands for the Hamming weight of λ, and ζ · λ is the inner product
∑ω
b=1 ζbλb. The

quantities ϕ and N are expressed as ϕ = x+ |ζ| and N = |ζ|+ ζ · v. Substitution of (57) into (56) yields
(27). �

D Evaluation of the integrals in Appendix C
The integrals (53) and (54) are evaluated as follows. We have to compute a q-dimensional integral of the
form

N−1
qκ

∫ 1

0

dqp δ(1−
∑
γ∈Σ

pγ)[
∏
α∈Σ

p−1+κ
α ][

∏
α∈Σ

pbαα ]g0/1(
∑
β∈Φ

pβ). (58)

We split the q-dimensional integration space into a part belonging to Φ and a part outside Φ. For α ∈ Φ we
write pα = Psα, and for β /∈ Φ we write pβ = (1− P )tβ . The integration splits as∫ 1

0

dqp δ(1−
∑
α∈Σ

pα) =
∫ 1

0

dqp δ(1−
∑
α∈Σ

pα)
∫ 1

0

dP δ(P −
∑
β∈Φ

pβ)

=
∫ 1

0

dP Pϕ(1− P )q−ϕ
∫ P

0

dϕs
∫ 1−P

0

dq−ϕt δ(P − P
∑
α∈Φ

sα)δ(1− P − [1− P ]
∑

β∈Σ\Φ

tβ)

=
∫ 1

0

dP Pϕ−1(1− P )q−ϕ−1

∫ 1

0

dϕs δ(1−
∑
α∈Φ

sα)
∫ 1

0

dq−ϕt δ(1−
∑

β∈Σ\Φ

tβ). (59)

Furthermore, the two products appearing in the integrand can be split in the same way:∏
α∈Σ

pbαα = PN (1− P )c−N
∏
α∈Φ

sbαα
∏

β∈Σ\Φ

t
bβ
β .∏

α∈Σ

p−1+κ
α = Pϕ(−1+κ)(1− P )(q−ϕ)(−1+κ)

∏
α∈Φ

s−1+κ
α

∏
β∈Σ\Φ

t−1+κ
β . (60)

With this split, each full q-dimensional integral gets factorized into three independent integrals. The
ϕ-dimensional s-integral and the (q − ϕ)-dimensional t-integral are evaluated using (37). The one-
dimensional P -integral yields a Beta function. Multiplying the pieces together yields (53) and (54).

E Convergence of µ̃A
min in the large-c limit

In this appendix we look at µ̃A
min in the limiting case where c becomes very large. The following lemma

helps us in determining the asymptotic behaviour of gamma functions.

Lemma 4 For x� 1 and constants a, b with |a| � x and |b| � x, it holds that

Γ(x+ a)
Γ(x+ b)

= xa−b[1 +O(1/x)].

Proof: Follows directly from Stirling’s approximation. �
Using Lemma 4, we see that V (bα) in (22) scales as c−1, the product

∏
γ in (21) scales as cq(κ−1) and

the quotient c!
Γ(c+κq) as c1−qκ. Furthermore, the number of terms in

∑
~b scales as cq−1. (The ‘−1’ comes

from the constraint
∑
α bα = c, which reduces the number of degrees of freedom by one.) Combining all

the powers of c contained in (21) in this way, we find c0. Hence µ̃A
min converges.
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F Convergence of µ̃B
min in the large-c limit

For large c, the N and va scale as c1. From Lemma 4 in Appendix E it follows that the x-sum in (27)
scales as c0, the product

∏
a

Γ(···)
Γ(···) scales as cω(κ−1) and the quotient c!

Γ(c+κq) as c1−κq . The ~v-summation
has O(cω−1) terms. Using ω ≤ q and combining all the powers of c we get c0 as the highest power of c
occurring in (27).
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