
Pseudo-randomness and partial information

in symbolic security analysis

Daniele Micciancio∗

May 29, 2009

Abstract

We prove computational soundness results for cryptographic expressions with pseudo-random keys, as
used, for example, in the design and analysis of secure multicast key distribution protocols. In particular,
we establish a symbolic notion of independence (for pseudo-random keys) that exactly matches the
standard computational security definition (namely, indistinguishability from the uniform distribution)
for pseudo-random generators. As a conceptual contribution, we initiate the study of partial information
in the context of computationally sound symbolic security analysis. Specifically, we show that (within
our admittedly simple, but hopefully evocative setting) partial information can be taken into account in
the symbolic model, in a computationally sound way, by simply annotating each key with a label which
specifies that the key is either known, unknown, or partially known, without further details about the
amount and type of partial information.

Keywords: Computational soundness, formal methods for security, pseudo-random generators, partial
information, greatest fix-points.

1 Introduction

Formal methods for security analysis (e.g., [10, 7, 15, 22, 24, 1]) typically adopt an all-or-nothing approach to
modeling adversarial knowledge. For example, the adversary either knows a secret key or does not have any
partial information about it. Similarly, either the message underlying a given ciphertext can be recovered, or
it is completely hidden. In the computational setting, commonly used in modern cryptography for its strong
security guarantees, the situation is much different: cryptographic primitives usually leak partial information
about their inputs, and in many cases this cannot be avoided. For example, any deterministic cryptographic
primitive f (like a one-way function, pseudo-random generator, or any other primitive modeled as an easily
computable function), the value f(x) always gives partial information about x, because one can easily
check if x = 0 by computing f(0) and comparing the result with f(x). Moreover, standard cryptographic
definitions, either for simplicity or efficiency reasons, often leave open the possibility of partial information
leakage, even when such leakage could in principle be avoided. For example, the standard definition of
security for encryption [14, 6] allows ciphertexts to reveal partial information about the encryption key, even
if stronger definitions of security are possible [5] that guarantee key privacy. Finally, it is well known that,
computational cryptographic primitives, if not used properly, can easily lead to situations where individually
harmless pieces of partial information can be combined to recover a secret in full. This is often the case
when, for example, the same key or randomness is used with different cryptographic primitives.

In the last few years, starting with the seminal work of Abadi and Rogaway [2], there has been consid-
erable progress in combining the symbolic and computational approaches to security protocol design and

∗University of California at San Diego, 9500 Gilman Dr., Mail Code 0404, La Jolla, CA 92093, USA. e-mail:
daniele@cs.ucsd.edu. Research supported in part by NSF under grants CNS-0430595 and CNS-0831536. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation.

1

analysis, with the goal of developing methods that are both easy to apply (e.g., through the use of auto-
matic verification tools) and provide strong security guarantees, as offered by the computational security
definitions. Still, most work in this area applies to scenarios where the use of cryptography is sufficiently
restricted that the partial information leakage of computational cryptographic primitives is inconsequential.

As an example, we briefly describe the result of [2], which also forms the basis of the study reported in
this paper. The setting considered by Abadi and Rogaway [2] involves a passive (wiretapping) adversary that
can monitor, but not alter, the messages transmitted by the legitimate parties executing a protocol. These
messages are commonly described as syntactic terms, like the expression ({|k2|}k1

, {|m|}k2
) which may model

the transmission of a short term key k2 encrypted under long term key k1, followed by a payload m encrypted
under the short term key. In [2] it is proved that if encryption is the only cryptographic primitive used in the
expressions, then one can describe the adversarial knowledge simply as a set of keys (namely, the keys that
can be fully recovered by the so-called Dolev-Yao [10] rules1 while all other keys are treated as if they were
completely secret. These recoverable keys are then used to map the expressions to an observed pattern, e.g.,
an expression with “holes” like ({|◦|}k1

, {|�|}k2
) that models the fact that certain subexpressions are hidden to

the adversary. In the computational setting, security is defined in terms of computational indistinguishability:
two sequences of expressions are computationally equivalent if the probability distributions associated to
them are indistinguishable to any computationally bounded adversary. The symbolic semantics studied in
[2] is computationally sound in the sense that (subject to certain syntactic restrictions, but see also [17]
for an unconditional result) if two sequences of messages lead to the same pattern, then the corresponding
probability distributions (obtained when the protocol is executed) are computationally indistinguishable.

The computational soundness result of [2] relies on the fact that when encryption is the only cryptographic
primitive used in a protocol, then the partial information about a key k revealed by a ciphertext {|m|}k is
of no use to an adversary (except, possibly, for identifying when two different ciphertexts are encrypted
under the same, unknown, key), so one may as well treat k as if it were completely hidden. Similar results
to those of [2] are proved in [18] and [3] for cryptographic expressions that combine encryption with other
cryptographic primitives, like pseudo-random generation and secret sharing, but under the assumption that
all transmitted messages satisfy certain ad-hoc syntactic restrictions, which are sufficient to guarantee that
different cryptographic primitives do not interfere with each other, and allow to bypass issues related to
partial information leakage.

Our results. In this paper we consider cryptographic expressions that combine encryption and pseudo-
random generation, but without imposing ad-hoc syntactic restrictions. In particular, we consider crypto-
graphic expressions as those studied in [2], but with pseudo-random keys of the form k = G0(G0(G1(r))),
obtained using a length doubling pseudo-random generator. The pseudo-random generator k 7→ G0(k);G1(k)
can be used to map a single key k to a pair of seemingly random ones G0(k) and G1(k), which in turns
can be used in any context where a key is allowed. In particular, pseudo-random keys G0(k), G1(k) can
be used to both to encrypt messages (possibly containing pseudo-random keys as their components), or as
input to the pseudo-random generator itself. Pseudo-random keys allow to design more efficient protocols,
where, for example, a single seed k is used to compactly communicate a longer sequence of pseudo-random
keys G0(k),G0(G1(k)),G0(G1(G1(k))), etc., as done for example in the best known (in fact, optimal [20])
multicast key distribution protocols [8].

As already remarked, pseudo-random generators (like any deterministic cryptographic primitive) in-
evitably leak partial information about their input. For example, G0(k) gives partial information about k
because it allows to distinguish k from any other key k′ chosen independently at random (e.g., by computing
G0(k

′) and comparing the result to G0(k)). Similarly, a ciphertext {|e|}k may leak partial information about
k if, for example, decryption succeeds (with high probability) only when the right key is used for decryption.
As we consider the unrestricted use of encryption and pseudo-random generation, we also need to to model
the possibility that given different pieces of partial information about a key one may be able to recover
that key completely. Our main result shows how to do all this within a relatively simple symbolic model of

1A typical Dolev-Yao rule is that given a key k and the encryption {|m|}
k

of some message m under k, one can compute the
plaintext m.

2

computation, and still obtain computational soundness. Our treatment of partial information is extremely
simple and in line with the ideas of formal methods and symbolic analysis: we use an all-or-nothing approach
to partial information, where each key or secret can be completely known, partially known, or completely
hidden, without further details about the amount and type of partial information. Still, we demonstrate that
the resulting symbolic semantics for cryptographic expressions is computationally sound, in the sense that
if two expressions are symbolically equivalent, then for any (length regular) semantically secure encryption
scheme and (length doubling) pseudo-random generator the probability distributions naturally associated to
the two expressions are computationally indistinguishable.

Beside the introduction of a simple symbolic model to deal with partial information, a key technical
contribution of our paper is a syntactic characterization of independent keys that exactly matches its com-
putational counterpart. Our syntactic definition of independence is simple and intuitive: a set of keys
k1, . . . , kn is symbolically independent if no key ki can be obtained from another kj via the application of
the pseudo-random generator. We show that this simple definition captures the intuition behind the com-
putational notion of pseudo-randomness: we prove that our definition is both computationally sound and
complete, in the sense that the keys k1, . . . , kn are symbolically independent if and only if the associated
probability distribution is indistinguishable from a sequence of truly independent uniformly random keys.
For example, although the probability distributions associated to pseudo-random keys G0(k) and G1(k)
are not independent in a strict information theoretic sense, the dependency between these distributions
cannot be efficiently recognized when k is not known because the joint distribution associated to the pair
(G0(k),G1(k)) is indistinguishable from a pair of independent random values.

Related work. Cryptographic expressions with pseudo-random keys, as those considered in this paper,
were previously used in the study of multicast key distribution protocols [20, 18, 19], but using ad-hoc
methods and subject to various syntactic restrictions. Even more general (so called “composed”) encryption
keys were considered in [16], but only under the random oracle heuristics. We remark that the use of such
general composed keys seems unjustifiable in the standard model of computation, and the significance of the
results of [16] outside the random oracle model is unclear.

Organization. The rest of the paper is organized as follows. In Section 2 we review basic notions from
symbolic and computational cryptography as used in this paper. In Section 3 we present our basic results on
the computational soundness of pseudo-random keys, and introduce an appropriate notion of key renaming.
In Section 4 we develop our method to treat partial information in the symbolic setting, and apply it to
define computationally sound symbolic semantics for cryptographic expressions with pseudo-random keys.

2 Preliminaries

In this section we review standard notation and notions from symbolic and computational cryptography used
in the rest of the paper. The reader is referred to [2, 17] for more background on the symbolic model, and
any modern cryptography text (e.g., [12, 13]) for details regarding the computational model.

2.1 Symbolic cryptography

In the symbolic setting, messages are described as abstract terms. For any sets of key and data terms Keys,
Data, define Exp(Keys,Data) as the set of cryptographic expressions generated by the grammar

Exp ::= Data | Keys | (Exp,Exp) | {|Exp|}Keys, (1)

where (e1, e2) denotes the concatenation of e1 and e2, and {|e|}k denotes the encryption of e under k. Usually,
Keys = {k1, . . . , kn} and Data = {d1, . . . , dn} are two flat sets of atomic keys and data blocks. In this
paper, we consider pseudo-random keys, defined according to the grammar

Keys ::= Rand | G0(Keys) | G1(Keys), (2)

3

where Rand = {r1, r2, . . .} is a set of atomic key symbols (modeling truly random and independent keys),
and G0, G1 are the left and right half of a length doubling pseudo-random generator k 7→ G0(k);G1(k).
Notice that grammar (2) allows for iterated application of the pseudo-random generator, so that from any
key r ∈ Rand, one can obtain keys of the form Gb1(Gb2(. . . (Gbn

(r)) . . .)) for any n ≥ 0, which we abbreviate
as Gb1b2...bn

(r). We write {0, 1}∗ to denote the set of all binary strings, and ǫ for the empty string. For any
set of keys S ⊆ Keys, we write G∗(S) and G+(S) to denote the sets

G∗(S) = {Gw(k) | k ∈ S, w ∈ {0, 1}∗}

G+(S) = {Gw(k) | k ∈ S, w ∈ {0, 1}∗, w 6= ǫ}

of keys which can be obtained from S through the repeated application of the pseudo-random generator
functions G0 and G1, zero, once or more times. Using this notation, the set of keys generated by the
grammar (2) can be written as Keys = G∗(Rand).

The symbolic semantics of cryptographic expressions is defined by mapping them to patterns, which are
expressions2

Pat(Keys,Data) ⊂ Exp(Keys ∪ {◦},Data ∪ {�}) (3)

over extended sets of key and data terms that include two special symbols ◦, � /∈ Keys,Data, denoting
unknown keys or data respectively. The keys and parts of a pattern are defined by structural induction
according to the usual rules

Keys(d) = ∅ Parts(d) = {d}
Keys(k) = {k} ∩ Keys Parts(k) = {k}

Keys(e1, e2) = Keys(e1) ∪ Keys(e2) Parts(e1, e2) = Parts(e1) ∪ Parts(e2)
Keys({|e|}k) = ({k} ∩ Keys) ∪Keys(e) Parts({|e|}k) = {{|e|}k} ∪ Parts(e)

where d ∈ Data ∪ {�}, k ∈ Keys ∪ {◦}, and e, e1, e2 ∈ Pat(Keys,Data). Notice that according to these
definitions Keys(e) includes both the keys appearing in e as a message, and those appearing as an encryption
key, while the special symbol ◦ is never included in Keys(e). The keys that appear in e as a message are
given by Keys(e) ∩Parts(e), and those that appear only as an encryption key are Keys(e) \Parts(e). As
a notational convention, we assume that concatenation is left associative, and omit unnecessary parenthesis.
We also omit the symbol ◦ when it appears as an encryption subscript. E.g., we write {|d1, d2, d3|} instead of
{|((d1, d2), d3)|}◦.

2.2 Computational model

In this section we informally recall the notions from computational cryptography used in this paper. These
are all standard and well established. For reference, the formal definitions are reported in Appendix A. We
also describe how cryptographic expressions are mapped to probability distributions. This is also standard,
but we pinpoint some details that are especially important in our setting.

Cryptography. In the computational setting, cryptographic expressions are evaluated to probability dis-
tributions over bit-strings, and two expressions are equivalent if the associated distributions are computa-
tionally indistinguishable, in the sense that no probabilistic polynomial time algorithm can tell the difference
between samples coming from one or the other with probability substantially better than 1/2.

A (length doubling) pseudo-random generator is a polynomial time algorithm G that on input a key k
chosen uniformly at random among all strings of length ℓ, outputs a string G(k) of length 2ℓ. The generator
is computationally secure if the output distribution is computationally indistinguishable from the uniform
distribution over strings of length 2ℓ.

2Not all expressions in Exp(Keys ∪ {◦}, Data ∪ {�}) are valid patterns. Formally, the set of patterns is defined as the
image p(Exp(Keys, Data), ℘(Keys)) of the function p given in Figure 2. The reader can safely ignore this technical detail,
which is important only when mapping patterns to probability distributions over bit-strings.

4

A (symmetric) encryption scheme is defined as a pair of (probabilistic) polynomial time encryption and
decryption algorithms E ,D such that D(k, E(k, m)) = m for any message m and key k. Here the message m
is an arbitrary string, and the key k is a (uniformly) random string of some fixed length ℓ that depends on
the desired security level. The encryption scheme is secure under chosen plaintext attack if the probability
distributions E(k, m) and E(k, 0|m|) are computationally indistinguishable when k is chosen at random, and
m is an arbitrary message.

Computational evaluation. In the computational setting, cryptographic expressions are mapped to
probability distributions in the obvious way. We first define the evaluation σJeK of an expression e ∈
Exp(Keys,Data) with respect to a fixed key assignment σ:Keys → {0, 1}ℓ. The value σJeK is defined
by induction on the structure of the expression e by the rules σJdK = γd (where γd is a fixed bit-string
associated to d ∈ Data), σJkK = σ(k), σJ(e1, e2)K = σJe1K · σJe2K (where · is a pairing function used to
join two strings into one), and σJ{|e|}kK = E(σ(k), σJeK) where all applications of the encryption algorithm
E are performed using independent randomness. The computational evaluation JeK of an expression e is
defined as the probability distribution obtained by first choosing a random key assignment σ and then
computing σJeK. When Keys = G∗(Rand) is a set of pseudo-random keys, σ is selected by first choosing
the values σ(r) ∈ {0, 1}ℓ (for r ∈ Rand) independently and uniformly at random, and then extending σ
to pseudo-random keys in G+(Rand) using a length doubling pseudo-random generator G according to the
equation

G(σ(k)) = σ(G0(k)); σ(G1(k)).

Length conventions and pattern evaluation. Since computational encryption schemes are not usually
required to hide the length of the input, it is natural to require that all functions operating on messages
are length-regular, i.e., the length of the output depends only on the length of the input. Throughout the
paper we assume that the functions d 7→ γd, (x1, x2) 7→ x1 · x2 and E are length regular, i.e., |γd| is the
same for all d ∈ Data, |σ(k)| = ℓ for all keys k, |x1 · x2| depends only on |x1| and |x2|, and |E(k, x)|
depends only on |σ(k)| = ℓ and |x|. Under these assumptions, it is easy to see that any two expressions
e, e′ ∈ Exp(Keys,Data) with the same structure struct(e) = struct(e′) (see Figure 2 for the definition)
are always evaluated to strings of exactly the same length |σJeK| = |σJe′K|. Using this fact, the computational
evaluation function σJeK is extended to patterns3 by defining

σJstruct(e)K = 0|σJeK|.

Notice that the definition is well given because |σJeK| depends only on struct(e), and not on the specific
expression e.

3 Symbolic model for pseudo-random keys

In this section we develop a symbolic framework for the treatment of pseudo-random keys, and prove that it
is computationally sound. First, in Section 3.1, we introduce a symbolic notion of independence for pseudo-
random keys. Informally, two (symbolic) keys are independent if neither of them can be derived from the
other through the application of the pseudo-random generator. We give a computational justification for
this notion by showing that the standard (joint) probability distribution associated to a sequence of symbolic
keys k1, . . . , kn ∈ Keys in the computational model is pseudo-random precisely when the keys k1, . . . , kn are
symbolically independent. Then, in Section 3.2, we use our definition of symbolic independence to define a
computationally sound notion of key renaming. Intuitively, in order to be computationally sound and achieve
other desirable properties, key renamings should map independent sets to independent sets. We prove that,
under such restriction, applying a renaming to cryptographic expressions yields computationally indistin-
guishable distributions. This should be contrasted with the standard notion of key renaming used in the
absence of pseudo-random keys, where equivalent expressions evaluate to identical probability distributions.

3Here we define JeK only for valid patterns, i.e., patterns that are in the image of the function p.

5

G01(r2)r1

G1(r1)

G11(r1)

G00(r2) G010(r2)G10(r1)

G01(r1)

G110(r2)

G0(r2)

Figure 1: Hasse diagram associated to the set of keys S = {r1,G10(r1),G1(r1),G01(r1), G11(r1),
G0(r2),G00(r2),G010(r2),G110(r2), G01(r2)}. For any two keys, k1 � k2 if there is a directed path from k1 to
k2. The keys {G0(r2),G01(r2)} form an independent set because neither G0(r2) � G01(r2), nor G01(r2) �
G0(r2). The Hasse diagram of S is a forest consisting of 3 trees with roots Roots(S) = {r1,G0(r2),G01(r2)}.

3.1 Independence

For any two keys k1, k2 ∈ Keys, we say that k1 yields k2 (written k1 � k2) if k2 ∈ G∗(k1), i.e., k2 can be
obtained by repeated application of G0 and G1 to k1. As usual, we write k1 ≺ k2 if k1 � k2 and k1 6= k2.
Notice that (Keys,�) is a partial order, i.e., the relation � is reflexive, antisymmetric and transitive. Two
keys k1, k2 are independent if neither k1 � k2 nor k2 � k1. We say that the keys k1, . . . , kn are independent
if ki and kj are independent for all i 6= j. Pictorially a set of keys S ⊆ Keys can be represented by the
Hasse diagram4 of the induced partial order (S,�). (See Figure 1 for an example.) Notice that this diagram
is always a forest, i.e., the union of disjoint trees with roots

Roots(S) = S \ G+(S).

S is an independent set if and only if S = Roots(S), i.e., each tree in the forest associated to S consists of
a single node, namely its root.

We consider the question of determining, symbolically, when (the computational evaluation of) a sequence
of pseudo-random keys k1, . . . , kn is pseudo-random, i.e., it is computationally indistinguishable from n truly
random independently chosen keys. The following lemma shows that our symbolic notion of independence
corresponds exactly to the standard cryptographic notion of computational pseudo-randomness. We remark
that the correspondence proved in the lemma is exact, in the sense that the symbolic condition is both
necessary and sufficient for symbolic equivalence. This should be contrasted with typical computational
soundness results [2], that only provide sufficient conditions for computational equivalence, and require
additional work/assumptions to establish the completeness of the symbolic criterion [21, 11].

Theorem 1 Let k1, . . . , kn ∈ Keys be a sequence of symbolic keys. Then, for any secure (length doubling)
pseudo-random generator G, the probability distribution Jk1, . . . , knK is computationally indistinguishable from
Jr1, . . . , rnK (where r1, . . . , rn ∈ Rand are distinct atomic keys), if and only if the keys k1, . . . , kn are (sym-
bolically) independent.

Proof. We first prove the “only if” direction of the equivalence, i.e., independence is a necessary condition for
the indistinguishability of Jr1, . . . , rnK and Jk1, . . . , knK. Assume the keys in (k1, . . . , kn) are not independent,

4The Hasse diagram of a partial order relation � is the graph associated to the transitive reduction of �, i.e., the smallest
relation → such that � is the symmetric transitive closure of →.

6

i.e., ki � kj for some i 6= j. By definition, kj = Gw(ki) for some w ∈ {0, 1}∗. This allows to determinis-
tically compute JkjK = Gw(JkiK) from JkiK using the pseudo-random generator. The distinguisher between
Jr1, . . . , rnK and Jk1, . . . , knK works in the obvious way: given a sample (σ1, . . . , σn), compute Gw(σi) and
compare the result to σj . If the sample comes from Jk1, . . . , knK, then the test is satisfied with probability 1.
If the sample comes from Jr1, . . . , rnK, then the test is satisfied with exponentially small probability because
σi = JriK is chosen at random independently from σj = JrjK. This concludes the proof for the “only if”
direction.

Let us now move to the “if” direction, i.e., prove that independence is a sufficient condition for the
indistinguishability of Jr1, . . . , rnK and Jk1, . . . , knK. Assume the keys in (k1, . . . , kn) are independent, and
let m be the number of applications of G0 and G1 required to obtain (k1, . . . , kn) from the basic keys in
Rand. We define m + 1 tuples Ki = (ki

1, . . . , k
i
n) of independent keys such that

• K0 = (k1, . . . , kn)

• Km = (r1, . . . , rn), and

• for all i, the distributions JKiK and JKi+1K are computationally indistinguishable.

It follows by transitivity that JK0K = Jk1, . . . , knK is computationally indistinguishable from JKmK =
Jr1, . . . , rnK. More precisely, any adversary that distinguishes Jk1, . . . , knK from Jr1, . . . , rnK with advan-
tage δ, can be efficiently transformed into an adversary that breaks the pseudo-random generator G with
advantage at least δ/m. Each tuple Ki+1 is defined from the previous one Ki as follows. If all the keys
in Ki = {ki

1, . . . , k
i
n} are random (i.e., ki

j ∈ Rand for all j = 1, . . . , n), then we are done and we can set

Ki+1 = Ki. Otherwise, let ki
j = Gw(r) ∈ Keys \ Rand be a pseudo-random key in Ki, with r ∈ Rand

and w 6= ǫ. Since the keys in Ki are independent, we have r /∈ Ki. Let r′, r′′ ∈ Rand be two new fresh key
symbols, and define Ki+1 = {ki+1

1 , . . . , ki+1
n } as follows:

ki+1
h =

Gs(r
′) if ki

h = Gs(G0(r)) for some s ∈ {0, 1}∗

Gs(r
′′) if ki

h = Gs(G1(r)) for some s ∈ {0, 1}∗

ki
h otherwise

It remains to prove that any distinguisher D between JKiK and JKi+1K can be used to break (with the same
success probability) the pseudo-random generator G. The distinguisher D′ for the pseudo-random generator
G is given as input a pair of strings (σ′, σ′′) chosen either uniformly (and independently) at random or running
the pseudo-random generator (σ′, σ′′) = G(σ) on a randomly chosen seed σ. D′(σ′, σ′′) computes n strings
(σ1, . . . , σn) by evaluating (ki+1

1 , ki+1
2 , . . . , ki+1

n) according to an assignment that maps r′ to σ′, r′′ to σ′′, and
all other base keys to uniformly chosen values. The output of D′(σ′, σ′′) is D(σ1, . . . , σn). Notice that if σ′ and
σ′′ are chosen uniformly and independently at random, then (σ1, . . . , σn) is distributed according to JKi+1K,
while if (σ′, σ′′) = G(σ), then (σ1, . . . , σn) is distributed according to JKiK. Therefore the success probability
of D′ in breaking G is exactly the same as the success probability of D in distinguishing JKiK from JKi+1K. �

3.2 Renaming pseudo-random keys

Symbolic keys are usually regarded as bound names, up to renaming. In the computational setting, this
corresponds to the fact that changing the names of the keys does not alter the probability distribution
associated to them. When pseudo-random keys are present, some care has to be exercised in defining an
appropriate notion of key renaming. For example, swapping r and G0(r) should not be considered a valid
key renaming because the probability distributions associated to (r,G0(r)) and (G0(r), r) can be easily
distinguished. A conservative approach would require a key renaming µ to act as a permutation over the
set of atomic keys Rand. However, this is overly restrictive. We show that as long as the key renaming
is compatible with the pseudo-random generator (in the sense specified in the following definition), more
general key renamings can be allowed.

7

Definition 1 (Pseudo-renaming) For any set of keys S ⊆ Keys, a renaming µ: S → Keys is compatible
with the pseudo-random generator G if for all k1, k2 ∈ S and w ∈ {0, 1}∗,

k1 = Gw(k2) if and only if µ(k1) = Gw(µ(k2)).

For brevity, we refer to renamings satisfying this property as pseudo-renamings.

Notice that the above definition does not require the domain of µ to be the set of all keys Keys, or even
include all keys in Rand. So, for example, the function mapping (G0(r0),G1(r0)) to (r0,G001(r1)) is a valid
pseudo-renaming, and it does not act as a permutation over Rand. The following lemma follows almost
immediately from the definition.

Lemma 1 Let µ be a pseudo-renaming with domain S ⊆ Keys. Then µ is a bijection from S to µ(S).
Moreover, S is an independent set if and only if µ(S) is an independent set.

Proof. Let µ: S → Keys be a pseudo-renaming. Then µ is necessarily injective, because for all k1, k2 ∈ S
such that µ(k1) = µ(k2), we have µ(k1) � µ(k2) = Gǫ(µ(k2)) and µ(k2) � µ(k1) = Gǫ(µ(k1)). By definition
of pseudo-renaming, this implies k1 � Gǫ(k2) = k2 and k2 � Gǫ(k1) = k1, which by the anti-symmetric
property gives k1 = k2. This proves that µ is a bijection from S to µ(S).

Now assume S is not an independent set, i.e., k1 = Gw(k2) for some k1, k2 ∈ S and w 6= ǫ. By defi-
nition of pseudo-renaming, we also have µ(k1) = Gw(µ(k2)), so µ(S) is not an independent set. Similarly,
if µ(S) is not an independent set, then there exists keys µ(k1), µ(k2) ∈ µ(S) (with k1, k2 ∈ S) such that
µ(k1) = Gw(µ(k2)) for some w 6= ǫ. Again, by definition of pseudo-renaming, k1 = Gw(k2), and S is not an
independent set. �

In fact, pseudo-renamings can be equivalently defined as bijections between two independent sets of keys,
as shown in the following lemma.

Lemma 2 Any pseudo-renaming µ with domain S can be uniquely extended to a pseudo-renaming µ̄ with
domain G∗(S). In particular, any pseudo-renaming can be (uniquely) specified as the extension µ̄ of a
bijection µ: A → B between two independent sets A = Roots(S) and B = µ(A).

Proof. Let µ: S → Keys be a pseudo-renaming. For any w ∈ {0, 1}∗ and k ∈ S, define µ̄(Gw(k)) =
Gw(µ(k)). This definition is well given because µ is a pseudo-renaming, and therefore for any two repre-
sentations of the same key Gw(k) = Gw′(k′) ∈ G∗(S) with k, k′ ∈ S, we have Gw(µ(k)) = Gw′(µ(k′)).
Moreover, it is easy to check that µ̄ is a pseudo-renaming, and any pseudo-renaming that extends µ must
agree with µ̄. We now show that pseudorenamings can be uniquely specified as bijections between two inde-
pendent sets of keys. Specifically, for any pseudo-renaming µ with domain S, consider the restriction µ0 of µ
to A = Roots(S). By Lemma 1, µ0 is a bijection between independent sets A and B = µ0(A). Consider the
extensions of µ and µ0 to G∗(S) = G∗(Roots(S)) = G∗(A). Since µ and µ0 agree on A = Roots(S), both
µ̄ and µ̄0 are extensions of µ0. By uniqueness of this extension, we get µ̄0 = µ̄. Restricting both functions
to S, we get that the original pseudo-renaming µ can be expressed as the restriction of µ̄0 to S. In other
words, µ can be expressed as the extension to S of a bijection µ0 between two independent sets of keys
A = Roots(S) and B = µ(A). �

Using Lemma 2, in the rest of the paper, throughout the paper we specify pseudo-renamings as bijections
between two independent sets of keys. Of course, in order to apply µ: S → µ(S) to an expression e, the
key set Keys(e) must be contained in G∗(S). Whenever we apply a pseudo-renaming µ: S → Keys to an
expression or pattern e, we implicitly assume that Keys(e) ⊂ G∗(S), so that we can compute µ̄(e).

Definition 2 Two expressions or patterns e1, e2 ∈ Pat(Keys,Data) are equivalent up to pseudo-renaming
(written e1

∼= e2), if there is a pseudo-renaming µ such that µ̄(e1) = e2. Equivalently, by Lemma 2, e1
∼= e2

if there is a bijection µ:Roots(Keys(e1)) → Roots(Keys(e2)) such that µ̄(e1) = µ̄(e2).

8

It easily follows from the definitions and Theorem 1 that ∼= is an equivalence relation, and expressions
that are equivalent up to pseudo-renaming are computationally equivalent.

Corollary 1 For any two patterns e1, e2 ∈ Pat(Keys,Data) such that e1
∼= e2, the distributions Je1K and

Je2K are computationally indistinguishable.

Proof. Assume e1
∼= e2, i.e., there exists a bijection µ : Roots(Keys(e1)) → Roots(Keys(e2)) such that

µ̄(e1) = e2. Let n be the size of A1 = Roots(Keys(e1)) and A2 = Roots(Keys(e2)) = µ(A1). We show
that any distinguisher D between Je1K and Je2K = Jµ̄(e1)K can be efficiently transformed into a distinguisher
A between JA1K and JA2K with the same advantage as D. Since A1 and A2 are independent sets of size n,
by Theorem 1 the probability distributions JA1K and JA2K are indistinguishable from Jr1, . . . , rnK. So, JA1K
and JA2K must be indistinguishable from each other, and A’s advantage must be negligible. We now show
how to build A from D. The distinguisher A takes as input a sample σ coming from either JA1K or JA2K.
A evaluates e1 according to the key assignment A1 7→ σ, and outputs D(σJe1K). By construction, σJe1K
is distributed according to Je1K when σ = JA1K, while it is distributed according to Je2K = Jµ̄(e1)K when
σ = JA2K = Jµ(A1)K. It follows that A has exactly the same advantage as D. �

3.3 Examples

Let µ be the function mapping G1(r1) 7→ G01(r2), G10(r1) 7→ r1 and r2 7→ G11(r2). This is a pseudo-
renaming because it is a bijection between two independent sets {G1(r1),G10(r1), r2} and {G01(r2), r1,G11(r2)}.
Consider the expression

e4 = (G0(r2), {|r2|}G1(r1),G10(r1), {|d1, d2|}G11(r1)
) (4)

with Keys(e4) = {G0(r2),G1(r1),G10(r1), r2,G11(r1)}. The pseudo-renaming µ can be applied to e4

because the domain of µ equals the set of root keys

Roots(Keys(e4)) = {G1(r1),G10(r1), r2}

and Keys(e4) ⊂ G∗(Roots(Keys(e4))). So, µ can be extended to a function

k ∈ Keys(e4) G1(r1) G10(r1) r2 G0(r2) G11(r1)
µ̄(k) G01(r2) r1 G11(r2) G011(r2) G101(r2)

which, applied to expression e4, yields

µ̄(e4) = (G011(r2), {|G01(r2), r1|}G11(r2)
, {|d1, d2|}G101(r2)

). (5)

As another example, consider the expression

e6 = ({|d1,G0(r1)|}G01(r1)
,G11(r1)). (6)

We have Roots(Keys(e6)) = {G0(r1),G1(r1)}. Let µ be the pseudo-renaming mapping G0(r1) 7→ r1

and G1(r1) 7→ r2. Then, expression e6 is equivalent to µ̄(e6) = ({|d1, r1|}G0(r2)
,G1(r2)). The probability

distributions associated to the two expressions

Je6K = J{|d1,G0(r1)|}G01(r1),G11(r1)K Jµ̄(e6)K = J{|d1, r1|}G0(r2)
,G1(r2)K

are statistically different (e.g., the support size of the second distribution is larger than that of the first one),
but computationally indistinguishable.

9

p(d, T) = d

p(k, T) = k

p((e1, e2), T) = (p(e1, T),p(e2, T))

p({|e|}k, T) =

{

{|p(e, T)|}k if k ∈ T
{|struct(e)|}k if k /∈ T

struct(d) = �

struct(k) = ◦

struct((e1, e2)) = (struct(e1), struct(e2))

struct({|e|}k) = {|struct(e)|}

Figure 2: Rules defining the pattern function p:Pat(Keys,Data) × ℘(K) → Pat(Keys,Data) and
auxiliary function struct:Pat(Keys,Data) → Pat(∅, ∅), where k ∈ K ∪ {◦}, d ∈ D ∪ {�}, and
e, e1, e2 ∈ Pat(Keys,Data). Intuitively, struct(e) represents structural information about e (e.g., its
size) that may be leaked when encrypting e under standard computational encryption schemes, and p(e, T)
is the pattern observable in e using the keys in T for decryption.

4 Cryptographic expressions with pseudo-random keys

In this section we prove our main result: the computational soundness of symbolic expressions with pseudo-
random keys. As usual the symbolic semantics of cryptographic expressions is specified by means of a
function p (defined, together with the auxiliary function struct, in Figure 2) mapping each expression to a
corresponding pattern. (The reader is referred to [2, 17] for motivation and discussion of these definitions.)
Informally, for any expression or pattern e ∈ Pat(Keys,Data) and set of “known keys” S ⊆ Keys, the
pattern p(e, S) is the result of observing e using the keys in S for decryption. The set of keys known to
a passive adversary observing e can be characterized as a fix-point of a key recovery operator Fe, which
informally maps any set of keys S ⊂ Keys, to the set Fe(S) of keys which can be immediately recovered
from e, given the ability to open any ciphertexts encrypted under keys in S. Traditionally, the adversarial
knowledge in symbolic security analysis is defined as the least fix-point fix(Fe) which corresponds to defining
the set of known keys by induction. Here we follow a dual approach, put forward in [17], which takes
the greatest fix-point FIX(Fe) as the set of keys known to the adversary, and shows that this co-inductive
approach results in a precise connection between symbolic and computational cryptography. The reader is
referred to [17] for further discussion about fix-points and the use of induction versus co-induction.

Following [17], we introduce a key recovery function r (mapping patterns to sets of keys) such that the
key recovery operator F can be expressed as

Fe: S 7→ r(p(e, S)). (7)

Informally, r(e) ⊆ Keys is the set of keys that can be (potentially) recovered combining the information
obtained from all the parts of e. In words, (7) says that Fe(S) is the set of keys that can be recovered
from all the parts of the pattern p(e, S) obtained when observing e using the keys in S for decryption. We
remark that the definition of p (given in Figure 2) treats pseudo-random keys Keys ⊂ G∗(Rand) just as
regular keys, disregarding their internal structure. In particular, no new definition is needed to extend p to
expressions with pseudo-random keys, and here as in previous work the function p satisfies the properties

p(e,Keys) = e (8)

p(p(e, S), T) = p(e, S ∩ T), (9)

which informally state that p(·, S) acts on patterns as a family of projection functions. The definition of the
key recovery function r is specific to the class of cryptographic expressions under consideration, and is given
in Section 4.2. All we need to know at this point is that the function r (defined in Section 4.2) satisfies the
property

r(p(e, T)) ⊆ r(e) (10)

10

i.e., intuitively, projecting an expression (or pattern) e does not increase the amount of information recov-
erable from it. The projection properties (8-10) ensure that the key recovery operator Fe (7) is monotone,
and therefore it admits both a least and a greatest fix-point, which can be computed as fix(Fe) =

⋃

n Fn
e (∅)

and FIX(Fe) =
⋂

n Fn
e (Keys). The (greatest fix-point) symbolic semantic of a cryptographic expression e

is defined as the pattern
Pattern(e) = p(e, FIX(Fe)), (11)

and two expressions e1, e2 are symbolically equivalent if they have the same pattern up to pseudo-renaming,
i.e.,

p(e1, FIX(Fe1
)) ∼= p(e2, FIX(Fe2

)).

The main result of [17] establishes a simple criterion for the computational soundness of the greatest fix-point
semantics.

Theorem 2 ([17], Theorem 1) Assume p and r satisfy (8–10). Then, the key recovery operator (7) is
monotone, and the greatest fix-point semantic Pattern(e) = p(e,FIX(Fe)) is well defined. Moreover, if the
distributions JeK and Jp(e, r(e))K are computationally indistinguishable for any e ∈ Pat(Keys,Data), then
the distributions JeK and JPattern(e)K are also computationally indistinguishable for any e ∈ Pat(Keys,Data).

4.1 Modeling partial knowledge

In the standard setting, where keys are atomic symbols, and encryption is the only cryptographic primitive
used, the set of keys r(e) that can be recovered from all parts of a pattern e can be simply defined as the set
of keys appearing in e as a message, i.e., r(e) = Keys(e)∩Parts(e). This is because the partial information
about a key k revealed by a ciphertext {|m|}k is of no use to an adversary, except possibly for telling when
two ciphertexts are encrypted under the same key. When dealing with expressions that make use of multiple
cryptographic primitives (e.g., as in this paper, both a pseudo-random generator and encryption function),
one needs to describe partial information about keys, and how different pieces of partial information can be
combined together. This can be done (symbolically) using an appropriate lattice5 Λ, whose top element ⊤
denotes complete knowledge (of a key), and bottom element ⊥ denotes complete lack of knowledge. Other
elements of Λ can be used to symbolically quantify various amounts of partial knowledge. For example,
Λ = {⊥, +,⊤} may consists of just three elements satisfying ⊥ < + < ⊤, where the value + denotes some
(unspecified) amount of partial information in-between ⊥ and ⊤. We will show that even such a simple
lattice is already enough to treat cryptographic expressions with encryption functions and pseudo-random
keys. For concreteness, in the rest of the paper we fix Λ = {⊤,⊥, +} to this 3-element lattice, as this is
all we need to establish our main result, but we remark that our definitions and proofs immediately extend
to arbitrary lattices, which may be useful to deal with more complex settings, where, for example different
encryption schemes are mixed together, etc.

We represent the adversarial knowledge as an independent set of keys S labeled with elements of Λ, which
qualify the information known by the adversary about each key in S. For example, we write ν = {k⊤

1 , k⊤
2 , k+

3 }
to represent complete knowledge about k1 and k2, together with partial information about k3. Formally, the
adversarial knowledge is represented as a function from S to Λ.

Definition 3 For any set Keys ⊂ G∗(Rand) and lattice (Λ,≤), let KΛ(Keys) be the set of all functions
ν: S → Λ \ {⊥} such that the domain S ⊆ Keys is an independent set.

We now define a partial order relation on KΛ(G∗(Keys)), where, intuitively, ν1 ⊑ ν2 if ν2 yields at least
as much knowledge as ν1 about any key.

5We remind the reader that a lattice is a partially ordered set (Λ,⊑) such that any nonempty finite subset S ⊆ Λ admits a
least upper bound

F

S and greatest lower bound
d

S with respect to the partial ordering relation ⊑. The operations
F

andd
are called join and meet. Λ is a complete lattice if the same holds for arbitrary (possibly empty, or infinite) sets S. Any

complete lattice has a top element ⊤ =
F

Λ =
d

∅ and bottom element ⊥ =
d

Λ =
F

∅.

11

Definition 4 For any ν ∈ KΛ(G∗(Rand)), let fν be the function

fν(k) =

ν(k) if k ∈ S
⊤ if k ∈ G+(ν−1(⊤))
⊥ otherwise

For any ν1, ν2 ∈ KΛ(G∗(Rand)), let ν1 ⊑ ν2 if fν1
(k) ≤ fν2

(k) for all k ∈ G∗(Rand).

Below (Theorem 3) we show that ⊑ is a partial order relation, and, in fact, KΛ(Keys) is a complete
lattice. But first, we make the following remarks:

• We exclude the bottom element ⊥ from the range of ν because lack of knowledge about a key k can
be simply modeled by removing the key k from the domain S.

• We restrict the domain S of ν to be an independent set to ensure that all pieces of information are
unrelated and the knowledge is represented concisely. This is taken into account in the definition of
the function fν underlying the ordering relation ⊑. For example, if ν(k) = ⊤, then f−1

ν (⊤) (the set of
keys that can be completely recovered from ν) includes not only k, but also all keys G∗(k) obtained
by repeatedly applying the pseudo-random generator to k.

• We do not assume that partial information about a key k allows to compute partial information about
any other key in G∗(k). This captures the fact that there are computationally secure pseudo-random
generators,6 such that specific partial knowledge about k (e.g. as leaked when encrypting under k)
does no yield any information about keys in G+(k).

• Restricting the domain of ν to an independent set S introduces some constraints on the precise amount
of information that can be described by elements of KΛ(Keys). For example, there is no element in
KΛ(Keys) denoting precisely partial knowledge about two related keys, say, r+ and G0(r)

+. This
is intentional, and appears to be necessary to achieve computational soundness with respect to any
computationally secure pseudo-random generator. We elaborate on this point below.

Theorem 3 For any Λ, (KΛ(G∗(Rand)),⊑) is a complete lattice. Moreover, for any Keys ⊆ G∗(Rand),
and nonempty set {νi}i∈I ⊆ KΛ(Keys), we have

d
i νi ∈ KΛ(Keys) and

⊔

i νi ∈ KΛ(Keys).

We will use the lattice (K(Keys),⊑) to study information about the keys Keys(e) that occur in an
expression. Notice that the set K(Keys(e)) is finite, while K(G∗(Rand)) is an infinite set. The second
part of Theorem 3 shows that for any Keys, the set K(Keys) is closed under the

⊔

and
d

operations of
K(G∗(Rand)). So, when studying an expression e, we can always restrict our attention to the finite sublattice
(K(Keys(e)),⊑), rather than the entire K(G∗(Rand)). The proof of Theorem 3 is given in Appendix B.
Here we establish two simple corollaries that can be used to carry out computations in KΛ(Keys(e)).

Corollary 2 For any tuple of independent keys k1, . . . , kn ∈ Keys and λ1, . . . , λn ∈ Λ \ {⊥},

{kλ1

1 } ⊔ · · · ⊔ {kλn

n } = {kλ1

1 , . . . , kλn

n }.

Proof. By Theorem 3, we have {kλ1

1 }⊔· · ·⊔{kλn

n } ∈ KΛ({k1, . . . , kn}). Since the keys k1, . . . , kn are indepen-
dent, KΛ({k1, . . . , kn}) is precisely the set of all functions of the form ν: S → Λ\{⊥}, where S is an arbitrary
subset of {k1, . . . , kn}. Any such a function satisfies {kλi

i } ⊑ ν if and only if ki ∈ S, and ν(ki) ≥ λi. Clearly

the smallest function satisfying these properties for all i is the one mapping ki to λi, i.e., ν = {kλ1

1 , · · · , kλn

n }.
�

6Consider an encryption scheme Ek(m) = E ′

k′ (m) that splits the key k = k′; k′′ into two halves, uses the first half k′ to
encode the input message m using some other computationally secure encryption scheme E ′ (which accepts shorter keys than
E), and discards the second half of the key k′′. Now consider a length-doubling pseudo-random generator k 7→ G(k) that ignores
the first half of the seed k = k′; k′′, and expands the second half k′′ by a factor 4. Clearly, the partial information about k

leaked by J{|m|}
k
K does not yield any information about any key in JG+(k)K because the two probability distributions depend

on disjoint subsets of the key bits.

12

Corollary 3 Let Λ = {⊤,⊥, +} and let k1 ≺ k2 be two distinct, but related keys. Then, for any λ1, λ2 ∈
Λ \ {⊥},

{kλ1

1 } ⊔ {kλ2

2 } = {k⊤
1 }.

Proof. By Theorem 3, we have {kλ1

1 } ⊔ {kλ2

2 } ∈ KΛ({kλ1

1 , kλ2

2 }). Since k1 ≺ k2, the lattice KΛ({k1, k2})
contains only elements of the form {kλ

i }, for i = 1, 2 and λ ∈ Λ \ {⊥}. It is easy to see that the only element
in this set that is an upper bound to both {kλ1

1 } and {kλ2

2 } is {k⊤
1 }, and therefore {kλ1

1 }⊔ {kλ2

2 } = {k⊤
1 }. �

The last corollary illustrates an important property of our lattice. Restricting the domain of ν to an
independent set of keys implicitly forces the least upper bound operation to model the process of recovering a
key from different pieces of partial information. For example, given partial information about G1(r) (e.g., as
leaked when using G1(r) as an encryption key) and complete knowledge of G11(r), one obtains the key G1(r).
In fact, it can be shown that there are encryption schemes and pseudo-random generators (satisfying the
standard computational definitions of security) such that given the key G11(r) and any message encrypted
under G1(r), one can efficiently break the encryption scheme, and recover the secret key G1(r), even if neither
G11(r) nor the ciphertext allows individually to do so. Of course, this is not true for any computational
encryption scheme and pseudo-random generator. Still, for the symbolic model to be computationally sound
(with respect to any computational implementation satisfying the standard security definitions) we need to
take into account the possibility that the key G1(r) can be completely recovered.

We conclude with an example which illustrates how to compute the join of two elements of KΛ(Keys).
Let ν1 = {G11(r)

⊤,G00(r)
+} and ν2 = {G0(r)

⊤,G1(r)
+}. We want to compute ν1 ⊔ ν2. Since the keys in

each νi are independent, by Corollary 2 we have

ν1 ⊔ ν2 = {G11(r)
⊤} ⊔ {G00(r)

+} ⊔ {G0(r)
⊤} ⊔ {G1(r)

+}.

Next, using Corollary 3, we get

{G11(r)
⊤} ⊔ {G1(r)

+} = {G1(r)
⊤}

{G00(r)
+} ⊔ {G0(r)

⊤} = {G0(r)
⊤}

which combined together yields ν1 ⊔ ν2 = {G1(r)
⊤} ⊔ {G0(r)

⊤} = {G1(r)
⊤,G0(r)

⊤}.

4.2 Computational soundness

In order to instantiate the greatest fix-point framework for the symbolic equivalence of cryptographic ex-
pressions described at the beginning of this section, all we need to do is to specify the knowledge recovery
function r:Pat(Keys,Data) → ℘(Keys). Using the partial knowledge lattice KΛ(Keys(e)), the definition
of r is simple and natural. For each pattern e ∈ Pat(Keys,Data), define the information immediately
revealed by e as

Φ(e) =

{k⊤} if e = k ∈ Keys
{k+} if e = {|m|}k for some m ∈ Pat(Keys,Data)
∅ otherwise.

In words, if a key is given in the clear, then the key can be completely recovered, while if it is used to
encrypt, the resulting ciphertext yields partial information about it. We combine all pieces of information
immediately recoverable from the parts of e and define

r(e) = f−1
ν (⊤) where ν =

⊔

Φ(Parts(e))

as the set of all keys that can be completely recovered from ν. It is easy to see that r satisfies property (10),
so it can be used to define a monotone key recovery operator Fe(S) = r(p(e, S)), and instantiate the
greatest fix-point semantics Pattern(e) = p(e, FIX(Fe)). The following theorem shows that this semantic
is computationally sound.

13

Theorem 4 Let E be a (length regular) encryption scheme semantically secure against chosen plaintext at-
tack, and G a computationally secure length-doubling pseudo-random generator. For any two expressions
e1, e2 ∈ Exp(Keys,Data) such that Pattern(e1) ∼= Pattern(e2), the distributions Je1K and Je2K are com-
putationally indistinguishable.

Proof. In order to use Theorem 2 to establish the computational soundness for our semantics, we need the
following technical lemma.

Lemma 3 Under the assumptions of Theorem 4, for any e ∈ Pat(Keys,Data), the probability distributions
JeK and Jp(e, r(e))K are computationally indistinguishable.

Proof. First of all, we claim that proving the lemma for arbitrary patterns e reduces to proving it for the
special case when Roots(e) ⊂ Rand. (In what follows, we refer to patterns such that Roots(e) ⊂ Rand
as “normal”.) To establish the claim, consider an arbitrary pattern e with Roots(Keys(e)) = {k1, . . . , kn}
and let µ be the pseudo-renaming mapping ki to ri, for n distinct keys r1, . . . , rn ∈ Rand. We know, from
Corollary 1, that JeK is indistinguishable from Jµ̄(e)K. But, by Lemma 5 (see Appendix C), Roots(µ(e)) =
µ(Roots(e)) = {r1, . . . , rn} ⊆ Rand, i.e., µ(e) is normal. So, if the lemma holds for normal patterns, then
Jµ(e)K is indistinguishable from Jp(µ(e), r(µ(e)))K. It can be easily proved, by structural induction, that µ
commutes with both r and p (see Lemma 6 and 7 in Appendix C) and therefore

p(µ̄(e), r(µ̄(e))) = p(µ̄(e), µ̄(r(e))) = µ̄(p(e, r(e))).

So, the distribution Jp(µ̄(e), r(µ̄(e)))K is identical to Jµ̄(p(e, r(e)))K. Finally, using Corollary 1 again, we see
that Jµ̄(p(e, r(e)))K is indistinguishable from Jp(e, r(e))K. The indistinguishability of JeK from Jp(e, r(e))K
follows by transitivity.

Let us now prove the lemma for the case of normal patterns e satisfying Roots(Keys(e)) ⊆ Rand.
Consider the pattern e′ = p(e, r(e)). We want to prove that Je′K is indistinguishable from JeK. The pattern
e′ is obtained from e by replacing all subexpressions of e of the form {|e′′|}k with k /∈ r(e) by {|struct(e′′)|}k.
Let ν =

⊔

Φ(Parts(e)) so that r(e) = f−1
ν (⊤). Consider any key k ∈ Keys(e) \ r(e). Clearly, since

k ∈ Keys(e), we have {k+} ⊑ ν. Notice that k ∈ Keys(e) \ r(e) must also satisfy the following properties:

• k ∈ Rand. To see this, assume for contradiction k /∈ Rand. Then k /∈ Roots(Keys(e)) because
Roots(Keys(e)) ⊆ Rand. So, r ≺ k for some r ∈ Roots(Keys(e)). Since r ∈ Keys(e), we have
{r+} ⊑ ν. It follows by Corollary 3 that {k⊤} ⊏ {r⊤} = {r+}⊔{k+} ⊑ ν, and k ∈ r(e), a contradiction.

• G∗(k) ∩Parts(e) = ∅. To see this, assume for contradiction that there is some k̂ ∈ G∗(k) ∩Parts(e).

Then {k̂⊤} ⊑ ν. Since k � k̂, by Corollary 3 we have {k⊤} = {k+}⊔{k̂⊤} ⊑ ν, and therefore k ∈ r(e),
a contradiction.

• G+(k)∩Keys(e) = ∅. To see this, assume for contradiction that there is some k̂ ∈ G+(k)∩Keys(e).

Then {k̂+} ⊑ ν. Since k ≺ k̂, by Corollary 3 we have {k⊤} = {k+}⊔{k̂⊤} ⊑ ν, and therefore k ∈ r(e),
a contradiction.

In summary, any k ∈ Keys(e) \ r(e) is an atomic key that only appears as an encryption key in e, and no
key in G+(k) appears anywhere in e. So, the probability distribution JeK can be efficiently sampled without
knowing the keys in R′ = Keys(e) \ r(e), provided we have access to |R′| encryption oracles, one for every
r ∈ R′. Moreover, if instead of properly encrypting the query messages m, the oracles encrypt 0|m|, then the
same evaluation algorithm produces a sample from Jp(e, r(e))K. So, any algorithm to distinguish JeK from
Jp(e, r(e))K can be turned into an algorithm to break the semantic security of E . �

Let us now go back to the proof of the main theorem. Let e1, e2 be two expressions such that Pattern(e1) =
µ(Pattern(e2)) for some pseudo-renaming µ. By Theorem 2 and Lemma 3, the probability distribution JeiK is
computationally indistinguishable from JPattern(ei)K, for i = 1, 2. Moreover, by Corollary 1, JPattern(e2)K
is indistinguishable from Jµ(Pattern(e2))K = JPattern(e1)K. Therefore, by transitivity, Je1K and Je2K are
computationally indistinguishable. �

14

5 Conclusion

We presented a generalization of the computational soundness result of Abadi and Rogaway [2] (or, more
precisely, its co-inductive variant put forward by the author in [17]) to expressions that mix encryption
functions with a pseudo-random generator. Differently from previous work in the area of multicast key
distribution protocols [18, 20, 19], we considered unrestricted use of both cryptographic primitives, which
raises new issues related partial information leakage that had so far been dealt with using ad-hoc methods. In
our setting, we showed that partial information can be adequately represented symbolically in a very simple
and intuitive way: the adversarial model is still modeled as a set of known keys, but each key is annotated
with a label λ which equal either ⊤ (to represent that the key is completely known) or + (to represent that
only partial information is available about it.) The results can be easily generalized, using a larger set of
labels, to deal with expressions that make use of even richer collections of cryptographic primitives, e.g.,
different types of (private and public key) encryption, secret sharing schemes (as used in [3]), and more.

As in [17], one of the major challenges at this point is to determine to what extent the ideas and results
presented here can be transferred to more complex attack scenarios, like security against active attacks,
as considered in [21], or even stronger models [4, 9, 23] supporting arbitrary composition of cryptographic
primitives.

References

[1] M. Abadi and A. Gordon. A calculus for cryptogaphic protocols: the spi calculus. Information and
Computation, 148(1):1–70, Jan. 1999. Preliminary version in CCS 1997.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography (The computational soundness of
formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[3] M. Abadi and B. Warinschi. Security analysis of cryptographycally controlled access to XML documents.
Journal of the ACM, 55(2):1–29, 2008. Prelim. version in PODS’05.

[4] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations
(extended abstract). In Computer and Communications Security – Proceedings of CCS’03, pages 220–
230. ACM, Oct. 2003.

[5] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption. In
C. Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Information Security, volume 2248 of
LNCS, pages 566–582. Springer, Dec. 2001.

[6] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption:
analysis of DES modes of operation. In Proceedings of FOCS ’97, pages 394–403. IEEE, Oct. 1997.

[7] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the Royal Society
of London, Series A, 426:233–271, 1989.

[8] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security: A taxonomy
and some efficient constructions. In INFOCOM 1999. Proceedings of the Eighteenth Annual Joint
conference of the IEEE computer and communications societies, volume 2, pages 708–716. IEEE, Mar.
1999.

[9] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication and key-
exchange protocols. In Proceedings of TCC ’06, volume 3876 of LNCS, pages 380–403. Springer, Mar.
2006.

[10] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

15

[11] V. Gligor and D. O. Horvitz. Weak key authenticity and the computational completeness of formal
encryption. In Proceedings of CRYPTO ’03, volume 2729 of LNCS, pages 530–547. Springer, Aug. 2003.

[12] O. Goldreich. Foundations of Cryptography, volume I - Basic Tools. Cambridge Unievrsity Press, 2001.

[13] O. Goldreich. Foundation of Cryptography, volume II - Basic Applications. Cambridge Unievrsity Press,
2004.

[14] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sience,
28(2):270–299, 1984. Preliminary version in Proc. of STOC 1982.

[15] R. A. Kennerer, C. Meadows, and J. K. Millen. Three systems for cryptographic protocol analysis.
Journal of Cryptology, 7(2):79–130, 1994.

[16] P. Laud and R. Corin. Sound computational interpretation of formal encryption with composed keys.
In Information Security and Cryptology, 6th Int. Conf. – Proc. of ICISC’03, volume 2971 of LNCS,
pages 55–66, Seoul, Korea, Nov. 2003. Springer.

[17] D. Micciancio. Computational soundness, co-induction and encryption cycles. Report 2009/269, IACR
ePrint archive, 2009. URL http://eprint.iacr.org/2009/269.

[18] D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In Theory of Cryptography
Conference – Proceedings of TCC’05, volume 3378 of LNCS, pages 169–187. Springer, Feb. 2005.

[19] D. Micciancio and S. Panjwani. Corrupting one vs. corrupting many: the case of broadcast and multicast
encryption. In Proceedings of ICALP ’06, volume 4052 of LNCS, pages 70–82. Springer, July 2006.

[20] D. Micciancio and S. Panjwani. Optimal communication complexity of generic multicast key distribution.
IEEE/ACM Transactions on Networking, 16(4):803–813, Aug. 2008. Preliminary version in Eurocrypt
2004.

[21] D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of encrypted
expressions. Journal of Computer Security, 12(1):99–129, 2004. Preliminary version in WITS’02.

[22] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: protocol security analysis. IEEE
Transactions on Software Engineering, SE-13(2):274–288, Feb. 1987.

[23] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time calculus
for the analysis of cryptographic protocols. Theoretical Computer Science, 353(1-3):118–164, Mar. 2006.
Preliminary version in MFPS’01.

[24] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6(1–2):85–128, 1998.

A Cryptography

We briefly recall the formal definition of all computational cryptographic primitives used in this paper. For
more information the reader is referred to [12, 13] or any other standard textbook on the subject.

Definition 5 A (symmetric) encryption scheme is a pair of (probabilistic) polynomial time encryption and
decryption algorithms E ,D such that D(k, E(k, m)) = m for any message m and key k, where m is an
arbitrary bit-string, and the key k is a (uniformly chosen random) string of some fixed length ℓ that depends
on the desired security level. An encryption scheme (E ,D) is indistinguishable under chosen plaintext attack
if, for any probabilistic polynomial time adversary A, the following holds. Choose a bit b and a key k of length
ℓ uniformly at random and run A on input ℓ and with access to an encryption oracle Ob(m) that outputs
E(k, m) if b = 1, or E(k, 0|m|) if b = 0. The attacker A is required to run in time polynomial in the security

16

parameter ℓ, and is supposed to guess the value of b. Then the quantity |Pr{AO1(ℓ) = 1}−Pr{AO0(ℓ) = 1}|
is negligible in the security parameter ℓ, i.e., it is smaller than 1/ℓc for any constant c and sufficiently large
ℓ.

The definition of indistinguishability under chosen plaintext attack given above can be proved equivalent
(via a standard hybrid argument) to a seemingly stronger definition where the attacker is given access to
several encryption oracles, each encrypting under an independently chosen random key.

Definition 6 An encryption scheme (E ,D) is indistinguishable under chosen plaintext attack if, for any
probabilistic polynomial time adversary A and polynomial p, the following holds. Choose a bit b and n = p(ℓ)
keys k1, . . . , kn of length ℓ each, uniformly and independently at random and run A on input ℓ and with
access to an encryption oracle Ob(i, m) that outputs E(ki, m) if b = 1, or E(ki, 0

|m|) if b = 0. The attacker
A is required to run in time polynomial in the security parameter ℓ, and is supposed to guess the value of b.
Then the quantity |Pr{AO1(ℓ) = 1} − Pr{AO0(ℓ) = 1}| is negligible in the security parameter ℓ, i.e., it is
smaller than 1/ℓc for any constant c and sufficiently large ℓ.

Computational equivalence between probability distributions over bit-strings is defined below.

Definition 7 Let {A0
i } and {A1

i } be two probability ensembles, i.e., two sequences of probability distributions
over bit-strings. {A0

i } and {A1
i } are computationally indistinguishable if for any probabilistic polynomial time

adversary D,
|Pr{D(A0

i) = 1} − Pr{D(A1
i) = 1}|

is negligible in i.

Definition 8 A length doubling pseudo-random generator is a polynomial time algorithm G that on input
a key k chosen uniformly at random among all strings of length ℓ, outputs a string G(k) of length 2ℓ. The
pseudo-random generator G is secure if no adversary A can efficiently distinguish the output G(k) (when
k is chosen as a random key of length ℓ) from a uniformly random string of length 2ℓ. Formally, for any
probabilistic polynomial time algorithm A, the quantity |Pr{A(G(k)) = 1}−Pr{A(k1; k2) = 1}| (where k, k1

and k2 are independently and uniformly chosen strings of length ℓ) is a negligible function of ℓ.

B Proof of Theorem 3

In order to prove the theorem, we provide an alternative characterization of the elements ν ∈ KΛ(Keys) in
terms of the functions fν used in the definition of the ordering relation ⊑ (see Definition 4).

Lemma 4 A function f :G∗(Rand) → Λ equals f = fν for some ν ∈ KΛ(G∗(Rand)) if and only if for any
two related keys k1 ≺ k2, one of the following (mutually exclusive) conditions holds:

1. ⊥ ∈ {f(k1), f(k2)}, or

2. f(k1) = f(k2) = ⊤.

Moreover, if this is the case, then ν is the restriction of f to the set Roots(f−1(Λ \ {⊥})).

It easily follows from Lemma 4 that the mapping ν 7→ fν is injective, and ⊑ is a partial order relation:

• (Injectivity) Assume fν1
= fν2

= f for some ν1, ν2 ∈ G∗(Rand). Then, by Lemma 4, both ν1 and ν2

are the restriction of the same function f to the same set Roots(f−1(Λ \ {⊥})). So, ν1 = ν2.

• (Reflexivity) This is a direct consequence of the definition of ⊑ and the reflexivity of ≤.

• (Transitive property) This is a direct consequence of the definition of ⊑ and the transitivity of ≤.

17

• (Antisymmetry) Assume ν1 ⊑ ν2 ⊑ ν1. From the definition of ⊑ and the antisymmetry of ≤, we get
that fν1

= fν2
. Finally, using the injectivity of the mapping ν 7→ fν , we conclude that ν1 = ν2.

We now prove that KΛ(G∗(Rand)) is a complete lattice. It is easy to see that KΛ(G∗(Rand)) has a
top element ⊤ = {r⊤: r ∈ Rand} and a bottom element ⊥ = ∅. Next we shows that any nonempty set
{νi}i∈I ⊆ KΛ(G∗(Rand)) admits a greatest lower bound

d
i∈I νi. Define the function

f(k) = inf
i

fνi
(k)

for all k ∈ G∗(Rand). We claim that f satisfies the properties in Lemma 4. To this end, let k1 ≺ k2 be two
distinct, but related keys. We distinguish two cases:

1. If fνi
(k1) = fνi

(k2) = ⊤ for all i, then f(k1) = f(k2) = ⊤.

2. Otherwise, it must be ⊥ ∈ {fνi
(k1), fνi

(k2)} for some i. Say fνi
(kj) = ⊥. It follows that f(kj) = ⊥

and ⊥ ∈ {f(k1), f(k2)}.

So, we can apply Lemma 4 and conclude that f = fν where ν is the restriction of f to the set

S = Roots(f−1(Λ \ {⊥})).

We claim that ν =
d

i νi. Clearly, ν is a lower bound for all νi because for any k and i, fν(k) = f(k) =
infi fνi

(k) ≤ fνi
(k). Now, let ν̂ be such that ν̂ ⊑ νi for all i. Then, fν̂(k) ≤ fνi

(k) for all i, and therefore
fν̂(k) ≤ infi fνi

(k) = f(k) = fν(k). This proves that ν̂ ⊑ ν, and ν is indeed a greatest lower bound. We also
observe that if νi: Si → Λ \ {⊥}, then ν =

d
i νi ∈ KΛ(

⋃

i Si). To this end, we consider any key k /∈
⋃

i Si,
and prove that k /∈ S. For any i, since k /∈ Si, it must be fνi

(k) ∈ {⊥,⊤}. We consider two cases:

1. If fνi
(k) = ⊥ for some i, then fν(k) = infi fνi

(k) = ⊥, and therefore k /∈ S.

2. If fνi
(k) = ⊤ for all i, then it must be k ∈ G+(ν−1

i (⊤)). It follows that k = Gb(k̂) for some b ∈ {0, 1},

and k̂ such that fνi
(k̂) = ⊤. Therefore, fν(k̂) = infi fνi

(k̂) = ⊤, and k /∈ Roots(f−1
ν (Λ \ {⊥})) = S.

We now move to the existence of least upper bounds. For any nonempty set {νi}i∈I ⊆ KΛ(G∗(Rand))
define

ν =
l

V where V = {ν̂: ∀i ∈ I.νi ⊑ ν̂}.

Since νi ⊑ ν̂ for all ν̂ ∈ V , it follows that νi ⊑
d

V = ν, and ν is an upper bound to all νi. Finally, for any
upper bound ∀i.νi ⊑ ν̂, we have ν =

d
V ⊑ ν̂ by definition, i.e., ν is the smallest of all upper bounds and

ν =
⊔

νi. Also in this case we observe that if νi: Si → Λ \ {⊥} and ν: S → Λ \ {⊥}, then S must be a subset
of

⋃

i Si. To see this, assume for contradiction that there exists a k ∈ S \
⋃

i Si, and define another element
ν̂ as follows:

• If ν(k) 6= ⊤, then ν̂ is just the restriction of ν to S \ {k}.

• If ν(k) = ⊤, then ν̂ is obtained by replacing k⊤ in ν with G0(k)⊤,G1(k)⊤.

It can be easily checked that ν̂ ⊏ ν, and for all i, ν ⊒ νi implies ν̂ ⊑ νi. So, ν̂ is an upper bound to all νi,
and it is strictly smaller than ν, a contradiction. �

C Commutative properties

In this section we prove some simple commutative properties satisfied by pseudo-renamings.

Lemma 5 For any pseudo-renaming µ: S → Keys and set of keys A ⊆ S we have µ(Roots(A)) =
Roots(µ(A)).

18

Proof. Since, by Lemma 1, µ is injective, we have

µ(Roots(A)) = µ(A \ G+(A)) = µ(A) \ µ(G+(A)).

From the defining property of pseudo-renamings we also easily get that µ(G+(A)) = G+(µ(A)). Therefore,
µ(Roots(A)) = µ(A) \ G+(µ(A)) = Roots(µ(A)). �

Lemma 6 For any pattern e ∈ Pat(Keys,Data), set of keys S, and pseudo-renaming µ: A → G∗(Rand)
such that Keys(e) ∪ S ⊆ A,

µ(p(e, S)) = p(µ(e), µ(S)).

Proof. The proof is by induction on the structure of e. The first three cases are simple:

• If e = d ∈ D, then µ(p(d, S)) = d = p(µ(d), µ(S)).

• If e = k ∈ K ∪ {◦}, then µ(p(k, S)) = µ(k) = p(µ(k), µ(S)).

• If e = (e1, e2), then using the induction hypothesis we get µ(p((e1, e2), S)) = p(µ(e1, e2), µ(S)).

We are left with the case when e = {|e′|}k is a ciphertext. There are two possibilities, depending on whether
k ∈ S or not. Notice that µ is injective on G∗(A). So, for any k ∈ Keys(e) ⊂ G∗(A) and S ⊂ G∗(A), we
have k ∈ S if and only if µ(k) ∈ µ(S). Therefore,

• if k /∈ S, then µ(p({|e′|}k, S)) = {|struct(e′)|}µ(k) = p(µ({|e′|}k), µ(S)), and

• if k ∈ S, then µ(p({|e′|}k, S)) = {|µ(p(e′, S))|}µ(k) = p(µ({|e′|}k), µ(S)),

where in the second case we have also used the induction hypothesis. �

Lemma 7 For any expression or pattern e ∈ Pat(Keys,Data) and pseudo-renaming µ: S → G∗(Rand)
such that Keys(e) ⊆ S, we have r(µ(e)) = µ(r(e)).

Proof. Recall that r(e) = f−1
ν (⊤) where ν =

⊔

Φ(Parts(e)). It is easy to see that r(e) can equivalently be
defined as the set of all keys k such that {k⊤} ⊑

⊔

Φ(Parts(e)). Proceeding by induction on the structure
of e, we get that Parts(µ(e)) = µ(Parts(e)), and therefore

Φ(Parts(µ(e))) = Φ(µ(Parts(e))) = µ(Φ(Parts(e)))

where µ is extended to KΛ(Keys) in the obvious way by the rule

µ({kλ1

1 , . . . , kλn

n }) = {µ(k1)
λ1 , . . . , µ(kn)λn}.

Now notice that by the defining property of pseudo-renamings, the set of upper bounds to any A ⊆ KΛ(Keys)
is isomorphic to the set of upper bounds to µ(A) via the monotone mapping µ. It follows that

⊔

µ(A) =
µ(

⊔

A). Therefore

µ(r(e)) = {µ(k): {k⊤} ⊑
⊔

Φ(Parts(e))}

= {µ(k): µ({k⊤}) ⊑ µ(
⊔

Φ(Parts(e)))}

= {µ(k): {µ(k)⊤} ⊑
⊔

Φ(Parts(µ(e)))}

= r(µ(e)).

�

19

