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Abstract. Format-preserving encryption (FPE) encrypts a plaintext of some specified format into a
ciphertext of identical format—for example, encrypting a valid credit-card number into a valid credit-
card number. The problem has been known for some time, but it has lacked a fully general and rigorous
treatment. We provide one, starting off by formally defining FPE and security goals for it. We investigate
the natural approach for achieving FPE on complex domains, the “rank-then-encipher” approach, and
explore what it can and cannot do. We describe two flavors of unbalanced Feistel networks that can
be used for achieving FPE, and we prove new security results for each. We revisit the cycle-walking
approach for enciphering on a non-sparse subset of an encipherable domain, showing that the timing
information that may be divulged by cycle walking is not a damaging thing to leak.

1 Introduction

Background. During the last few years, format-preserving encryption (FPE) has emerged as a
useful tool in applied cryptography. The goal is this: under the control of a symmetric key K, de-
terministically encrypt a plaintext X into a ciphertext Y that has the same format as X. Examples
include encryption of US social security numbers (SSNs), credit card numbers (CCNs) of a given
length, 512-byte disk sectors, postal addresses of some particular country, and jpeg files of some
given length. In our formalization of FPE, the format of a plaintext X will be a name N describing
a finite set XN over which the encryption function induces a permutation. For example, with SSNs
this is the set of all nine-decimal-digit numbers.

The FPE goal is actually quite old. For one thing, a blockcipher itself can be seen as one kind
of FPE: each N -bit string, where N is the block size, is mapped to some N -bit string. But what
makes FPE an interesting and powerful idea is that the notion reaches far beyond blockciphers,
which normally encipher strings of some one, convenient length.

Some prior work. In FIPS 74 (1981) [30], a DES-based approach is described to encipher strings
over some fixed alphabet, say the decimal digits D = {0, 1, . . . , 9}. Each plaintext X ∈ DN would
be mapped to a ciphertext Y ∈ DN . Here each plaintext X ∈ D∗ has a unique format N = |X| and
we must encipher X relative to the set XN = DN .

Brightwell and Smith (1997) [7] considered a more general scenario, identifying what they
termed datatype-preserving encryption. They wanted to encrypt database entries of some particular
datatype without disrupting that datatype. A field containing an SSN (a nine-digit decimal string)
should get mapped to another SSN. The authors colorfully explain the difficulty of doing this, saying
that, with conventional encryption schemes, a “Ciphertext . . . bears roughly the same resemblance
to plaintext . . . as a hamburger does to a T-bone steak. A social security number, encrypted using
the DES encryption algorithm, not only does not resemble a social security number but will likely
not contain any numbers at all” [7, p. 142]. The authors provide a proposed solution, though, as
with FIPS 74, definitions or proofs for it are not likely or claimed.

Black and Rogaway [5] provided a provable-security investigation of a special case of FPE,
asking how to make a cipher E : K × X→ X with an arbitrary domain X. Their solutions focused
on X = ZN , the integers {0, 1, . . . , N −1}. The authors offer no general definition for FPE but they



clearly intend that ciphers with domains of ZN be used to construct schemes with other domains,
like the set of valid CCNs of a given length.

The term format-preserving encryption is due to Terence Spies, Voltage Security’s CTO [43].
Voltage, Semtek and other companies have been active in productizing FPE and explaining its
utility [42]. FPE can enable a simpler migration path when encryption is added to legacy systems
and databases, as required, for example, by the payment-card industry’s data security standard
(PCI DSS) [37]. Use of FPE enables upgrading database security in a way transparent to many
applications, and minimally invasive to others. Spies has gone on to submit to NIST a proposed
mechanism, FFSEM, that combines cycle walking and an AES-based balanced Feistel network [44].

Syntax. The current paper aims to help cryptographic theory “catch up” with cryptographic
practice in this FPE domain. We initiate a general treatment of the problem, doing this within the
provable-security tradition of modern cryptography.

We begin with a very general definition for FPE. Unlike a conventional cipher, an FPE scheme
has associated to it a collection of domains, {XN}N∈N. We call each XN a slice (the overall domain
is their union, X =

⋃

N XN ). The set N is the format space. For every key K, format N , and tweak T

the FPE scheme E names a permutation EN,T
K on XN . We are careful to make FPEs tweakable [23]

because, in this context, use of a tweak can significantly enhance security.

Returning to the CCN example, suppose we want to do FPE of CCNs with a zero Luhn-
checksum [21]. Let’s assume that the map should be length-preserving and that the possible lengths
range from 12 to 19 decimal digits. Then we could let N = {12, . . . , 19} and let XN be the set of all
N -digit numbers X such that LuhnOK(X) is true. Now an FPE scheme E with slices {XN}N∈N does
the job. You encrypt CCN X with key K and tweak T by letting Y = EN,T

K (X), where N = len(X).

Security notions. We define multiple notions of security for FPE schemes. Our strongest adapts
the traditional PRP notion to capture the idea that FPE is a good approximation for a family
of uniform permutations on the slices. Our weaker notions are denoted SPI, MP, and MR. SPI
(single-point indistinguishability) is a variant of the PRP notion in which there is a only a single
challenge point. MP (message privacy) lifts semantic security to the FPE setting by adapting earlier
notions of deterministic encryption [3, 6]. MR (message recovery) formalizes an adversary’s inability
to recover a challenge message, in its entirety, from the message’s ciphertext. All of these notions
can be made with respect to an adaptive or nonadaptive adversary, and can also be strengthened
to allow chosen-ciphertext attacks (for PRP, this would result in what is called a strong PRP).

Why bother with SPI, MP, and MR when they are implied by PRP? SPI is useful because it
is easy to work with and implies MP and MR with a tight bound. MP and MR are interesting
because they, even in their nonadaptive form, are what an application will most typically need.
An attack against the PRP notion may be no threat in practice, and achieving good PRP security
may be overkill. Good concrete security bounds become particularly a focus when slices are small:
a bound permitting q ≈ 2n/4 queries provides limited assurance when n = 20 bits.

Constructions. We next investigate the construction of FPE schemes. Suppose we wish to build
an FPE scheme E with a complex specification—the slices {XN} on which it should encipher. A
natural approach is to arbitrarily number the points in each XN , say XN = {X0,X1, . . . ,Xn−1}
where n = |XN |. Then, to encipher X ∈ XN , find its index i in the enumeration, encipher i to j
in Zn, and then return Xj as the encryption of X. We call this strategy the rank-then-encipher
approach. It’s the obvious, one could say folklore, approach. To implement it, we need an integer
FPE that can encipher on Zn for any needed n, as well a ranking function, rank, that maps each
(N,X) with X ∈ XN to a point in Zn with rank(N, ·) : XN → Zn a bijection for all N ∈ N.
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We will show how to build ranking functions for any FPE problem whose domain is a regular
language (the slices being strings of each possible length). This includes many practical problems.
This can be extended to domains that are context-free languages having unambiguous grammars.

Our starting point for building integer FPEs is the construction of Black and Rogaway [5],
which combines a generalization of an unbalanced Feistel network (the left and right hand side
are numbers in Za and Zb rather than strings) and a technique the authors call cycle walking, a
method apparently going back to the rotor machines of the early 1900’s [40]. We extend their work
to handle multiple slices with the same key, and to incorporate tweaks.

The type of unbalanced Feistel network that was extended in [5] is the type due to Lucks [25]. It
is not the only kind of unbalanced Feistel network. An equally natural possibility is the unbalanced
Feistel design of Schneier and Kelsey [39]. Extended to ZN where N = ab, we call this a type-1
Feistel, as opposed to the type-2 unbalanced Feistel network of [5, 25]. Our FPE schemes FE1 and
FE2, based on type-1 and type-2 unbalanced Feistel networks, comprise a flexible, efficient, and
customizable means for enciphering domains ZN where N = ab is the product of integers greater
than one. Its round function can be based, for example, on AES. Combining FE1 or FE2 with the
rank-then-encipher approach lets one achieve FPE in a wide variety of contexts.

Security. Ideally, we would like to prove good bounds on the strong-PRP security for FE1 and
FE2, assuming the round function to be a good PRF. But we run into a limitation, namely that
the proven strength of Feistel ciphers [5, 24, 27, 29, 31–36], in terms of quality of bounds, falls short
of what is wanted, and what appears to be the actual strength of the techniques. We address this
in a couple of ways.

First, proofs have always targeted PRP. Instead, we target MP and MR, thereby getting better
bounds more easily. We prove that FE2 with only three rounds hides all partial information with
respect to a nonadaptive chosen-plaintext attack: one achieves nonadaptive SPI, MP, and MR
security with reasonable bounds. Even then, we feel that being guided purely by what can be
proved would lead to an overly quite pessimistic security estimate. The most realistic picture may
be obtained by also assessing resistance to attacks. We consider known attacks and discuss their
implications for our parameter choices (principally the number of rounds). We also provide a novel
attack against (heavily) unbalanced type-2 Feistel networks, one that achieves message recovery
with success probability exponentially small in the number of rounds. The attack is damaging if
the number of rounds is too small.

Finally, reaching beyond PRP/SPI/MP/MR security, we consider a particular kind of side-
channel attack. The use of cycle-walking in the rank-then-encipher approach raises the fear of
timing attacks: might the number of times one has to apply the underlying cipher leak adversarially
valuable information? We prove that cycle-walking will not, on its own, give rise to timing attacks.
This is because the correct distribution on the number of iterations of the cipher on any input can
be computed by a simulator that does not attend to the inputs.

The future. We expect FPE to be increasingly deployed. The complex systems that process
financial transactions impose a powerful legacy constraint. Using classical blockcipher-based modes
would require far larger changes to these systems, which is costly and error-prone. FPE can be
realized by simple, AES-based modes of operation, avoiding the need to design and review any
fundamentally new primitive. Besides the enciphering of database fields, FPE may prove useful in
networking applications, allowing datagrams to have their fields protected without changing their
format. What one might lose in security when employing a deterministic encryption scheme can
often be erased by sensibly tweaking the FPE scheme [23]. Moreover, such loss of security may
be entirely overshadowed by the reduced need for random bits and disruption in infrastructure,
protocols, and code.
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2 FPE Syntax

Syntax. A scheme for format-preserving encryption (FPE) is a function E : K×N×T ×X→ X∪{⊥}
where the sets K, N, T , and X are called the key space, format space, tweak space, and domain,
respectively. All of these sets are nonempty and ⊥ 6∈ X. We write EN,T

K (X) = E(K,N, T,X) for
the encryption of X with respect to key K, format N , and tweak T . We require that whether or
not EN,T

K (X) = ⊥ depends only on N,X and not on K,T , and let

XN = {X ∈ X : EN,T
K (X) ∈ X for all (K,T ) ∈ K× T }

be the N -indexed slice of the domain. We demand that a point X ∈ X live in at least one slice,
X ∈ XN for some N (if X is in no slice it should not be included in E’s domain). We demand that
there be finitely many points in each slice, meaning XN is finite for all N ∈ N. We require that
EN,T

K (·) be a permutation on XN for any (K,T ) ∈ K×T . Its inverse D : K×N×T ×X→ X∪{⊥}
is defined by DN,T

K (Y ) = D(K,N, T, Y ) = X if EN,T
K (X) = Y . In summary, an FPE enciphers the

points within each of the (finite) slices that collectively comprise its domain.
A practical FPE scheme E : K×N×T ×X→ X∪{⊥} must be realizable by efficient algorithms:

an algorithm E to encrypt, an algorithm D to decrypt, and an algorithm to sample uniformly from
the key space K. Thus K, N, T , and X should consist of strings or points easily encoded as strings,
and E and D should return ⊥ when presented a point outside of K×N×T ×X. We will not draw
any distinction between an integer element of X , say, and a string that encodes such a point.

The format of a point. Let E : K×N×T ×X→ X∪{⊥} be an FPE scheme. Then we can speak
of X ∈ X as having format N if X ∈ XN . One could associate to E a format function ϕ : X →
P(N) \ {∅} that maps each X ∈ X to its possible formats; formally, ϕ(X) = {N ∈ N : X ∈ XN}.

Note that, under our definitions, a point may have multiple formats. But often this will not
be the case: each X ∈ X will belong to exactly one XN . In that case we can regard the format
function as mapping ϕ : X→ N and interpret ϕ(X) as the format of X. FPE is somewhat simpler
to understand for such unique-format FPEs: you can examine an X and know from it the slice
Xϕ(X) on which you mean to encipher it. For a unique format FPE one can write ET

K(X) rather

than EN,T
K (X) since N is determined by X.

Specifications. An FPE problem, as needed by some application, will specify the desired collection
of slices, {XN}N∈N. It will also specify the desired tweak space T . Typically it is easy to support
whatever tweak space one wants, but it may be quite hard to support a given collection of slices
{XN}N∈N (indeed it may be hard to accommodate a single slice, depending on what it is). We
therefore call the collection of slices {XN}N∈N the specification for an FPE scheme. We will write
X = {XN}N∈N for a specification, only slightly abusing notation because the domain X is the union
of slices in {XN}N∈N. The question confronting the cryptographer is how to design an FPE scheme
with a given specification. We now provide some example possibilities.

Examples. (1) AES-128 can be regarded as an FPE with a single slice, {0, 1}128. The key space
is K = {0, 1}128 and the format space and tweak space are trivial (have size one). (2) To encipher
16-digit decimal numbers, take X = {0, 1, . . . , 9}16 and just the one slice. (3) To encipher 512-
byte disk sectors using an 8-byte sector index as the tweak, let X = {0, 1}4096 , T = {0, 1}64, and
just the one slice. (4) Suppose you want to encipher CCNs of 12–19 digits with a proper Luhn
checksum, the ciphertext having the same length as the plaintext. Then the specification could be
X = {XN}N∈N where N = {12, 13, . . . , 18, 19} and XN is the set of all strings X ∈ {0, 1, . . . , 9}N
satisfying the predicate LuhnOK(X). Here |XN | = 10N−1. (5) One nice FPE has slices that are
{0, 1}N for each N ≥ 0. It allows length-preserving encryption of any binary string. (6) One can
FPE rather unusual spaces. For example, slice XN could encode all N -vertex graphs. Or XN could
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be all valid C-programs on N bytes. Designing an efficient FPE with this specification might be
impossible. All of the examples just given are unique-format FPEs. The following example is not.

Integer FPEs. The specification for a particularly handy kind of FPE is the following. The slices
are XN = ZN , for N ∈ N ⊆ N. This allows enciphering natural numbers with respect to any
permitted modulus N . Assuming the tweak space is similarly rich, say T = {0, 1}∗, we call such
scheme an integer FPE. When used within the rank-then-encipher paradigm, integer FPEs enable
the construction of FPEs with quite complex specifications.

3 FPE Security Notions

Games. Our definitions and proofs use code-based games [2], so we first review that material. A
game has an Initialize procedure, an optional Finalize procedure, and any number of additional
procedures. A game G is executed with an adversary A as follows. First, Initialize executes,
possibly returning an output s, and then A(run, s) is run (s = ε if Initialize returns no string).
As A executes it may call any procedure G (but not Initialize or Finalize) provided by G. If there
is no Finalize procedure, the output of A is the output of the game. If the game does specify a
Finalize, then, when A terminates, A’s output is Finalize’s input and the game’s output is that of
Finalize. Game procedures may call A(identifier[, x]), which invokes an instance of the caller with
distinct coins for each distinct identifier. Conceptually, then, each identifier thus names a separate
adversarial algorithm. State is not shared among them. Let GA ⇒ y denote the event that the
game outputs y. We write S ∪← x as shorthand for S←S ∪ {x}. Later we write c

+← d for c← c + d.

Boolean variables, including bad, are silently initialized to false, set variables to ∅, integer
variables to 0. Games G and H are said to be identical-until-bad if their code differs only in the
sequel of statements that first set bad to true. We say that “GA sets bad ” for the event that
game G, when executed with adversary A, sets bad to true. If G,H are identical-until-bad and A
is an adversary then Pr

[

GA sets bad
]

= Pr
[

HA sets bad
]

. It is also standard (“the fundamental

lemma”) that if G,H are identical-until-bad then Pr
[

GA ⇒ y
]

−Pr
[

HA ⇒ y
]

≤ Pr
[

GA sets bad
]

.

Security notions. We will extend the standard PRP notion to our setting, but we will also
describe notions weaker than it, because they can be achieved with better proven concrete security
for the same efficiency and, at the same time, they suffice for typical applications. Coming at it from
the latter perspective, the most basic and often sufficient requirement is security against message
recovery (MR), under either an adaptive or nonadaptive attack. We define this as well as a stronger
notion of message privacy (MP) that requires that partial information about the message is not
leaked by the ciphertext. We also consider a weakening of the PRP notion that we call SPI. The
reason for considering this notion is that it is simpler than MP and MR to work with yet implies
them; at the same time, it can be achieved with better concrete security bounds than we currently
know how to get for the ordinary PRP notion.

In the following let E : K×N×T ×X→ X∪{⊥} be an FPE scheme. We consider the games in
Figure 1. It is assumed that any query of the form (N,T,X) satisfies N ∈ N, X ∈ XN , and T ∈ T .

PRP security. The standard notion of PRP security is extended to FPE schemes via game PRPE

and the corresponding adversary advantage is

Advprp
E (A) = 2 · Pr

[

PRPA
E ⇒ true

]

− 1 .

In the game Perm(XN ) is the set of all permutations on XN .

SPI security. Single-point indistinguishability (SPI) requires that the adversary be unable to dis-
tinguish between the encryption of a single chosen message or a random range point, even when
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Initialize //Game PRPE

b
$
←{0, 1} ; K

$
←K

for (N, T ) ∈ N × T

do πN,T

$
←Perm(XN )

Enc(N, T, X)
if b = 1 then ret EN,T

K (X)
if b = 0 then ret πN,T (X)

Finalize(b′)
ret (b = b′)

Initialize //Game SPIE

b
$
←{0, 1} ; K

$
←K

Enc(N, T, X)
if (N, T, X)∈S then ret ⊥
S ∪← (N, T, X)
ret EN,T

K (X)

Test(N∗, T ∗, X∗)
if (N∗, T ∗, X∗)∈S then ret ⊥

S ∪← (N∗, T ∗, X∗)
if b = 1 then Y ∗←EN∗,T∗

K (X∗)
else Y ∗ $

←XN∗

ret Y ∗

Finalize(b′)
ret (b = b′)

Initialize //Game MPE

K
$
←K

(N∗, T ∗, X∗)
$
←A(dist)

Y ∗←EN∗,T∗

K (X∗)
ret (N∗, T ∗)

Enc(N, T, X)
ret EN,T

K (X)

Eq(X)
ret (X = X∗)

Test
ret Y ∗

Finalize(Z)
ret (Z = A(func, X∗))

Initialize //Game MRE

K
$
←K

(N∗, T ∗, X∗)
$
←A(dist)

Y ∗←EN∗,T∗

K (X∗)
ret (N∗, T ∗)

Enc(N, T, X)
ret EN,T

K (X)

Eq(X)
ret (X = X∗)

Test
ret Y ∗

Finalize(X)
ret (X = X∗)

Fig. 1. Games used for defining FPE security notions SPRP, PRP, SPI, MP, and MR. Procedure A, invoked by
games MP and MR, denotes the caller of the game.

given adaptive access to a true encryption oracle. The formalization is based on game SPIE . An
adversary A is allowed to make only a single Test query, and this must be its first oracle query.
Its associated advantage is

Advspi
E (A) = 2 · Pr

[

SPIAE ⇒ true
]

− 1 .

The SPI notion is closely related to (and inspired by) a definition originally from [14], variants of
which were also considered in [11, 28]. It is easy to see that PRP security implies SPI security, but
there is an additive loss of q/M in the advantage bound, where q is the number of queries by the
adversary and M is the minimum size of XN over all N ∈ N. This is perhaps unfortunate, but SPI
is only used as a tool anyway. A hybrid argument following [11, 14] shows that SPI security likewise
implies PRP security. Here, Advspi

E (A) ≤ q · Advprp
E (B) + q2/M where q is the number of Enc

queries of starting prp adversary A, and constructed spi adversary B makes q − 1 Enc queries.

Message recovery. An FPE scheme secure against message recovery is one for which an adversary
is unable to recover plaintexts from ciphertexts, even given an encryption oracle and a favorable
distribution of plaintexts, formats, and tweaks. If the encryption were randomized we would require
that the target ciphertext Y ∗ and encryption oracle EK be of no use in recovering the plaintext,
but this is too much to ask for with a deterministic encryption scheme, as an adversary can always
encrypt candidate messages X1, . . . ,Xq to ciphertexts Y1, . . . , Yq and, if Yi = Y ∗ for some i, it will
know that the target plaintext is X∗ = Xi. Our security definition will formalize that this attack
is (up to the adversary’s advantage) the best one possible.

The idea is formalized as game MRE in Figure 1. An MR-adversary A must begin with a Test
query and have QTest(A) = 1 and QEq(A) = 0, while a simulator S for A is an adversary that has
S(dist) = A(dist), QTest(S) = QEnc(S) = 0 and QEq(S) = QEnc(A). Here QProc(C) is the maximum
number of calls that adversary C might make to procedure Proc, the maximum over all coins of C
and all possible oracle responses. The MR-advantage of adversary A is then defined as

Advmr
E (A) = Pr

[

MRA
E ⇒ true

]

− pA

where pA = maxS Pr
[

MRS
E ⇒ true

]

with the maximum over all simulators S for A. Translating
our formalism into English, an adversary making a Test query and some number of Enc-queries
could do just as well forgoing its Test query and trading its Enc queries for Eq queries.
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In our experiment defining pA it is easy to see what strategy an optimal S should use: it makes q
Eq-queries, X1, . . . ,Xq, where X1 is a most likely point output by A(dist) for the known (N∗, T ∗);
X2 is a second most likely point (X2 6= X1); X3 is a third most likely point (X3 6∈ {X1,X2});
and so on. If the Eq-oracle returns true for some Xi then S calls Finalize(Xi); otherwise, it calls
Finalize(Xq+1) where Xq+1 /∈ {X1, . . . ,Xq} is the next most likely point after Xq. In this way S
will win with probability pA =

∑q+1
i=1 pi where pi = Pr[A(dist)⇒(N,T,Xi) | (N,T ) = (N∗, T ∗)].

Message privacy. In message privacy we are trying to measure the ability of an adversary with an
encryption oracle to compute some function of a challenge plaintext X∗ from its encryption C∗.
If the encryption is randomized we would require that the challenge ciphertext C∗ is of no use in
such an attack. The formalization of this is semantic security [15]. For deterministic encryption,
the intuition we aim to capture is that the adversary should do no better than it could if the
encryption were ideal. In this case, the encryption oracle provides no more than the capability of
testing whether a message of the adversary’s choice equals the challenge message.

Our formalization closely resembles that for MR. A difference is that A is asked not only
to come up with the distribution on plaintexts, but also the function on which it hopes to do
well. See game MP in Figure 1. An MP-adversary A must begin with a Test query and have
QTest(A) = 1 and QEq(A) = 0, while a simulator S for A is an adversary that has S(dist) = A(dist),
QTest(S) = QEnc(S) = 0, QEq(S) = QEnc(A) and S(func) = A(func). The advantage of A is defined
as

Advmp
E (A) = Pr

[

MPA
E ⇒ true

]

− pA

where pA = maxS Pr
[

MPS
E ⇒ true

]

with the maximum over all simulators S for A. Translating
our formalism into English, an adversary making a Test query and some number of Enc-queries
could do just as well in guessing Z = A(func,X∗) forgoing its Test query and trading its Enc
queries for Eq queries. Note that MR-security amounts to a special case of MP-security where the
function A(func, ·) is the identity function.

Relations between notions. One can pictorially describe the relationships between our four
security notions like this:

PRP SPI MP MR

The solid arrows indicate tight implications and the broken arrows indicate lossy ones. We already
noted the implications between PRP and SPI above. These can be shown to be the best possible,
with the counter-example in the first case being a perfect FPE scheme and in the second case
following [11]. We also noted that MP tightly implies MR. The non-obvious implication is that SPI
tightly implies MP, and is proved below. Finally, MP does not imply SPI, and MR does not imply
MP. For the former separation, consider an FPE scheme that has a fixed point for all keys; for the
latter separation, consider an FPE that always leaks a single bit of the plaintext. We now prove
the implication SPI→MP.

Proposition 1. [SPI ⇒ MP] Let E : K×N×T ×X→ X∪ {⊥} be an FPE scheme and let A be
an MP adversary. Then there is an SPI adversary B such that

Advmp
E (A) ≤ Advspi

E (B) .

In addition, adversary B runs in time that of A and QEnc(B) = QEnc(A). �

Proof. Let game SPI1E (resp. SPI0E) be the same as SPIE except that b is set to 1 (resp. 0)
in Initialize. Let A be an MP adversary. Without loss of generality we assume A never repeats
an oracle query. We first construct an SPI adversary B using A. First, B runs A(dist) to get
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triple (N∗, T ∗,X∗). Then, B queries Test(N∗, T ∗,X∗) to get ciphertext Y ∗ and runs A(N∗, T ∗),
returning Y ∗ in response to its Test query. Upon query Enc(N,T,X), first B checks if (N,T,X) =
(N∗, T ∗,X∗). If so, then B returns Y ∗. Otherwise it queries its own oracle Enc(N,T,X) and returns
the result. When A halts without output Z, adversary B returns 1 if Z = A(func,X∗) and returns
0 otherwise. In the case that B is run in game SPI1E, we have that B simulates for A exactly the
environment of MPE. Thus

Pr
[

SPI1BE ⇒ true
]

= Pr
[

MPA
E ⇒ true

]

. (1)

We now specify a simulator S for A. We let S(dist) = A(dist) and S(func) = A(func). When
executed on inputs N∗, T ∗, the simulator first selects a key K

$←K and a random value Y ∗ $←XN∗ .
It then runs A(N∗, T ∗). When A queries Test, S returns Y ∗. When A queries Enc(N,T,X), S
first queries Eq(X). If the returned value is true and (N,T ) = (N∗, T ∗) then S returns Y ∗ to
A. Otherwise it computes and returns E(K,N, T,X). Finally, when A halts with output Z, S
outputs Z. Since S is such that QEnc(S) = QTest(S) = 0 and QEq(S) = QEnc(A) we have that
pA ≥ Pr[MPS

E ⇒ true]. By design MPS
E and SPI0BE simulate the same environment for A. Therefore,

pA ≥ Pr[SPI0BE ⇒ false] and combining this with (1) and the definition of Advmp
E (A) yields the

proposition statement.

Nonadaptive security, strong security. We expect that nonadaptive adversaries (the “static”
security setting) are sufficient for many applications of FPE—the constructed scheme is not so much
a tool as an end. We consider the class of static adversaries S. An adversary A ∈ S, on input run,
decides at the beginning of its execution the sequence of queries it will ask, their number and their
kind being fixed. The relations between the non-adaptive notions of security remain the same as
for their adaptive counterparts as described above.

In the other direction, the notions can be strengthened to require CCA-security. This is done
by adding to the games a decryption procedure. In the PRP case, procedure Dec(N,T, Y ) would
return DN,T

K (Y ) if b = 1 and π−1
N,T (Y ) otherwise, where D = E−1 denotes the inverse of E, as

defined earlier. The resulting notion is the FPE analog of what is sometimes called strong-PRP
(SPRP). In the games for SPI, MP and MR, Dec(N,T, Y ) would return DN,T

K (Y ). The adversary
is not allowed to call it on inputs N∗, T ∗, Y ∗ and the simulator is not allowed to call it at all.

Asymptotic notions. We can adapt our definitions to the asymptotic setting. We illustrate this
for PRP-security. Recall first that, in speaking of complexity, we assume that K, E, and D are
all given by algorithms. Also, algorithm K took no input. We must slightly adjust the syntax
of our FPE schemes. In particular, we provide K an input of the form 1k. The algorithm must
run in probabilistic polynomial time. Algorithm E and its inverse D must run in deterministic
polynomial time in the sum of their input lengths. We then say that E is PRP-secure if, for any
PPT adversary A, the function ε(k) = Advprp

E (A(1k)) is negligible, meaning ε(k) ∈ k−ω(1). We
emphasize that it is the key K output by K that, presumably, grows with the security parameter k;
the specification X = {XN} does not grow with or otherwise depend on the security parameter.

4 The Rank-then-Encipher Approach

The idea. Suppose we want to build an FPE scheme E the slices of which may be quite complex. As
an example, we might want to do length-preserving encryption of credit cards of various lengths, the
CCNs of each length having a particular checksum and satisfying specified constraints on allowable
substrings. It would be undesirable to design an encryption schemes whose internal workings were
tailored to the specialized task in hand. Instead, what one can do is this. First, arbitrarily order
and then number the points in each slice, XN = {X0,X1, . . . ,Xn−1} where n = |XN |. Then, to
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encipher X ∈ XN , find its index i in the enumeration, encipher i to j in Zn using an integer FPE
scheme, and then return Xj as the encryption of X. We call this strategy the rank-then-encipher
approach. The method will be efficient if there is an efficient way to map each point X to its index i,
to encipher i to j, and to map j back to the corresponding point Xj . Details now follow, attending
more closely to formats and tweaks, and also allowing the enumeration used for mapping j to Xj

to differ from that used for ranking.

Definitions. To formalize RtE encryption, we first define a ranking and an unranking function
for a specification X = {XN}. A ranking function is a map rank : N × X → N ∪ {⊥} for which
rankN (·) = rank(N, ·) is a bijection from XN to Z|XN |. In addition, rankN (X) = ⊥ if N 6∈ N or
X 6∈ XN . An unranking function is a map unrank : N × N → X ∪ {⊥} for which unrankN (·) =
unrank(N, ·) is a bijection from Z|XN | to XN . In addition, unrankN (i) = ⊥ if i 6∈ Z|XN |.

For the asymptotic tradition, we say that a specification X = {XN} can be efficiently ranked
if there are (deterministic) polynomial-time computable ranking and unranking functions for X =
{XN}. Polynomiality is in the sum of the input lengths. Note that the security parameter is not an
input to the ranking or unranking functions, but it is already built in that larger slices may take
more time to rank and unrank, as the input to these functions includes the format N .

The scheme. Suppose one aims to create an FPE scheme E with specification X = {XN}N∈N.
Let the desired tweak space for E be the set T . Let N0 = {|XN | : N ∈ N} ⊆ N be the sizes of the
different slices. Then we can construct our desired FPE scheme E if we have in hand: (1) an integer
FPE scheme E : K × N0 × {0, 1}∗ → N (it enciphers points in Zn for each n ∈ N0), and (2) a
ranking function rank and an unranking function unrank for X = {XN}N∈N. Given such objects,
define E = RtE[E, rank,unrank] as the map E : K ×N × T × X→ X ∪ {⊥} with

EN,T
K (X) = unrankN (E

|XN |,〈N,T 〉
K (rankN (X)))

when X ∈ XN , and EN,T
K (X) = ⊥ otherwise. We call this rank-then-encipher approach. In words:

convert the N -formatted string X to its corresponding number i; encipher i ∈ Z|XN | to some
j ∈ Z|XN |, employing a tweak that encodes both the format N of X and the tweak of E ; finally,
convert j back to a domain point in Y ∈ XN using a possibly unrelated enumeration of points.

We will omit formalizing and proving the rather obvious statements that, if E is secure with
respect to the strong-PRP, PRP, SPI, MP, or MR notion of security, then so too will be the FPE
scheme E = RtE[E, rank,unrank], the reduction being tight and having time complexity that is
approximately the sum of the times to perform the ranking and unranking.

By way of the rank-then-encipher approach, one can take an integer FPE (based, e.g., on
the techniques described in [5]) and create from it an FPE with a quite intricate specification
X = {XN}N∈N.

For many specifications the needed ranking and unranking functions are simple to design and
fast to compute: an ad hoc approach will work fine. But what can one say in general about the
power of the rank-then-encipher FPE approach? We now turn our attention to this.

5 FPE for Arbitrary Regular Languages

The problem. Let Σ be a (finite) alphabet and let L ⊆ Σ∗ be a language over it. We say that an
FPE scheme E : K×N×T ×X→ X∪{⊥} is an FPE scheme for L if X = L, N = N, and the slices
are Xn = Ln = L∩Σn for all n ∈ N. In this section we show how to build an FPE for an arbitrary
regular language L by describing how to compute a corresponding ranking and unranking function.

Why attend to regular languages? Many FPE specifications can be cast as asking for an FPE
for a regular language. This is trivially true when the domain is finite. Some important domains
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algorithm BuildTable(n)

for q ∈ Q do
if q ∈ F then T [q, 0]← 1

for i← 1, . . . , n do
for q ∈ Q do

for a ∈ Σ do
T [q, i]

+
← T [δ(q, a), i− 1]

algorithm rank(X)

q← q0 ; c← 0 ; n←|X|
for i← 1, . . . , n do

for j← 1, . . . , ord(X[i]) − 1 do
c

+
← T [δ(q, aj), n− i]

q← δ(q,X[i])
ret c

algorithm unrank(c)

X← ε ; q← q0 ; j← 1
for i← 1, . . . , n do

while c ≥ T [δ(q, aj), n− i] do
c← c− T [δ(q, aj), n− i] ; j

+
← 1

X[i]← aj ; q← δ(q,X[i]) ; j← 1
ret X

Fig. 2. Middle: Algorithm for computing the rank of a word in the regular language L of a DFA M = (Q,Σ, δ, q0, F ).
Left: Initializing the table T . Each T [·, ·] starts at zero. Right: How to compute the inverse of the ranking function.

are finite and without an easily summarized structure; a domain like “a valid postal address” is
likely to be defined by a database such as the US Address Information System (AIS) and, given
such a database, ranking is easy. Other finite domains are large but have a concise description as
a regular language, either in terms of a regular expression or a DFA. For example, a US social
security number is a string in the regular language (0∪1∪· · ·∪9)9. Alternatively, one may subtract
from this any set of numbers that have not been assigned, such as those starting with an 8 or 9,
having 0000 as the last four digits, or having 00 as the preceding two digits, but the resulting set
will again have a concise description. For credit card numbers, a simple 20-state DFA M recognizes
the language LuhnR of strings that are the reversals of numbers with a valid Luhn checksum [21].
Namely, the DFA is M = (Q,Σ, δ, q0, F ) with states Q = Z10×Z2, final states F = {0}×Z2, start
state q0 = (0, 0), and transition rule δ((a, b), d) = (a + 2d + a⌈d/5⌉ mod 10, 1− b). We will continue
to use the M = (Q,Σ, δ, q0, F ) syntax below, following the convention of Sipser’s book [41].

Rank computation for regular languages. We will describe efficient ranking and unranking
functions for the specification X = {XM} where M is a DFA and XM = L(M) is its language.
First impose a total order a1 ≺ · · · ≺ a|Σ| on the elements of the alphabet Σ = {a1, . . . , a|Σ|} and
extend this to the lexicographic order ≺ on each Σn. For a ∈ Σ let ord(a) be the index i such that
a = ai and for every n ∈ N let the ranking function be given by rankL(X) = |{Y ∈ L : |X| = |Y | =
n and Y ≺ X}|. We omit the argument n = |X| because it is determined by X. Assume we have
an integer FPE scheme E. Provided that we can efficiently compute each rankL(·) and its inverse
unrankL(·), applying the RtE paradigm gives a practical FPE E = RtE[E, rankL,unrankL] with
E : K×N × T × L→ L ∪ {⊥}.

Let M = (Q,Σ, δ, q0, F ) be a DFA recognizing the regular language L ⊆ Σ∗. Let X[i] denote
the i-th character of X ∈ Σ∗ (numbering from the left and starting at 1). Extend δ to Q × Σ∗

so that δ(q,X) is the state we end up in by starting from q and following X ∈ Σ∗. Formally, set
δ(q, ǫ) = q for all q ∈ Q and recursively define δ(q, x) = δ(δ(q,X[1] · · ·X[n− 1]),X[n]) for all q ∈ Q
and all X ∈ Σ∗ with n = |X| ≥ 1.

We compute the ranking function for M by dynamic programming, following [13]. Let T [q, n]
be the number of strings X ∈ Σn such that δ(q,X) ∈ F . The first algorithm of Figure 2, on
input n, uses dynamic programming to compute, for all q ∈ Q and j ∈ [1 .. n], the number T [q, j] of
accepting paths of length j that start at q. The rank of a word in L can be computed based on T as
shown by the second algorithm in Figure 2. The third algorithm in the figure computes the inverse,
deriving a word in L by its rank. In the unit-cost model of computation, where arbitrary integer
multiplications and additions are performed in unit time, rankM and unrankM can be computed
in O(|Σ| · n) time, while the preprocessing step BuildTable(n) takes time O(|Q| · |Σ| · n) time.

We comment that ranking can be further sped up to require about n sums instead of n|Σ| by
precomputing the needed partial sums, adding a third coordinate to T . The unranking function
would need a binary search, or some other method, to map a number into the corrected (precom-
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puted) interval [0..β1), [β1..β2), . . . , [βσ−1, βσ) that contains it, where σ = |Σ|. Regardless, ranking
and unranking are linear-time for any regular language L, with modest constants in terms of the
DFA representation of L.

On the importance of representations. It is important that we represented our regular
language in terms of a DFA; had L been represented in terms of an NFA or a regular expression, we
could not have efficiently computed the ranking and unranking functions. In particular, remember
that it is NP-hard (even PSPACE-hard) to decide if the language of an NFA M (or a regular
expression α) is Σ∗ [12, #AL1], [16]. Consequently, if P 6= NP, we can’t compute unrank(2n − 1)
efficiently for all n, as such functionality would provide immediate means to decide if L(M) = Σ∗.
Formally, if P 6=NP then XM can’t be efficiently ranked, where XM = L(M) is the language of the
NFA M . Note, however that this does not imply an inability to make an efficient FPE scheme for
this specification—it only means that such a scheme could not use the RtE approach.

Ranking non-regular languages. Beyond regular languages, we can also apply the RtE ap-
proach with Mäkinen’s ranking algorithm for the language generated by an unambiguous context-
free grammar [26]. Efficient ranking algorithms exist for various other classes of combinatorial
objects. For example, if we wish to encrypt the domain Xn! consisting of the set of permutations
on n elements, the Lucas-Lehmer encoding [19] provides an efficient ranking. Other examples are
spanning trees of a graph [9], B-trees [22], and Dyck languages [20]. Efficient rankings have also
been studied in coding theory, starting with [10].

6 FPE without Ranking

Given the ease of ranking regular languages and beyond, it is natural to ask if every language for
which there is an efficient FPE scheme admits an RtE-style one. In this section we show that the
answer is no. More specifically, we exhibit a specification X = {XN}N∈N where efficient FPE is
possible but efficient ranking is not. This assumes the existence of a one-way function. We warn
up front that our result in not practical, in the sense that nobody would ever want to do format-
preserving encryption on our chosen specification {XN}N∈N. We leave it as an interesting open
problem to find a practicable specification for which efficient FPE is possible but ranking is not.

A specification that can’t be ranked. We will let each format G ∈ N specify a (simple,
undirected) graph G = (V,E). Slice XG consists of all proper κ-colorings of G, where κ = 2∆ + 1
and ∆ = maxv∈V d(v) is the maximum degree of any vertex. Recall that a coloring is an assignment
of colors to vertices, and a coloring is proper if it uses only allowed colors and adjacent vertices
never receive the same color. A coloring color ∈ XG on the n-vertex graph G can be regarded as a
map color : {1, . . . , n} → {0, . . . , κ− 1} where the vertices have names 1, . . . , n and the colors have
names 0, 1, . . . , κ − 1. The value of color could be conveniently represented by a string color ∈ Cn

where C = {0, 1, . . . , κ− 1}.
Our definition of having an efficient ranking on XG is quite strict: in particular, via binary

search, one can efficiently extract from the unranking function unrank the cardinality of XG. In
other words, efficient ranking and unranking of X = {XG} is at least as hard counting the elements
of each XX . But a result of Bubley, Dyer, Greenhill, and Jerrum [8, Section 6] says that it is
#P -complete to count the number of proper κ-colorings of a maximum-degree-∆ graph, even for a
fixed κ,∆ ≥ 3. As a consequence, one can’t FPE via RtE on our specification X = {XG} assuming
P 6= #P. Note that P 6= NP, or the existence of a one-way function, already implies that P 6= #P.

How to FPE on this specification. A classical paper by Jerrum [17] shows how to efficiently
produce an almost-uniform proper κ-coloring color of the n-vertex graph G = (V,E) (where, as we
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have assumed already, that κ ≥ 2∆ + 1). Beginning with an arbitrary proper coloring color of G,
repeat the following, for iterations t = 1, . . . ,ntimes:

(1) Uniformly select v
$←{1, . . . , n} and c

$←{0, . . . , κ− 1}.
(2) Let color∗ be identical to color except for setting color∗(v) = c.
(3) If color∗ is a proper coloring then replace color by color∗.

The final value of color is the coloring produced. Jerrum shows that ntimes = κ/(κ− 2∆)n ln(n/ε)
repetitions is enough so that no adversary can distinguish the resulting coloring from a uniform one
with advantage exceeding ε (the original language is in terms of stopping times and total-variation
distance). For our choice of κ = 2∆ + 1, one needs at most ntimes = 2n2 ln(n/ε) repetitions to
ensure an advantage of at most ε.

The procedure above cannot directly be used to encrypt because it is not computationally
reversible. What we mean by this is the following. Suppose that the transition function of a Markov
chain is described by an (efficiently computable) function f : when the Markov chain is in state q
and coins c

$←Ω are selected, the next state is q′ = f(q, c). Then f is computationally reversible
if there exists an (efficiently computable) function g such that q = g(q′, c). In such a case, if the
chain goes from an initial state of q0 to a final state of qt using coins c1, . . . , ct, then knowledge of
the final state qt and the coins c1, . . . , ct allows recovery of q0. Now to make our transition function
efficiently recoverable for the Jerrum chain, just replace step (2), above, by

(2) Let color∗ be identical to color except for setting color∗(v) = (color(v) + c) mod κ.

Formally, the Markov chain is completely unchanged: one transitions from q to q′ with the same
probability as before. But with this alternative description, transitions can readily be reversed,
by setting κ(v) = (κ(v′) − c) mod κ. This provides the basis of a simple encryption scheme. First
define a pseudorandom function F that, keyed by key K of length k, maps the numbers t, n, κ to
an output in {1, . . . , n} × {0, . . . , κ}. Use F to generate the needed coins in step t. Run the chain
for 2n2k lg n steps. It is easy to see that if F is indeed a PRF then, using the result of Jerrum, we
have constructed a secure FPE for the specified domain. We summarize our finding as follows.

Theorem 1. Suppose there exists a one-way function. Then there is a specification X = {XN} that
admits a PRP-secure FPE scheme but for which {XN} cannot be efficiently ranked.

Other examples. Our choice of an FPE specification involving proper graph colorings was not
necessary: one could have selected other #P-complete problems. For example, it would have worked
to select the space of perfect matchings of a bipartite graph [45]. Here again there is a Monte Carlo
process that rapidly mixes the Markov chain, this due to Jerrum, Sinclair and Vigoda [18]. The
process, as described by the authors, again fails to be computationally reversible, but it is once again
possible to recast the process so that it is computationally reversible. It is somewhat more complex
than with the example chosen. In fact, we rather expect that most computationally interesting
Markov processes can be recast so as to make them computationally reversible.

An alternative approach to FPE without ranking is provided by cycle walking. Suppose, for
example, that one defines a 1-bit pseudorandom function F on strings and declares that X = {Xn}
where Xn = {x ∈ {0, 1}n : FK(x) = 1}. The set is easy to encrypt (in efficient expected time) but,
one would expect, computationally inefficient to rank and unrank.

7 Feistel-Based Integer FPEs

We present two Feistel-based constructions of integer FPE schemes E : K×N×T ×X→ X ∪ {⊥}
with format space N = N × N and X such that XN = Zab for N = (a, b) with a ≤ b. Both are
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algorithm FE1N,T

K (X)

(a, b)←N ; X0←X

for i = 1, . . . , r(N) do

Li−1←Xi−1 mod a

Ri−1←Xi−1 div a

Wi← (Li−1 + FK(N, T, i, Ri−1)) mod a

Xi←aRi−1 + Wi

ret Xr(N)

algorithm FE2N,T

K (X)

(a, b)←N

L0←X mod a ; R0←X div a

for i = 1, . . . , r(N) do

If i mod 2 = 1 then s← a else s← b

Li←Ri−1

Ri← (Li−1 + FK(N, T, i, Ri−1)) mod s

ret sLr(N) + Rr(N)

algorithm FD1N,T

K (Y )

(a, b)←N ; Yr(N)←Y

for i = r(N), . . . , 1 do

Wi←Yi mod a

Ri−1←Yi div a

Li−1← (Wi − FK(N, T, i, Ri−1)) mod a

Yi−1← bLi−1 + Ri−1

ret Y0

algorithm FD2N,T

K (Y )

(a, b)←N

If r(N) mod 2 = 1 then s←a else s← b

Rr(N)←Y mod s ; Lr(N)←Y div s

for i = r(N), . . . , 1 do

If i mod 2 = 1 then s← a else s← b

Ri−1←Li

Li−1← (Ri − FK(N, T, i, Ri−1)) mod s

ret sR0 + L0

Fig. 3. Top: Encryption and decryption algorithms for the integer FPE scheme FE1 (left) and FE2 (right), where
K ∈ K, T ∈ T , F ∈ N, and X, Y ∈ XF . Here x div y means ⌊x/y⌋. Bottom: The corresponding decryption algorithms.
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Fig. 4. Diagrams depicting three rounds of type-1 Feistel (left) or three rounds of type-2 Feistel (right). Here
N = (a, b) = (2a, 2b), input X ∈ Zab, and FK maps points in Za to points in Zb.

parameterized by the following: (1) a round function F : K×N×T ×N×N→ N; and (2) a function
r : N→ N specifying the number of rounds.

Figure 3 defines encryption and decryption for the two integer FPE schemes FE1 and FE2. We
refer to Feistel networks, such as FE1, that utilize the same kind of round function every round
as type-1. Type-1 Feistel networks were previously treated in [29, 39] for the case of bit strings.
We refer to Feistel networks, such as FE2, that alternate the kind of round function as type-2.
Type-2 Feistel networks for the case of bit strings are due to Lucks [25]. Type-2 Feistel networks
with modular arithmetic were first used in [5].
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Round functions. The round functions should be PRFs. It is not clear what this means when
the range is the infinite set N. To specify a round function, we will first specify a range function
w : N→ N such that for all N ∈ N we have w(N) ≥ b where N = (a, b). The PRF advantage of an
adversary A is then defined by

Advprf
F (A) = Pr

[

AF (K,·,·,·,·)⇒ 1
]

− Pr
[

A$(·,·,·,·)⇒ 1
]

where A’s oracle in the second case returns a random point in Zw(N) in response to a query
N,T, i,X. Adversary A is not allowed to repeat an oracle query.

In cases of practical interest, we can build suitable round functions based on block ciphers
(e.g. 3DES or AES) or cryptographic hash functions (e.g. SHA-256). See Appendix A for example
instantiations. We also discuss there the use of precomputation for speed improvements (deriving
from the fact that several of the inputs to F are the same across all rounds).

Discussion. The round function takes as input the format and tweak, which effectively provides
“separate” instances of the cipher for each format, tweak pair. To ensure independence between
rounds, the round number is also input into the PRF.

FE1 and FE2 support domains of the form Zab and only provide security when a > 1. To
handle arbitrary Zn one can choose N = (a, b) so that ab > N and then utilize the cycle walking
technique with FE1 or FE2 (see [5] for a treatment). Alternatively, one might utilize the off-by-one
construction (see [5]) to avoid cycle-walking. But for typical applications like the encryption of
credit card numbers, the requisite domains will be Zn for which n = ab for a and b that are almost
balanced.

8 Security of Feistel FPEs

We first discuss attacks and then proofs of security. We distinguish between when information-
theoretic or computational security is compromised by an attack. The first means we are concerned
only with the advantage as a function of the number of oracle queries, and the second means the
running time of the adversary is also relevant. The distinction is important because there are some
attacks, like Patarin’s [31], defending against which requires a lot of rounds for information-theoretic
security but, due to the large running time of the attack, very few for computational security, so
that it is not a practical threat. Computational security against an attack is what’s relevant in
practice. An information-theoretic attack is not an indication of a practical weakness but, due to
the fact that proofs (so far) use information-theoretic techniques, is interesting because it tells us
how good a bound we can hope to prove.

8.1 Security of FE1

Minimal number of rounds. Consider any N = (a, b) ∈ N. Let p(a, b) = ⌈loga ab⌉ = 1+⌈loga b⌉.
When a, b are clear from context, we will sometimes write just p. This is the number of rounds
required to implement a full pass, as per the terminology in [28]. Security mandates that at the
least r((a, b)) ≥ p(a, b) + 1. Otherwise a simple PRP adversary can successfully distinguish with
just a few queries. For example consider when r((a, b)) = p(a, b). Let X,X ′ be such that (X div b) 6=
(X ′ div b) and (X mod b) = (X ′ mod b). Then necessarily (FE1N,T

K (X) div b)−(FE1N,T
K (X ′) div b) =

(X div b)− (X ′ div b). But this relation only holds with probability a−1 when FE1 is replaced by a
random function.

Patarin’s attack. In [31], Patarin gave a simple distinguishing attack against the PRP security
of balanced Feistel networks using ideal round functions. In the attack, the adversary A queries q
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distinct messages. Then A checks if there exists a set of round functions that, when used within the
Feistel network, map the q inputs to the q outputs. If no such set of rounds exists, then A knows
that its oracle is a random permutation. This attack easily generalizes to the type-1 Feistel network
of FE1 and we discuss its implications for the choice of the number of rounds. The bottom line is
that information-theoretic security against Patarin’s attack requires rather a lot of rounds. But the
attack is computationally expensive, and computational security requires few rounds. Additionally,
the attack is a PRP one but not an MR one. For these reasons, the attack is not a practical threat.
We now try to detail the analysis.

Fix some format N = (a, b), let n = ab, and let r = r(N). We let R be the set of all possible
round functions, so that |R| = ab. Each vector r ∈ Rr of r round functions specifies a Feistel
permutation that we denote Fer. The number of such vectors is arb. The adversary A queries
its oracle on q ≤ n distinct inputs x[1], . . . ,x[q] to get outputs y[1], . . . ,y[q]. We say that y is
compatible with r if Fer(x[i]) = y[i] for all 1 ≤ i ≤ q. If there is some r ∈ Rr that is compatible
with y then A returns 1, else 0.

The running time of the attack is at least arb. In practice we are safe if this is not more than,
say, 280, meaning r needs to be at least 80/(b lg a). Encrypting 2-digit numbers with a = 10, we
need only three rounds to counter the attack, and this number does not increase if we encrypt more
digits, regardless of the balance.

To reduce the running time, the adversary may mount the attack using only some subset of the
vectors, say an ǫ fraction of them. In this case, it achieves advantage at most ǫ with time ǫarb. In
such a setting the right metric of adversarial effort is work factor, meaning the ratio of its running
time to its advantage, which continues to be arb. So this change in the attack has not bought the
adversary anything.

That’s the computational security. Now let’s consider information-theoretic security, where the
picture is quite different. The prp-advantage α of A is 1− p where p is the probability that, for a
random vector y with distinct entries, there exists r ∈ Rr which is compatible with y. We want to
ensure that α is small, meaning p is close to 1. Let

p∗ =
arb

n!/(n− q)!
. (2)

This is a good approximation to p so we will endeavor to choose r to make it 1. (The quantity p∗

is definitely an upper bound on p, but may not equal it because there may be different vectors r, r′

for which Fer = Fer′ . We are assuming this happens seldom, which is likely true if q ≥ a, so let’s
assume this.) Let’s say we want security up to q = n queries. In this case, the equation p∗ = 1 gives
us arb = n! ≈

√
2πn(n/e)n, whence r ≈ (n ln n)/(b ln a). If we are encrypting 9-digit numbers in

an almost balanced way, meaning a = 104 and b = 105, this means we need almost 22, 500 rounds.
Things get better with more imbalance: if a = 10 and b = 108 then r = 90.

Attacks from [35]. Patarin, Nachef, and Berbain investigate the security of type-1 Feistel net-
works [35] in the case that a = 2m and b = 2(p−1)m for some m and p ≥ 3. When p = 3, they give
PRP attacks requiring q ≈ 2m/2 for 4 rounds, q ≈ 2m for 5 rounds, and q ≈ 22m for 6 rounds.
When p ≥ 4 they give PRP attacks requiring q ≈ 2(2i−1)m/2 for p + i rounds with 1 ≤ i < p. These
attacks require time approximately q2 and aren’t even applicable after r moves beyond 2p.

Prior security bounds. Naor and Reingold gave results regarding the security of type-1 Feistel
networks in the case3 where α = log2 a ∈ N and β = log2 b ∈ N [29]. They showed that when
(say) r = 3p any PRP adversary’s advantage when round functions are random functions is upper

3 In fact, they treat a slightly more general case, see [29] for details. Moreover, their result utilizes pairwise-
independent permutations for the first and last round; we assume these to be implemented via more rounds.
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bounded by

α + β

2α
· q

2

b
+

q2

n
.

In the extreme case when a = 2 security up to almost
√

n queries is proven. More recently, Morris,
Stegers and Rogaway [28] considered the case a = 2 and log2 b ∈ N, corresponding to the Thorpe
shuffle, and proved non-adaptive PRP security up to about n/8 log2(n) queries, where n = ab = 2b,
if one uses r ≥ 2p log2(n) = 2 log2

2 n rounds. (Adaptive security requires twice as many rounds.) As
an example, this means 1, 800 rounds when encrypting a 30-bit string. (30 is about the number of
bits in a 9-digit number but here we need b a power of 2 so can’t work directly over digits.) Patarin’s
attacks says that information-theoretic security here (which is what is proved) would require 60
rounds, so the truth is somewhere in between. Computational security requires at least 30 rounds
in this case by our first attack.

Proofs in general mean greater assurance, but lack of a proof for fewer rounds does not mean
there is an attack in that case. Right now, there is a fairly large gap between the security indicated
by attacks and proofs. Which you follow depends on how conservative you want to be and how
much you are willing to pay in processing.

Non-adaptive SPI security. We provide a new security bound for FE1 by proving non-adaptive
SPI security whenever p(a, b) is a whle number (i.e. b = ak for k ∈ N and k = p(a, b)− 1) and when
r((a, b)) ≥ p(a, b) + 1. As discussed above, this number of rounds is minimal, and so our theorem
suggests that this number of rounds also achieves SPI security up to the bounds indicated.

Theorem 2. Let F : K×N×T ×N×N→ N and let r(N) = p(N) + 1. Let FE1[F, r] be the FE1
FPE scheme. Let A be a non-adaptive SPI adversary that makes q encrypt queries with formats
N = (a, b) with 2 ≤ a ≤ b and where p(a, b) = loga ab is a whole number. Let Nm = (am, bm) be
such that all formats N = (a, b) queried by A are such that am ≤ a. Let pm = p(am, am). Then
there exists a PRF adversary B such that

Advspi
FE1(A) ≤ Advprf

F (B) +
pmq

am
.

B runs in time that of A and makes
∑

1≤i≤q p(Ni) queries where Ni is the format of the i-th query.

Before giving the proof we discuss the concrete security implications. Suppose we are just
encrypting 16 digit CCNs, and let N = (108, 108) for maximum balance. Further, suppose we
instantiate ...

Proof. We assume without loss of generality that A never makes a query for which ⊥ is returned.
Since N is fixed we elide it from queries. We utilize two games, shown in Figure 5. Game G0,
boxed statements included, implements the SPI1FE1[a,b] game4. By construction then we have that

Pr[SPI1AFE1[a,b] ⇒ 1] = Pr[G0A ⇒ 1]. Game G1 is the same as G0 except that the boxed statements
are omitted. G1 and G0 are identical-until-bad and so by the fundamental lemma of game playing
we have that

Pr
[

G0A ⇒ 1
]

− Pr
[

G1A ⇒ 1
]

≤ Pr
[

G1A sets bad
]

where “G1A sets bad” is the event that bad is set during the course of executing G1A. We now
argue that G1, in fact, implements exactly the SPI0FE1[a,b] game. This requires justifying that the
value returned by the Test query is a uniform point in XN . Note that in G1 the values W ∗

2 , . . . ,W ∗
r

are uniformly distributed in Za due to the random choices of Z∗
2 , . . . , Z∗

r . By assumption, we have

4 For the exact definition of this and of SPI0, refer to the proof of Proposition 1.
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Initialize Game G0 , G1

i← 0 ; (ρ1, . . . , ρr)
$
←(Func(Zb, Za))r

Enc(X)

j← j + 1 ; Xj
0←X0

For i = 1, . . . , r do

Lj

i−1←Xj

i−1 div b ; Rj

i−1←Xj

i−1 mod b

Zj
i ← ρi(Ri−1)

If i > 1 and R∗
i−1 = Rj

i−1 then bad← true ; Zj
i ←Z∗

i

W j
i ←Lj

i−1 + Zj
i mod a

Xj

i ←aRj

i−1 + W j

i

Ret Xj
r

Test(X)

X∗
0 ←X

For i = 1, . . . , r do

L∗

i−1←X∗

i−1 div b ; R∗

i−1←X∗

i−1 mod b

If i > 1 then Z∗

i

$
←Za Else Z∗

1 ← ρ1(R
∗
0)

W ∗
i ←L∗

i−1 + Z∗
i mod a

X∗

i ← aR∗

i−1 + W ∗

i

Ret X∗
r

Initialize Game G0 , G1

i← 0 ; (ρ1, ρ3)
$
←(Func(Zb, Za))2 ; ρ2

$
←Func(Za, Zb)

Enc(X0, X1)

i← i + 1 ; (Xi
0, X

i
1)← (X0, X1)

Zi
1← ρ1(X

i
1) ; Xi

2←Zi
1 + Xi

0 mod a

Zi
2← ρ2(X

i
2)

If Xi
2 = X∗

2 then bad1← true ; Zi
2←Z∗

2

Xi
3←Zi

2 + Xi
1 mod b

Zi
3← ρ3(X

i
3)

If Xi
3 = X∗

3 then bad2← true ; Zi
3←Z∗

3

Xi
4←Zi

3 + Xi
2 mod a

Ret (Xi
3, X

i
4)

Test(X0, X1)

(X∗
0 , X∗

1 )← (X0, X1)

Z∗
1 ← ρ1(X

∗
1 ) ; X∗

2 ←Z∗
1 + X∗

0 mod a

Z∗
2

$
←Zb ; X∗

3 ←Z∗
2 + X∗

1 mod b

Z∗
3

$
←Za ; X∗

4 ←Z∗
3 + X∗

2 mod a

Ret (X∗
3 , X∗

4 )

Fig. 5. (Left) Games used in the proof of Theorem 2. (Right) Games used in the proof of Theorem 3.

that ab = ap for some number p. (Equivalently, that p = loga ab is a whole number.) The returned
value X∗

r can therefore be written as ap−1W ∗
2 + · · ·+ a ·W ∗

r−1 + W ∗
r which is distributed uniformly

over Zab.

All that remains is to bound A’s ability to set bad in game G1. Recall that A is non-adaptive,
meaning has fixed queries independent of all other random choices in the game. The flag bad is set
if, for some i ∈ [2 .. r] and some j ∈ [1 .. q] it is the case that R∗

i = Rj
i . We split the argument into

two cases, depending on whether i = 2 or i > 2. For the i = 2 case, note that if R∗
0 = Rj

0 for some

j then R∗
1 6= Rj

1 (we have disallowed pointless queries). If R∗
0 6= Rj

0, then the probability

R∗
1 = (aR∗

0 + ρ1(R
∗
0)) mod b = (aRj

0 + ρ1(R
j
0)) mod b = Rj

1

is at most a−1. For the case that i > 2, we have that R∗
i−1 = (aR∗

i−2 + W ∗
i−1) mod b where W ∗

k is

uniformly and independently distributed for all k ∈ [2 .. r]. Thus the probability that R∗
i−1 = Rj

i−1

is at most a−1. Taking a union bound over all i, j we have that Pr[G1A sets bad] ≤ pq/a.

8.2 Security of FE2

As one would expect, Patarin’s attack also applies to type-2 unbalanced Feistel networks. Its success
and running time can be easily adapted from the discussion for FE1 given above. In the following,
we describe a novel PRP attack for type-2 Feistel networks, a variant of it that allows message
recovery, and then provable security bounds for FE2.

A new distinguishing attack. Highly unbalanced Feistel networks are susceptible to highly
efficient attacks that succeed with exponentially vanishing probability as the number of rounds
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increases. Still, for small, fixed round number, the attacks could be dangerous. We present a PRP
adversary A against FE2[a, b]. Denote r(N) by r and assume r is even (the attack easily extends
to the case that r is odd). Then adversary A works as described below.

adversary AEnc(·)

L0
$←Za ; L′

0←L0 ; R0
$←Zb ; R′

0
$←Zb\{R0}

Y ←Enc(L0 + a ·R0) ; Y ′←Enc(L′
0 + a ·R′

0)
D←Y mod b ; D′←Y ′ mod b
if D −R0 ≡ D′ −R′

0 (mod b) then ret 1 else ret 0

Let game PRP0 (resp. PRP1) be the same as game PRP (Figure 1) except b in Initialize is
assigned 0 (resp. 1). First we analyze Pr[PRPA ⇒ 1]. Adversary A outputs 1 exactly when D −
R0 + R′

0 ≡ D′ (mod b). Thus Pr[PRP0A ⇒ 1] = 1
a(b−1) + a−1

ab . We next analyze Pr[PRP1A ⇒ 1].

Let d = r/2. This is the number of times a value Ri is assigned in E for i > 0 and even. (Refer to
Figure 3.) Let Z1, . . . , Zr be the outputs of the round function F for rounds 1 to r (respectively)
when evaluating FE2[a, b] on point L0 +a·R0 in response to A’s first query. Similarly let Z ′

1, . . . , Z
′
r

be the outputs of the round function F for rounds 1 to r (respectively) when evaluating FE2[a, b]
on point L′

0 + a ·R′
0 in response to A’s second query. Consider the situation in which Zi = Z ′

i for
all i > 0 and i even. This occurs with probability at least a−d. (This is true because the inputs to
each of the relevant d round function applications will collide with probability 1/a.) Then in this
case it holds with probability one that D −R0 ≡ D′ −R′

0 (mod b) since

D ≡ Rr ≡ R0 +
∑

i≤r
i even

Zi (mod b) and D′ ≡ R′
r ≡ R′

0 +
∑

i≤r
i even

Z ′
i (mod b) .

Therefore we have Pr[PRP1A ⇒ 1] ≥ a−d. Combining this with the upper bound on Pr[PRP0A ⇒ 1]
given above we get that the PRP advantage of A is

Advprp
FE2(A) ≥ 1

ad
− 1

a(b− 1)
− a− 1

ab
.

For certain values of a, b, r this is large. Say r = 7, a = 2 and b is large. Then A’s advantage is
1/3 − 1/(2b − 2)− 1/(2b).

Message recovery attack. We can adapt the above attack to mount message recovery attacks.
The distinguishing attack establishes a relationship D−R0 ≡ D′−R′

0 (mod b) for distinct messages
with high probability. If R0 is unknown, one can recover it if D, D′, and R′

0 are known. This requires
a single known-plaintext and its associated ciphertext, which will have the desired collisions with
the unknown plaintext with probability a−d. From the known plaintext, ciphertext pair one can
recover the unknown plaintext portion R0. Then L0 can be guessed (with probability of success 1/a)
or the adversary can try all a potential values of L0 by appropriate queries to Enc. The attack
then runs in time that to compute R0 (two modular additions), uses at most a Enc queries, and
succeeds in recovering the full plaintext with probability at least a−d.

Non-adaptive SPI security. We prove the following theorem, which is similar to Theorem 2. It
establishes non-adaptive SPI security of FE2[a, b] up to q ≈ min(a, b) for just 3 rounds. Note that
it is easy to give attackers against 2 rounds, and so this is the minimal number of rounds for which
one can expect security.

Theorem 3. Fix a format N = (a, b) with 2 ≤ a ≤ b and let r(·) = 3. Let A be a non-adaptive
SPI adversary making q encrypt queries. Then Advspi

FE2[a,b](A) ≤ q
a + q

b . �

Proof. We assume without loss of generality that A never makes a query for which ⊥ is returned.
Since N is fixed, we elide formats from queries. We assume inputs and outputs to oracle queries
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are pairs (X,X ′) ∈ Za×Zb. We utilize two games, shown in Figure 5. Game G0, boxed statements
included, implements the SPI1FE2[a,b] game5. By construction then we have that Pr[SPI1AFE2[a,b] ⇒
1] = Pr[G0A ⇒ 1]. Game G1 is the same as G0 except that the boxed statements are omitted. G0
and G1 are identical until bad1 or bad2 and so by the fundamental lemma of game playing we
have that

Pr
[

G0A ⇒ 1
]

− Pr
[

G1A ⇒ 1
]

≤ Pr
[

G1A sets bad
]

where “G1A sets bad” is the event that either bad1 or bad2 are set during the course of execut-
ing G1A. In game G1 the Test query responds with a random pair X∗

3 ,X∗
4 (which inherit the

distribution of Z∗
2 and Z∗

3 ). Thus G1 implements exactly the SPI0 game. To conclude, then, we
must bound the probability that bad1 or bad2 is set in game G1. We use a union bound to treat
each case separately, starting with bad2 which is easier. Recall that all queries are fixed (being
the non-adaptive setting) and so the random choice of X∗

3 is independent of the values Xi
3 for

i ∈ [1 .. q]. Thus Pr[G1A sets bad2] ≤ q/b. For bad1, consider a particular i ∈ [1 .. q]. Suppose that
Xi

1 = X∗
1 , meaning also that Zi

1 = Z∗
1 . But then having Xi

2 = X∗
2 implies that Xi

0 = X∗
0 , and

we have disallowed A from making such a query. On the other hand, if Xi
1 6= X∗

1 then (because
of non-adaptivity, meaning all queries are fixed) the probability that Xi

2 = X∗
2 is at most 1/a. A

union bound over all i gives that Pr[G1A sets bad1] ≤ q/a.

9 Cycle Walking Doesn’t Give Rise to Timing Attacks

Suppose E : K×N×T ×X → X ∪ {⊥} is an FPE scheme and XN ⊆ X̄N for all N ∈ N. Suppose
FPE scheme E : K×N× T × X̄ → X̄ ∪ {⊥} is obtained from FPE scheme E by cycle walking, a
folklore technique used, in a similar context, in [5]. Specifically, suppose we define

algorithm EN,T
K (X)

c← 0
repeat c← c + 1 ; X←EN,T

K (X) until (X ∈ XN )
ret X

We refer to the value c at the end of the computation as the cycle-length associated to EN,T
K (X). So

far, our security models have provided the adversary with an oracle EK(·, ·, ·), for a hidden key K.
But in implementations, it would not be surprising to have c leaked, as well as EN,T

K (X), by way of
timing information: for example, responses to EK should take twice as long if c = 2 than if c = 1,
assuming that E itself runs in data-independent time across XN . A more conservative model, then,
would provide to the adversary the cycle length c in addition to handing it EN,T

K (X). In such a
case, one wonders if leaking the timing information negatively impacts security. Here we will show
that, in a formally specified model, it does not adversely impact PRP security.

Game RealE of Figure 6 returns in response to query N,T,X not only EN,T
K (X) but also the

associated cycle-length c. Game SimE implements Enc(N,T, ·) as a random permutation over XN

and, in addition, returns for any query a value of c computed by the subroutine call to Sample. The
computation of Sample depends on some global arrays Q and St, and on N,T , but it does not depend
on X. Game Sample thus provides a reference experiment defining a random permutation with an
irrelevant side channel. The notation b

$←B(α, β) means that the bit b is chosen randomly with bias
Pr[b = 1] = α

α+β . The following says that two games we have described are indistinguishable if E is
a good PRP.

5 For the exact definition of this and of SPI0, refer to the proof of Proposition 1.
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Initialize //Game RealE
K←K

Enc(N, T, X)
c← 0
repeat

c← c + 1
X←EN,T

K (X)
until (X ∈ XN )
ret (X, c)

Initialize //Game SimE

K←K

Enc(N, T, X)

Y
$
←XN\R[N, T ] ; R[N, T ] ∪← Y

c←Sample(N, T )
Q[N, T ]←Q[N, T ] + 1
ret (Y, c)

algorithm Sample(N, T )
in←|XN | −Q[N, T ]
out←|X̄N | − |XN | − St[N, T ]
c← 0
repeat

b
$
←B(in, out− c)

c← c + 1
until b = 1
St[N, T ]←St[N, T ] + c− 1
ret c

Enc(N, T, X) //Game G
c← 0
repeat

c← c + 1
X

$
←X̄N\R[N, T ] ; R[N, T ] ∪←X

until (X ∈ XN )
ret (X, c)

Fig. 6. Games used in evaluating risk of timing attacks. Integer-valued tables are silently initialized to 0 for each
entry. Distribution B(α, β) is Bernoulli with probability of returning 1 being p = α/(α + β).

Theorem 4. Let E : K×N× T × X → X ∪ {⊥} be an FPE scheme. Suppose XN ⊆ X̄N for all
N ∈ N and let E : K×N×T × X̄ → X̄ ∪ {⊥} be obtained from E by cycle-walking. Then for any
A making qA queries and having running time TA there is an adversary B such that

Pr
[

RealAE ⇒ 1
]

− Pr
[

SimA
E ⇒ 1

]

≤ Advprp
E (B) .

Let λ = maxN∈N(|X̄N | − qA)/(|XN | − qA), or 1 if this is less than 1. Then the expected number of
queries made by B and the expected running time are at most λqA and λTA respectively. �

Proof. Consider game G in Figure 6. We design B so that

Pr
[

RealAE ⇒ 1
]

− Pr
[

GA ⇒ 1
]

= Advprp
E (B) . (3)

Adversary B runs A. When A makes a query N,T,X to its Enc oracle, adversary B responds,
using its own Enc oracle, via

c← 0
repeat

c← c + 1 ; X←Enc(N,T,X)
until (X ∈ XN )
ret (X, c)

Equation (3) is clear. The proof is concluded by noting that

Pr
[

GA ⇒ 1
]

= Pr
[

SimA
E ⇒ 1

]

.
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A Building Efficient Round Functions

In this section we detail some sample methods for instantiating an efficient tweakable round function
F : K ×D → N for D = T × N

3 from a blockcipher E : K × {0, 1}n → {0, 1}n. We first describe
building round functions that output n-bit strings, and then we consider what happens when one
take the result mod b.

Vil prf. A simple and secure approach is to first build a variable-input-length PRF F from E using
any of the many well-known construction, such as CMAC. Then map the format N , tweak T , and
round number i to a bit string via some canonical encoding, apply F , and interpret the resulting
n-bit string as an integer in Z2n . We detail two particular realizations of this approach below.

Prefix-free cbc-mac. Recall that CBC-MAC is secure for variable-input-length inputs if a prefix-
free encoding of messages is used [38], so we can encode N,T, i in a prefix-free manner and apply
the CBC-MAC. Let ℓ ≥ ⌈log N⌉ for any N to be used, and let L ≥ ⌈log |T |⌉ for any T to be used.
In practice there will always be such maximums. Define

pad(N,T ) = 〈N〉ℓ ‖ 〈|T |〉L ‖ T ‖ 0p

where p is the minimum number of bits needed to ensure that ℓ + L + |T | + p is a multiple of n
and StN (string to number) maps a string Y to the integer y, 0 ≤ y < 2|Y |, that it represents as an
unsigned binary value (for example, StN(000011) = 3). The round function RdF1 : K×D → N is
then defined by

RdF1K(N,T, i,X) = StN(CBC-MACK (pad(N,T ) ‖ 〈i〉8 ‖ 〈X〉n−8)))

for any K ∈ K, T ∈ T , and X ∈ Z2n−8. Since typically one will have n = 64 or n = 128, that
X ∈ Z2n−8 is not a serious restriction, nor is it to assume that i < 256.

The encoding ensures that one can do efficient precomputation, since N,T do not change be-
tween rounds. One therefore precomputes τ←CBC-MACK(pad(N,T )) first. During round i, ap-
plying the PRF to number X can then be accomplished via a single call to E, Z←StN(EK(τ ⊕
(〈i〉8 ‖ 〈X〉n−8))).

22



Rekeying by tweaks. We modify the above construction to give one that uses rekeying. Let
E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher with keylength k ≥ n. Round function RdF2 : K×
D → N is defined by

RdF2K(T, ℓ, i,X) = StN (EK ′(〈i〉8 ‖ 〈X〉n−8)) where K ′ = CBC-MACK(pad(N,T ))[1..k] .

That is, the CBC MAC is applied to N and T to derive a new key K ′, and this new key is used for a
final application of E on the round number and message. Again precomputation is straightforward,
so that each round requires a single blockcipher call.

Effect of modular arithmetic. Our PRFs are built from traditional ones that output bit
strings, and are proven to be indistinguishable from random functions outputting bit strings. But
we will use these PRFs to output numbers that are taken modulo numbers smaller than 2n within
FE1 and FE2. Here we discuss how security is affected by this extra mod operation.

We begin by asking the following. Consider, on the one hand, the uniform distribution on ZM .
Consider, on the other hand, the distribution on ZM that is obtained by picking a random point x
in ZN and returning x mod M . What is the statistical difference between these distributions? To
answer this, let IntDiv denote the integer division algorithm, which on inputs N,M returns a
quotient q and remainder r satisfying N = Mq + r and 0 ≤ r < M . Then, we claim the following.

Lemma 1. Let N ≥M ≥ 1 be integers, and let (q, r)← IntDiv(N,M). For z ∈ ZM let

PN,M (z) = Pr [x mod M = z : x
$←ZN ] .

Then for any z ∈ ZM ,

PN,M (z) =











q + 1

N
if 0 ≤ z < r

q

N
if r ≤ z < M .

Proof (Lemma 1). Let the random variable X be uniformly distributed over ZN . Then

PN,M (z) = Pr [X mod M = z ]

= Pr [X < Mq ] · Pr [ X mod M = z | X < Mq ]

+Pr [Mq ≤ X < N ] · Pr [ X mod M = z | Mq ≤ X < N ]

=
Mq

N
· 1

M
+

N −Mq

N
·











1

N −Mq
if 0 ≤ z < N −Mq

0 if N −Mq ≤ z < M .

=
q

N
+

r

N
·











1

r
if 0 ≤ z < r

0 if r ≤ z < M .

Simplifying yields the claimed equation.

As a result of the above, the statistical distance between the uniform distribution on ZM and the
distribution obtained by picking a random point x in ZN and returning x mod M is

1

2

r−1
∑

z=0

∣

∣

∣

∣

q + 1

N
− 1

M

∣

∣

∣

∣

+
1

2

M−1
∑

z=r

∣

∣

∣

∣

q

N
− 1

M

∣

∣

∣

∣

=
r(M − r)

NM
≤ 1

4

M

N
.

Suppose that the maximum number of digits in a plaintext is 20. In this case, we have M = 1010,
so the above statistical distance is at most 1010/264 ≈ 2−31. This is reasonably small, indicating
that the mod operation does not dramatically affect the distribution.
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